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Local Recovery Properties of Capacity Achieving
Codes

Arya Mazumdar†, Venkat Chandar∗ and Gregory W. Wornell§

Abstract—A code is called locally recoverable or repairable if
any symbol of a codeword can be recovered by reading only a
small (constant) number of other symbols. The notion of local
recoverability is important in the area of distributed storage
where a most frequent error-event is a single storage node failure.
A common objective is to repair the node by downloading data
from as few other storage node as possible.

In this paper we study the basic error-correcting properties
of a locally recoverable code. We provide tight upper and lower
bound on the local-recoverability of a code that achieves capacity
of a symmetric channel. In particular it is shown that, if the code-
rate is ε less than the capacity then for the optimal codes, the
maximum number of codeword symbols required to recover one
lost symbol must scale as log 1

ε .

I. INTRODUCTION

An update-efficient code is a mapping from messages to
codewords such that for small a perturbation in a message
the corresponding codeword changes only slightly. The term
update-efficiency quantify this property. In the definitions
below we use the following terminology. The support of a
vector x (written as supp(x)) is the set of coordinates where
x has nonzero values. By weight of a vector we mean the size
of support of the vector. It is denoted as wt(·). The logarithms
of this paper have base 2 unless otherwise mentioned.

Definition 1: A code C ∈ Fn
2 is a collection of binary n-

vectors with a one-to-one encoding map φ : Fk
2 → C, k < n.

The update-efficiency of a code (C,φ) is the maximum number
of bits that needs to be changed in a codeword when 1 bit
in the message is changed. A code has update-efficiency t if
for all x ∈ Fk

2 , and for all e ∈ Fk
2 : wt(e) = 1, we have

φ(x+ e) = φ(x) + e′, for some e′ ∈ Fn
2 : wt(e′) ≤ t.

In our previous work [9], it was shown that the update-
efficiency has to scale logarithmically with the block-length
of the code if we are to to achieve any nontrivial rate with
vanishing probability of error over binary symmetric as well
as binary erasure channels. It was also shown that, there exists
capacity-achieving codes with this scaling.

An informal dual property of the update-efficiency in codes
is the local recoverability. Let us define this property for
binary codes. However, this definition, as well as all other
results of this paper can be easily generalized for non-binary
codes.
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Definition 2: A code C ⊂ Fn
2 has local recoverability r, if

for any x = (x1, . . . , xn) ∈ C and for any 1 ≤ i ≤ n, there
exists a function fi : Fr

2 → F2 and indices 1 ≤ i1, . . . , ir ≤
n, ij %= i, 1 ≤ j ≤ r, such that xi = fi(xi1 , . . . , xir ).

It is evident that any codeword symbol of C can be recovered
from at most r other symbols of the codewords. This property
is desirable in distributed storage systems and was introduced
in that context in [7].

In [7], as well as in [11], locally recoverable codes that also
correct a number of adversarial errors, were considered. A
trade-off between the local recoverability and error-correction
was presented. In particular it was shown that, for a q-ary
linear code, q > 2,

d ≤ n− k −
⌈k
r

⌉
+ 2 ,

where d is the minimum distance, k is the dimension, and r
is the local recoverability of the code. This can be generalized
to nonlinear codes with all possible alphabet sizes. Indeed, it
is shown in [3] that, for any q-ary code with size M , local
recoverability r and minimum distance d,

logM ≤ min
1≤t≤

⌈
n

r+1

⌉
[
tr + logAq(n− t(r + 1), d)

]
, (1)

where Aq(n, d) is the maximum size of a q-ary code with
distance d.

However, so far we have not seen any work that considers
capacity results for locally recoverable codes. But analogous
results were presented for update-efficient codes in [2], [9]. In
this paper, we fill that gap. Although, our results are derived
for binary-input channels, as opposed to the large alphabet
channel models usually considered for distributed storage, our
proofs extend easily for large alphabet case.

The two main channels that we consider are the binary
symmetric channel with error probability p, BSC(p), and the
binary erasure channel with erasure probability p, BEC(p).
Capacity of BSC(p) is 1 − h(p), where h(p) = −p log p −
(1− p) log(1− p) is the binary entropy function and capacity
of BEC(p) is 1− p.

We show that it is possible to construct codes with rate
ε less than the capacity of BEC (or BSC) that has local
recoverability O(log 1

ε ) and simultaneously update-efficiency
scaling logarithmically with block-length. Our main result is
to show a converse result that the scaling O(log 1

ε ) for local
recoverability of an ε-away-from-capacity code is optimal.
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II. MAIN RESULTS

A. Existence of good codes
It is relatively easy to construct a good code with update

efficiency O(log n), local recoverability O(log 1
ε ), and rate

C − ε, where C the capacity of the BSC or BEC. This
construction is a little modification of the construction for
update-efficient codes that appears in [9].

A low density parity check (LDPC) code is a linear code
such that each row of the parity check matrix has a small
(constant) number of nonzero values. It is known that LDPC
codes achieve a positive error-exponent. That is for every ε > 0
and any sufficiently large n, there exist an LDPC code of
length n and rate 1− h(p)− ε that has check degree (number
of 1s in a row of the parity-check matrix) at most O(log 1

ε ),
and probability of incorrect decoding at most 2−EL(p,ε)n, for
some EL(p, ε) > 0. We refer the reader to [6], [8] for more
details of this result. Suppose we call this code Ĉ. Let Ĝ be
the generator matrix of Ĉ.

Let m = 1+α
EL(p,ε) log n, an integer, ε,α > 0. We avoid using

ceiling and floor to have a clean presentation, unless it is not
obvious from the context. Let G be the nR × n matrix that
is the Kronecker product of Ĝ and the n/m × n/m identity
matrix In/m, i.e.,

G = In/m ⊗ Ĝ.

Clearly a codeword of the code C with the generator matrix G
is given by n/m codewords of the code Ĉ concatenated side-
by-side. The probability of error of C is therefore, by union
bound, at most

n

m
2−EL(p,ε)m =

nEL(p, ε)

(1 + α)n1+α log n
=

EL(p, ε)

(1 + α)nα log n
.

However, notice that the generator matrix has row weight
bounded above by m = 1+α

EL(p,ε) log n. Hence we have con-
structed a code with update efficiency 1+α

E(p,ε) log n, and rate
1−h(p)−ε that achieves a probability of error < E(p,ε)

(1+α)nα logn
on a BSC(p).

Moreover the parity-check matrix of the resulting code will
be block-diagonal with each block being the parity-check
matrix of the code Ĉ. The parity-check matrix of the overall
code has row-weight O(log 1

ε ). Hence, any codeword symbol
can be recovered from at most O(log 1

ε ) other symbols by
solving one linear equation. Therefore we have the following
result.

Theorem 1: There exists a family of linear code Cn of
length n and rate 1−h(p)− ε, that have a probability of error
over BSC(p) going to 0 as n→∞, and has update-efficiency
O(log n/EL(p, ε)) and local recoverability O(log 1

ε ).
Hence it is possible to simultaneously achieve local recov-

ery and update-efficiency with a capacity-achieving code on
BSC(p). Similar result follows for BEC(p).

B. Impossibility result for local recovery
In this section we concentrate on the converse results

regarding local recovery properties of a code. Here, it can
be noted that there are several possible definitions of local
recovery. The simplest is perhaps the one in Defn. 2, to insist

that for each codeword symbol, there is a set of at most r
codeword positions that need to be queried to recover the
given symbol with certainty. A weaker definition could allow
adaptive queries, i.e., the choice of which r positions to query
could depend on the values of previously queried symbols.
Finally, one could ask that instead of obtaining the value of
the codeword symbol with certainty, one obtains the value with
some probability significantly higher than .5. For simplicity,
we sketch the arguments here for the simplest definition,
i.e., Defn. 2. The argument can easily be extended to the
other definitions, except for some cases that will be explicitly
mentioned later.

For the converse results, we prove our theorem for the
binary erasure channel. We show that any code with a given
local recoverability has to have rate bounded away from
capacity to provide arbitrarily small probability of error, when
used over the binary erasure channel.

In particular, we show below that, for any code, including
non-linear codes, local recoverability at a gap of ε to capacity
on the BEC must be at least Ω(log 1

ε ), proving that the LDPC
construction of the above section is simultaneously optimal
to within constant factors for both update efficiency and local
recovery.

The converse is based on an entropy argument. The idea is
to show that if a code has local recovery complexity c log 1

ε for
a suitable constant c, then, with overwhelming probability, the
entropy of the output after a codeword is transmitted over a
binary erasure channel with erasure probability p is less than
n(1 − p − ε). Thus, the rate of the code must be less than
(1 − p − ε), or the error probability will be non-vanishing,
e.g., by Fano’s inequality.

Theorem 2: For any code C of length n and rate 1− p− ε
that achieves probability of error less than δ for any δ > 0
when used on a BEC(p), its local recoverability is at least
c log 1

ε , for some constant c > 0.
Proof: Let C be a code of length n and size 2nR that

has local recoverability r. Let T be the set of coordinates
such that the number of query positions required to recover
these coordinates appear before them. To show that such
an ordering exists with |T | ≥ n

r+1 we can randomly and
uniformly permute the coordinates of C; see that the expected
number of such coordinates is n

r+1 . Let us, without loss of
generality, assume that C has such property, i.e., |T | ≥ n

r+1 .
Assume I ⊆ {1, . . . , n} be the set of coordinates erased by

the BEC and Ī = {1, . . . , n}\I. Let x ∈ C be a randomly and
uniformly chosen codeword. xI and xĪ denote the projection
of x on the respective coordinates. H(xĪ) is the entropy of the
un-erased coordinates and is a random-variable (with respect
to the random choice of I by the BEC).

Suppose, the number of elements of T that has all their r
recovery positions un-erased is u. Then, these elements do not
contribute anything toward the entropy of xĪ . Hence,

H(xĪ) ≤ |Ī|− u.

But, Eu ≥ (1− p)r|T |. Therefore,

EH(xĪ) ≤ n(1− p)− (1− p)r
n

r + 1
.
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Now, because the entropy is a 1-Lipschitz functional of
the independent random variables (erasures introduced by the
channel), we can use Azuma’s inequality [1] to see,

Pr
(
H(xĪ) > n(1− p)− (1− p)r

n

r + 1
+ αn

)
≤ e−

α2n
2 .

If we set r =
log 1

(r+1)(ε+α)

log 1
1−p

, then

Pr
(
H(xĪ) > n(1− p− ε)

)
≤ e−

α2n
2 .

This indeed means that for a suitable constant c, if r ≤ c log 1
ε ,

then with very high probability H(xĪ) ≤ n(1− p− ε).
But, as H(xĪ | x) = 0, we have, H(x | xĪ) =

H(x)−H(xĪ) = nR−H(xĪ). Using Fano’s inequality [5],
the probability of error is bounded away from zero as long as
R ≥ 1− p− ε. This proves the claim.

Remark: This proof can be extended to the case when
local recovery has to be guaranteed with certain probability,
as opposed to being deterministic. However Fano’s inequality
shows the probability of error to be bounded away from 0, not
to be close to 1. Note that, for the case of exact (deterministic)
recovery, the above argument can be extended to show that the
probability of error is not only bounded away from 0, but goes
indeed to 1 (that is, an strengthening of the Fano’s inequality
argument is possible).

III. RATE-DISTORTION

The dual problem of what were considering so far in this
paper is the lossy source coding with update-efficiency and
local recovery. Update-efficient codes with only lossless source
compression has been considered before in the paper [10].

The rate-distortion function R(D) of a source code ex-
presses the optimal (smallest) rate achievable given a normal-
ized distortion D. The formal descriptions can be found in any
standard textbook of information theory (eg., [5]).

The main question, in the spirit of this paper, to be asked is,
if we allow a rate slightly above the rate-distortion function,
i.e., R(D)+ε, then what is the local recoverability and update-
efficiency (as defined in Defn.1 and 2) in terms of ε (possibly
the length n as well) required to achieve the normalized
distortion D.

It can be shown that local recoverability also grows as
Ω(log( 1ε )) in this case. This is a corollary of results for LDGM
codes (Theorem 5.4.1 from [4]), and the proof already applies
to non-linear codes. LDGM codes also show that O(log( 1ε ))
recovery complexity is achievable.

Update efficiency for rate-distortion coding remains an open
question. Update efficiency of O( 1ε log(

1
ε )) can be achieved

via random codes, but it is unclear that this is optimal. In
particular, it is unclear that the update efficiency has to scale
with ε at all.

Remark: For general rate-distortion problems, random cod-
ing would only achieve update efficiency O( 1

ε2 ), but for the
special case of a uniform source under Hamming distortion,
the improved bound above can be achieved.
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