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Abstract—The high cost of high-resolution phase shifters re-
quired to maintain precise control over the array beam pattern
in traditional phased arrays preclude their use in a variety of
emerging millimeter-wave applications. We develop a phased
array architecture that obviates the need for such precise phase
shifters, based on the use of sub-half-wavelength array element
spacing and novel spatial domain delta-sigma processing. We
characterize the performance of this architecture in terms of the
array signal-to-quantization-noise ratio (SQNR) and the array
power transfer efficiency, and demonstrate a tradeoff between
these two metrics. As an illustrative design, we show that when
constrained to two-bit phase shifters, a four-fold increase in the
array density can provide a roughly 6 dB improvement in SQNR
over standard design techniques, with an average efficiency loss
of less than 1.5 dB with respect to a perfectly tuned ideal array. In
our analysis, we account for the effects of mutual coupling, and
describe a simple, practical impedance matching network for this
architecture. The resulting framework allows a system designer
with a given set of circuit, device, and antenna fabrication and
integration technologies to choose from a spectrum of tradeoffs
between array density and RF component complexity.

Index Terms—Array processing, beam steering, beamforming,
millimeter-wave antenna arrays, mutual coupling, phased arrays,
sigma-delta modulation.

I. INTRODUCTION

HILE phased arrays are natural candidates for a wide

variety of modern imaging, communication, and detec-
tion and tracking systems, their cost, size, and complexity has
traditionally limited the scope of possible applications. How-
ever, advances in millimeter-wave technology in recent years
hold the promise of enabling the use of phased array antennas
in a host of small platform devices and portable electronics for
both high-end and consumer applications. As such, there has
been a resurgence of interest in practical phased array designs
for such applications.
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There continues to be progress in the development of cost-ef-
fective millimeter-wave phased arrays aimed at such applica-
tions; see, e.g., [1]-[6] and the references therein. Within the
broader realm of ongoing research, some efforts are focused
primarily on exploiting increasing levels of silicon integration,
while other efforts primarily seek to exploit the increasing avail-
ability of inexpensive digital circuitry and processing. More-
over, some of the most promising efforts leverage both jointly.

In spite of recent progress, the components required for ac-
curate phase control at each element in such arrays continue
to be expensive, precluding the use of phased arrays in many
otherwise compelling applications. Simply replacing high-end,
high-resolution components with low-cost, coarsely discretized
phase shifters in traditional designs sharply degrades perfor-
mance, strongly limiting the quality of the beams that can be
formed by the array. As a result, addressing the need for ade-
quate phase control in beamforming remains a key challenge
in the pursuit of widespread deployment of millimeter-wave
phased arrays.

There has been a variety of research exploring this issue. For
example, some research has focused on characterizing the capa-
bilities of phased array systems utilizing low resolution phase
shifters to meet the needs of current and proposed millimeter-
wave applications [7], [8]. At the same time, other research has
focused on developing novel approaches for sharing a smaller
number of phase shifters (and other components) among an-
tenna elements [9].

In this paper, we explore a rather different approach. Specifi-
cally, instead of pursuing designs with a smaller number of accu-
rate phase shifters, we develop a high-performance architecture
based on efficient utilization of a larger number of coarse phase
shifters. To accomplish this, we repurpose the established theory
of delta-sigma (AX) analog-to-digital converters (ADCs) [10],
applying it in the spatial domain to determine an appropriate
phase for each of the densely packed elements to create a de-
sired array pattern. In temporal domain AX: as used in ADCs,
coarsely discretized faster-than-Nyquist sampling, or oversam-
pling, is used to force the quantization error to appear at higher
frequencies than the original signal. This, in turn, allows the
original signal to be retrieved by low-pass filtering, removing
the undesired error. Exploiting a direct correspondence between
temporal domain and spatial domain sampling, we observe that
faster-than-Nyquist sampling in ADCs is the equivalent of sub-
half-wavelength element spacing in uniform arrays. Moreover,
the shaping of quantization noise into the high frequencies in
ADC:s is equivalent to the steering of beam pattern quantization
error into the so-called invisible region of space, while leaving
the intended pattern throughout the (visible) area of interest.

From a broader perspective, our architecture can be viewed
as exploring potential attractive technology tradeoffs enabled by
inexpensive digital processing. In particular, the architecture al-
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lows for making tradeoffs between complex phase shifter design
and denser antenna implementations. And with ongoing evo-
lutions in antenna fabrication and integration technology, such
tradeoffs may turn out to be quite favorable. For example, using
modern lithography there is the potential to etch cost-effective
dense arrays of patch antennas, which with increasing levels
of density effectively become simple printed dipoles. From this
perspective, the AY architecture represents a generalization of
the traditional phased-array architecture that allows a designer,
with specific implementation technology at his/her disposal, to
choose from a spectrum of tradeoffs between array density on
one hand, and RF circuit complexity on the other.

In the remainder of this section, we summarize some related
work to provide context for the contributions of the present
paper. To begin, we note that the AY. data encoding process con-
tinues to be adapted for use in a growing number of fields and
applications that exploit oversampling in the temporal domain
in order to mitigate noise while using relatively simple sensors
for measurement; see, e.g., [11]-[13]. Additionally, A tech-
niques have been applied to phased arrays and imaging arrays
in a number of instances; see, e.g., [14]-[17]. However, these
techniques have focused on the use of A3 techniques in the
more traditional temporal domain for such arrays, in contrast
with our focus on exploiting spatial oversampling.

Spatial domain versions of A3 have received attention in
applications other than antenna array design; examples include
image processing, wave computing, and pattern recognition
[18], [19]. For instance, in the context of image processing,
an approach known as error diffusion uses AXY. quantization to
reproduce images from low-resolution but oversampled data.
However, these methods are in the same spirit as the traditional
application of A3 principles in the temporal domain. In par-
ticular, they apply it to the data itself, whereas in our approach
it is applied to the actual sensors/transducers, i.e., the antenna
elements. Finally, in [20], a spatio-temporal AY. quantization
scheme is developed for transmit antenna arrays. While there
are some superficial similarities to the methods we describe
in the present paper, the goals are quite different, and how the
A2 methodology is exploited diverges sharply. In particular,
whereas the architecture in [20] aims to reduce the temporal
oversampling requirements of the time domain waveforms,
ours seeks to produce specified antenna beam patterns with
simpler structure and hardware.

Finally, the present paper builds on [21], in which we in-
troduced the concept of applying spatial A> quantization to
densely packed array elements, and [22], in which we intro-
duced mutual coupling and impedance matching issues into the
analysis. From the more comprehensive analysis of the present
paper, we find, among other results, that there is a key tradeoff
between pattern error and power efficiency, which can be ex-
ploited by system designers.

The remainder of the paper is organized as follows. Section II
provides the required notation, terminology, concepts and back-
ground required in for our development of the dense AY. array
architecture. Section III develops our main results, describing
the architecture, and characterizing its beamforming capabili-
ties and power efficiency, taking into account mutual coupling
effects and exploiting a particular efficient form of impedance
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matching for the architecture. Finally, Section IV concludes
with a discussion of these results, their implications, and direc-
tions for future research.

II. ARRAY ANALYSIS FRAMEWORK

In this section, we summarize the basic antenna array con-
cepts, terminology, notation, and perspectives specifically re-
quired for our development.

A. Linear Array of Ideal Isotropic Elements

Consider NV ideal isotropic elements arranged with uniform
spacing d along the z axis. For time-harmonic sources with an-
gular frequency w and associated free space wavelength A\, when
the complex weights {w, }"_;' are applied to the array ele-
ments, the beam pattern in the direction given by k., = k cosd,
where k = 2m /X is the spatial angular frequency of the waves
and the angle # is measured from the +z axis, may be written

as [23]

N-1

E w,, el

n=0

fkz) = (1)

The region of k,-space corresponding to real values of 6,V =
{k. 1 |k.| < k} isreferred to as the visible region, or real space.
Outside of this region, # takes on purely imaginary values, and
as such, V* is referred to as imaginary space.

The main beam is scanned to k.; when a progressive phase
shift across the array Zw,, = —nk_.qd coherently combines sig-
nals along this direction. Since the beam pattern is 27 /d-pe-
riodic in k,-space, the main beam direction may be uniquely
specified for any k¢ in the alias-free region Vo = {k, : |k.| <
w/d}. Ifd > 7 /k, Vy is a subset of V, and it is possible to have
an alias of the main beam within real space, known as a grating
lobe.

The relative power density, or power pattern, of an array is
given by P(k.) = |f(k.)|?. For a transmitting array, this pat-
tern represents the relative radiation intensity in the direction % .
When a grating lobe is present in real space, a part of the power
intended for the main lobe direction is instead transmitted to the
grating lobe direction. For a receiving array, the power pattern
gives the relative power gain of a signal arriving from &,. With
grating lobes, signals from unintended directions are amplified
by the same level as the main lobe, leading to directional ambi-
guities and reduced signal-to-noise ratios.

On the other hand, when d < w/k, Vy extends beyond
the visible region. In this case, it is possible to scan the main
lobe entirely outside of real space. In the transmit case, this
has the physical interpretation that the array is attempting to
direct power into imaginary space, and as a consequence very
little power will actually propagate away from the array. The
receiving array has an analogous interpretation: it is attempting
to focus on signals coming from imaginary space, thus causing
any signal from real space to be combined incoherently.

With no apparent benefit gained from choosing a particu-
larly small element spacing, conventional array design gener-
ally dictates that the spacing be set at or just slightly less than
do = w/k = A/2. Based on this convention, a linear array with
aperture length . = Nd is referred to as a standard uniform
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linear array when the number of elements is N = Ny = L/dp.
When the same aperture is filled uniformly with more than Ny
elements, the resultant array is described as a dense array. As
will be shown, while there is no benefit to using such an array
with idealized components, a dense array has the potential to be
useful for practical phased array implementation.

For our development, it is important to emphasize the dis-
tinction between the impacts of varying the array aperture size
versus varying the number of array antennas, as these parame-
ters are independently chosen in our architecture. To first order,
the aperture size determines the fundamental pattern character-
istics such as beamwidth and directivity. In a traditional array
with element spacings near a half-wavelength, changing the
aperture size is equivalent to changing the number of antennas.
However, with the AY. array architecture we focus on a fixed,
but arbitrary array aperture within which the number of an-
tennas is increased by reducing the element spacing throughout
the aperture, resulting in a greater element density.

B. Mutual Coupling

Physically, the array weights in (1) represent voltage or cur-
rent excitations applied to the individual elements. For example,
in an array of thin-wire dipoles, these weights are the currents
across the terminals of the two dipole halves. Implicit in this ex-
pression for the beam pattern is the assumption of direct control
over these terminal currents. This is known as the forced exci-
tation model.

A more accurate representation of a practical array system is
the free excitation model, characterized by the equivalent cir-
cuit shown in Fig. 1. In this model, the weights {w,, } represent
the complex voltages generated by individual sources, each with
internal impedance Zj. The array is described as an /V-port net-
work with impedance matrix Z € CN*¥ such that v = Zi
[24], where v and 1 are length-V vectors containing the volt-
ages {v,} and currents {i, } at the terminals of the array ele-
ments. The terminal currents in Fig. 1 are related to the weights
w € C% according to
where I is the N x N identity matrix. Defining the coupling
matrix as C = (ZoI + Z) ™1, such that i = Cw, the effects of
the feed network and mutual coupling may be accounted for by
replacing the w,, in (1) with,, = Z‘N ! Chom W . The resultant

m=0
beam pattern with mutual coupling is then

N—-1N-1

fMC(kz) = Z Z Cnm“]mejnkld~

n=0 m=0

(€))

The model described above is commonly used in traditional
mutual coupling analysis—see, e.g., [25]. We may obtain a
useful form for the purpose of our analysis by exploiting certain
structure in the coupling. In particular, it is useful to express
(3) in terms of the embedded element patterns, which are the
patterns due to a unit excitation at a specified element while
in the presence of the remaining array elements. While these
will vary among the elements near the edges of the array, most
elements behave similarly to the elements of an infinite array.
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Fig. 1. Equivalent circuit diagram for the antenna array. The beamformer
output is described by a set of voltage sources {w,}, each with internal
impedance Z;. The mutual coupling among the array elements is modeled as a
N -port network with impedance matrix Z.

In the infinite array model, the physical coupling environment
is constant for all elements and as such, the coupling matrix
C has a Toeplitz structure, with identical entries along each
diagonal ¢, = Cj,4p . Thus, the complete coupling matrix
may be represented by the set {¢,}, which we refer to as the
infinite array coupling coefficients. Making the substitution
p = n —m in (3), the beam pattern for the infinite array is

fI\/IC(kZ) — Z Z Cp’wm,ﬁj(m’+1))kzd
m p

- Z wm()'jm.kZd Z cpejkad = f(kz) ff(kz) (4)

m p

In (4), we have rewritten the free excitation beam pattern (3) as
the product of the forced excitation beam patterns due to {w,, }
and {¢,}, the latter which we refer to as the coupling pattern of
the array f.(k.). From (4), we can see that the coupling pattern
is the beam pattern of the array when a unit excitation is applied
to the element located at the origin. Note that this is precisely the
embedded pattern shared by all the array elements (up to a phase
term). This useful factorization of the beam pattern allows for a
convenient separation of the coupling effects from the simpler
forced excitation relation used when mutual coupling is ignored.

C. Power Efficiency

Under perfect conditions, an array will radiate all the avail-
able power delivered by the source. When the power radiated
by the array P,,q is less than the incident power sent from
the source Py, the array is said to have a loss in the power
efficiency
P, rad
P, e ’

n= &)
If the array is composed of lossless materials, efficiency loss is
due to impedance mismatches between the source and the array
elements. Since the impedance of each element is the ratio of
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the voltage to the current across the element terminals, mutual
coupling causes these mismatches to vary with each particular
array excitation.

For a particular choice of source excitations w, the power
radiated by element n is Re{é’ v, }. The total power radiated is
then

N-1
Paa = Y Re{ifv,} = Refilv} =i’ Re{Z}i
n=0

=wi(Z1+2) "TRAZ} %I+ 2) 'w.  (6)

The power efficiency will be maximized when the array is per-
fectly impedance matched such that v .= Zi = Zji. Hence,
the total available incident power can be deduced from (6) by
noting that P, = Praq When Z = Zy1, with the result

P = wiw. (7)

42y

Combining (6) and (7) with (5), we obtain, with some rear-
ranging of terms, the following expression for the array effi-
ciency in terms of the array excitations:

wil-Sisjw

whw

ISw|’

- 2
(Wl

n=

®)

where S = (ZpI — Z) (ZoI + Z) ! is the standard scattering
matrix of the array [24].

III. DENSE AY. ARRAYS

In this section, we develop and analyze our dense array
architecture.

A. Phase Quantization

In practice, the phases of the complex array weights are re-
stricted to some finite set of quantized values defined by the
resolution of the phase shifters used in the network connecting
the array to the source. Phase shifters with M -bits of resolu-
tion can provide any of 2% values uniformly distributed over
the range [0, 2r). For a desired excitation w,, = a,e’®", the
realized excitation is @,, = Qu,] = a, el where the quan-
tization operator () selects 1, such that the phase is the avail-
able value closest to ¢,,. As a result, there is a quantization error
¢ = Wy, — wy,, and instead of the intended beam pattern, the
array has the quantized beam pattern

N-1 N-1

N-1
P\ E ~ ink.d _ E , gnk.d E ink.,d
f(kz) - /wn,e] - wn,C] + dn e’ .

n=0 n=0 n=0
)

The first term in (9) is the desired pattern f(%.) and the second
term is the pattern distortion or quantization error pattern

N-1
]Lq(kz) = f(kz) - f(kz) = Z qnc]nk:__,d.
n=0
Traditionally, the only recourse available for reducing the pat-
tern distortion has been to decrease the level of quantization
error through the use of phase shifters with higher resolution.
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power pattern

-0.5

k_/k = cos 6
z

Fig. 2. Power pattern for a two-element array with excitation weights wqo = 1
and w; = —1.

1) A Phase Quantization: In the A3l array presented in
this work, the quantized phases of the array weights are deter-
mined in a different manner than in traditional arrays such that
closer than typical element spacings (d < dg) result in a de-
crease in quantization pattern distortions, even with very low
resolution phase shifters. To accomplish this, the quantization
error introduced at element 7 — 1 is appropriately compensated
by subtracting this same value from the quantizer input for el-
ement 7. Thus, the A quantized weight at element n can be
written in terms of the desired weight

IUA]H = Q[/wn - qnfl] = Wy — gn-—1 + n- (10)

By choosing the phases according to (10), every error resulting
from quantization is opposed at the next element (with the ex-
ception of the final element). As the array density increases and
the elements become more closely spaced, these opposing er-
rors cancel with increasing effectiveness throughout the visible
region. This cancellation technique has the additional benefit of
accounting for amplitude errors, hence the amplitude of every
element weight can be fixed at a constant uniform value. Thus,
beyond reducing the need for precise phase control, the require-
ment for precise amplitude control in traditional arrays is com-
pletely removed. As such, it is important to note that for the
AY case, the operator () differs from the previous case of di-
rect phase quantization in that Q[a,,e’*"] = ae’®r, where d is
a constant for all elements.

To understand how the close element spacing reduces pat-
tern distortion, it is useful to consider a simple two-element
array with opposing excitation weights wg = 1 and w; = —1.
From (1), the beam pattern is f(k.) = (1 — e?*:9). The power
pattern P(k.) = 4sin? (k,d/2) vanishes at k., = 0 and in-
creases monotonically to peak values at &, = 7 /d. For stan-
dard spacing d = dy = A\/2, this places the peaks at the edges
of the visible region V. In Fig. 2, the power pattern is shown in
the visible region for d = dg, dy/2, and do/4. As the spacing
is decreased, the peaks are steered outside of V', while at the
same time flattening the pattern inside. In the limit as d — 0,
the array becomes increasingly similar to a single antenna with
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a weighting of zero and P(k,) becomes vanishingly small. In
the A3l array, the original array weights in (10) behave as in-
tended, but the quantization errors combined with the purposely
subtracted terms at the neighboring elements behave like this
two-element array, and their contributions to the array pattern
throughout real space diminishes as the spacing between ele-
ments is decreased.

As in the traditional quantization approach, the distortion in

the beam pattern of the AY array is f,(k.) = f(k.) — f(k).
In this case, it is given by
N-1 _
fq(kz) = Z ((In - (Infl)e/]nkzd
n=0

which can be manipulated to highlight the similarity to the two-
element array

N-1 N-2
— § qnejnk:zd - § qnlej(n/_;’_l)kzd
n=0 n'=—1

N-—2

= (1= 3 gty TR (1)
n=0

The first term in (11) shows how the Al array “shapes” the
pattern distortions in the same way as described for the two-
element array. The second term is the result of having no way
to oppose the quantization error at the last element.

The AX noise shaping effect can be seen in the example pat-
terns shown in Fig. 3. In these plots, the desired and A3 quan-
tized patterns are shown for a scan direction k.o = k/22, with
each plot representing a different element density, characterized
by the array density ratio

dy N

R= d Ny

equivalent to the oversampling ratio used in the traditional AY
literature, which represents the increased temporal sampling
rate above the standard Nyquist convention [10]. In each case,
the ideal weights are specified as w,, = ae k=04 \where a
is uniform for all elements and normalized to fix the pattern
peak to unit magnitude (0 dB). The quantized weights w,, are
determined according to (10) with the quantized phases limited
to those of a two-bit phase shifter, thereby restricting the array
element excitations to only four possible phase values. The
magnitude of the quantized weights are fixed for each density
ratio at @ = 1.26a. The choice of the relative magnitudes of
a and a is equivalent to the feedback level in single-loop AX
ADCs [10], [26]. The significance of this parameter on the
overall AY array performance will be discussed in greater de-
tail in Section III-C. These results are consistent with the notion
that the two-element patterns in Fig. 2 act as a noise shaping
envelope to individual quantization errors. When I = 1, the
most troublesome pattern distortions are not effectively shaped
outside of the visible region. With & = 2, we can see that
doubling the number of elements results in a very noticeable
flattening of the quantization noise, as a great deal of the noise
has now been pushed into imaginary space. With @ = 4, the
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Fig. 3. Power patterns for ideal and AX arrays of length L = 20A scanned to
k.o = 0.045 k for density factors (a) R =1 (b) R = 2 and (c) R = 4.

distortion within the visible region is pushed well below the
level of the peak sidelobes.

2) AXY Array Performance: The signal-to-quantiza-
tion-noise ratio (SQNR) is a commonly used quality measure
that compares the power pattern in the desired scan direction
to the average noise power distributed throughout the visible
region due to the quantization errors in the array weights

§1 na P(k:O)
SQNR = —ieral (12)
Pnolse E [Pq(kz)]
where P,(k.) = |f,(k.)|?. Here, the expected value refers to

the expected average noise power throughout the visible region,
with the expectation taken over some specified distribution of
array excitations. For example, if the array is to scan uniformly
throughout the visible region, FPpis. is the mean value of the
average noise for all possible scan directions. From this defini-
tion, Ppoise 1S equivalent to the mean squared error between the
quantized and original patterns

Pnoise =MSE=F |:‘fA(k:) - f(kz)

2
] . (13)

Further, by scaling the array weights such that Py;zp,41 1S normal-

ized to unity, the mean squared error represents the inverse of
the SQNR.
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We now quantify the relationship between the MSE of the
AY array of length . = Ngdy and the density ratio K. An
exact determination of this dependence requires knowledge of
the various quantization errors at every element for each desired
set of array weights. However, it is possible to predict this rela-
tionship analytically by modeling the quantization errors as in-
dependent and identically distributed (i.i.d.) random variables.

Specifically,
2

Elqnqn] = Ja g (14)
mUn N2 mn

where 03 /N2 is the average noise at the individual elements
(fixing Fsigna1), and where

b 2 { ]
e 0 otherwise.

m=mn

Using this model, the expected noise power in a given direc-
tion %, can be found from (11)

) 5 N-2 0_2 0_2
E[Py(k)lk.] = |1 - ™" 3 b+ <4
n=0 (TQ
= (2(1 — cosk,d)(N — 1) + 1) N—qz (15)

The predicted MSE is found by calculating the average of (15)
over the visible region

k
MSE = — [ E[P,(k.)|k.] dk.
2k ) 4
ko2
1 1. . g
=3 [2 <kz — 5sin AZ(]> (N-1)+ kz:| 7k N_«12

sin kd o2
:(2(1— kd)(N—l)—l—l)N—qQ. (16)

In the limiting case, as d < 7/k, we use the small angle ap-
proximation sin z ~ = — x/6 to obtain

(17)

2 72 AT _
MSE:(kdOJ\ 11 11)2

3N, N R® NZRe)O0

In this form, we see that the contribution to the MSE from the
first N — 1 quantization errors and their counterparts should
decrease with 123, The contribution from the final element de-
creases with 22 due to the reduced portion of the total power
provided to that element as the array density grows. In principle,
as I? grows very large, the effect of the A cancellations will
continue to eliminate the noise due to the rest of the array to the
point that the noise caused by this single element becomes the
dominant source of quantization noise. However, in nearly all
practical settings this edge contribution will be negligible. As
an example, for an array of length . = 2\ (Ny = 4), a density
ratio of R = 12.9 is required for the two terms in (17) to be
comparable in magnitude.

Exact values of the MSE were determined numerically over
a range of density ratios for the case of a linear array of ideal
isotropic elements of length L. = 20\, designed to scan uni-
formly throughout real space with uniform amplitude weighting
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Fig. 4.
20A.

AY SQNR results for uniform amplitude scanning array of length L =

TABLE I
SQNR RESULTS FOR UNIFORM AMPLITUDE SCANNING ARRAYS OF LENGTH
L = 20X USING DIRECT PHASE QUANTIZATION WITH M BITS OF PHASE
RESOLUTION WITH EQUIVALENT A DENSITY RATIOS Requiv

M | SQNR (dB) | Requiv

2 23.1 1.9
3 28.8 3.6
4 35.2 7.6

for all elements. At each value of I, the MSE was calculated di-
rectly from (13) by averaging the noise power over the visible
region for each scan angle, then evaluating the mean value over
all scan angles. In addition, the predicted MSE in (17) was cal-
culated from the resultant sample values of 03 for each R. With
the array weights properly normalized, the MSE results were in-
verted, yielding the simulated and predicted SQNR at each R,
as depicted in Fig. 4, which shows close agreement between the
two curves.

Similar MSE calculations were performed for a standard
linear array of the same length assuming phase shifters with
M = 2, 3, and 4 bits of resolution. The results are summarized
in Table I, along with the corresponding density ratios Fequiv
required to obtain the same SQNR values with the two-bit AX
array. These results match quite closely to the relationship

Requiv = 0.47-2M (18)
which provides a sense of how the appropriate A> density ratio
should be selected to match the performance associated with
specified number of phase shifter bits in a conventional array.

B. Mutual Coupling Effects

In the design of a dense array, the close proximity of the el-
ements makes it particularly important to understand and ac-
count for the effects of mutual coupling. The results presented
in Section III-A were determined based on the forced excitation
model. We now will consider the more realistic free excitation
model and determine whether the AY. array continues to per-
form as desired. Following the analysis approach described in
Section II-B, we first consider the infinite array case and treat
the edge effects due to finite array lengths separately.

Recall from (4) that under the free excitation model, the beam
pattern of the infinite array can be decoupled into the product of
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the corresponding forced excitation pattern f(k.) and the cou-
pling pattern f.(k.), which is an inherent property of the array,
independent of the particular excitations. Consequently, the A3’
beam pattern in any direction fMC(k,) may be thought of as
the A beam pattern analyzed in Section III-A multiplied by
a proportionality constant given by the coupling pattern. From
this viewpoint, the interactions among the array elements — re-
gardless of spacing — should have a problematic effect only if
fe(k.) generally tends to be of greater magnitude in the regions
of real space for which the AY pattern distortions are the most
extreme, that is, towards larger values of |k |. Further, the like-
lihood of this being the case may be addressed intuitively by
considering the forced excitation idealization as a special case of
the free excitation model with coupling coefficients ¢, = 6,9,
corresponding to f.(k.) = 1. More generally, we expect ¢,
to decay smoothly with |p|. Based on a standard result from
Fourier analysis, this more gradual decay of the coupling coeffi-
cients implies that f.(k,) should decrease away from the origin,
unlike the “flat” coupling pattern associated with forced excita-
tion model. This observation suggests that mutual coupling has
the effect of actually suppressing the most troublesome pattern
distortions located near the extents of the visible region.

To simulate the effects of mutual coupling, the model given
by Wasylkiwskyj et al. [27] for the mutual impedance of two
thin-wire dipole antennas was used. In this model, the system
impedance is normalized such that 7, = 1 and the impedance
matrix entries are given by

m=n

m: 7_& n, (19)

1
Fimn = { H? (kdjn — ml)

where H, 0(2) (+) is the zeroth-order Hankel function of the second
kind. While the analysis in [27] is specific to the case of two iso-
lated thin-wire dipoles, the results apply rather directly to our
array setup. Indeed, the presence in the array environment of
the additional open-circuited dipoles in the determination of the
impedance matrix elements has negligible effect as the two sep-
arated dipole halves are far from resonant and appear relatively
transparent to the electromagnetic fields.

Using (19), the coupling matrix C was determined for the
array of length L. = 20\ with density ratio I = 4. For an array
of this size, the entries of the coupling matrix corresponding to
an element near the center of the array are nearly identical to
the non-trivial coupling coefficients {¢, } of an infinite array ele-
ment. The magnitudes of these values |c,| are shown in Fig. 5(a)
versus the element separation index p. The associated coupling
pattern f.(k.) is shown in Fig. 5(b), in which we see the ex-
pected decrease away from the origin, with particularly sharp
drop-offs beyond |k /k| = 0.9.

To illustrate the overall effect of mutual coupling, the pat-
tern calculations performed to create Fig. 3 were repeated based
on the free excitation model using (3) with coupling matrix en-
tries determined by (19). The quantization error patterns for both
the forced and free excitation models, f, (k) and f'°(k.), are
shown in Fig. 6 for @ = 1, 2, and 4. In each of the three cases,
the distortion near the edges of the visible region, where AY
noise shaping alone is least effective, is decreased when the cal-
culation accounts for mutual coupling, as implied by Fig. 5(b).
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Fig. 5. (a) Magnitude of the coupling coefficients {¢,} for a central element
in an array of length L = 20X, with I2 = 4. (b) Beam pattern response f.(k.)
for an array excited by the coupling coefficients.

While the infinite array analysis explains the effect of mutual
coupling near the edges of visible space, the slight increase in
the pattern distortion near the origin seen in the case of B = 4,
for example, is not accounted for by this approach, as the infi-
nite array analysis predicts no modification along this direction.
From this observation, we may surmise that edge effects have
slightly greater significance due to mutual coupling. This result
is unsurprising since in the case of the finite array, the embedded
element patterns in actuality exhibit more variations for the ele-
ments near the array edges. As a result, the opposing AY. quanti-
zation errors do not cancel quite as effectively as elements with
identical embedded patterns. However, these effects appear to
be relatively benign, appearing only when the pattern distortion
is decreased to about 30 dB below the main lobe level.

When the SQNR calculations used to generate Fig. 4 are re-
peated for the free excitation model, the results are as shown
in Fig. 7. The simulated results for the forced excitation model
are also shown to illustrate that the effects of coupling add only
a small amount of additional error, consistent with the above
discussion.

C. AY Power Efficiency

The power efficiency of the AY array is affected by both the
increased array density and the unique nature of the A excita-
tions. We begin with a description of a simple yet effective ap-
proach for maintaining acceptable array efficiencies for general
dense scanning arrays, and then apply this concept specifically
to the AY: array.

1) Impedance Matching for Dense Arrays: Impedance mis-
match losses can be reduced by placing a matching network
between the source and the array. For a single antenna, a per-
fect match may be obtained by using a series reactance and
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Fig. 6. Quantization error (power) patterns for the AX array of length L =
20\ using both the forced and free excitation models with density ratios (a) R =
1 ()R =2and(c) R = 4.
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Fig. 7. Comparison of SQNR versus density ratio R for AX arrays based on
the forced and free excitation models. L = 20A.

a quarter-wavelength of transmission line to match the imagi-
nary and real parts of the antenna impedance, respectively, to
the source impedance. With a phased array, the presence of mu-
tual coupling makes matching much more complicated, necessi-
tating the use of complex matching networks to avoid efficiency
losses. Examples include the use of dynamically varying com-
ponents that modify the network characteristics for every set of
array excitations or a web of interconnections between the array
elements. A far more practical alternative is based on the notion
of scan impedance, defined as the effective impedance (some-
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times referred to as the active impedance) of each element when
scanned to a particular direction k.o [28]

Un, (}‘720)
in (k;’O) ’
For the particular set of excitations corresponding to scan angle
kz(), it follows that V(k’z[)) = Zi(kz()) = Zscan(kz())i(kz()),
where Z**"(k.o) is a diagonal matrix with entries given by
(20). Because of this, the scattering matrix at this scan angle can
also be replaced by substituting Z with Z%°*"(k.) such that

Zy M ko) = (20)

SSCaIl(k:zO) — (ZOI _ ZSCaIl(lﬂzo)) (ZOI + ZSCaIl(k:ZO))71 .
ey
Since for each scan angle the matrix in (21) is diagonal, it may
be decoupled into N scalar equations of the form

Zo — 757 (ko)

Fscan kz — =0
n ( 0) ZO+Zchan(]§ZO)

(22)
with the scan reflection coefficient 135" (k,) for element n
(at scan angle k.¢) corresponding to the nth diagonal entry of
Ssen (ko). This term captures the effective ratio of the signal
returned back along the feed line to the original signal w,,. Be-
cause the scan reflection coefficient is a function of Z5%"(k,¢),
which includes the effects of coupling for all NV array elements,
this reflection is in reality a superposition of both the incident
signal at the element as well as the coupled signals from the
other N —1 elements. As such, (8) can be expressed as the array
scan efficiency

1S o) w0

nscan(kzo) =1

[[w (k=0)I?
N-1 ) 5
Z \Fffa“(kzo)wn(kw”
=1 — n=>0 — (23)
> |’I,Un(li‘,zo)|2
n=0

Using the scalar equivalent for the element impedance in (20),
it is possible to match each element such that Z5°"(k.q) = Zg
in the same way one would match a single antenna. However,
since this scan impedance is only valid at k., when the beam
is scanned to any other angle, the change in scan impedance re-
sults in a loss of efficiency. As element spacing decreases, it is
to be expected that mutual coupling effects become more preva-
lent, yet these effects are not necessarily disadvantageous to the
power efficiency. In fact, as the array scans from one direction
to another, the incremental phase change between neighboring
elements is inversely proportional to their spacing, and thus we
can expect the scan impedance to be /ess sensitive to changes
in the scan direction. This motivates the use of scan impedance
matching, in which the array is matched to the scan impedance
in one specified direction. This sub-optimal matching technique
is applied with the expectation that the scan impedance does not
vary greatly over the entire range of potential scan angles. Based
on the above observation, this implies that this very simple ap-
proach is particularly well suited for use with dense arrays.

To develop the idea, the scan impedance matching approach
was applied to an array of length I, = 20\ using the impedance
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Fig. 8. (a) Real part and (b) imaginary part of the average scan impedance of
elements in an array of length L = 20A, for density ratios R = 1 and R = 2.
Calculations include scan impedance matching network designed for perfect
matchto Zg = 1 atk,, = 0.

matrix values obtained from (19) for several density ratios. The
scan impedances of the unmatched array elements were calcu-
lated using (20) for the broadside scan direction of the array,
k.o = 0, and an individual matching network consisting of a se-
ries reactance and a quarter-wave transmission line was applied
at each element to match these impedances to the normalized
system impedance Zy = 1. The resulting average matched scan
impedances are shown in Fig. 8 for both a standard (I = 1)
and dense (R = 2) array. Atk.q = 0, both arrays have scan im-
pedances with real parts equal to the system impedance Z; and
zero imaginary parts, corresponding to a perfect match. How-
ever, away from broadside, the standard array scan impedance
exhibits a greater sensitivity to changes in scan angle than seen
for the dense array, as expected.

2) Efficiency Effects Due to AX Weights: In addition to the
effect of the increased element density on the power efficiency,
we must consider the effect of using the A3 weights instead of
the ideal array weights. In particular, we characterize the frac-
tional reduction of the AY array efficiency 77 from the efficiency
7n of the equivalent array excited by ideal (unquantized) weights

_ "
7

24

Consider an array with the matching network in place, some
set of ideal weights {w,,} with associated AY. weights {w,, },
and assume that the array is sufficiently dense such that the beam
patterns are nearly identical. Since the total power radiated is
proportional to the power pattern integrated over real space, it
follows that P,,q = F,.q. To obtain similar patterns, the ratio of
the magnitudes of the AY weights to those of the ideal weights,
~ = a/a, must be greater than unity in order to steer the pattern
distortions into imaginary space. Therefore, from (7) it follows
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Fig. 9. Power efficiency as a function of scan angle k.o, L = 20X\, R = 4,
with scan impedance matching network designed for perfect match atk.o, = 0.
Results for the A array obtained by setting @ = 1.26a such that the nominal
efficiency is within approximately 2 dB of the ideal result.

that P > Pie. Using the definition of the power efficiency in
(5), we can estimate the efficiency loss in the case of low pattern
noise as

)

Poss = = =77 > 1. (25)

a
Put simply, the AY excitations as expressed in (10) radiate the
same amount of power as in the case of the ideal excitations
due to the w,, terms, while the quantization terms ¢,, radiate
zero power once their beam pattern contributions are effectively
steered from real space. Hence, we can expect the efficiency of
the A3 array to be less than that of an identical array excited
with ideal weights. The exact amount depends on the choice of
v, which as we will discuss shortly, also plays a role in how
quickly the A3 pattern converges to the desired pattern.

For example, in the patterns and SQNR results presented thus
far, the AY. weights were determined by settingy = 1.26. When
the quantization noise is relatively small, such as in Fig. 3(¢c), the
power radiated using both the ideal and A3 weights is nearly
identical, while the total power incident on the array is a factor
of v? ~ 1.59 greater in the AX case.

Equation (25) implies we should expect to see a reduction in
the AX power efficiency of 2, corresponding to a 2 dB power
efficiency loss. Exact efficiency results calculated for R = 4
are shown as a function of scan angle for both the ideal and
the AY weights in Fig. 9. These results were calculated directly
from (8) with a scan impedance match network tuned to a per-
fect match for the ideal weights at k.o = 0. We first note from
the ideal excitation results that the scan impedance matching
works quite well for the dense array, with nearly negligible effi-
ciency losses for scan angles throughout the region | k.| < 0.5
(corresponding to £60° from the array broadside). Further, the
predicted power efficiency reduction of 2 dB shows a very good
agreement with the AY array results. The fluctuations seen in
the AY results are due to varying levels of pattern noise for dif-
ferent scan angles, which affect the assumption that the radiated
power is equal to that of the ideal weights. Similar calculations
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Fig. 10. SQNR dependence on density ratio F. for AX arrays using forced
excitations and free excitations with matching network designed for ideal match
at k.o = 0. Array length L = 20\,

for increased density ratios had less variations, since the quan-
tization noise was lower throughout the visible region.
Inclusion of a matching network has the additional effect of
altering the coupling matrix C relating the free excitations to the
currents across the terminals of the array elements as described
in Section II-B. As such, it is necessary to revisit the SQNR
performance of the AY array to reflect these changes. Analysis
of the combined network yields the matched coupling matrix

. _ ‘ 1
Car = —j (Ze + ZoZ; " (Z - jX,))

where Z, is a diagonal matrix containing the characteristic im-
pedances of the quarter-wave transmission lines used to match
the real part of the element impedances and X ; is a diagonal ma-
trix containing the reactances of the components used to match
the imaginary part of the element impedances. A derivation is
provided in the Appendix.

When the matched coupling matrix is used in place of the
original coupling matrix in the SQNR calculations, the results
are as shown in Fig. 10. Interestingly, the matching network ap-
pears to have the added benefit of improving the ability of the
AY array to produce desired beam patterns. Closer inspection of
the embedded element patterns with and without the matching
network verifies that the matched array embedded element pat-
terns show considerably less variation near the edge of the array
than in the unmatched case. This observation supports the earlier
conjecture that such variations were responsible for the slight
decrease in the SQNR for the unmatched free excitations seen
in Fig. 7.

Based on (25), it may be tempting to select an arbitrarily low
value for v in order to minimize efficiency losses. However,
since this estimate is obtained by assuming that P.yq = FPraq, it
is necessary to determine the array efficiencies directly from (8)
to obtain the exact dependence of p on the choice of . Exact
values of p were calculated for different density ratios 12 with
the value of y varying from 1 to v/2 (0 to 3 dB estimated power
efficiency loss). Fig. 11 shows the resulting nominal value of p,
averaged over uniformly distributed scan angles, over the range
of «v. These results demonstrate that as v approaches unity, the
exact efficiency loss values are quite different that the estimated
loss found using (25). This indicates not only that the efficiency
loss cannot be made arbitrarily small, but also that small values
of « result in greater pattern distortion, thereby affecting the
SQNR as well as p.
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Fig. 11. Nominal power efficiency loss versus the ratio of the AX and ideal
array weight magnitudes ¥ = @a/a. The dashed grey line shows the corre-
sponding estimated value of p given by (25).

The results in Fig. 11 also demonstrate that the relationship
between the AY. array efficiency and v depends on the partic-
ular value of R. Specifically, the value of -y at which each curve
intersects with the estimated result increases with R, implying
that it may be necessary to accept additional efficiency loss to
obtain the maximum achievable SQNR as the density ratio of
the A array is increased. This interpretation is verified by the
results shown in Fig. 12, in which the SQNR for the L = 20X
array is plotted against the efficiency loss p as -y is varied over
the same range as in Fig. 11 for a number of density ratios. The
horizontal dashed grey line shows the SQNR of a standard array
of the same length utilizing the same two-bit phase shifters used
in the AY array. As would be expected, this value represents
a lower bound on the AY results for low density ratios. The
asymptotic limit shared by all values of R as p decreases, shown
by the slanted light grey dashed line, represents the maximum
signal-to-quantization-noise level SQNR 7 that can be ob-
tained for a specified efficiency loss, regardless of how large the
density ratio is. Comparison of the results in Fig. 12 with those
generated for other array lengths show both dashed lines having
a vertical shift proportional to the fractional change in length.
This is to be expected, based simply on the linear change in the
number of elements in both cases. Since the vertical shift main-
tains the slope of the line representing the SQNR*™, found by
a linear fit to be ASQNR ¥ (dB)/Ap(dB) = 10.8, we may ex-
press the dependence of SQNR *** on both p and L (in linear
scale) as

SQNR™ = 2.3p""% L. (26)

Similarly, we define SQNRE™ as the maximum SQNR
achievable for a given density ratio. This can be expressed in a
similar fashion as in (26), i.c.,

SQNRE™ = ¢RL

for some ¢. However, the complex dependence on the array edge
effects, the specific value of v, and a constraint on the efficiency
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Fig. 12. SQNR versus power efficiency loss for the length L = 20X array.

loss to somewhat reasonable values given by p < 2 causes
the exponent ¢ to vary from about 2 at lengths of just a few
wavelengths to about 2.5 at L = 20J, increasing slowly for
greater lengths. A more appropriate indication of the behavior of
SQNRE** can be found by inverting the MSE relation given by
(17), in which the array length I. = Nydy and associated edge
effects are treated explicitly, while the effect of 7y is captured by
the average quantization excitation noise 03. From simulated
results, at lengths greater than L. = 4, the calculated value
of SQNRZ™™ is closely approximated using the result given by
(17) with 03 =0.9.

While the particular aspects of the intended application of
any system ultimately governs the relative value of such impor-
tant metrics as hardware costs, pattern precision, and power effi-
ciency, the results shown in Fig. 12 clearly suggest that each par-
ticular density ratio has some range of natural operating points,
outside of which the tradeoff required to improve one metric re-
quires an unreasonable sacrifice with regard to the other. As an
example, consider the curve corresponding to {2 = 4 at the point
where p = 1.4 dB. In the neighborhood surrounding this oper-
ating point, the choice of v may be adjusted to accommodate
an improvement in either the SQNR or the power efficiency at
a reasonable cost with regard to the other. However, such costs
increase rapidly as the curve approaches either of the maximum
SQNR asymptotes described above. As such, if it appears nec-
essary to operate near one of these boundaries, this simply sug-
gests that selecting an alternative density ratio is likely to be a
more efficient use of resources. Several candidate designs for
R = 2 to R = 6 are illustrated in Table II in which the partic-
ular choices of « correspond to operational points close to the
center of this natural tradeoff range for each density ratio.
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TABLE II
COMPARISON OF SEVERAL ARRAY CONFIGURATIONS FOR
AXY. ARRAYS OF LENGTH L = 20A

R| N | v | SQNR(dB) | p (dB)
2 | 80 | 107 23.6 0.9
3 | 120 | 1.09 26.8 1.2
4 | 160 | 1.15 28.9 1.4
5 1200 | 1.19 30.7 1.6
6 | 240 | 1.23 32.6 1.8

IV. DiISCUSSION AND CONCLUDING REMARKS

Our results demonstrate the ability of a dense AY array
to create a desired beam pattern using low-resolution two-bit
phase shifters. The dependence of the signal-to-quantiza-
tion-noise ratio on the density ratio agrees quite well with
predicted analytical results based on an i.i.d. model for the A
quantization errors. This is consistent with the analysis in [10]
for conventional A data conversion up to an edge effect due
to the finite extent of the array aperture.

Other considerations unique to this novel application of A
quantization covered in this work are the effects of mutual cou-
pling and power efficiency. The adverse consequences of mu-
tual coupling appear to be limited to mild amounts of additional
pattern distortion due to the variations in the embedded element
patterns near the edge of the array. When the array is connected
to a matching network for the purpose of improving the power
efficiency, this network modifies the overall coupling behavior
of the array in a way that results in less embedded element pat-
tern variation, providing the added benefit of decreasing the pat-
tern error caused by mutual coupling in the unmatched case.
Mutual coupling also provides the positive effect of adding a
second “shaping” of the quantization pattern noise that further
suppresses much of the troublesome pattern distortion near the
extents of the visible region.

We see that the power efficiency of the AX array is, in
general, less than an equivalent array excited with ideal un-
quantized weights, but that the degree to which the efficiency is
reduced can be specified in the selection of the array weights,
with a tradeoff between the SQNR and the resultant efficiency.
The results indicate that, with two-bit phase shifters, for a
modest density ratio of, say, It = 4, we can expect an improve-
ment in SQNR of approximately 6 dB relative to a conventional
array using the same low resolution components, while limiting
the efficiency losses to about 1.5 dB below the array utilizing
infinitely precise phase controls. With respect to power effi-
ciency, we also demonstrated that the particularly simple scan
impedance matching approach allowed us to accommodate the
high coupling levels inherent in a densely packed phased array.

It is also worth emphasizing a finer grain analysis of beam-
forming accuracy of the A array performance is typically de-
sired. In particular, while the calculation of the SQNR via our
definition of the MSE captures the gross characteristics of the
beam pattern, in practice a more detailed characterization of
the scanning accuracy, sidelobe behavior, and beamwidth are
often required. Indeed, even when the MSE adequately captures
scanning accuracy and beamwidth performance, the presence of
large sidelobes due specifically to quantization noise may not
be revealed by this measure if they occur in a limited number
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of scan directions. We note, however, that while not explicitly
developed in this paper, calculations of average and maximum
sidelobe levels over the same range of scan directions used to
calculate the SQNR results found worst-case sidelobe increases
over the ideal case of a small fraction of a dB.

More broadly, it is also worth emphasizing that, as discussed
at the outset of the paper, since the dense A>: architecture is a
generalization of the traditional architecture, it should be viewed
not as an alternative to the traditional architecture, but rather as
a framework for enabling tradeoffs between available circuit,
device, and antenna technologies. From this perspective, the re-
sults provide useful guidelines for systems designers given var-
ious cost constraints and other resources.

Beyond the developments of the present paper, some of our
further investigation has suggested additional potential advan-
tages of the proposed architecture. For example, although this
paper has focused on the specific case of uniform amplitude
scanning arrays, phased arrays can be used in many other ways
when both the amplitude and phase are allowed to vary dynam-
ically. In conventional designs, this introduces a whole addi-
tional requirement for accurate amplitude control necessitating
the use of the highly-linear power amplifiers. With the A3 array,
the same mechanism discussed in this paper can replicate the
beam pattern of arbitrary amplitudes as well as arbitrary phases
while in fact the amplitude is uniform for every element, com-
pletely eliminating the need for individual amplitude control.
For such applications, the analysis provided in this paper will
be particularly useful.

Finally, yet another compelling motivation for exploring the
AX array architecture stems from its potential to provide im-
proved robustness, which we are also only beginning to develop.
In particular, an important issue in traditional array design is
the sensitivity to gain and phase errors and to imprecise posi-
tioning of the individual elements. Such considerations are of
increasing concern with the growing interest in using phased
arrays in any handheld or otherwise mobile devices. Conve-
niently, such sensitivities are naturally mitigated to some degree
when the number of antennas is large, such as in the case of
dense arrays. Further, dense arrays typically have greater oper-
ational bandwidth for reasons roughly analogous to the relation-
ship between the scan impedance and element spacing described
in Section ITI-C. Though such additional research is ongoing,
we speculate that a AY. dense array can yield improved wide-
band performance compared to a conventional array of similar
antenna elements, even after accounting for the incurred 1-2
dB efficiency reduction also described Section ITI-C. Hence, the
AY array holds the promise of leading to particularly cost effec-
tive designs, relative to what is possible with standard arrays.

APPENDIX
MATCHED ARRAY COUPLING MATRIX DERIVATION

Referring to Fig. 1, the matching network at element » is in-
troduced by connecting a quarter wavelength transmission line
with characteristic impedance Z;,, to source w,,, followed by
a series reactance —jX,,, which in turn connected to the an-
tenna terminals. Following standard microwave network anal-
ysis (see, e.g., [24] for additional details), the voltage and cur-
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rent at the input to the network are related to the voltage and
current at the antenna terminals by

ANt -

Up, —JZtnLn.

qn _ 2r7—1 . .
Zn, _JZt’n, (Un _.]Xsnln)a

and to the source excitations by

wn = vy + Lol 27)

Letting w, vi", i, v, and i be length-N complex vectors
associated with the above scalar quantities, and similarly orga-
nizing the match network quantities into N x N diagonal ma-
trices Z; and X, these relations may be combined to include
the complete array

v = jZ,
i =jZ, (v — jX,i),

W :vl7l + Zoi’L’ﬂ'

As the matching network will not effect the impedance rela-
tions occurring outside of the array, the original impedance re-
lation v = Zi remains valid. Using this additional relationship,
we can make the following operations

w =jZi+ jZoZ, (v — jX.i)
=j (Ze + ZoZ; ' (Z — jX,)) i.

Having eliminated all other voltage and current terms, this last
expression may be rewritten as i = Cj;w, where

. _ . —1
Cum = —j (2t + ZoZ, '(Z — jX,)) (28)
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