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Feedback-Controlled Parallel Point Process Filter
for Estimation of Goal-Directed Movements
From Neural Signals
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Abstract—Real-time brain—-machine interfaces have estimated
either the target of a movement, or its kinematics. However,
both are encoded in the brain. Moreover, movements are often
goal-directed and made to reach a target. Hence, modeling the
goal-directed nature of movements and incorporating the target
information in the kinematic decoder can increase its accuracy.
Using an optimal feedback control design, we develop a recursive
Bayesian kinematic decoder that models goal-directed movements
and combines the target information with the neural spiking
activity during movement. To do so, we build a prior goal-directed
state-space model for the movement using an optimal feedback
control model of the sensorimotor system that aims to emulate the
processes underlying actual motor control and takes into account
the sensory feedback. Most goal-directed models, however, depend
on the movement duration, not known a priori to the decoder.
This has prevented their real-time implementation. To resolve this
duration uncertainty, the decoder discretizes the duration and
consists of a bank of parallel point process filters, each combining
the prior model of a discretized duration with the neural activity.
The kinematics are computed by optimally combining these filter
estimates. Using the feedback-controlled model and even a coarse
discretization, the decoder significantly reduces the root mean
square error in estimation of reaching movements performed by
a monkey.

Index Terms—Brain—machine interfaces (BMIs), motor control,
neural decoding, optimal feedback control, point processes.
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I. INTRODUCTION

NFORMATION about various states of an intended move-

ment is encoded in the neural activity from the motor cor-
tical areas. Peri-movement activity, i.e., the activity around the
time of movement, in the primary motor cortex, posterior pari-
etal cortex (PPC), and dorsal premotor cortex (PMd) is related
to the movement kinematics such as direction, velocity, posi-
tion, and acceleration (see e.g., [1]-[5]). Also neural activity
from the PPC and the premotor cortex is related to the intended
target of the movement prior to movement initiation (see e.g.,
[6]-[8]). Brain—machine interfaces (BMIs) work by recording
these neural activities such as the ensemble spiking activity,
mapping these activities to the intended behavior also known
as decoding, and using the decoded signal to control a device
such as a robotic arm or computer cursor [5], [9]-[26].

Many typical tasks—such as reaching for a book—involve
performing goal-directed movements. Most work on real-time
BMIs have focused on individually decoding either the move-
ment’s kinematics to reconstruct its trajectory [5], [10]-[22], or
the movement’s intended reach goal or target [23], [24]. How-
ever, designing the kinematic decoder to take into account the
goal-directed nature of such movements could improve their
estimation accuracy. Additionally, when both target and kine-
matic related neural activities are recorded, combining them in
the decoding algorithm could result in more accurate estimation
of goal-directed movements. In particular, it has been shown
that information about the intended target location can be de-
coded reliably from neural activity prior to movement [23], [24].
Hence, the main question is how to design a kinematic decoder
that can model the goal-directed nature of movements and more-
over combine the target information with the peri-movement ac-
tivity to improve the accuracy of trajectory estimation. One way
to do so is to construct a prior goal-directed state-space model
for the kinematics that can incorporate the target information.
This prior model can in turn be used in a recursive Bayesian de-
coder to estimate the kinematics [18], [27]-[29].

Prior work have built this goal-directed model for reaching
movements by conditioning a linear Gaussian state-space
model, also known as a random-walk model, on being at the
target at a known arrival time [28], [29] or using a linear
feedforward controlled (i.e., not taking into account the sensory
feedback) model again assuming a known arrival time [30].
Alternatively, goal-directed prior models have been built by
using a training data set, for example fitting a linear Gaussian
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state-space model for a given target to empirical reaches to
its location [27] or fitting a single model for arbitrary targets
based on a data set of reaches to their locations [18]. Since the
goal of the decoder is to estimate natural movement, a prior
model that aims to closely emulate the sensorimotor processing
underlying actual motor control could result in more accurate
estimation of intended movement. Hence, we propose a prior
model for goal-directed movements based on the optimal feed-
back control theory of the sensorimotor system [31], [32], used
to interpret its function. This results in a feedback-controlled
prior state-space model for the kinematics that not only ex-
ploits the information about the target location but also models
the real-time sensory feedback. Also, unlike the models in
[18], [27], this model does not rely on a training data set and
can hence easily extend to different target locations without
requiring a set of empirical reaches to them. Finally, by using
the optimal feedback control formulation, it can generalize to
tasks other than reaching movements, if desired, by simply
quantifying the goals of such tasks as the cost function in this
formulation. We derive this optimal feedback-controlled prior
model as the first component to develop a recursive Bayesian
decoder for goal-directed movements.

Regardless of the approach taken to incorporate the target in-
formation into the prior state-space model, most goal-directed
state-space models are inherently dependent on the arrival time
at the target or equivalently on the movement duration. For ex-
ample there is much more constraint on the movement kine-
matics close to the arrival time compared to far from it, as in
the former case the trajectory soon needs to reach the intended
target. Also the assumption of known movement duration used
in [28] and [30] prevents their implementation in real time since
the duration is not known a priori to a real-time decoder ob-
serving only the neural signal. Hence, to be implementable in a
BMI, in addition to using a goal-directed state-space model, a
practical decoder needs to address this uncertainty in movement
duration.

We introduced a framework to resolve this duration uncer-
tainty in [33] by discretizing the movement duration and then
optimally combining the kinematic estimates corresponding to
the discretized durations based on the neural data. A similar ap-
proach using a discretized set of durations was subsequently
used in [34] to resolve the duration uncertainty of the goal-di-
rected prior model developed in [28] for estimation of simulated
reaching trajectories. In this paper, as the second component of
our decoder, we develop our framework to resolve the duration
uncertainty for any goal-directed state-space model (including
our feedback-controlled one) in more detail. Additionally, we
examine the loss in estimation accuracy due to the unknown
duration and the effect of the number of discretization points
on this loss. Moreover, we discuss two possible approaches to
treating a state-space model of a discretized duration after its
arrival time is reached and their effect on decoder accuracy.
To provide a more realistic validation, instead of testing the al-
gorithm on simulated movement trajectories as done in, e.g.,
[28], [34], we test it on real reaching movements performed by
a rhesus monkey.

Combining these two components, our decoder can be used in
a real-time BMI to improve the estimation accuracy of goal-di-

rected movements. Our focus in this paper is on the detailed
derivation of the decoder and the characterization of its perfor-
mance for estimation of goal-directed movements performed by
a monkey from simulated spiking activity. The simulated neural
data is obtained based on the monkey’s trajectories using a rig-
orously validated model of neural activity in the primary motor
cortex [2], [35] that relates it to the intended movement param-
eters. Using thousands of simulated trials, this analysis allows
us to characterize the decoder performance under various con-
ditions and give guidelines for its implementation and param-
eter selection. An implementation of this decoder for combining
target and kinematic related activities in a real-time BMI that
uses an optimal feedback control design is presented in our other
work [9], [36], [37].

II. METHODS

We denote the sequence of kinematic states by xg. ..., X;
and the spiking activity of the ensemble of C' neurons by
Ny, ...,N; where N; = (N},....NY) is the binary spike
events of the C' neurons at time . We model the spiking activity
of each neuron as a point process. Assuming that the neural
spiking observations from the C' neurons are conditionally
independent given the state, the point process observation

model is given by [35], [38]
p(Nelxe, H) = [T (heltxe, HY AN e CxeHDa ()

C

where Hf = N§, ,, H; = Ny.;_1 = H}*“ model the history
dependence of the spiking activity, A is the time increment, and
Ac(t|x:, HY) is the modeled instantaneous firing rate or equiv-
alently the conditional intensity function of the cth neuron at
time £. Note that we have explicitly indicated the encoding of
the kinematic states, x;, in the conditional intensity function (the
form of which depends on the kinematics tuning model and will
be discussed further in Section III). If the observation model fur-
ther assumes that the spiking activity is not history dependent,
i.e., that the observation at each time step is conditionally inde-
pendent of the observations in the previous time steps given the
kinematic state, then the observation model simplifies to

p(Nux, Hy) = p(Nufxe) = [ e(the) AN e 2e(thena,

<

The goal of the decoder is to causally calculate the state pos-
terior density, p(x;|N1.;), from the neural observations. We first
develop the feedback-controlled prior state-space model. We
then derive the decoder that combines this prior with the point
process observation model and also resolves the duration uncer-
tainty inherent to goal-directed state-space models.

A. Optimal Feedback-Controlled Prior State-Space Model

We develop an optimal feedback-controlled prior state-space
model for the kinematics of goal-directed movements, which in-
corporates the target information and models the real-time sen-
sory feedback. This model is inspired by the optimal feedback
control theory of the sensorimotor system that is used to inter-
pret its function [31], [32]. In this framework, each task is per-
formed to accomplish a goal during which there is sensory feed-
back about the state of the system. Based on the desired goal,
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Fig. 1. Optimal feedback control framework. An optimal feedback control
framework is used to build a state-space model for goal-directed movements.
In this framework each task is performed to accomplish a goal during which
there is real-time sensory feedback, y, , about the state of the system, x,. Based
on the intended goal and the sensory feedback about the state of the system, the
brain (controller) decides on a plan of action or control signal, u,, and controls
the system.

the sensory feedback (for example vision and proprioception)
about the current state of the system, and the intended time to
accomplish the goal, the subject (controller) decides on the next
control signal (for example muscle activation) to generate the
movement. As a result, the subject can make real-time adjust-
ments in the control signal based on the feedback to improve be-
havior. This framework is illustrated in Fig. 1. Once we specify
an approximate kinematic model, quantify the task goals as cost
functions, and model the sensory feedback, this framework can
be used to predict the subject’s next control signal. Therefore,
we use this framework to develop the optimal feedback-con-
trolled prior model to predict the next control signal in the de-
coder and consequently the next kinematic state.

We assume the sequence of kinematic states, X, . . . , X, are
generated according to the linear dynamical system

Xt4+1 = Axt + But + w;. (2)

Here, u; is the control signal at time ¢, which is decided by
the controller (the subject), w; is the zero-mean white Gaussian
state noise with covariance matrix W, and A and B are param-
eters of the kinematic model. We assume that the subject has
perfect sensory feedback of the kinematic states (for example,
proprioceptive or visual) and therefore the sensory feedback,
¥¢, is noiseless, i.e., y; = X¢. To find u; in the control frame-
work, we need to specify a cost function whose expected value
will then be minimized by selecting the optimal u;. The cost
function in a given task should quantify its goal. For the above
linear Gaussian state-space model, if we pick the cost function
as a quadratic function of the state and control signals given by

T-1
J= z (x;Qxs + ujRuy) + x5 Qrxr 3)

t=1

where T is the movement duration, Q; is positive semidefinite,
and R is positive definite, then the optimal control signal at any
time, uy, is simply a linear feedback of the state at that time
given by [31], [39]

w, = —Ly(T)x, 4)
where L; can be found recursively and offline using [39]

L; = (R+B'P, 1B) 'B'P,, A. (5)

Here, P; is in turn found recursively and backwards in time
using

P:=Q
YA (Pt+1 ~ P, B(R+BP,,B)" B’Pt+1> A (6)

with the initial condition
Pr=Qr. (7

This is the linear quadratic Gaussian (LQG) solution. Substi-
tuting (4) in (2) reduces this state-space model to the optimal
feedback-controlled state-space model

XtJrl = (A — BLt(T))Xt + Wi (8)

which can now be used to predict the next kinematic state in the
decoder.

Note that Q;, Qr, and R should be appropriately designed
for an application of interest. These matrices enforce the goal
or performance criteria for a given task. For example, for a
reaching task, the goal is to reach a certain target position at an
arrival time T and then stop there. So the performance criteria
are for the position to be close to the target position at the end of
movement and for the velocity and higher-order derivatives of
position to be zero then. Therefore, Q7 that is multiplied by the
kinematic state at arrival time, T, should enforce such criteria.
Similarly Q; can enforce performance criteria before the end of
movement. Moreover, the cost function should have an effort
(control) penalty term since one usually attempts to perform a
task as accurately as possible while being energy efficient. That
is what the term u} R is enforcing. We show examples of these
matrices for reaching movements below. It is important to also
note that L;(T) is time-varying and a function of the duration,
T, and hence the state-space model is dependent on this dura-
tion and time-varying.

1) Optimal Feedback-Controlled Prior Model for a Reaching
Movement: One of the most common goal-directed move-
ments is a reaching movement. We can now specialize the
feedback-controlled prior model to the case of reaching move-
ments, which are used in many real-time BMI experiments.
For a reaching movement, the goal is to reach a target position
at a desired arrival time and stop there, while being energy
efficient. Hence, the cost function in this case should enforce
positional accuracy at the arrival time, stopping condition, and
energetic efficiency [40], [41]. Therefore, denoting the desired
final target position in the two dimensions by d* = [d},d3]’,
and the position, velocity, and force in the two dimensions by
d; = [d1(8), do(0)], Ve = [va(8),v2(0)], and &, = [ax (1), as(0)],
respectively, similar to previous studies [40], [41] we take this
cost function to be the weighted sum

T-1
T =[l dr=d" |* 4w, | vr |17 +wa [l ar |2 +w, Y [l u |

=1
)
where the weights are chosen to penalize the terms in the cost
function approximately equally on average. Taking the state to
be x; = [d1(t),v1(t). a1(t), d2(t), v2(t), a2(t)]’ and adapting a
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first-order lowpass muscle-like filter in [41], we write the dy-
namical system in (2) in each dimension ¢ as

o) 1A 3 ][
Lai(t+1)J [0 0 1—'%J [ai(t)
+ Ui(t)‘i‘ 0

(10)

So ©

where A is the time increment, and parameters b = 10 Ns/1n,
7 = 0.05 8, and m = 1 kg come from biomechanics [41].

Having specified the kinematic model in (10) and the
cost function in (9) for the reaching movements, the feed-
back matrices L:(T) can be computed from the recur-
sive solution of LQG in (5). To find the feedback ma-
trices, first we write (9) and (10) in the form of (3) and
(2) by augmenting the state to include the target posi-
tion in the two dimensions [40], [41], d* = [d},d3])’, i.e,
Xou(D) = [d1(6),va(t), a1(t), 4}, da(t), va(t), as(t), d)
Hence, the augmented state-space model in each dimension
takes the form

di(t+1) 1A 0 0] rdi(t)
vi(t+1)| |0 1=-% 20 |y
a(t+1) | o 0 1—-2 0] [a?)
dx 0 0 0 1 d:
0 0

+afu®+ | ] an

0 0

fors = 1, 2. The state-space model in (2) in this case is therefore
given by

Xaug(t + 1)
_ All A12 Bll B12
‘[A21 AZZ]Xaug(t)Jr[B?l Bﬂ]u(t)+w(t) (12)

where A12 = A21 = 0, B12 = B21 = 0, and A11 = AQQ and
B1 = By, are given in (11) (following the form of the model
in [41]). Here, u(t) = [uy() uz(t)]. Now comparing (9)
with (3) and denoting the two dimensional identity matrix with
I wefind R = w,I, and Q; = 0 for# < T. To find Q1 note
that di(T) — d} = P Xaue(T) withp; =[1,0,0,—1,0,0,0,0]
and similarly for po, and that vi(T) = p Xauy(T) with
Py, = [0,1,0,0,....0]) and similarly for p,,, pa,, and p,,.
Therefore we find Q1 = p1p) + p2ps + Wy (Do, Py, + PuyPl,)
Fwo(Pa, Py, + PasPy,)- Now using (5)—(7) with these choices
and with A and B from the augmented state-space model in
(12) we obtain the feedback matrices, L+(T). Consequently, the
optimal feedback-controlled state-space model for the reaching
movement is found from (8). Note that the dynamic matrix
in this model, A — BL;(T), is multiplied by the augmented
state that includes the target position. Therefore, the feed-
back-controlled state-space model evolves the kinematic states
according to the target position.

It is important to note that the feedback matrices can be pre-
computed offline and then stored for later real-time use in a

BMI. Also, the prior model can be generalized to any target lo-
cation by just changing d* accordingly in (11).

B. Estimation of Goal-Directed Kinematic States From Neural
Observations

Having developed the prior model, we now derive the de-
coder. To do so, we combine the prior model with the ensemble
spiking activity during movement and resolve the duration
uncertainty inherent to the prior model using mixture mod-
eling. Mixture modeling is a common framework in statistical
inference that is used to estimate a desired density in different
applications. For example, mixture modeling combined with
sequential state estimation in dynamical systems, when the
system could be operating in changing environments (leading
to different regimes of operation), has been used in [42]. See
also the mixture Kalman filtering work in [43] and references
therein. For decoding the kinematics from neural activity,
mixture modeling was used in [27] and successfully applied
to combine empirically fitted and time-invariant state models
for reaching movements to different targets. Here, we use mix-
ture modeling to combine optimal feedback-controlled prior
models of different durations and hence resolve the duration
uncertainty inherent to this prior model (and other goal-directed
models in general).

To decode the kinematics, we need to find the posterior den-
sity p(x4|N1.+). Conditioning on the arrival time, we can expand
this density as

p(x,[N1) = /p<xt|N1:t,T>p<T|N1;t>dT (13)

where p(T|Ny.;) is the causal likelihood function for the arrival
time based on the neural observations. However, in its contin-
uous form, this likelihood is difficult to find and in general is not
Gaussian. Hence, to make the computations tractable, we dis-
cretize the arrival time and instead, using the law of total prob-
ability, expand the posterior density as

I
P(Xt|N1:t) = ZZ)(Xt|N1:t, Tj) P(Tj|N1;t)

=1

(14)

where T is discretized to I possibilities and consequently a prior
model is placed on it given by p7(T,),5 = 1,...,I. This prior
model (including its support) can be selected based on empir-
ical durations observed in a given task. We will later examine
how the discretization refinement, or equivalently the number
of discretization points used for a given support, affects the per-
formance of the decoder. We show in the Results section that
even a coarse discretization is sufficient to achieve an asymp-
tote performance.

We now need to calculate two quantities: the posterior den-
sity p(x¢|Ny,, T) for a given known arrival time, T, and the
corresponding weights p(T|Ny.;).

To find the posterior for a given arrival time we write it as

P(N¢[xe, Nysp—1) p(x¢| N1, T)
p(x¢|N1, T) P(N¢| N1, T)

(15)

The first term in the numerator comes from the observation
model in (1) and the second term is the one-step prediction
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density. Note that we used the relation p(N;|x;, N1, 1, T) =
p(N}|x¢, N4 1) since the neural spiking activity is assumed to
be only a function of the kinematic state and history of spiking
activity and hence conditionally independent of the duration.
We denote the normalization constant by

g(N(|T) = p(N,|Ny, 1, T) (16)
since we exploit it later to find the corresponding weights. To
get the posterior density recursions, we use the Chapman—Kol-
mogorov equation to write the prediction density as

P(Xt|N1:t—17T) = /p(xt|xt—laT)p(xt—1|N1:t—lvT)dXt—1~

a7)
Here, we have wused the conditional independence
p(X¢|xe—1,N1.4-1,T) = p(x¢|x¢—1.T), which comes from

the state-space model in (8). Now the second term inside the
integral is just the posterior density from the previous time
step. Hence, substituting (17) into (15) generates the recursion.
The exact expression in (15) is in general complicated. Hence,
we make a Gaussian approximation to the posterior density
similar to [38]. Making this approximation and since the
state-space model in (8) is also Gaussian, the prediction
density in (17) will be Gaussian. Let us denote the minimum
mean-square error (MMSE) estimator, given by the posterior
mean F(x;|Ny., T), by x4 7 and its covariance matrix by
W; 1. Similarly, we denote the one step prediction mean
by X4r—1,7 = F(%x¢/N1:; 1, T) and its covariance matrix
by W1 1. The Gaussian approximation to the posterior
in (15) is made by expanding its logarithm in a Taylor series
expansion around the prediction mean x;; 1 and keeping
terms of second order or smaller. The recursions for the
MMSE estimator with this Gaussian approximation have been
derived in [38]. The difference here is in the prediction step as
it uses the feedback-controlled state-space model in (8). The
recursions of this point process filter in our case become

Xi|t—1,T = (A - BLt(T))thl\tfl,T
Wt\tfl.T = (A - BL,

(18)
(THW e 1,7(A = BL(T)) + W

(19)
adlog Ac dlog A,
w2 (o
9” log A,
Ni — AA -
( ) dxtax% :|xtt 1,T
(20)
X|t, T = X¢|t-1,T
dlog A,
+Wt\tTZ [( 8 ) (N§ = AcA)
Xt|t—1,T
(21)

where [.]Xﬂt—l . denotes the evaluation of the expression at
X4+—1,7 and A, is used instead of A.(#|x;, Hf) for notational
convenience. When the point process model for the spiking ac-
tivity is assumed to have no history dependence, the recursions
are obtained by simply replacing A.(#|x;, HY) with A.(¢]|x;).

These recursions give the feedback-controlled point process
filter (FC-PPF).

Note that a random-walk state model is also in the form of (8)
but with B = 0 and equivalently the dynamics matrix given by
A Hence, the recursions in (18)—(21) with this choice recover
the random-walk point process filter (RW-PPF).

So far we have found an approximation to the posterior
assuming a known arrival time. To relax this assumption, we
should find the corresponding weights for each arrival time,

p(T;|N1.), and use (14) to find the posterior density. We have

P(N1e|Tj)pr(T;)
P(let)

where p(N1.;) is independent of T ; and treated as a constant and

p(Tj|Nws) =

(22)

p(N1.4|T;) is the likelihood of the observed neural data under a

state-space model with the arrival time of T;. Hence, the latter
is the normalization constant for the posterior p(x1.;|N1.+, T;)
and its exact computation requires an integration, which is com-
putationally prohibitive. However, using the Gaussian approxi-
mation to the posterior, we can find this without integration as
follows. Using the chain rule we find

PN Ty) = [[p(Ni[ N1, Tj) = [Jo(N:| ;) (23)
1=1 =1

where g(IN;|T;) is defined in (16) and is the ¢th step normaliza-
tion constant in the recursive filter. Now exploiting the Gaussian
approximation of the posterior and hence the prediction densi-
ties in (15), they are completely characterized by their means
and covariances given in (18)—(21) for any T;. We can hence
explicitly evaluate (15) at x;); 7, to get

Wit
W17,

g(N;|T;) = p(Ny|x;p5,7,, N1 -1)

1
/ -1
X exp {— i(Xiu,Tj =Xili11,) Wiy 1 (i, —Xijio1T,)

‘W'L‘Y T; |

|Wl|’L 1,T; | H

1 =
X €xXp {— §(Xi\i,Tj —X4)i-1,T; ),Wi|,i1,17Tj(xi\i,Tj —Xii-1,T; )]
24

([T H‘)A)Nfeﬂ\c(i\xuﬂj,Hg)A

forj = 1,.... I where all the quantities are known. Combining
(14)- (24) gives the posterior. The MMSE estimate in the case
of unknown arrival time is then given by

= ZP(T.7|N1:t)Xt|t,Tj'

J

E(Xt|N1:t)

Xt =

We call the resulting filter the feedback-controlled parallel
point process filter (FC-P-PPF) shown in Fig. 2; it consists
of I parallel branches of feedback-controlled point process
filters, each calculating not only the MMSE estimate of x; as-
suming a duration of T, but also the corresponding likelihood

p(Nl:t|Tj)'

One question that arises at this point is how to estimate the
state once £ > T; for some branch T;. One way to do so is to
perform the summation over all 7 for which T; > £. This means
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p(T1|N1.t)
FC-PPF, T,

Xt|t, Tz

T2|N;.
N., p(T2| l,t)r Xej

&P~

FC-PPF, T,

P(T1|N1.t)

FC-PPF, T;

Fig. 2. Feedback-controlled parallel point process filter (FC-P-PPF).
FC-P-PPF consists of I parallel branches of point process filters, each calcu-
lating not only the MMSE estimate of x, assuming a duration of T ;, but also
the corresponding likelihood p(N1.,|T ).

that after a given arrival time, T, the corresponding branch of
the decoder exits the computations and is no longer used for
state estimation. This approach is justified since the prior for
a given branch is only defined up to its corresponding arrival
time. Using this implementation and as time passes by, fewer
branches are active and hence the computational load is lower.
Another way to address this issue is to keep a branch in the de-
coder even after its arrival time is reached by changing its prior
to one that corresponds to a still condition. This still condition
will have its position fixed at the final position reached to at the
arrival time and hence a zero velocity (and other higher order
derivatives of the position) after the arrival time. This means
that all the branches will be active at all time until the decoder
is terminated at the largest arrival time of the branches. We will
examine the effect of the two alternative implementations in de-
tail in Section III.

Finally, the parallel point process filter can be used to re-
move the duration uncertainty from any other goal-directed
state-space model and not just the feedback-controlled one we
have proposed here. This can be done simply by changing the
prediction step in (18) and (19) using the desired state-space
model. This is expanded on in the Appendix. Also, our ap-
proach to resolving the duration uncertainty can be applied in
cases where the observations are taken to be the neural firing
rates instead of the spiking activity and a Gaussian likelihood
model is assumed on these firing rates as in [25]. In this case
the Gaussian approximation to the posterior in our FC-P-PPF
becomes exact and the update recursions in the filter become
those of the well-known Kalman filter. The calculation of the
arrival time likelihoods, however, remain the same.

III. RESULTS

We show the application of FC-P-PPF to decoding of
reaching movements performed by a rhesus monkey from
ensemble spiking activity simulated based on a rigorously vali-
dated model of neural activity in the primary motor cortex [2],
[35]. Our data consists of 55 reaching trajectories performed
by a rhesus monkey,! based on which neural spiking activity
is simulated. Using a joystick, the monkey moved a cursor

IThis study was performed in strict accordance with the recommendations in
the Guide for the Care and Use of Laboratory Animals of the National Institutes
of Health, and under regulation of the Subcommittee on Research Animal Care
at Harvard Medical School.

from the center to one of four possible radial locations at the
top, bottom, left, or right sides of a square computer screen 14
cm long in each dimension. The 55 trajectories had different
durations in the range of 140-400 ms. Hence, the window of
uncertainty for the arrival time is 140—400 ms. The state noise
covariance, W, in the state-space model in (10) was fitted
to reaching trajectories using maximume-likelihood parameter
estimation.

To dissociate the effect of using the feedback-controlled prior
model from that of using the parallel filters to resolve the du-
ration uncertainty, we first consider the scenario where the de-
coder knows the exact duration for each trajectory and then re-
move this assumption and consider the general case with un-
known duration. Also in each case, we compare the decoder
with RW-PPF, which does not model the goal-directed nature of
movement and does not incorporate the target information. We
show that the decoder improves the RW-PPF performance con-
siderably, where performance is measured as the average root
mean square (rms) error in the estimated trajectories.

In terms of the decoder implementation, we examine the ef-
fect of two factors on its performance. First, we examine the
effect of the discretization refinement, i.e., the number of dis-
cretization points or parallel branches used in the decoder, and
show that a relatively coarse discretization is sufficient for the
decoder to achieve an asymptote average rms error. This guides
the selection of the number of parallel branches in the decoder.
Second we investigate the effect of the two possible implemen-
tations for treating a branch after its arrival time. In the first
implementation the branches exit the decoder after their arrival
time and in the second implementation they stay in the decoder
in their still condition after their arrival time. We show that the
average rms errors using the two implementations are compa-
rable.

A. Estimation of Reaching Movements of Known Duration
From Neural Signals

To assess the advantage of using the feedback-controlled
prior model, we first implement the FC-P-PPF for estimation
of reaching movements that start at a known reference position
at rest, acquire a target position at a known time, and come to a
stop at that time. Note that when duration is known, FC-P-PPF
uses a single branch corresponding to the true duration for each
trajectory.

To get the corresponding ensemble spiking activity for each
real reaching trajectory, we used the model of neural activity in
the motor cortex, also known as the cosine tuning model of the
conditional intensity function, which has been extensively vali-
dated on primate motor cortical data [2], [35]. In this model, the
firing rate of each neuron is related to the movement speed and
direction. Using this model and for each trajectory, we simulated
the spiking activity of an ensemble of C' = 20 neurons, which is
a typical ensemble size in real-time BMIs. The spiking activity
for each neuron in the ensemble was independently simulated
as a point process whose instantaneous firing rate or conditional
intensity function during a 2-D movement was given by [35]

Ac(t|xs) = exp (ﬁc + | vi| cos(By — 0“))

P
exp (/3,3 + agva(t) + a;vl(t))

(25)
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Fig. 3. Comparison of FC-P-PPF and RW-PPF when movement duration
is known. (a) and (b) Sample trajectory during a reaching movement by the
monkey (solid black) and 10 sample decoded trajectories using RW-PPF in (a)
and FC-P-PPF in (b) (dashed blue in color and dashed grey in print version).
(c) and (d) True velocity (solid black) in the two dimensions and the decoded
velocities using RW-PPF (dashed) and FC-P-PPF (solid blue in color and solid
grey in print version) for a sample neural realization.

where ¢ is the preferred angle of the cth neuron, 6 is the move-
ment angle at 7, vo(t) and vy(¢) are the velocities in the ¢ and
x directions, 3. and « are parameters of the model, and con-
sequently, af, = a.cos(f;) and aj = «a.sin(f}). Here, the
preferred direction for each neuron is sampled randomly from
[, 7], B. = 1.6 is chosen to have a background firing rate of
5 Hz for each neuron and v, = 0.04 s/cm is chosen to have a
maximum possible firing rate of 25 Hz on average (over the tra-
jectories) for each neuron. We simulated 100 realizations (trials)
of the point process neural signal for each trajectory using the
time-rescaling theorem described in [44].

1) Performance Measure: We define the performance mea-
sure of the decoder as its average rms error over the trajectories.
To find this, we first find the rms error for each time step along a
trajectory by averaging the square estimation error at that time
step over the 100 simulated neural realizations. To quantify an
average rms error for the entire trajectory, we then average the
rms error over its duration. Finally, we find the mean of the av-
erage rms errors over all 55 trajectories as the measure of per-
formance for a decoder.

2) Comparison to a Random-Walk Model: Assuming a
known movement duration, we compare the average rms error
of FC-P-PPF to that of RW-PPF. This comparison illustrates
the advantage of using a feedback-controlled goal-directed
prior model that incorporates the target information over a
random-walk model. The average rms errors of RW-PPF and
FC-P-PPF, which are calculated for each trajectory until the
end of movement, are 1.40 cm and 0.87 cm, respectively.
Hence, the RW-PPF average rms is 61% higher than that of
FC-P-PPF. This shows the benefit of using a more accurate

prior model in the decoder. Fig. 3(a) and (b) shows a sample
reaching trajectory performed by the monkey with a duration of
T = 296 ms and 10 sample decoded trajectories from RW-PPF
and FC-P-PPF when T is known exactly to the decoder.
Fig. 3(c) and (d) shows the estimated velocity in the x and y
direction for a sample neural realization (trial) using RW-PPF
and FC-P-PPF. We can also visually observe that using the
feedback-controlled prior model improves the estimation accu-
racy. Note that the average rms error of FC-P-PPF assuming
knowledge of movement duration provides a lower bound on
its error in the general realistic case where this duration is not
known, as considered in the next section.

B. Estimation of Reaching Movements of Unknown Duration
From Neural Signals

We now remove the assumption of known movement dura-
tion from the problem and use FC-P-PPF to decode the same
reaching movements. We examine the effects of the discretiza-
tion refinement and two possible implementations on FC-P-PPF
performance and also compare it to RW-PPF. Since the move-
ment duration is unknown, we run both decoders until the end
of the uncertainty window, i.e., until 400 ms.

1) Performance Loss Due to Unknown Duration: We first
examine the loss incurred due to lack of a priori knowledge
of the movement duration by FC-P-PPF and the effect of the
number of discretization points on this loss. This will guide the
selection of the number of branches needed in the decoder. To
do so, we compare the average rms error of FC-P-PPF with var-
ious number of discretization points to its error assuming exact
a priori knowledge of duration as considered in the previous
section. The latter provides a lower bound on the former and is
hence used as a baseline.

We discretize the uncertainty interval starting at 150 ms, i.e.,
the interval [150,400] ms, in steps of 250 ms, 125 ms, 83 ms,
50 ms, or 25 ms, corresponding to 2, 3, 4, 6, or 11 discretiza-
tion points, respectively, and find the FC-P-PPF average rms
error in each case. We also find the average rms error using
a single branch at 400 ms, which corresponds to a single dis-
cretization point at the largest possible duration. In each case,
we assume a uniform prior distribution on the discretization
points. To make the comparison to the baseline case with known
duration, we compute the average rms error of FC-P-PPF with
different number of discretization points for each trajectory up
to the end of movement as opposed to the end of the uncertainty
window. In each case, we also examine the two possible imple-
mentations for treating a branch after its arrival time.

Fig. 4 shows the FC-P-PPF average rms error as a function
of the number of discretization points for both implementations
and also the baseline average rms error assuming movement du-
ration is known. In the first implementation, the average rms
error has a steep drop to an asymptote value by increasing the
number of discretization points. Taking the average rms error
achieved using 11 discretization points as the asymptote value,
using only four discretization points results in the difference be-
tween the average rms error and the asymptote value to be only
1% of the latter. This shows that a relatively coarse discretiza-
tion is sufficient to get to this asymptote. Also, increasing the
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Fig. 4. The effect of the number of duration discretization points on FC-P-PPF
average rms error. The solid curve shows the average rms error of the first im-
plementation of FC-P-PPF during movement, the dashed curve shows that of the

second implementation, and the dotted line shows the lower bound on average
rms error of FC-P-PPF, which corresponds to a known movement duration.

number of discretization points from 1 to 4 reduces the differ-
ence between the average rms error of FC-P-PPF and the base-
line (i.e., with a priori knowledge of the duration) by over 48%.

Similar results hold for the second implementation. The
two implementations have very close average rms error during
movement. For example using four discretization points, the
difference between the average rms error of the two implemen-
tations is less than 1% of the smaller value.

2) Comparison to a Random-Walk Point Process Filter: We
now compare the performance of FC-P-PPF to RW-PPF that
does not exploit the target information. In our comparison, we
use four branches for FC-P-PPF as this choice is sufficient to
get within 1% of the asymptote average rms error.

Fig. 5(a) and (b) shows a sample trajectory with a duration
of T = 296 ms (the same as in Fig. 3) and 10 sample de-
coded trajectories using RW-PPF and FC-P-PPF when T is un-
known to the decoders and hence they decode the neural activity
until the end of the uncertainty window. We have shown the
FC-P-PPF results using the first implementation. As the figure
demonstrates, FC-P-PPF generates more accurate trajectory es-
timates compared to RW-PPF (as will be quantified in Table I).
Fig. 5(c)—(f) shows the decoded velocities in the x and y direc-
tions for a single realization of the neural signal and the time
evolution of the optimal combining weights in FC-P-PPF for the
given realization and also averaged over all 100 realizations for
the given trajectory. Here, the true arrival time isat T = 296 ms
and the closest weight, i.e., the one corresponding to 316 ms,
soon dominates up to its arrival time. Also, FC-P-PPF brings
the estimated velocity close to zero at the end of movement as
opposed to RW-PPF.

To quantify these observations, Table I shows the average
rms error in the estimate of the 55 trajectories during movement
and during the entire decoding period. These are found by aver-
aging the rms error for each trajectory until the end of its corre-
sponding movement and until the end of the uncertainty window
at 400 ms, respectively. During movement, the average rms
error of RW-PPF is 47% larger than that of FC-P-PPF. More-
over, the two implementations of FC-P-PPF have very similar
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Fig. 5. Comparison of FC-P-PPF and RW-PPF when movement duration is
unknown. (a) and (b) Sample trajectory during a reaching movement by the
monkey (solid black) and 10 sample decoded trajectories using RW-PPF in
(a) and the first implementation of FC-P-PPF in (b) (dashed blue in color and
dashed grey in print version). The decoders are run until the end of the uncer-
tainty interval. (¢) and (d) True velocity (solid black) in the two dimensions and
the decoded velocities using RW-PPF (dashed) and FC-P-PPF (dashed blue in
color and dashed grey in print version) for a sample realization of the neural
signal. (¢) and (f) Evolution of the optimal combining weights for the branches
of FC-P-PPF for the sample realization of the neural signal in (¢) and averaged
over all 100 realizations in (f).

TABLE 1
AVERAGE rms ERROR (CM) IN DECODED TRAJECTORY OF THE 55 REAL
REACHING MOVEMENTS WITH UNKNOWN DURATION CALCULATED UNTIL THE
END OF MOVEMENT AND UNTIL THE END OF THE UNCERTAINTY WINDOW

| RW-PPF  FC-P-PPF (1) FC-P-PPF (2)
Until the end of movement 1.40 0.95 0.94
Until the end of
uncertainty window 1.69 1.01 0.99

average rms errors, as is also observed in Fig. 4. When also con-
sidering the error after the end of movement, RW-PPF average
rms error is 67% higher than FC-P-PPF. In this case, FC-P-PPF
does better than RW-PPF for two reasons: First, it puts a better
prior model on the reaching movements. Second, it detects the
end of movement and hence brings the velocity close to zero
after the movement ends. To do so, FC-P-PPF finds the like-
lihoods of the discretized arrival times and reflects them into
its estimate. This is done by combining the estimates of the
parallel filters, each designed for a different arrival time, with
time-varying optimal weights that are updated purely based on
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Fig. 6. Comparison of average rms error (cm) in decoded trajectory of the 55
real reaching movements for RW-PPF and FC-P-PPF with the two implemen-
tations. rms errors for known duration are shown on the left and for unknown
duration (calculated until the end of decoding or until the end of movement) are
shown on the right. See also Table 1.

the neural observation. In contrast, RW-PPF cannot detect the
movement termination. Therefore, when considering its error
until the end of the uncertainty window, it does worse. Note
that the two implementations of FC-P-PPF again have a close
average rms error. All these rms comparisons have been shown
in the bar graph in Fig. 6.

Fig. 7(a)—(d) shows sample estimated trajectories, velocities,
and average combining weights for the second implementation
of FC-P-PPF. Keeping all the branches in the filter even after
their arrival time, by changing their prior model to a still model,
allows the second implementation to bring the velocity closer
to zero after the movement ends and results in a lower average
rms error after the end of movement compared to the first im-
plementation (1.08 cm versus 1.16 cm, calculated from the end
of movements until the end of uncertainty window at 400 ms).
Therefore, in applications where the error after the end of move-
ment and hence standing still at a position is important, for ex-
ample when reaching a target and then holding it, this imple-
mentation could result in additional reduction of error. How-
ever, the first implementation is computationally more efficient
as it does not keep all the branches in its calculations until the
end of decoding. Hence, the first implementation is more ap-
propriate in real-time applications in which the main purpose is
only to reach a target.

IV. DiscussION

We have developed a recursive Bayesian decoder for estima-
tion of goal-directed movements from neural spiking activity.
Our decoder employs two main components. First, it uses
the sensorimotor optimal feedback control principles to build
an optimal feedback-controlled prior model for goal-directed
movements. This model not only incorporates the target infor-
mation but also models the real-time sensory feedback. Second,
the decoder resolves the duration uncertainty inherent to this
model (and other goal-directed prior models) based on the
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Fig. 7. Comparison of FC-P-PPF implementations. (a) True trajectory (solid
black, same as in Fig. 5) and 10 sample decoded ones (dashed blue in color
and dashed grey in print version) using the second implementation of FC-P-PPF
with unknown duration [compare with Fig. 5(b)]. (b) Combining weights versus
time averaged over all 100 neural realizations for the second implementation of
FC-P-PPF [compare with Fig. 5(f)]. (¢c)—(d) True velocities in the two dimen-
sions (solid black) and decoded velocities for a sample neural realization with
the first (solid blue in color and solid grey in print version) and second (dashed
cyan in color and dashed black in print version) implementations of FC-P-PPF.
True duration is 296 ms.

neural activity. The result is the feedback-controlled parallel
point process filter (FC-P-PPF) that can be used in a real-time
BMI for estimation of goal-directed movements.

A. Summary of Contributions

We used a theory of motor control, namely the optimal feed-
back control theory of the sensorimotor system to build the prior
model. This allows us to formulate the BMI or neural decoding
problem in a framework based on the theories of motor con-
trol. Our prior model incorporates the target information and
models the real-time sensory feedback. It can generalize to dif-
ferent target locations without requiring a training data set of
reaches to these locations. Even though we have illustrated one
example of the optimal feedback-controlled prior model in (8)
for the specific task of reaching a target, this model could be
specialized to other tasks by quantifying their goals as the cost
function in (3), thus providing a possible general framework for
construction of goal-directed prior models.

Despite the advantage of goal-directed prior models for es-
timation of movement, one key factor that has prevented their
implementation in real-time BMIs is their dependence on the
movement duration, which is not known a priori to a real-time
decoder. Previous work using duration-dependent goal-directed
models have therefore assumed that the decoder has knowledge
of this duration [28], [30], which is not the case in a real-time
BMI. We thus developed a parallel point process filter frame-
work to resolve this duration uncertainty in any goal-directed
prior model. The framework works by discretizing the duration,
causally estimating the kinematics for each discretized duration
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based on the neural activity, and optimally combining these es-
timates according to the duration likelihoods, which are again
calculated from the neural activity. Due to the parallel nature of
our decoder, its overall run-time is on the order of the run-time
for a single branch, a property important for real-time imple-
mentation.

We additionally examined the effect of the duration dis-
cretization refinement on the average rms error and showed
that using only a coarse discretization is sufficient to achieve
an asymptote average rms error. This guides the selection of
the number of branches in the parallel filter and shows that
the added computational complexity involved to address the
duration uncertainty is not large.

We further examined the effect of two possible filter im-
plementations for FC-P-PPF, which differed in treating the
branches of the filter after their arrival time. In the first imple-
mentation, any branch exits the computation after its arrival
time. In the second implementation, we keep all the branches
in the filter after their arrival time, but change their prior model
to a still model. The still model for a branch assumes that the
kinematic state has stopped at the location estimated at its
arrival time. We showed that the two implementations have
similar average rms errors. However, the second implemen-
tation brings the velocity closer to zero after the movement
ends (and therefore may have an advantage for applications
such as holding a target), whereas the first implementation is
computationally more efficient.

We also examined the advantages of using our decoder com-
pared to RW-PPF that uses a random-walk prior model. We
showed that using a very coarse discretization (and hence few
branches in FC-P-PPF) the average rms error of our decoder
is significantly lower than that of RW-PPF. The reason for this
improved performance is that FC-P-PPF not only uses a better
prior model for goal-directed movements, but also attempts to
identify the end of movement and hence bring the velocity close
to zero at that point. This is in contrast to RW-PPF, which cannot
detect the end of movement.

B. Concluding Remarks and Future Directions

We have evaluated the feedback-controlled parallel point
process filter in this work in decoding of real reaching move-
ments performed by a rhesus monkey based on simulated
neural activity. Simulation-based validation methods provide
a practical way to develop and test new decoding algorithms
before investment in the invasive multielectrode recording
experiments with extensive resource and time requirements.
Hence, these simulation-based methods have been used for
algorithm development in previous work, e.g., [28], [29], [45],
[46]. There are different levels of simulation-based validation.
To have a more realistic validation method than that used in
previous work on goal-directed decoding, e.g., in [28], [29],
we test the decoder on real reaching movements performed by
a rhesus monkey. This is in contrast to these previous works
that in addition to using simulated neural data, also simulate
the movement trajectory based on the same state model they
develop and use in the decoder. We obtain the simulated
neural data corresponding to the monkey’s trajectories using
a rigorously validated model of neural activity in the primary

motor cortex [2], [35] that relates it to the intended movement
parameters. Using thousands of simulated trials, our validation
method allows us to characterize the decoder performance
under various conditions and give guidelines for its implemen-
tation and parameter selection. The next level of validation for
our decoder is to implement and test it in extensive goal-di-
rected experiments with multielectrode recordings both offline
and in a real-time BMI, and is the focus of our other work that
develops a BMI using optimal feedback control theory [9],
[36], [37].

In this work we assume that the upper-bound on the move-
ment duration is known. For the decoder to be universal, it
should also be applicable in scenarios in which such an upper-
bound is not known. One possible approach to address this is to
start the decoder using an initial guess of the upper-bound (e.g.,
based on previous task performances) and then refine this guess
as neural observations are made. The development of this uni-
versal decoder will be the topic of future investigation.

We used the optimal feedback control theory of the senso-
rimotor system to build the goal-directed prior model. This al-
lows us to formulate the BMI or neural decoding problem in
a framework based on this theory of motor control, which has
been shown to explain the behavioral observations in experi-
ments involving motor tasks [31], [32], [40], [41]. In a BMI, our
decoder takes into account the subject’s task goal as well as the
sensory feedback during BMI control to estimate the subject’s
intended kinematic state that is reflected in the neural activity.
Even though we have evaluated one example of the optimal
feedback-controlled decoder for the specific task of moving to-
wards a target location, it is possible to extend the decoder to
estimate movements in other goal-directed tasks by quantifying
their goals as the cost function in (3). Recent work have dis-
cussed the importance of sensory feedback in the performance
of real-time BMIs. For example [47] develops a closed-loop
simulator as a way to incorporate the feedback effects in sim-
ulation-based validation methods for testing of decoding algo-
rithms. In addition to modeling the task goals, the optimal feed-
back-controlled decoder here provides one approach to model
the real-time sensory feedback in BMIs.

Motivated by the observation that target location can be ac-
curately decoded from motor cortical areas before movement
initiation [23], [24], in this work we assumed that target loca-
tion is known and developed a decoder that combines it with
the peri-movement activity to estimate the intended kinematics.
Note, however, that we can easily extend this decoder for cases
where target location is not known prior to movement by using
an approach similar to the work in [27], which combines time-
invariant and empirically fitted trajectory models to different
targets. To do so, we can include branches in FC-P-PPF for all
possible target locations and their corresponding discretized du-
rations. We can then calculate the overall kinematic estimate as
the weighted average of the branch estimates corresponding to
all possible target locations, as opposed to just the correct target
location. The calculation of the branch likelihoods, that in turn
determine their weights in calculating the overall kinematic es-
timate, remains exactly the same [see (22)—(24)]. In this case,
if target related activity before movement initiation is recorded,
we can incorporate it by initializing the weight of the branches
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corresponding to each target proportional to its likelihood cal-
culated from this activity [27], as opposed to equiprobably.
Real-time BMIs have largely decoded individually either the
target of the movement or its corresponding trajectory without
modeling its goal-directed nature. Here, we developed a decoder
that aims to closely model a goal-directed movement and the
real-time sensory feedback using a theory of motor control, and
enables joint decoding of both target and trajectory from neural
activity. This can in turn result in more accurate estimation of
intended movement in a real-time BMI [9], [36], [37].

APPENDIX
RESOLVING THE DURATION UNCERTAINTY FROM A GENERAL
LINEAR GOAL-DIRECTED STATE-SPACE MODEL

A general linear goal-directed state-space model depends on
the target and movement duration and can be written as

Xt+1 = G(ta T, X*)Xt + b(tv T, X*) + Wy (26)

where x* is the target state, G and b are the dynamics ma-
trix and a constant term, respectively, that in general are time-
varying and also dependent on x* and T, and w; is the zero-
mean white Gaussian state noise with covariance matrix Wy.
Note that the state-space models in both [28] and [30] can be
written in this form and assume prior knowledge of T. Hence,
the exact same filter recursions in (18)—(21) can be applied to a
general model by just changing the filter prediction steps to

xt\tfl,T = G(t, T7 X*)xt71|t71,T + b(t, T7 X*)
Wt\tfl,T =G(t,T, X*)Wf,fl\tfl,TG/(ta T,x°)+ W,

All the other expressions including those for calculating the du-
ration likelihoods remain the same.
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