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Asynchronous Communication: Capacity Bounds
and Suboptimality of Training
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Abstract—Several aspects of the problem of asynchronous
point-to-point communication without feedback are developed
when the source is highly intermittent. In the system model of
interest, the codeword is transmitted at a random time within
a prescribed window whose length corresponds to the level of
asynchronism between the transmitter and the receiver. The
decoder operates sequentially and communication rate is defined
as the ratio between the message size and the elapsed time between
when transmission commences and when the decoder makes a
decision. For such systems, general upper and lower bounds on
capacity as a function of the level of asynchronism are established,
and are shown to coincide in some nontrivial cases. From these
bounds, several properties of this asynchronous capacity are
derived. In addition, the performance of training-based schemes
is investigated. It is shown that such schemes, which implement
synchronization and information transmission on separate de-
grees of freedom in the encoding, cannot achieve the asynchronous
capacity in general, and that the penalty is particularly significant
in the high-rate regime.

Index Terms—Asynchronous communication, bursty commu-
nication, error exponents, large deviations, sequential decoding,
sparse communication, synchronization.

I. INTRODUCTION

I NFORMATION-THEORETIC analysis of communication
systems frequently ignores synchronization issues. In many

applications where large amounts of data are to be transmitted,
such simplifications may be justified. Simply prepending a suit-
able synchronization preamble to the initial data incurs negli-
gible overhead yet ensures that the transmitter and the receiver
are synchronized. In turn, using such protocols in conjunction
with well-established capacity-approaching coding techniques
guarantees that the data are delivered with minimum delay in
such settings.
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In general, the level of asynchronism in a communication
system is naturally measured with respect to the size of the data
to be transmitted. From this perspective, the aforementioned
scenario corresponds to a setting with a low level of asynchro-
nism, wherein the amount of data is large with respect to the
timing uncertainty.
In a growing number of applications, however, such as

many involving sensor networks, data are transmitted in a
bursty manner, and the level of asynchronism present is quite
different. An example would be a sensor in a monitoring
system. In contrast with the more traditional setting, here
timing uncertainty is large with respect to the amount of data
to be transmitted.
To communicate in such regimes, where the level of asyn-

chronism is high, one might choose to continue to use the
traditional preamble-based communication scheme for each
block. Alternatively, one could pursue a fundamentally dif-
ferent strategy in which synchronization is integrated into the
encoding of the data, rather than separated from it.
To evaluate the relative merits of such diverse strategies, and

more generally to explore fundamental performance limits, we
recently introduced a general information-theoretic model for
asynchronous communication in [1]–[3]. This model extends
Shannon’s original communication model [4] to include asyn-
chronism. In this model, the message is encoded into a code-
word of fixed length, and this codeword starts being sent across
a discrete memoryless channel at a time instant that is randomly
and uniformly distributed over some predefined transmission
window. The size of this window is known to transmitter and
receiver, and the level of asynchronism in the system is gov-
erned by the size of the window with respect to the codeword
length. Outside the information transmission period, whose du-
ration equals the codeword length, the transmitter remains idle
and the receiver observes noise, i.e., random output symbols.
The receiver uses a sequential decoder whose scope is twofold:
decide when to decode and what message to declare.
The performance measure is the communication rate which

is defined as the ratio between the message size and the average
delay between when transmission starts and when the message
is decoded. Capacity is the supremum of achievable rates, i.e.,
rates for which vanishing error probability can be guaranteed in
the limit of long codeword length.
The scaling between the transmission window and the code-

word length that meaningfully quantifies the level of asynchro-
nism in the system turns out to be exponential, i.e.,
where denotes the size of the transmission window, denotes
the codeword length, and denotes the asynchronism exponent.
Indeed, as discussed in [3], if scales subexponentially in ,
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then asynchronism does not impact communication: the asyn-
chronous capacity is equal to the capacity of the synchronous
channel. By contrast, if the window size scales superexponen-
tially, then the asynchrony is generally catastrophic. Hence, ex-
ponential asynchronism is the interesting regime and we aim to
compute capacity as a function of the asynchronism exponent.
For further motivation and background on the model, in-

cluding a summary of related models (e.g., the insertion,
deletion, and substitution channel model, and the detection and
isolation model), we refer to [3, Sec. II]. Accordingly, we omit
such material from this paper.
The first main result in [3] is the characterization of the syn-

chronization threshold, which is defined as the largest asynchro-
nism exponent for which it is still possible to guarantee reli-
able communication—this result is recalled in Theorem 1 of
Section III.
The second main result in [3] (see [3, Th. 1]) is a lower bound

to capacity. A main consequence of this bound is that for any
rate below the capacity of the synchronous channel, it is possible
to accommodate a nontrivial asynchronism level, i.e., a positive
asynchronism exponent.
While this work focuses on rate, an alternative performance

metric is the minimum energy (or, more generally, the minimum
cost) needed to transmit one bit of information asynchronously.
For this metric, Chandar et al. [5], [6] establish the capacity per
unit cost for the aforementioned bursty communication setup.
We now briefly summarize the results contained in this paper.
1) General capacity lower bound, Theorem 2 and Corollary
1: Theorem 2 provides a lower bound to capacity which
is obtained by considering a coding scheme that performs
synchronization and information transmission jointly. The
derived bound results in a much simpler and often much
better lower bound than the one obtained in [3, Th. 1].
Theorem 2, which holds for arbitrary discrete memoryless
channels, also holds for a natural Gaussian setting, which
yields Corollary 1.

2) General capacity upper bound, Theorem 3: This bound,
together with the lower bound of Theorem 2, although not
tight in general, provides significant and surprising insights
into the asynchronous capacity. For instance, Corollary 2
says that, in general, it is possible to reliably achieve a com-
munication rate equal to the capacity of the synchronous
channel while operating at a strictly positive asynchronism
exponent. In other words, it is possible to accommodate
both a high rate and an exponential asynchronism.
Another insight is provided by Corollary 3, which relates
to the very low rate communication regime. This result
says that, in general, one needs to (sometimes significantly)
back off from the synchronization threshold in order to be
able to accommodate a positive rate. As a consequence,
capacity as a function of the asynchronism exponent does
not, in general, strictly increase as the latter decreases.

3) Capacity for channels with infinite synchronization
threshold, Theorem 4: For the class of channels for which
there exists a particular channel input whose output cannot
be confused with noise, a closed-form expression for
capacity is established.

4) Suboptimality of training-based schemes, Theorem 6,
Corollaries 4 and 5: These results show that commu-
nication strategies that separate synchronization from
information transmission do not achieve the asynchronous
capacity in general.

5) Good synchronous codes, Theorem 5: This result may be of
independent interest and relates to synchronous communi-
cation. It says that any codebook that achieves a nontrivial
error probability contains a large subcodebook, whose rate
is almost the same as the rate of the original codebook,
and whose error probability decays exponentially with the
blocklength with a suitable decoder. This result, which is
a byproduct of our analysis, is a stronger version of [7,
Corollary 1.9, p. 107] and its proof amounts to a tightening
of some of the arguments in the proof of the latter.

It is worth noting that most of our proof techniques differ
in some significant respects from more traditional capacity
analysis for synchronous communication—for example, we
make little use of Fano’s inequality for converse arguments.
The reason for this is that there are decoding error events
specific to asynchronous communication. One such event is
when the decoder, unaware of the information transmission
time, declares a message before transmission even starts.
An outline of this paper is as follows. Section II summarizes

some notational conventions and standard results we make use
of throughout the paper. Section III describes the communica-
tion model of interest. Section IV contains our main results, and
Section V is devoted to the proofs. Section VI contains some
concluding remarks.

II. NOTATION AND PRELIMINARIES

In general, we reserve upper case letters for random variables
(e.g., ) and lower case letters to denote their corresponding
sample values (e.g., ), though as is customary, we make a
variety of exceptions. Any potential confusion is generally
avoided by context. In addition, we use to denote the se-
quence , for . Moreover, when ,
we use the usual simpler notation as an alternative to .
Additionally, denotes “equality by definition.”
Events (e.g., ) and sets (e.g., ) are denoted using cali-

graphic fonts, and if represents an event, denotes its com-
plement. As additional notation, and denote the proba-
bility and expectation of their arguments, respectively, de-
notes the norm of its argument, denotes absolute value if
its argument is numeric, or cardinality if its argument is a set,
denotes the integer part of its argument, , and

. Furthermore, we use to denote nonstrict set
inclusion, and use the Kronecker notation for the function
that takes value one if the event is true and zero otherwise.
We also make use of some familiar order notation for asymp-

totics (see, e.g., [8, Ch. 3]). We use and to denote
(positive or negative) quantities that grow strictly slower and
strictly faster, respectively, than their arguments; e.g., de-
notes a vanishing term and . We also use
and , defined analogously to and , respectively, but
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Fig. 1. Graphical depiction of the transmission matrix for an asynchronous dis-
crete memoryless channel. The “no input” symbol is used to characterize the
channel output when the transmitter is silent.

without the strictness constraint. Finally, we use to de-
note a function that does not grow or decay faster than polyno-
mially in its argument.
We use to denote the probability of its argument, and use
, , and to denote the set of distributions over the

finite alphabets , , and , respectively, and use
to denote the set of conditional distributions of the form
for .
For a memoryless channel characterized by channel law
, the probability of the output sequence given an

input sequence is

Throughout the paper, always refers to the underlying channel
and denotes its synchronous capacity.
Additionally, we use and to denote the left and right

marginals, respectively, of the joint distribution , i.e.,

We define all information measures relative to the natural log-
arithm. Thus, the entropy associated with is1

and the conditional entropy associated with and
is

Similarly, the mutual information induced by is

so

1In the definition of all such information measures, we use the usual conven-
tion .

for and . Furthermore, the information
divergence (Kullback–Leibler distance) between and

is

and conditional information divergence is denoted using

where and , . As a specialized notation,
we use

to denote the divergence between Bernoulli distributions with
parameters , .
We make frequent use of the method of types [7, Ch. 1.2]. In

particular, denotes the empirical distribution (or type) of a
sequence , i.e.,2

The joint empirical distribution for a sequence pair
is defined analogously, i.e.,

and, in turn, a sequence is said to have a conditional empirical
distribution given if for all

As additional notation, is said to be an -type if
is an integer for all . The set of all -types over

an alphabet is denoted using . The -type class of , de-
noted using , is the set of all sequences that have type ,
i.e., such that . A set of sequences is said to have con-
stant composition if they belong to the same type class. When
clear from the context, we sometimes omit the superscript and
simply write . For distributions on the alphabet , the
set of joint -types is defined analogously. The set of se-
quences that have a conditional type given is denoted
by , and denotes the set of empirical conditional
distributions, i.e., the set of such that
for some .
2When the sequence that induces the empirical type is clear from context, we

omit the subscript and write simply .
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Fig. 2. Temporal representation of the channel input sequence (upper axis) and channel output sequence (lower axis). At time , message starts being sent
and decoding occurs at time . Since is unknown at the receiver, the decoding time may be before the entire codeword has been received, potentially (but not
necessarily) resulting in a decoding error.

Finally, the following three standard type results are often
used in our analysis.
Fact 1 ([7, Lemma 1.2.2]):

Fact 2 ([7, Lemma 1.2.6]): If is independent and identi-
cally distributed (i.i.d.) according to , then

for any .
Fact 3 ([7, Lemma 1.2.6]): If the input to a mem-

oryless channel has type , then the proba-
bility of observing a channel output sequence which lies in

satisfies

for any such that is nonempty.

III. MODEL AND PERFORMANCE CRITERION

The asynchronous communication model of interest captures
the setting where infrequent delay-sensitive data must be reli-
ably communicated. As mentioned earlier, for a discussion of
this model and its connections with related communication and
statistical models, we refer to [3, Sec. II].
We consider discrete-time communication without feedback

over a discrete memoryless channel characterized by its finite
input and output alphabets and , respectively, and transition
probability matrix , for all and . Without
loss of generality, we assume that for all , there is some

for which .
There are messages . For each

message , there is an associated codeword

which is a string of symbols drawn from . The codewords
form a codebook (whence ). Communication takes
place as follows. The transmitter selects a message randomly

and uniformly over the message set and starts sending the cor-
responding codeword at a random time , unknown to
the receiver, independent of , and uniformly distributed
over , where

is referred to as the asynchronism level of the channel, with
termed the associated asynchronism exponent. The transmitter
and the receiver know the integer parameter . The spe-
cial case (i.e., ) corresponds to the classical syn-
chronous communication scenario.
When a codeword is transmitted, a noise-corrupted version of

the codeword is obtained at the receiver. When the transmitter
is silent, the receiver observes only noise. To characterize the
output distribution when no input is provided to the channel,
we make use of a specially designated “no-input” symbol in
the input alphabet , as depicted in Figs. 1 and 2. Specifically

(1)

characterizes the noise distribution of the channel. Hence, con-
ditioned on the value of and on the message to be conveyed,
the receiver observes independent symbols
distributed as follows. If

or

the distribution of is . If

the distribution of is . Note that since the
transmitter can choose to be silent for arbitrary portions of its
length- transmission as part of its message-encoding strategy,
the symbol is eligible for use in the codebook design.
The decoder takes the form of a sequential test , where
is a stopping time, bounded by , with respect to the

output sequence , indicating when decoding happens,
and where denotes a decision rule that declares the decoded
message (see Fig. 2). Recall that a stopping time (deter-
ministic or randomized) is an integer-valued random variable
with respect to a sequence of random variables so that
the event , conditioned on , is independent
of , for all . The function is then defined
as any -measurable map taking values in ,
where is the natural filtration induced by the process

.
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A code is an encoder/decoder pair .3
The performance of a code operating over an asynchronous

channel is quantified as follows. First, we define the maximum
(over messages), time-averaged decoding error probability4

(2)

where indicates the event that the decoded message does not
correspond to the sent message, and where the subscripts and
indicate the conditioning on the event that message starts
being sent at time . Note that by definition, we have

Second, we define communication rate with respect to the
average receiver’s reaction delay to the sent message, i.e., the
elapsed time between the time the codeword starts being sent
and the time the decoder makes a decision

(3)

where

(4)

where denotes and denotes the expectation
with respect to .5
With these definitions, the class of communication strategies

of interest is as follows.

Definition 1 ( Coding Scheme): A pair with
and is achievable if there exists a sequence

of codes, indexed by the codebook length
, that asymptotically achieves a rate at an asynchronism ex-
ponent . This means that for any and every large
enough, the code
1) operates under asynchronism level ;
2) yields a rate at least equal to ;
3) achieves a maximum error probability of at most .
An coding scheme is a sequence
that achieves the rate-exponent pair .
In turn, capacity for our model is defined as follows.

Definition 2 (Asynchronous Capacity): For given , the
asynchronous capacity is the supremum of the set of rates
that are achievable at asynchronism exponent . Equivalently,
the asynchronous capacity is characterized by , defined as
the supremum of the set of asynchronism exponents that are
achievable at rate .
Accordingly, we use the term “asynchronous capacity” to

designate either or . While may have the more
natural immediate interpretation, most of our results are more
conveniently expressed in terms of .
3Note that the proposed asynchronous discrete-time communication model

still assumes some degree of synchronization since transmitter and receiver are
supposed to have access to clocks ticking at unison. This is sometimes referred
to as “frame-asynchronous, symbol-synchronous” communication.
4Note that there is a small abuse of notation as need not be a probability.
5Note that should be interpreted as .

In agreement with our notational convention, the capacity of
the synchronous channel, which corresponds to the case where

, is simply denoted by instead of . Throughout the
paper, we only consider channels with .

Remark 1: One could alternatively consider the rate with re-
spect to the duration the transmitter occupies the channel and
define it with respect to the block length . In this case, capacity
is a special case of the general asynchronous capacity per unit
cost result [5, Corollary].
In [3] and [9], it is shown that reliable communication is pos-

sible if and only if the asynchronism exponent does not exceed
a limit referred to as the “synchronization threshold.”

Theorem 1 ([3, Th. 2], [9]): If the asynchronism exponent is
strictly smaller than the synchronization threshold

(5)

then there exists a coding scheme that
achieves a maximum error probability tending to zero as

. Conversely, any coding scheme
that operates at an asynchronism exponent strictly greater
than the synchronization threshold achieves (as ) a
maximum probability of error equal to 1/2. Moreover6

A few comments are in order. The cause of unreliable
communication above the synchronization threshold is the
following. When the level asynchronism is sufficiently high,
then with a probability approaching one, we have that pure
noise mimics a codeword for any codebook (regardless of the
rate) before the actual codeword even starts being sent.7 This
results in an error probability of at least since, by our model
assumption, the message set contains at least two messages. On
the other hand, below the synchronization threshold, reliable
communication is possible. If the codebook is properly chosen,
the noise would not mimic any codeword with probability
tending to one, which allows the decoder to reliably detect the
sent message.
Note too that

if and only if pure noise cannot generate all channel outputs,
i.e., if and only if for some . Indeed, in this
case, it is possible to avoid the aforementioned decoding con-
fusion by designing codewords (partly) composed of symbols
that generate channel outputs which are impossible to generate
with pure noise.
The last claim in Theorem 1 says that reliable asynchronous

communication is possible if and only if reliable synchronous
communication is possible. That the former implies the latter
is obvious since asynchronism can only hurt communication.
That the latter implies the former is perhaps less obvious, and
6See, e.g., [3, p. 4515].
7This follows from the converse of [9, Th.], which says that above , even

the codeword of a single codeword codebook is mislocated with probability
tending to one.
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a high-level justification is as follows. When , at least
two channel inputs yield different conditional output distribu-
tions, for otherwise the input–output mutual information is zero
regardless of the input distribution. Hence,
for some . Now, by designing codewords mainly com-
posed of , it is possible to reliably signal the codeword’s lo-
cation to the decoder even under an exponential asynchronism,
since the channel outputs look statistically different than noise
during the message transmission. Moreover, if the message set
is small enough, it is possible to guarantee reliable message lo-
cation and successfully identify which message from the mes-
sage set was sent. Therefore, exponential asynchronism can be
accommodated, whence .
Finally, it should be pointed out that in [3] all the results are

stated with respect to the average (over messages) delay and
error probability rather than with respect to the maximum (over
messages) delay and error probability as in this paper. Neverthe-
less, the same results hold in the latter case as discussed briefly
later at the end of Section V.

IV. MAIN RESULTS

This section is divided into two parts. In Section IV-A, we
provide general upper and lower bounds on capacity, and derive
several of its properties. In Section IV-B, we investigate the per-
formance limits of training-based schemes and establish their
suboptimality in a certain communication regime. The proofs
of the main theorems in this section follow in Section V.
All of our results assume a uniform distribution on . Nev-

ertheless, this assumption is not critical in our proofs. The re-
sults can be extended to nonuniform distributions by following
the same arguments as those used to establish asynchronous ca-
pacity per unit cost for nonuniform [5, Th. 5].

A. General Bounds on Asynchronous Capacity

To communicate reliably, whether synchronously or asyn-
chronously, the mutual information between input and output
induced by the codebook should at least be equal to the desired
communication rate.
When communication is asynchronous, a decoder should, in

addition, be able to discriminate between hypothesis “noise”
and hypothesis “message.” These hypotheses correspond to the
situations when the transmitter is idle and when it transmits a
codeword, respectively. Intuitively, the more these hypotheses
are statistically far apart—by means of an appropriate codebook
design—the larger the level of asynchronism which can be ac-
commodated for a given communication rate.
More specifically, a code should serve the dual purpose of

minimizing the “false-alarm” and “miss” error probabilities.
Since the decoder does not know , the decoder may output a
message before even a message is sent. This is the false-alarm
event and it contributes to increase the error probability—con-
ditioned on a false-alarm, the error probability is essentially
one. However, false-alarms also contribute to increase the
rate since the latter is defined with respect to the receiver’s
decoding delay . As an extreme case, by immediately
decoding, i.e., by setting , we get an infinite rate and error
probability (asymptotically) equal to one. As it turns out, the

false-alarm probability should be exponentially small to allow
reliable communication under exponential asynchronism.
The miss event refers to the scenario where the decoder

fails to recognize the sent message during transmission, i.e.,
the channel output when the message is sent looks like it
was generated by noise. This event impacts the rate and, to
a lesser extent, also the error probability. In fact, when the
sent message is missed, the reaction delay is usually huge, of
the order of . Therefore, to guarantee a positive rate under
exponential asynchronism, the miss error probability should
also be exponentially small.
Theorem 2 below provides a lower bound on the asyn-

chronous capacity. The proof of this theorem is obtained by
analyzing a coding scheme which performs synchronization
and information transmission jointly. The codebook is a stan-
dard i.i.d. random code across time and messages and its
performance are governed by the Chernoff error exponents for
discriminating hypothesis “noise” from hypothesis “message.”

Theorem 2 (Lower Bound on Asynchronous Capacity): Let
and let be some input distribution such that at

least one of the following inequalities:

holds for all distributions , i.e.,

Then, the rate-exponent pair is achievable.
Thus, maximizing over all possible input distributions, we have
the following lower bound on in Definition 2:

(6)

where

(7)
Theorem 2 provides a simple explicit lower bound on ca-

pacity. The distribution corresponds to the channel
output when the input to the channel is distributed according
to . The asynchronism exponent that can be accommodated
for given and can be interpreted as being the “equidis-
tant point” between distributions and , as depicted
in Fig. 3. Maximizing over such that gives
the largest such exponent that can be achieved for rate
communication.
Note that (7) is much simpler to evaluate than the lower bound

given by [3, Th. 2]. Moreover, the former is usually a better
bound than the latter and reveals an noteworthy feature of
in the high-rate regime. This feature is illustrated in Example 1
(p. 7) to come.
Theorem 2 extends to the following continuous alphabet

Gaussian setting.

Corollary 1 (Asynchronous Gaussian Channel): Suppose
that for a real input the decoder receives , where
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Fig. 3. If is at most the “half-distance” between distributions and
, then with is achievable.

. When there is no input to the channel, ,
so . The input is power constrained so that all
codewords must satisfy for a given
constant . For this channel, we have

(8)
for where and in the optimization are distribu-
tions over the reals.
If we restrict the outer maximization in (8) to be over

Gaussian distributions only, it can be shown that the best input
has a mean that is as large as possible, given the rate and
power constraints. More precisely, and satisfy

and the variance of the optimal Gaussian input is . The
intuition for choosing such parameters is that a large mean helps
the decoder to distinguish the codeword from noise—since the
latter has a mean equal to zero. What limits the mean is both the
power constraint and the variance needed to ensure sufficient
mutual information to support communication at rate .

Proof of Corollary 1: The proof uses a standard quanti-
zation argument similar to that in [10], and therefore, we pro-
vide only a sketch of the proof. From the given continuous-time
Gaussian channel, we can form a discrete alphabet channel for
which we can apply Theorem 2.
More specifically, for a given constant , the input and

the output of the channel are discretized within
into constant size contiguous intervals .
and are chosen so that as . To a given

input of the Gaussian channel is associated the quantized value
where denotes the index of the interval which

contains . If or , then is defined as
or , respectively. The same quantization is applied to

the output of the Gaussian channel.
For each quantized channel, we apply Theorem 2, then

let (hence ). One can then verify that the
achieved bound corresponds to (8), which shows that Theorem
2 also holds for the continuous alphabet Gaussian setting of
Corollary 1.

Remark 2: Note that the aforementioned quantization argu-
ment can also be used more generally for any continuous al-
phabet channel with a channel law , , , that
is continuous in both and .
The next result provides an upper bound to the asynchronous

capacity for channels with finite synchronization threshold (5).

Theorem 3 (Upper Bound on Asynchronous Capacity): For
any channel such that , and any , we have that

(9)

where

(10)

(11)

with

(12)

If , then

(13)

for .
The terms and in (9) reflect the false-alarm and miss

constraints alluded to above (see discussion before Theorem 2).
If , then with high probability, the noise will mimic a
message before transmission starts. Instead, if , then
reliable communication at a positive rate is impossible since no
code can guarantee a sufficiently low probability of missing the
sent codeword.
The parameter in (10) and (12) essentially represents the

ratio between the reaction delay and the block-
length—which need not coincide. Loosely speaking, for a given
asynchronism level, a smaller , or, equivalently, a smaller

, increases the communication rate at the expense
of a higher false-alarm error probability. The intuition for this
is that a decoder that achieves a smaller reaction delay sees, on
average, “fewer” channel outputs before stopping. As a con-
sequence, the noise is more likely to lead such a decoder into
confusion. A similar tension arises between communication
rate and the miss error probability. The optimization over the
set attempts to strike the optimal tradeoff between the com-
munication rate, the false-alarm and miss error probabilities, as
well as the reaction delay as a fraction of the codeword length.
For channels with infinite synchronization threshold, The-

orem 4 establishes that the bound given by (13) is actually tight.
The following examples provide some useful insights.

Example 1: Consider the binary symmetric channel depicted
in Fig. 4, which has the property that when no input is supplied
to the channel, the output distribution is asymmetric. For this
channel, in Fig. 5, we plot the lower bound on given by
(7) (curve ) and the lower bound given by [3, Th. 1] (the
dashed line ).8 The curve correspond to the upper
bound on given by Theorem 3. For these plots, the channel
parameter is .
8Due to the complexity of evaluating the lower bound given by [3, Th. 1],

the curves labeled are actually upper bounds on this lower bound. We
believe these bounds are fairly tight, but in any case we see that the resulting
upper bounds are below the lower bounds given by (7)
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Fig. 4. Channel for which is discontinuous at .

Fig. 5. Capacity upper and lower bounds on the asynchronous capacity of the
channel of Fig. 4 with and . represents the lower bound
given by Theorem 2, represents the lower bound obtained in [3, Th. 1],
and represents the upper bound given by Theorem 3.

The discontinuity of at (since is clearly
equal to zero for ) implies that we do not need to back
off from the synchronous capacity in order to operate under ex-
ponential asynchronism—here .9
Note, too, that the is better than for all rates.

In fact, empirical evidence suggests that is better than
in general. Additionally, note that and are

not tight.
Next, we show another binary symmetric channel with some

rather different properties.

Example 2: Consider the binary symmetric channel depicted
in Fig. 6, which has the property that when no input is pro-
vided to the channel, the output distribution is symmetric. This
channel and that of Example 1 have the same synchronous ca-
pacity, regardless of the crossover probability . Indeed, since
the input symbol in Fig. 6 produces 0 and 1 equiprobably, this
input can be ignored for coding purposes and any code for this
channel achieves the same performance on the channel in Fig. 4.
The situation is no longer the same when the channels are used
asynchronously. To see this, we plot the corresponding upper
and lower bounds on performance for this channel in Fig. 7.
Comparing curve in Fig. 5 with curve in Fig. 7,
we see that asynchronous capacity for the channel of Fig. 4 is
always larger than that of the current example. Moreover, since
there is no discontinuity in exponent at in our current
9To have an intuitive sense for what it means to be able to decode under ex-

ponential asynchronism and, more specifically, at , consider the fol-
lowing numerical example. Consider a codeword length equal to 150. Then,

yields asynchronism level . If the codeword
is of, say, 1 ms duration, this means that the decoder can reliably and sequen-
tially decode the sent message, with minimal delay (were the decoder cognizant
of , it could not achieve a smaller decoding delay since we operate at the syn-
chronous capacity), from within more than 7 min of mostly noisy data!

Fig. 6. Channel for which is continuous at .

Fig. 7. Capacity upper and lower bounds on the asynchronous capacity of the
channel of Fig. 6 with . represents the lower bound given by
Theorem 2, represents the lower bound obtained in [3, Th. 1], and
represents the upper bound given by Theorem 3.

example, the difference is pronounced at ;
for the channel of Fig. 4 we have .
The discontinuity of at observed in Example 1

is in fact typical, holding in all but one special case.

Corollary 2 (Discontinuity of at ): We have
if and only if corresponds to the (unique)

capacity-achieving output distribution of the synchronous
channel.
By Corollary 2, for the binary symmetric channel of Example

1, is discontinuous at whenever . To see
this, note that the capacity achieving output distribution of the
synchronous channel assigns equal weights to and 1, differ-
ently than .
The justification for the discontinuity in Example 1 is as fol-

lows. Since the capacity-achieving output distribution of the
synchronous channel is biased with respect
to the noise distribution , hypothesis “message” and “noise”
can be discriminated with exponentially small error probabili-
ties. This, in turn, enables reliable detection of the sent message
under exponential asynchronism. By contrast, for the channel
of Example 2, this bias no longer exists and .
For this channel, to accommodate a positive asynchronism ex-
ponent, we need to back off from the synchronous capacity so
that the codebook output distribution can be differentiated from
the noise.

Proof of Corollary 2: From Theorem 2, a strictly posi-
tive asynchronism exponent can be achieved at if
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Fig. 8. Channel for which is discontinuous at , assuming
.

differs from the synchronous capacity-achieving output distri-
bution—(7) is strictly positive for whenever dif-
fers from the synchronous capacity-achieving output distribu-
tion since the divergence between two distributions is zero only
if they are equal.
Conversely, suppose is equal to the capacity-achieving

output distribution of the synchronous channel. We show that
for any coding scheme where , is necessarily
equal to zero.
From Theorem 3

where and are given by (12) and (10), respectively. Since
, , and since , we have

. Therefore, for any , and we
conclude that .

In addition to the discontinuity at , may also be
discontinuous at rate zero.

Corollary 3 (Discontinuity of at ): If

(14)

then is discontinuous at rate .

Example 3: Channels that satisfy (14) include those for which
the following two conditions hold: cannot produce all channel
outputs, and if a channel output can be produced by , then it can
also be produced by any other input symbol. For these channels,
(14) holds trivially; the right-hand side term is finite and the
left-hand side term is infinite. The simplest such channel is the
Z-channel depicted in Fig. 8 with .
Note that if , (14) does not hold since both the left-hand

side term and the right-hand side term are infinite. In fact, if
, then asynchronism does not impact communication; rates

up to the synchronous capacity can be achieved regardless of the
level of asynchronism, i.e.,

To see this, note that by prepending a 1 to each codeword suf-
fices to guarantee perfect synchronization without impacting
rate (asymptotically).
More generally, asynchronous capacity for channels with in-

finite synchronization threshold is established in Theorem 4 as
follows.
An intuitive justification for the possible discontinuity of

at is as follows. Consider a channel where
cannot produce all channel outputs (such as that depicted in
Fig. 8). A natural encoding strategy is to start codewords with a

common preamble whose possible channel outputs differ from
the set of symbols that can be generated by . The remaining
parts of the codewords are chosen to form, for instance, a
good code for the synchronous channel. Whenever the decoder
observes symbols that cannot be produced by noise (a clear sign
of the preamble’s presence), it stops and decodes the upcoming
symbols. For this strategy, the probability of decoding before
the message is actually sent is clearly zero. Also, the probability
of wrong message isolation conditioned on correct preamble
location can be made negligible by taking codewords long
enough. Similarly, the probability of missing the preamble can
be made negligible by using a long enough preamble. Thus,
the error probability of this training-based scheme can be made
negligible, regardless of the asynchronism level.
The problem arises when we add a positive rate constraint,

which translates into a delay constraint. Conditioned on missing
the preamble, it can be shown that the delay is large, in
fact of order . It can be shown that if (14) holds, the probability
of missing the preamble is larger than . Therefore, a positive
rate puts a limit on the maximum asynchronism level for which
reliable communication can be guaranteed, and this limit can be
smaller than .
We note that it is an open question whether or not may

be discontinuous at for channels that do not satisfy (14).
Theorem 4 provides an exact characterization of capacity for

the class of channels with infinite synchronization threshold,
i.e., whose noise distribution cannot produce all possible
channel outputs.

Theorem 4 (Capacity When ): If , then

(15)

for , where

Therefore, when , is actually a constant that
does not depend on the rate, as Fig. 9 depicts. Phrased differ-
ently, up to . For , we have .
Note that when , can be discontinuous at
since the right-hand side of (15) is upper bounded by

which can be finite.10
We conclude this section with a result of independent interest

related to synchronous communication, and which is obtained
as a byproduct of the analysis used to prove Theorem 3. This re-
sult essentially says that any nontrivial fixed length codebook,
i.e., that achieves a nontrivial error probability, contains a very
good large (constant composition) subcodebook, in the sense
that its rate is almost the same as the original code, but its error
probability decays exponentially with a suitable decoder. In the
10To see this, choose in the minimization (15).
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Fig. 9. Typical shape of the capacity of an asynchronous channel for which
.

following theorem, denotes a standard code for a syn-
chronous channel , with fixed length codewords and de-
coding happening at time .

Theorem 5: Fix a channel , let , and let
, be such that with . If

is a code that achieves an error probability , and if
, then there exists such that 11

1) , is constant composition;
2) the maximum error probability is less than where

3) .
Theorem 5 is a stronger version of [7, Corollary 1.9, p. 107] and
its proof amounts to a tightening of some of the arguments in the
proof of the latter, but otherwise follows it closely.

B. Training-Based Schemes

Practical solutions to asynchronous communication usually
separate synchronization from information transmission.We in-
vestigate a very general class of such “training-based schemes”
in which codewords are composed of two parts: a preamble that
is common to all codewords, followed by information symbols.
The decoder first attempts to detect the preamble, then decodes
the information symbols. The results in this section show that
such schemes are suboptimal at least in certain communication
regimes. This leads to the conclusion that synchronization and
information transmission should, in general, not be separated
when communication is bursty.
We start by defining a general class of training-based

schemes:

Definition 3 (Training-Based Scheme): A coding scheme
is said to be training-based if for some

and all large enough
1) there is a common preamble across codewords of size ;
2) the decoding time is such that the event

conditioned on the observations is indepen-
dent of all other observations (i.e., and ).

Note that Definition 3 is in fact very general. The only restric-
tions are that the codewords all start with the same training se-
11We use to denote some threshold index which could be explicitly

given as a function of .

quence, and that the decoder’s decision to stop at any particular
time should be based on the processing of (at most) past
output symbols corresponding to the length of the preamble.
In the sequel, we use to denote the asynchronous ca-

pacity restricted to training-based schemes.

Theorem 6 (Training-Based Scheme Capacity Bounds): Ca-
pacity restricted to training-based schemes satisfies

(16)

where

where the constants and are defined as

and where is defined in Theorem 3.
Moreover, a rate training-based scheme allocates

at most a fraction

to the preamble.
Since if and only , the upper bound in (16)

implies the following.

Corollary 4 (Asynchronism in the High-Rate Regime): For
training-based schemes

whenever .
In general, as we saw in Corollary 2. Hence, a

direct consequence of Corollaries 2 and 4 is that training-based
schemes are suboptimal in the high-rate regime. Specifically, we
have the following result.

Corollary 5 (Suboptimality of Training-Based Schemes):
There exists a channel-dependent threshold such that for all

except possibly when corresponds to the capacity-achieving
output distribution of the synchronous channel, or when the
channel is degenerate, i.e., when .
The last claim of Theorem 6 says that the size of the pre-

amble decreases (linearly) as the rate increases. This, in turn,
implies that tends to zero as approaches . Hence,
in the high-rate regime, most of the symbols should carry in-
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Fig. 10. Upper and lower bounds to capacity restricted to training-based
schemes ( and , respectively) for the binary symmetric channel
depicted in Fig. 4 with . and represent the capacity
general upper and lower bounds given by Theorems 2 and 3.

formation, and the decoder should try to detect these symbols
as part of the decoding process. In other words, synchroniza-
tion and information transmission should be jointly performed;
transmitted bits should carry information while also helping the
decoder to locate the sent codeword.
If we are willing to reduce the rate, are training-based

schemes still suboptimal? We do not have a definite answer
to this question, but the following examples provide some
insights.

Example 4: Consider the channel depicted in Fig. 4 with
. In Fig. 10, we plot the upper and lower bounds to capacity

restricted to training-based schemes given by Theorem 6.
and represent the general lower and upper bounds to
capacity given by Theorems 2 and 3; see Fig. 5.
By comparing with in Fig. 10, we observe that

for rates above roughly 92% of the synchronous capacity ,
training-based schemes are suboptimal.
For this channel, we observe that is always above

. This feature does not generalize to arbitrary crossover
probabilities . Indeed, consider the channel in Fig. 4, but with
an arbitrary crossover probability , and let be an arbitrary
constant such that . From Theorem 6, training-based
schemes can achieve rate asynchronism pairs that satisfy

For the channel at hand

hence tends to infinity as , for any fixed
—note that as .

Fig. 11. Lower bound to capacity restricted to training-based
schemes for the channel of Fig. 6. and represent the capacity
general upper and lower bounds given by Theorems 2 and 3. For this channel,
the training upper bound coincides with , and hence is not
plotted separately.

Now, consider the random coding scheme that yields The-
orem 2. This scheme, which performs synchronization and in-
formation transmission jointly, achieves for any given rate

asynchronism exponent12

This expression is upper bounded by13

(17)

which is bounded in the limit as long as .14
Therefore, the joint synchronization-information transmission
code yielding Theorem 2 can be outperformed by training-based
schemes at moderate to low rate, even when the output distribu-
tion when no input is supplied is asymmetric. This shows that
the general lower bound given by Theorem 2 is loose in general.

Example 5: For the channel depicted in Fig. 6 with ,
in Fig. 11, we plot the upper and lower bounds on capacity re-
stricted to training-based schemes, as given by Theorem 6. For
this channel, it turns out that the training-based scheme upper
bound (see Theorem 6) is loose, and hence,

for all rates. By contrast with the example of
Fig. 10, here the general lower bound is below the lower
bound for the best training best schemes ( line).
Finally, observe that, at all rates, in Fig. 11 is below

(and even ) in Fig. 10. In other words, under
asymmetric noise, it is possible to accommodate a much larger
level of asynchronism than under symmetric noise, at all rates.
12The analysis of the coding scheme that yields Theorem 2 is actually tight

in the sense that the coding scheme achieves (7) with equality (see proof of
Theorem 2 and remark p. 14.)
13To see this, choose in the minimization.
14Let be an input distribution that maximizes (17) for a

given channel. Since , is uniformly bounded
away from 0 and 1 for all . This implies that (17) is bounded in the limit

.
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V. ANALYSIS
In this section, we establish the theorems of Section IV.

A. Proof of Theorem 2

Let and satisfy the assumption of the the-
orem, i.e., be such that at least one of the following inequalities
holds:

(18)

for all distributions , and let .
The proof is based on a random coding argument associ-

ated with the following communication strategy. The codebook
is randomly generated so that all ,

, , are i.i.d. according to .
The sequential decoder operates according to a two-step proce-
dure. The first step consists in making a coarse estimate of the
location of the sent codeword. Specifically, at time , the de-
coder tries to determine whether the last output symbols are
generated by noise or by some codeword on the basis of their
empirical distribution . If , is
declared a “noise type,” the decoder moves to time , and
repeats the procedure, i.e., tests whether is a noise type.
If, instead, , the decoder marks the current time
as the beginning of the “decoding window,” and proceeds to the
second step of the decoding procedure.
The second step consists in exactly locating and identifying

the sent codeword. Once the beginning of the decoding window
has been marked, the decoder makes a decision the first time
that the previous symbols are jointly typical with one of the
codewords. If no such time is found within successive time
steps, the decoder stops and declares a random message. The
typicality decoder operates as follows.15 Let be the prob-
ability measure induced by codeword and the channel,
i.e.,

(19)

At time , the decoder computes the empirical distributions
induced by and the output symbols for all

. If

for all and a unique index , the decoder de-
clares message as the sent message. Otherwise, it moves one
step ahead and repeats the second step of the decoding proce-
dure on the basis of , i.e., it tests whether is typ-
ical with a codeword.
At the end of the asynchronism time window, i.e., at time

, if is either a noisy type or if it is typical
with none of the codewords, the decoder declares a message at
random.
Throughout the argument, we assume that the typicality pa-

rameter is a negligible, strictly positive quantity.
15In the literature, this decoder is often referred to as the “strong typicality”

decoder.

We first show that, on average, a randomly chosen codebook
combined with the sequential decoding procedure described
previously achieves the rate-exponent pairs claimed by
the theorem. This, as we show at the end of the proof, implies
the existence of a nonrandom codebook that, together with the
aforementioned decoding procedure, achieves any pair
claimed by the theorem.
Let , . We first compute the av-

erage, over messages and codes, expected reaction delay and
probability of error. These quantities, by symmetry of the en-
coding and decoding procedures, are the same as the average
over codes expected reaction delay and probability of error con-
ditioned on the sending of a particular message. Below, ex-
pected reaction delay and error probability are computed condi-
tioned on the sending of message .
Define the following events:

For the reaction delay, we have

(20)

where and denote expectation and probability assuming
message is sent. The two probability terms on the
right-hand side of the second inequality of (20) are bounded as
follows.
The term is upper bounded by the proba-

bility that the decoding window starts after time . This,
in turn, is upper bounded by the probability of the event that, at
time , the last output symbols induce a noise type.
Therefore, we have

(21)

where the second inequality follows from the definition of
the event and Fact 2; the third inequality follows from
(18) (which implies that if , then necessarily

); and the fourth inequality follows from
Fact 1.
The probability is at most the

probability that the decoder has not stopped by time .
This probability, in turn, is at most the probability that, at time

, the last output symbols either induce a noisy type,
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or are not typical with the sent codeword (recall that
message is sent). By union bound, we get

(22)

where we used the last three computation steps of (21) to bound
, and where we used [7, Lemma 2.12, p. 34] to show that
tends to zero as tends to infinity. From (20)–(22), we

deduce that

since , by assumption.
We now compute , the average error probability condi-

tioned on sending message . We have

(23)

where for the last inequality, we used the definition of and
upper bounded using the last three computation
steps of (22).
For , we have

(24)

where the first inequality in (24) follows from the union bound
over time and Fact 2; the third inequality follows from Fact 1;
and the last equality holds since , by assumption.
We now show that

(25)

which, together with (23) and (24), shows that goes to
zero as .

We have

(26)

where the second inequality follows from (24); the fourth in-
equality follows from the definition of event ; and the third
inequality follows from the fact that, given the correct code-
word location, i.e., , the typicality decoder
guarantees vanishing error probability since we assumed that

(see [7, Ch. 2.1]).
The event , with
, happens when a block of consecutive symbols, received
between and , is jointly typical with a
codeword other than the sent codeword . Consider a block

in this range, and let be a typical joint type, i.e.,

for all —recall that is the typicality pa-
rameter, which we assume to be a negligible quantity throughout
the proof.
For some , the first symbols of block

are generated by noise, and the remaining symbols are
generated by the sent codeword, i.e., corresponding to
. Thus, is independent of any unsent codeword .
The probability that , , together with yields a
particular type is upper bounded as follows:

(27)

where denotes the entropy of the left marginal of

and where denotes the mutual information induced by .
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The first equality in (27) follows from the independence
of and , the second equality follows from [11, Th.
11.1.2, p. 349], and the second inequality follows from [7,
Lemma 2.5, p. 31].
It follows that the probability that an unsent codeword

together with yields a type that is typical, i.e.,
close to , is upper bounded as

for all large enough, by continuity of themutual information.16
Note that the set of inequalities (27) holds for any block of

consecutive output symbols that is independent of codeword
.17 Hence, from the union bound, it follows that

(28)

where the second inequality follows from Fact 1, and
the third inequality follows from the assumption that

. Combining (28) with (26) yields
(25).
So far, we have proved that a random codebook has a de-

coding delay averaged over messages that is at most
, and an error probability averaged over mes-

sages that vanishes as , whenever ,
. This, as we now show, implies the existence of non-

random codebooks achieving the same performance, yielding
the desired result. The expurgation arguments we use are stan-
dard and in the same spirit as those given in [11, p. 203–204] or
[12, p. 151].
For a particular codebook , let and

be the average, over messages, error probability and
reaction delay, respectively. We have proved that for any

and

for all large enough.
Define events

and

where is arbitrary.
16The typicality parameter is chosen small enough so that this

inequality holds.
17Note that the fact that is partly generated by noise and partly by the sent

codeword is not used to establish (27).

From Markov’s inequality, it follows that18

Letting be large enough so that the right-hand side of the afore-
mentioned inequality is positive, we deduce that there exists a
particular code such that

and

We now remove from codewords with poor reaction delay
and error probability. Repeating the aforementioned argument
with the fixed code , we see that a positive fraction of the
codewords of have expected decoding delay atmost
and error probability at most . By only keeping this set of
codewords, we conclude that for any and all large
enough, there exists a rate code operating at
asynchronism level with maximum error proba-
bility less than .

Remark 3: It is possible to somewhat strengthen the con-
clusion of Theorem 2 in two ways. First, it can be strength-
ened by observing that what we actually proved is that the error
probability not only vanishes but does so exponentially in .19
Second, it can be strengthened by showing that the proposed
random coding scheme achieves (7) with equality. A proof is
deferred to Appendix A.

B. Proof of Theorem 3

We show that any rate coding scheme operates at an
asynchronism bounded from above by ,
where , , and are defined in the theorem’s statement.
We prove Theorem 3 by establishing the following four

claims.
The first claim says that, without loss of generality, we may

restrict ourselves to constant composition codes. Specifically,
it is possible to expurgate an arbitrary code to make it of con-
stant composition while impacting (asymptotically) neither the
rate nor the asynchronism exponent the original code is oper-
ating at. In more detail, the expurgated codebook is such that
all codewords have the same type, and also so that all code-
words have the same type over the first symbols (recall that

). The parameter in Theorem 3 cor-
responds to the ratio , and and correspond to the
empirical types over the first symbols and the whole code-
word (all symbols), respectively.
Fix an arbitrarily small constant .
Claim 1: Given any coding scheme

achieving with and , there exists a second
coding scheme achieving that is
obtained by expurgation, i.e., , , and that
18Probability here is averaged over randomly generated codewords.
19Note that the error probability of the typicality decoder given the correct

message location, i.e., , is exponentially small in
[7, Ch. 2].
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has constant composition with respect to some distribution
over the first

(29)

symbols, and constant composition with respect to some distri-
bution over symbols. (Hence, if , then

.) Distributions and satisfy Claims 2–4 below.
Distribution plays the same role as the codeword distribu-

tion for synchronous communication. As such, it should induce
a large enough input–output channel mutual information to sup-
port rate communication.
Claim 2: For all large enough

Distribution is specific to asynchronous communication.
Intuitively, should induce an output distribution that is suf-
ficiently different from pure noise so that to allow a decoder to
distinguish between noise and any particular transmitted mes-
sage when the asynchronism level corresponds to . Proper
message detection means that the decoder should not overreact
to a sent codeword (i.e., declare a message before even it is
sent), but also not miss the sent codeword. As an extreme case,
it is possible to achieve a reaction delay equal to
zero by setting , at the expense of a large probability of
error. In contrast, one clearly minimizes the error probability by
waiting until the end of the asynchronism window, i.e., by set-
ting , at the expense of the rate, which will be
negligible in this case.
The ability to properly detect only a single codeword with

type is captured by condition where is defined
in the theorem’s statement. This condition is equivalently stated
in the following.
Claim 3: For any and for all large enough, at

least one of the following two inequalities holds:

As it turns out, if the synchronization threshold is finite,
plays also a role in the decoder’s ability to properly detect the
transmitted message. This is captured by condition
where is defined in the theorem’s statement. Intuitively,
relates to the probability that the noise produces a string of
length that looks typical with the output of a randomly se-
lected codeword. If , the noise produces many such
strings with high probability, which implies a large probability
of error.
Claim 4: For all large enough

provided that .
Note that, by contrast with the condition in Claim 3, the con-

dition in Claim 4 depends also on the communication rate since
the error yielding to the latter condition depends on the number
of codewords.

Before proving the aforementioned claims, we show how
they imply Theorem 3. The first part of the Theorem, i.e., when

, follows from Claims 1–4. To see this, note that the
bounds and in the Theorem correspond to the bounds
of Claims 3 and 4, respectively, maximized over and .
The maximization is subjected to the two constraints given by
Claims 1 and 2: and are the empirical distributions of
the codewords of over the first symbols , and
over the entire codeword length, respectively, and condition

must be satisfied. Since is arbi-
trary, the result then follows by taking the limit on the
aforementioned derived bound on .
Similarly, the second part of Theorem 3, i.e., when ,

is a consequence of Claim 3 only.
We now prove the claims. As earlier, is supposed to be

an arbitrarily small constant.
Proofs of Claims 1 and 2: We show that for all large

enough, we have

(30)

where is a subset of codewords from that have constant
composition over the first symbols, where is de-
fined in (29), and constant composition over symbols. This
is done via an expurgation argument in the spirit of [12, p. 151]
and [11, p. 203-204].
We first show the left-hand side inequality of (30). Since

achieves a rate , by definition (see Defi-
nition 1), we have

for all large enough. Therefore

for all large enough.
Now, group the codewords of into families such that ele-

ments of the same family have the same type over the first
symbols. Let be the largest such family and let be its
type.Within , consider the largest subfamily of codewords
that have constant composition over symbols, and let be
its type (hence, all the codewords in have common type
over symbols and common type over symbols).
By assumption, , so has a number of codewords that

is exponential in . Due to Fact 1, to establish the left-hand
side inequality of (30), i.e., to show that achieves essentially
the same rate as , it suffices to show that the number of sub-
families in is bounded by a polynomial in . We do this
assuming that and that Claim 4 (to be proved) holds.
By assumption, , and thus from Theorem 1, we

have that for any input distribution .
Using Claim 4 and the assumption that , we deduce that

, which implies that cannot grow
faster than linearly in . Therefore, Fact 1 implies that the
number of subfamilies of is bounded by a polynomial in .
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We now prove the right-hand side inequality of (30). Letting
denote the event of a correct decoding, Markov’s inequality

implies that for every message index

(31)

since . The right-hand side of (31) is
strictly greater than zero for large enough because an
coding scheme achieves a vanishing maximum error probability
as . This means that is a good code for the syn-
chronous channel, i.e., for . More precisely, the codebook
formed by truncating each codeword in to include only the
first symbols achieves a probability of error (asymptoti-
cally) bounded away from one with a suitable decoding func-
tion. This implies that the right-hand side of (30) holds for
large enough by [7, Corollary 1.4, p. 104].

In establishing the remaining claims of the proof, unless oth-
erwise stated, whenever we refer to a codeword it is assumed
to belong to codebook . Moreover, for convenience, and with
only minor abuse of notation, we let denote the number of
codewords in .

Proof of Claim 3: We fix and show that for all
large enough, at least one of the two inequalities

must hold. To establish this, it may be helpful to interpret
as the true channel behavior during the information trans-

mission period, i.e., as the conditional distribution induced
by the transmitted codeword and the corresponding channel
output. With this interpretation, represents the
large deviation exponent of the probability that the underlying
channel behaves as when codeword distribution is ,
and represents the large deviation exponent of
the probability that the noise behaves as when codeword
distribution is . As it turns out, if both the aforementioned
inequalities are reversed for a certain , the asynchronism
exponent is too large. In fact, in this case, both the transmitted
message and pure noise are very likely to produce such a .
This in turn will confuse the decoder. It will either miss the
transmitted codeword or stop before even the actual codeword
is sent.
In the sequel, we often use the shorthand notation for

.
Observe first that if is such that

(32)

then

by Fact 3. Similarly, observe that if is such that

(33)

where denotes the probability under pure noise (i.e., the ’s
are i.i.d. according to ), then

Since the aforementioned two observations hold regardless of
(because all codewords in have the same type), Claim 3 holds
trivially for any value of for which (32) or (33) is satisfied.
In the sequel, we thus restrict our attention to values of for

which

(34)

and

(35)

Our approach is to use a change of measure to show that if
Claim 3 does not hold, then the expected reaction delay grows
exponentially with , implying that the rate is asymptotically
equal to zero. To see this, note that any coding scheme that
achieves vanishing error probability cannot have grow
faster than linearly with , simply because of the limitations im-
posed by the capacity of the synchronous channel. Therefore, if

grows exponentially with , the rate goes to zero
exponentially with . And note that for to grow ex-
ponentially, it suffices that grows exponentially for
at least one message index , since
by definition.
To simplify the exposition and avoid heavy notation, in the

following arguments, we disregard discrepancies due to the
rounding of noninteger quantities. We may, for instance, treat

as an integer even if is not a multiple of . This has no
consequences on the final results, as these discrepancies vanish
when we consider code with blocklength tending to infinity.
We start by lower bounding the reaction delay as 20

(36)

where for the first inequality we used Markov’s inequality. The
message index on the right-hand side of (36) will be specified
later; for now, it may correspond to any message.
20Recall that the subscripts and indicate conditioning on the event that

message starts being sent at time .
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We lower bound each term in the afore-
mentioned sum as

(37)

where , and the second inequality follows
from Fact 3.21
The key step is to apply the change of measure

(38)

To see that (38) holds, first note that for any

since distribution and differ only over channel outputs
.

Next, since sequences inside are permutations of
each other

and we get

This proves (38). Substituting (38) into the right-hand side of
(37) and using (36), we get

21Note that the right-hand side of the first inequality in (37) is well defined
because of (34).

where , and the last inequality follows from
Fact 3. By summing only over the indices that are multiples of
, we obtain the weaker inequality

(39)

Using (39), we show that grows exponentially with
whenever and are both upper bounded by . This, as

we saw previously, implies that the rate is asymptotically equal
to zero, yielding Claim 3.
Let , and let . We rewrite the afore-

mentioned summation over indices as a sum of
superblocks of in-

dices. We have

where denotes the th superblock of indices. Applying
the union bound (in reverse), we see that

We now show that each term

(40)

in the aforementioned summation is large, say greater than 1/2,
by showing that each of them involves the intersection of two
large probability events. This, together with (39), implies that

(41)

since , yielding the desired result.22

22Our proof shows that for all indices for which and
, (41) holds. Therefore, if and for every

large enough, the reaction delay grows exponentially with , and thus, the rate
vanishes. In the case where and does not hold for all
large enough, but still holds for infinitely many values of , the corresponding
asymptotic rate is still zero by Definition 1.
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Letting denote the decoding error event, we have for all
large enough

(42)

The third inequality follows by noting that the event
corresponds to the situation where the

decoder stops after observing only pure noise. Since a codebook
consists of at least two codewords,23 such an event causes an
error with probability at least 1/2 for at least one message .
Thus, inequality (42) holds under the assumption that corre-
sponds to such a message.24
Since the event depends on the channel out-

puts only up to time , we have

(43)

Combining (43) with (42), we get

(44)

Now, because the , , are i.i.d. under

From Fact 3, it follows that

and by definition , so

(45)
Combining (44) and (45), we see that each term (40) involves
the intersection of large probability events for at least one mes-
sage index . For such a message index, by choosing suffi-
ciently small, we see that for all sufficiently large , every single
term (40), is bigger than 1/2.

Finally, to establish the remaining Claim 4, we make use of
Theorem 5, whose proof is provided in Appendix B. This the-
orem implies that any nontrivial codebook contains a (large) set
of codewords whose rate is almost the same as the original code-
book and whose error probability decays faster than polynomi-
ally, say as , with a suitable decoder. Note that we do not
use the full implication of Theorem 5.
23By assumption, see Section III.
24Regarding the fourth inequality in (42), note that should

be lower bounded by 1/4 instead of 1/3 had we taken into account discrepancies
due to rounding of noninteger quantities. As mentioned earlier, we disregard
these discrepancies as they play no role asymptotically.

Proof of Claim 4: The main idea behind the proof is that if
Claim 4 does not hold, the noise is likely to produce an output
that is “typical” with a codeword before the message is even
sent, which means that any decoder must have large error prob-
ability. Although the idea is fairly simple, it turns out that a suit-
able definition for “typical” set and its related error probability
analysis make the proof somewhat lengthy.
Proceeding formally, consider inequality (31). This in-

equality says that, with nonzero probability, the decoder makes
a correct decision and stops soon after the beginning of the
information transmission period. This motivates the definition
of a new random process, which we call the modified output
process. With a slight abuse of notation, in the remainder of
the proof, we use to denote the modified
output process. The modified output process is generated as
if the sent codeword were truncated at the position ,
where is defined in (29). Hence, this process can be
thought of as the random process “viewed” by the sequential
decoder.
Specifically, the distribution of the modified output process is

as follows. If

then the ’s for

are i.i.d. according to , whereas the block

is distributed according to , the output distribution
given that a randomly selected codeword has been transmitted.
Note that, in the conditioning, we use instead of
to emphasize that the output distribution is averaged over all
possible messages, i.e., by definition

Instead, if

then the modified output process has the same distribution as
the original one, i.e., the ’s for

are i.i.d. according to , whereas the block

is distributed according to .
Consider the following augmented decoder that, in addition

to declaring a message, also outputs the time interval

of size . A simple consequence of the right-hand
side of (31) being (asymptotically) bounded away from zero
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Fig. 12. Parsing of the entire received sequence of size into
blocks of length , one of which being generated by the sent message, and
the others being generated by noise.

is that, for large enough, if the augmented decoder is given
a modified output process instead of the original one, with a
strictly positive probability it declares the correct message, and
the time interval it outputs contains .
Now, suppose the decoder is given the modified output

process and that it is revealed that the (possibly truncated) sent
codeword was sent in one of the

(46)

consecutive blocks of duration , as shown in Fig. 12. Using
this additional knowledge, the decoder can now both declare the
sent message and output a list of

(47)

block positions, one of which corresponding to the sent mes-
sage, with a probability strictly away from zero for all large
enough. To do this, the decoder, at time , declares the decoded
message and declares the blocks that overlap with the time
indices in

We now show that the aforementioned task that consists of
declaring the sent message and producing a list of blocks
of size , one of which being the output of the transmitted
message, can be performed only if satisfies Claim 4. To that
aim, we consider the performance of the (optimal) maximum
likelihood decoder that observes output sequences of maximal
length

Given a sample of the modified output
process, and its parsing into consecutive blocks of duration

, the optimal decoder outputs a list of blocks that are
most likely to occur. More precisely, the maximum likelihood
-list decoder operates as follows. For each message ,

it finds a list of blocks (among all blocks) that
maximize the ratio

(48)

and computes the sum of these ratios. The maximum likelihood
-list decoder then outputs the list whose sum is maximal, and

declares the corresponding message.
To see this, let denote a specific subset of blocks .

The probability of observing a channel output given that

a message is sent in one of the block positions in is given
by

where

and where , , denotes the th block of
. The maximum likelihood -list decoder then follows.

The rest of the proof consists in deriving an upper bound on
the probability of correct maximum likelihood -list decoding,
and show that this bound tends to zero if Claim 4 is not satisfied.
To that aim, we first quantify the probability that the noise dis-
tribution outputs a sequence that is typical with a codeword,
since the performance of the maximum likelihood -list de-
coder depends on this probability, as we show in the following.
By assumption, achieves a probability of error

as at the asynchronism exponent . This
implies that can also achieve a nontrivial error probability
on the synchronous channel (i.e., with ). Specifically, by
using the same argument as for (31), we deduce that we can use
on the synchronous channel, force decoding to happen at the

fixed time

where corresponds to the reaction delay obtained by
in the asynchronous setting, and guarantee a

(maximum) probability of error such that

with a suitable decoder. Since the right-hand side of the afore-
mentioned inequality is strictly below one for large enough,
Theorem 5 implies that the code has a large subcode , i.e.,
of almost the same rate with respect to , that, together with
an appropriate decoding function , achieves a maximum error
probability at most equal to

(49)

for all large enough.
We now start a digression on the code when used on

channel synchronously. The point is to exhibit a set of “typ-
ical output sequences” that cause the decoder to make an
error with “large probability.” We then move back to the asyn-
chronous channel and show that when Claim 4 does not hold,
the noise distribution is likely to produce typical output se-
quences, thereby inducing the maximum likelihood -list de-
coder into error.



1246 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 3, MARCH 2013

Unless stated otherwise, we now consider when
used on the synchronous channel. In particular, error events are
defined with respect to this setting.
The set of typical output sequences is obtained through a

few steps. We first define the set with respect to codeword
as

(50)

where is defined in (49).
Note that, by using Fact 3, it can easily be checked that is

nonempty for large enough (depending on and ), which
we assume throughout the argument. For a fixed , consider the
set of sequences in that maximize (48). These sequences
form a set , for some . It follows that
for every message index for which , we have

(51)

where for the third inequality we used the definition of ; on
the right-hand side of the fourth inequality, we defined the set

and where the fifth inequality follows from this definition.25
From (51), we get

(52)

Therefore, by defining as

the complement of in , it follows from (52)
that

since under all the sequences in are
equiprobable.
25Note that, given that message is sent, if the channel produces a sequence

in at its output, the (standard) optimal maximum likelihood decoder makes
an error with probability at least half. Hence, the decoding rule also makes
an error with probability at least half.

The set is the sought set of “typical output se-
quences” that causes the decoder to make an error with “high
probability” conditioned on the sending of message and con-
ditioned on the channel outputting a sequence in .
This ends our digression on .
We now compute a lower bound on the probability under

of producing a sequence in . Because the sets
are disjoint, we deduce that

(53)

for all large enough. For the second inequality, we used [7,
Lemma 2.5, p. 31]. For the third inequality, we used the fact that

, , for large enough,26
and that, without loss of generality, we may assume that

since the synchronous capacity is nonzero—as we
assume throughout the paper. Hence, we get

for all large enough, where for the second inequality, we used
(53) and [11, Th. 11.1.2, p. 349]. Letting

we thus have

(54)

for large enough.
Using (54), we now prove Claim 4 by contradiction. Specifi-

cally, assuming that

(55)

we prove that, given message is sent, the probability
of error of the maximum likelihood -list decoder does not
converge to zero. As a final step, we prove that the opposite of
(55) implies Claim 4.
Define the events

26Note that since the coding scheme under consideration
achieves a strictly positive rate.
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where is defined in (50), and where denotes the random
variable that counts the number of blocks generated by that
are in . Define also the complement set

The probability that the maximum likelihood -list decoder
makes a correct decision given that message is sent is
upper bounded as

(56)

From the definition of , we have

(57)

Now for . There are blocks independently gen-
erated by ( is defined in (46)). Each of these blocks has
a probability at least equal to the right-hand side of (54) to fall
within . Hence, using (54), we get

(58)

since . Therefore

(59)

where the first inequality follows from (58) and the definition of
; for the second inequality, we used Chebyshev’s inequality

and the fact that the variance of a binomial is upper bounded by
its mean; and for the third inequality, we used (58).
Finally for . Given , the decoder sees at least

time slots whose corresponding ratios (48) are at least as large as
the one induced by the correct block . Hence, given
, the decoder produces a list of block positions, one of

which corresponds to the sent message, with probability at most

(60)

where the first inequality follows from union bound, and where
for the equality we used the fact that finite rate implies

.27
From (56), (57), (59), and (60), the probability that the

maximum likelihood -list decoder makes a correct deci-
27This follows from the definition of rate , the fact

that for reliable communication, and the definition of (47).

sion, , is arbitrarily small for infinitely many indices
whenever (55) holds. Therefore, to achieve vanishing error

probability, we must have for all large enough

(61)

We now show, via a continuity argument, that the aforemen-
tioned condition implies Claim 4. Recall that , de-
fined just after (50), depends on and has the property

(62)

Now, from Fact 3, we also have the upper bound

(63)

Since , from (62) and (63), we get

and therefore

where denotes the norm. Hence, by continuity of the
divergence, condition (61) gives for all large enough

(64)

which yields Claim 4.

C. Proof of Corollary 3

By assumption, is nonzero since divergence is always non-
negative. This implies that the synchronous capacity is nonzero
by the last claim of Theorem 1. This, in turn, implies that
is achievable for some sufficiently small and by
[3, Corollary 1].
Using Theorem 3

(65)

where is given by expression (11). In this expression, by
letting in the minimization, we deduce that

, and therefore

and from (65) we get
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Since by assumption

and since by Theorem 1, it follows that
is discontinuous at .

D. Proof of Theorem 4

We first exhibit a coding scheme that achieves any
with and

All codewords start with a common preamble that is
composed of repetitions of a symbol such that

(such a symbol exists since ).
The next symbols of each codeword are drawn from
a code that achieves a rate equal to on the synchronous
channel. Finally, all the codewords end with a common large
suffix of size that has an
empirical type such that, for all , at least one of
the following two inequalities holds:

The receiver runs two sequential decoders in parallel, andmakes
a decision whenever one of the two decoder declares a message.
If the two decoders declare different messages at the same time,
the receiver declares one of the messages at random.
The first decoder tries to identify the sent message by first

locating the preamble. At time , it checks if the channel output
can be generated by but cannot be generated by noise, i.e.,

if

(66)

If condition (66) does not hold, the decoder moves one-step
ahead and checks condition (66) at time . If condition (66)
does hold, the decoder marks the current time as the beginning
of the “decoding window” and proceeds to the second step. The
second step consists in exactly locating and identifying the sent
codeword. Once the beginning of the decodingwindow has been
marked, the decoder makes a decision the first time it observes

symbols that are typical with one of the codewords. If no
such time is found within time steps from
the time the decoding window has been marked, the decoder de-
clares a random message.
The purpose of the second decoder is to control the average

reaction delay by stopping the decoding process in the rare
event when the first decoder misses the codeword. Specifically,
the second “decoder” is only a stopping rule based on the
suffix . At each time , the second decoder checks whether

. If so, the decoder stops and declares a
random message. If not, the decoder moves one step ahead.

The arguments for proving that the coding scheme described
previously achieves provided

(67)

closely parallel those used to prove Theorem 2, and are therefore
omitted.28
The converse is the second part of Theorem 3.

E. Proof of Theorem 6

1) Lower Bound: To establish the lower bound in Theorem
6, we exhibit a training-based scheme with preamble size
with

(68)

and that achieves any rate asynchronism pair such that

(69)

where

Fix and let satisfy (69). Each codeword starts
with a common preamble of size where is given by (68)
and whose empirical distribution is equal to 29

The remaining symbols of each codeword are i.i.d.
generated according to a distribution that almost achieves
capacity of the synchronous channel, i.e., such that

for some small .
Note that by (69) and (68), is such that for any

at least one of the following two inequalities holds:

(70)

The preamble detection rule is to stop the first time when
last output symbols induce an empirical conditional
probability such that

(71)

where is the preamble.
When the preamble is located, the decoder makes a decision

on the basis of the upcoming output symbols using
28In particular, note that the first decoder never stops before time .
29 need not be a valid type for finite values of , but this small discrepancy

plays no role asymptotically since can be approximated arbitrarily well with
types of order sufficiently large.
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maximum likelihood decoding. If no preamble has been located
by time , the decoder declares a message at random.
We compute the reaction delay and the error probability. For

notational convenience, instead of the decoding time, we con-
sider the time that the decoder detects the preamble, i.e., the
first time such that (71) holds. The actual decoding time occurs

time instants after the preamble has been detected, i.e.,
at time .
For the reaction delay, we have

(72)

where, as usual, the subscript 1 in and indicates condi-
tioning on the event that message is sent. A similar com-
putation as in (21) yields

(73)

The first inequality follows from the fact that event
is included into event

which, in turn, is included into event

because of (70). The second inequality follows from Fact 2.
Hence, from (72) and (73)

(74)

whenever , . Since the actual decoding
time occurs time instants after , where

, and that the code used to transmit information achieves
the capacity of the synchronous channel, the aforementioned
strategy operates at rate .
To show that the aforementioned strategy achieves vanishing

error probability, one uses arguments similar to those used to
prove Theorem 2 (see from paragraph after (22) onward), so
the proof is omitted. There is one little caveat in the analysis
that concerns the event when the preamble is located some-
what earlier than its actual timing, i.e., when the decoder lo-
cates the preamble over a time period with

. One way to make the probability of
this event vanish as is to have the preamble have a
“sufficiently large” Hamming distance with any of its shifts.
To guarantee this, one just needs to modify the original pre-
amble in a few (say, ) positions. This modifies the preamble
type negligibly. For a detailed discussion on how to make this
modification, we refer the reader to [9, Theorem’s achievability

proof], where the problem is discussed in the context of sequen-
tial frame synchronization.
Each instance of the aforementioned random coding strategy

satisfies the conditions of Definition 3; there is a common
preamble of size and the decoder decides to stop at any
particular time based on . We now show that there
exists a particular instance yielding the desired rate and error
probability.
First note that the aforementioned rate analysis only depends

on the preamble, and not on the codebook that follows the
preamble. Hence, because the error probability, averaged over
codebooks and messages, vanishes, we deduce that there exists
at least one codebook that achieves rate and whose average
over messages error probability tends to zero.
From this code, we remove codewords with poor error proba-

bility, say whose error probabilities are at least twice the average
error probability. The resulting expurgated code has a rate that
tends to and a vanishing maximum error probability.
2) Upper Bound: To establish the upper bound, it suffices to

show that for training-based schemes with must
satisfy

(75)

The upper bound in Theorem 6 then follows from (75) and the
general upper bound derived in Theorem 3.
The upper bound (75) follows from the following lemma.

Lemma 1: A rate coding scheme whose decoder oper-
ates according to a sliding window stopping rule with window
size cannot achieve an asynchronism exponent larger than

.
Lemma 1 says that any coding scheme with a limited memory

stopping rule capable of processing only symbols at a time
achieves an asynchronism exponent at most , unless
or if the channel is degenerate, i.e., , in which
case Lemma 1 is trivial and we have the asynchronous capacity
expression given by Theorem 4.
To deduce (75) from Lemma 1, consider a training-based

scheme which achieves a delay with a nontrivial error prob-
ability (i.e., bounded away from 0). Because the preamble con-
veys no information, the rate is at most

by the channel coding theorem for a synchronous channel.
Hence, for a rate training-based scheme, the training
fraction is upper bounded as

This implies (75) by Lemma 1.

Proof of Lemma 1: The lemma holds trivially if
. We thus assume that . Consider a training-based

scheme in the sense of Definition 3. For
notational convenience, we consider to be the time when the
decoder detects the preamble. The actual decoding time (in the
sense of Definition 3 part 2) occurs times instants after
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the preamble has been detected, i.e., at time . This
allows us to write as

where

referred to as the “stopping rule at time ” is a binary random
variable such that represents the set of output se-
quences which make stop at time , assuming that
has not stopped before time .
Now, every sequence satisfies

Therefore, any deterministic stopping rule stops at any par-
ticular time either with probability zero or with probability
at least , i.e., for all , either the stopping rule
satisfies or it is trivial in the sense that

. For now, we assume that the stopping rule
is deterministic; the randomized case follows easily as we
describe at the end of the proof.
Let denote the subset of indices such

that is nontrivial, and let denote the subset of indices in
that are congruent to mod , i.e.,

Note that for each , the set of stopping rules , are
independent since depends only on .
By repeating the same argument as in (42) and (43), for any

, for all large enough and any message index , the
error probability satisfies

(76)

Since is arbitrary, we deduce

(77)

i.e., a coding scheme achieves a vanishing error probability only
if the probability of stopping after time is at least 0.5
when the channel input is all ’s. Thus, assuming that our coding
scheme achieves vanishing error probability, we have

To see this, note that if , then there exists a value
such that , and hence

Since the above last term tends to for large enough,
for large enough, which is in conflict

with the assumption that the coding scheme achieves vanishing
error probability.
The fact that implies, as we shall prove later,

that

(78)

Hence

(79)

where for the second inequality we used the fact that is uni-
formly distributed, and where the third inequality holds by (78).
Letting , from (79), we deduce that if , then

grows exponentially with , implying that the rate
is asymptotically zero.30 Hence, a sliding window stopping rule
that operates on a window of size cannot accommodate a
positive rate while achieving an asynchronism exponent larger
than . This establishes the desired result.
We now show (78). Let be the subset of indices in

with the following property. For any ,
the indices do not belong to ,
i.e., all of the associated stopping rules are trivial. Then, we
have

(80)

since is uniformly distributed. Using that

hence from (80)

(81)

Now, when , all stopping times that could potentially de-
pend on the transmitted codeword symbols are actually trivial,
so the event is independent of the symbols sent
at times . Therefore

(82)

Combining (81) with (82) and (77) gives the desired claim (78).
30Any coding scheme that achieves vanishing error probability cannot have
grow faster than linearly with , because of the limitation imposed by the

capacity of the synchronous channel. Hence, if grows exponentially
with , the rate goes to zero exponentially with .
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Finally, to see that randomized stopping rules also cannot
achieve asynchronism exponents larger than , note that a
randomized stopping rule can be viewed as simply a proba-
bility distribution over deterministic stopping rules. The pre-
vious analysis shows that for any deterministic stopping rule,
and any asynchronism exponent larger than , either the prob-
ability of error is large (e.g., at least 1/8), or the expected delay
is exponential in . Therefore, the same holds for randomized
stopping rules.

F. Comments on Error Criteria

We end this section by commenting on maximum versus av-
erage rate/error probability criteria. The results in this paper
consider the rate defined with respect to maximum (over mes-
sages) reaction delay and consider maximum (over messages)
error probability. Hence, all the achievability results also hold
when delay and error probability are averaged over messages.
To see that the converse results in this paper also hold for

the average case, we use the following standard expurgation
argument. Assume is an coding scheme
where the error probability and the delay of are
defined as

and

respectively. By definition of an coding scheme, this
means that given some arbitrarily small and for all
large enough

and

Hence, for large enough and any , one can find a
(nonzero) constant fraction of codewords ( is the
“expurgated” ensemble) that satisfies the following property:
the rate defined with respect to maximum (over ) delay is
at least and the maximum error probability is less
than , where . One then applies the converse re-
sults to the expurgated ensemble to derive bounds on ,
and thus on , since can be chosen arbitrarily.

VI. CONCLUDING REMARKS

We analyzed a model for asynchronous communication
which captures the situation when information is emitted in-
frequently. General upper and lower bounds on capacity were
derived, which coincide in certain cases. The forms of these
bounds are similar and have two parts: a mutual information

part and a divergence part. The mutual information part is rem-
iniscent of synchronous communication: to achieve a certain
rate, there must be, on average, enough mutual information
between the time information is sent and the time it is decoded.
The divergence part is novel, and comes from asynchronism.
Asynchronism introduces two additional error events that must
be overcome by the decoder. The first event happens when
the noise produces a channel output that looks as if it was
generated by a codeword. The larger the level of asynchronism,
the more likely this event becomes. The second event happens
when the channel behaves atypically, which results in the
decoder missing the codeword. When this event happens, the
rate penalty is huge, on the order of the asynchronism level.
As such, the second event contributes to increased average
reaction delay, or equivalently, lowers the rate. The divergence
part in our upper and lower bounds on capacity strikes a balance
between these two events.
An important conclusion of our analysis is that, in general,

training-based schemes are not optimal in the high rate, high
asynchronism regime. In this regime, training-based architec-
tures are unreliable, whereas it is still possible to achieve an ar-
bitrarily low probability of error using strategies that combine
synchronization with information transmission.
Finally, we note that further analysis is possible when we

restrict attention to a simpler slotted communication model
in which the possible transmission slots are nonoverlapping
and contiguous. In particular, for this more constrained model,
Wang et al. [13] develop a variety of results, among which
is that except in somewhat pathological cases, training-based
schemes are strictly suboptimal at all rates below the syn-
chronous capacity. Additionally, the performance gap is
quantified for the special cases of the binary symmetric and
additive white Gaussian noise channels, where it is seen to
be significant in the high-rate regime but vanish in the limit
of low rates. Whether the characteristics observed for the
slotted model are also shared by unslotted models remains to
be determined, and is a natural direction for future research.

APPENDIX A
PROOF OF REMARK 3 (P.14)

To show that the random coding scheme proposed in the proof
of Theorem 2 achieves (7) with equality, we show that

(83)
Recall that, by symmetry of the encoding and decoding pro-

cedures, the average reaction delay is the same for any message.
Hence

where denotes expectation under the probability measure ,
the channel output distribution whenmessage 1 is sent, averaged
over time and codebooks.
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Suppose for the moment that

(84)

It then follows from Fano’s inequality that the input distribution
must satisfy . Hence, to establish (83), we will

show that at least one of the following inequalities:

(85)

holds for any . The arguments are similar to those used
to establish Claim 3 of Theorem 3. In the following, we provide
the key steps.
We proceed by contradiction and show that if both the in-

equalities in (85) are reversed, then the asymptotic rate is zero.
To that aim, we provide a lower bound on .
Let denote the time of the beginning of the decoding

window, i.e., the first time when the previous output symbols
have empirical distribution such that . By
definition, , so

(86)

where the second inequality follows from Markov’s inequality,
and where denotes the probability measure at the output of
the channel conditioned on the event that message 1 starts being
sent at time , and averaged over codebooks. Note that, because
is not a function of the codebook, there is no averaging on

the stopping times.31
Fix . We lower bound each term

in the aforementioned sum as

(87)

where , andwhere the second inequality fol-
lows from Fact 2.
The key change of measure step (38) results now in the

equality

(88)

which can easily be checked by noticing that the probability of
any sequence in is the same under . Substituting
31For different codebook realizations, stopping rule is the same, by con-

trast with which depends on the codebook via the joint typicality criterion
of the second phase.

(88) into the right-hand side of (87), and using (86) and Fact 2,
we get

(89)

where . The rest of the proof consists in showing
that if the two inequalities in (85) are reversed, then the right-
hand side of the aforementioned inequality grows exponentially
with , which results in an asymptotic rate equal to zero. The
arguments closely parallel the ones that prove Claim 3 of The-
orem 3 (see from (39) onward), and hence are omitted.
To conclude the proof, we show (84). Using the alternate

form of expectation for nonnegative random variables
, we have

where we defined

and where the last inequality follows from the fact that
is a nondecreasing function of . Since ,

to establish (84), it suffices to show that

(90)

Since

as follows from computation steps in (23) and (24), to establish
(90), it suffices to show that

(91)

For , we have

(92)

where the aforementioned summation is over all typical joint
types, i.e., all such that

(93)
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for all .
We upper bound each term in this summation. First observe

that event

for involves random vector
which is partly generated by noise and partly generated by
the transmitted codeword corresponding to message 1. In the
following, computation refers to first symbols of
which are generated by noise, i.e., by definition .
Note that since , we have

We have

(94)

where we used the following shorthand notations for probabili-
ties:

Further, using Fact 2

(95)

where and denote the left and right marginals of ,
respectively, and where the second inequality follows by non-
negativity of divergence.

A similar calculation yields

(96)

From (94)–(96) and Fact 1, we get

(97)

The maximum on the right-hand side of (97) is equal to

(98)

We upper bound the argument of the aforementioned exponen-
tial via the log-sum inequality to get

(99)

where . Using (99), we upper bound expression (98) by

(100)

where for the first inequality, we used Pinsker’s inequality [7,
Problem 17, p. 58]

and assume that is small enough and is large enough for
this inequality to be valid. Such and exist whenever the
distributions and are different.
It then follows from (97) that

hence, from (92) and Fact 1, we get
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for . Finally, a union bound over times
yields the desired result (90) since .

APPENDIX B
PROOF OF THEOREM 5

The desired theorem is a stronger version of [7, Corollary 1.9,
p. 107], and its proof closely follows the proof of the latter.
Before proceeding, we recall the definitions of -image and
-neighborhood of a set of sequences.

Definition 4 ( -Image, [7] Definition 2.1.2, p. 101): A set
is an -image of a set if for all

. The minimum cardinality of -images of is denoted
.

Definition 5 ( -Neighborhood, [7] p. 86): The -neighbor-
hood of a set is the set

where denotes the Hamming distance between
and , i.e.,

As other notation, for a given conditional probability ,
, and , we define the set

for a constant . To establish Theorem 5, we make use of
the following three lemmas. Since we restrict attention to block
coding schemes, i.e., coding scheme whose decoding happens
at the fixed time , we denote them simply by instead
of .
In the following, is always given by

Lemma 2: Given , , , and
, there exist for each

such that
1) , for all
2) ,
3) the maximum error probability is upper bounded by
4) the rate satisfies

Proof of Lemma 2: The proof closely follows the proof of
[7, Lemma 1.3, p. 101] since it essentially suffices to replace
and in the proof of [7, Lemma 1.3, p. 101] with and ,
respectively. We therefore omit the details here.

One of the steps of the proof consists in showing that

(101)

for all . To establish this, one proceeds as follows.
Given , let denote the set of empirical conditional
distributions such that

for all . We have

(102)

(103)

(104)

(105)

(106)

which shows (101). Inequality (103) follows from Fact 3, (104)
follows from Fact 1, (105) follows from Pinsker’s inequality
(see, e.g., [7, Problem 17, p. 58]), and (106) follows from the
definition of .

Lemma 3 ([7, Lemma 1.4, p. 104]): For every , ,
if achieves an error probability and , then

whenever .
Since this lemma is established in [7, Lemma 1.4, p. 104], we

omit its proof.

Lemma 4: For every , , , and

whenever .
Proof of Lemma 4: By the Blowing Up Lemma [7, Lemma

1.5.4, p. 92] and [7, Lemma 1.5.1, p. 86], given the sequence
, there exist and such that and
, and such that the following two properties hold.

For any and

(107)

and for all

(108)
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Now, assuming that is an -image of with
, the relation (108) means that is an -image

of . Therefore, we get

(109)

where the second inequality follows from (107). Finally, since
and as , for large enough, we have

and therefore, from (109), we get

yielding the desired result.

We now use these lemmas to establish Theorem 5. Choose ,
such that . Let be a coding scheme

that achieves maximum error probability . Without loss of gen-
erality, we assume that (If not, group codewords into
families of common type. The largest family of codewords has
error probability no larger than , and its rate is essentially the
same as the rate of the original code .) Therefore

(110)

for , where the first and third inequali-
ties follow from Lemmas 3 and 4, respectively, and where the
second inequality follows since is nondecreasing in .
On the other hand, by Lemma 2, there exists a coding scheme

, with that achieves a probability of error
upper bounded by and such that its rate satisfies

(111)

for . From (110) and (111), we deduce the
rate of is lower bounded as

whenever . This yields the desired
result.
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