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Abstract—We study the discrete-time Poisson channel under
the constraint that its average input power (in photons per
channel use) must not exceed some constant E . We consider the
wideband, high-photon-efficiency extreme where E approaches
zero, and where the channel’s “dark current” approaches zero
proportionally with E . Improving over a previously obtained first-
order capacity approximation, we derive a refined approximation
which also includes the second-order term. We also show that
pulse-position modulation is optimal on this channel up to the
second-order term in capacity.

I. INTRODUCTION

We consider the discrete-time memoryless Poisson channel

whose input x is in the set R+
0 of nonnegative reals and whose

output y is in the set Z
+
0 of nonnegative integers. Conditional

on the input X = x, the output Y has a Poisson distribution

of mean (λ + x), where λ ≥ 0 is called the “dark current”
and is a constant which does not depend on the input x. We
denote the Poisson distribution of mean ξ by Pξ(·) so

Pξ(y) = e−ξ ξy

y!
, y ∈ Z

+
0 . (1)

With this notation the channel law W (·|·) is

W (y|x) = Pλ+x(y), x ∈ R
+
0 , y ∈ Z

+
0 . (2)

This channel models pulse-amplitude modulated optical

communication where the transmitter sends light signals in co-

herent states (which are usually produced using laser devices),

and where the receiver employs direct detection (i.e., photon

counting) [1]. The channel input x describes the expected

number of signal-photons (i.e., photons that come from the

input light signal rather than noise) to be detected in the pulse-

duration, and is proportional to the light signal’s intensity, the

pulse-duration, the channel’s transmissivity, and the detector’s

efficiency; the channel output y is the actual number of

photons that are detected in the pulse-duration; and λ is the

average number of extraneous counts that appear in y due to
background radiation or to the detector’s “dark clicks”.

This work was supported in part by the DARPA InPho program under
Contract No. HR0011-10-C-0159, and by AFOSR under Grant No. FA9550-
11-1-0183.

We impose an average-power constraint1 on the input

E[X ] ≤ E (3)

for some E > 0.
In applications like free-space or outer-space optical com-

munications, the cost of producing and successfully transmit-

ting photons is high, hence high photon efficiency (information

transmitted per photon) is desirable. As we later demonstrate,

this can be achieved in the wideband regime, where the pulse-

duration of the input approaches zero and, assuming that

the continuous-time average input power is fixed, where E
approaches zero proportionally with the pulse-duration. Note

that in this regime the average number of detected background

photons or dark clicks also tends to zero proportionally with

the pulse-duration. Hence we have the linear relation

λ = cE , (4)

where c is some nonnegative constant that does not change
with E . Asymptotic results in this regime are relevant in
scenarios where E is small and where λ is comparable to or
much smaller than E . Scenarios where E is small but λ is large
is better captured by the model where λ stays constant while
E tends to zero, see [2].
We denote the capacity (in nats2) of the channel (2) under

power constraint (3) with dark current (4) by C(E , c), then

C(E , c) = max
E[X]≤E

I(X ; Y ), (5)

where the mutual information is computed from the channel

law (2) and is maximized over input distributions satisfy-

ing (3), with dark current λ given by (4). As we shall

see, our results on the asymptotic behavior of C(E , c) hold
irrespectively of whether a peak-power constraint

X ≤ A with probability 1 (6)

is imposed or not, as long as A is positive and does not

approach zero together with E .
Various capacity results for the discrete-time Poisson chan-

nel have been obtained [2]–[6]. Among them, [2] considers

1Here “power” is in discrete time, means expected number of detected
photons per channel use, and is proportional to the continuous-time physical
power times the pulse duration.
2All logarithms in this paper are natural logarithms.
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the same scenario as the present paper and shows that [2,

Proposition 1]

lim
E↓0

C(E , c)

E log 1
E

= 1, c ∈ [0,∞). (7)

In other words, the photon efficiency in nats per photon, which

we henceforth denote by CPE(E , c), satisfies3

CPE(E , c) !
C(E , c)

E
(8)

= log
1

E
+ o

(

log
1

E

)

, c ∈ [0,∞). (9)

The approximation in (9) can be compared to the photon

efficiency of the pure-loss bosonic channel, which describes an

optical communication channel where the transmitter can send

any quantum state, where the receiver can employ any quan-

tum detector, and where no background radiation is present.

We denote by CPE—bosonic(E) the photon efficiency of the pure-
loss bosonic channel under an average-power constraint that

is equivalent to (3). The value of CPE—bosonic(E) can be easily
computed using the explicit capacity formula derived in [7],

which yields

CPE—bosonic(E) = log
1

E
+ 1 + o(1). (10)

Comparing (9) and (10) shows the following:

• For the pure-loss bosonic channel in the wideband

regime, coherent-state inputs and direct detection are

optimal up to the first-order term in photon efficiency

(or, equivalently, in capacity). For example, they achieve

infinite capacity per unit cost [8], [9].

• The dark current does not affect this first-order term.

Later, it is observed that restriction to coherent-state inputs

and direct detection does induce a loss in the second-order

term in the photon efficiency on the pure-loss bosonic channel

[10], [11]. It is argued in [10] that the maximum photon

efficiency achievable using on-off signaling on the Poisson

channel (2) with λ = 0 is given by

log
1

E
− log log

1

E
+ O(1). (11)

Comparing the first-order term in (9) and the first- and second-

order terms in (11) for E = 10−5, which is a realistic value

in practice, yields a difference of about 20%, showing the
importance of the refined approximation (11). However, the

analysis in [10] is restricted to on-off signaling. It is therefore

3Throughout this paper we use the usual o(·) and O(·) notations to describe
behaviors of functions of E in the limit where E approaches zero. Specifically,
given a reference function f(·) (which might be the constant 1), a function
described as o(f(E)) satisfies

lim
E↓0

o(f(E))

f(E)
= 0,

and a function described as O(f(E)) satisfies

lim
E↓0

˛

˛

˛

˛

O(f(E))

f(E)

˛

˛

˛

˛

< ∞.

unclear if (11) is the maximum photon efficiency achievable

on the Poisson channel (2) with λ = 0 subject to constraint (3)
alone, i.e., if (11) is indeed the expression for CPE(E , 0).
It is already observed in [3], [4] that infinite photon ef-

ficiency on the Poisson channel with zero dark current can

be achieved using pulse-position modulation (PPM), and [11]

further shows that PPM can achieve (11). Here PPM means a

signaling scheme that satisfies the following:

• The channel inputs are divided into blocks of length b;
• In each block, there is only one input that is positive,

which we call the “pulse”, while all the other (b − 1)
inputs are zeros;

• The pulses in all blocks have the same amplitude.

PPM signaling greatly simplifies the coding task for this

channel, since one can easily apply existing codes, such as

a Reed-Solomon code, to the PPM “super symbols”; while

the on-off signaling scheme that achieves (11) has a highly

skewed input distribution and is hence difficult to code.

The goal of the present paper is to answer the following

questions:

1) Is (11) the correct asymptotic expression up to the

second-order term for CPE(E , 0)?
2) Does the value of c affect the second-order term in

CPE(E , c)?
3) Is PPM second-order optimal when c > 0? Here the
notion “second-order optimal” has a slightly different

meaning than, e.g., in additive Gaussian noise chan-

nels [12]. It means that, when E tends to zero, the signal-
ing scheme asymptotically achieves CPE(E , c) − log 1

E .

All these questions will be answered in the affirmative in our

main result, Theorem 1.

The rest of this paper is arranged as follows: we state

and discuss our main result in Section II; we then prove the

achievability part of this result in Section III, and sketch the

proof of the converse part in Section IV.

II. MAIN RESULT

The main result of this paper is the following:

Theorem 1. The photon efficiency of the Poisson channel

CPE(E , c) as defined in (8) satisfies

CPE(E , c) = log
1

E
− log log

1

E
+ O(1), c ∈ [0,∞). (12)

Furthermore, this asymptotic expression can be achieved using

a PPM signaling scheme for all c ∈ [0,∞).

Since C(E , c) and hence also CPE(E , c) is monotonically
decreasing in c [2], to prove Theorem 1 it suffices to show

two things: first, that the largest photon efficiency achievable

with PPM, which we henceforth denote by CPE—PPM(E , c),
satisfies

CPE—PPM(E , c) ≥ log
1

E
− log log

1

E
+ O(1), c ∈ (0,∞);

(13)

and second, that

CPE(E , 0) ≤ log
1

E
− log log

1

E
+ O(1). (14)
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We prove (13) in Section III, and, due to space limitations,

sketch the proof of (14) in Section IV.

Answers to the questions in Section I:

• Answer to Question 1): Choosing c = 0 in (12) confirms
that (11) is the correct asymptotic expression up to the

second-order term for CPE(E , 0). Compared to (10) this
means that, for small E , restricting the receiver to using
direct detection induces a loss in photon efficiency of

about log log 1
E nats per photon. Note that the capacity

of the pure-loss bosonic channel can be achieved using

coherent input states only [7], so this loss is indeed due

to direct detection, but not due to coherent input states.

Attempts to overcome this loss by employing other fea-

sible detection techniques have so far been unsuccessful

[10], [13].

• Answer to Question 2): Perhaps surprisingly, the right-

hand side (RHS) of (12) does not depend on c, so the
value of c affects neither the first-order term nor the

second-order term in CPE(E , c). In particular, these two
terms do not depend on whether c is zero or positive.

• Answer to Question 3): The fact that the RHS of (12) is

achievable using PPM shows that PPM is indeed second-

order optimal for all c ∈ [0,∞).

Further remarks about Theorem 1:

• In fact, in Section III we show that

CPE—PPM(E , c) ≥ log
1

E
− log log

1

E
− 2(1 + c) + o(1),

(15)

providing a lower bound on the O(1) term on the RHS

of (12). However, the bound (15) might not be tight.

• In the PPM scheme that achieves (12) and (15), which

we describe in Section III, the pulse has amplitude

1/
(

log(1/E)
)

, which depends on E , and which tends to
zero as E tends to zero. This is in contrast to the on-off
signaling scheme used in [2] where the “on” signal has a

fixed amplitude that does not depend on E . The latter on-
off signaling scheme, as well as any PPM scheme with

a fixed pulse amplitude, is not second-order optimal on

the Poisson channel.

• Because in the second-order-optimal PPM scheme the

pulse tends to zero as E tends to zero, we know that, as
claimed in Section I, (12) still holds if a constant (i.e., not

approaching zero together with E) peak-power constraint
as in (6) is imposed on X in addition to (3).

• In order to see how well the first and second terms on the

RHS of (12) approximate the low-E photon efficiency, we
numerically compare (12) with the nonasymptotic upper

bound, and with the PPM-achieved lower bounds on CPE
in Figure 1. The formulas used to plot the PPM lower

bounds are shown in Section III, and the formula used to

plot the upper bound is shown in Section IV. Comparison

shows that, for moderate values of c and small enough
E , the first- and second-order expression (12) provides a
good approximation to the maximum achievable photon

efficiency.
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Fig. 1. Comparing the approximation (12) to nonasymptotic upper bound
and PPM lower bounds.

III. PROOF OF THE LOWER BOUND (13)

We show that the RHS of (13) is achievable with the

following PPM scheme:

• The channel-uses are divided into blocks, with each block

having b input symbols x1, . . . , xb and b corresponding
output symbols y1, . . . , yb. Later we set

b =

⌊
1

E log 1
E

⌋

. (16)

• Within each length-b block, there is always one input
that equals η, and all the other (b − 1) inputs are zeros.
Each block is then fully specified by the position of its

unique nonzero symbol, i.e., its pulse position. We can

thus consider each block as a “super input symbol” x̃
which takes value in {1, . . . , b}. Here x̃ = i means

xi = η (17a)

xj = 0, j &= i. (17b)

To meet the average-power constraint (3) with equality,

we require

η = bE . (18)

• We further simplify the receiver by mapping the b output
symbols y1, . . . , yb to one “super output symbol” ỹ which
takes value in {1, . . . , b, ?} in the following way: let ỹ =
i, i ∈ {1, . . . , b}, if yi is the unique nonzero term in

{y1, . . . , yb}; and let ỹ =? if there is more than one or
no nonzero term in {y1, . . . , yb}.

We can now compute the transition matrix of this PPM “super

channel” as follows:

W̃ (i|i) ! Pr
[

Ỹ = i
∣
∣
∣ X̃ = i

]

(19)

= Pr [Yi ≥ 1|Xi = η]
∏

k $=i

Pr [Yk = 0 |Xk = 0] (20)
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=
(

1 − W (0|η)
)(

W (0|0)
)b−1

(21)

= (1 − e−η−cE)e−(b−1)cE (22)

= e−(b−1)cE − e−η−bcE (23)

! p0, i ∈ {1, . . . , b}; (24)

W̃ (j|i) ! Pr
[

Ỹ = j
∣
∣
∣ X̃ = i

]

(25)

= Pr [Yi = 0|Xi = η] Pr [Yj ≥ 1|Xj = 0]

·
∏

k/∈{i,j}

Pr [Yk = 0|Xk = 0] (26)

= W (0|η)
(

1 − W (0|0)
)(

W (0|0)
)b−2

(27)

= e−η−cE(1 − e−cE)e−(b−2)cE (28)

= e−η−(b−1)cE − e−η−bcE (29)

! p1, i, j ∈ {1, . . . , b}, i &= j; (30)

W̃ (?|i) = 1 − p0 − (b − 1)p1, i ∈ {1, . . . , b}. (31)

Denote the capacity of this super channel by C̃(E , c, b, η), then

C̃(E , c, b, η) = max
PX̃

I(X̃; Ỹ ). (32)

Note that the total input power (i.e., expected number of

detected signal-photons) in each block equals η. Therefore,
for every admissible choice of b and η, we have the following
lower bound on CPE—PPM(E , c):

CPE—PPM(E , c) ≥
C̃(E , c, b, η)

η
. (33)

It can be easily verified that the optimal input distribution

for (32) is the uniform distribution

PX̃(i) =
1

b
, i ∈ {1, . . . , b}, (34)

which induces the following marginal distribution on Ỹ :

PỸ (i) =
p0 + (b − 1)p1

b
, i ∈ {1, . . . , b} (35a)

PỸ (?) = 1 − p0 − (b − 1)p1. (35b)

We can now use the above joint distribution on (X̃, Ỹ ) to
explicitly compute C̃(E , c, b, η) as follows:4

C̃(E , c, b, η)

= I
(

X̃; Ỹ
)

(36)

= H
(

Ỹ
)

− H
(

Ỹ
∣
∣
∣ X̃

)

(37)

= (1 − p0 − (b − 1)p1) log
1

1 − p0 − (b − 1)p1

+ (p0 + (b − 1)p1) log
b

p0 + (b − 1)p1

− (1 − p0 − (b − 1)p1) log
1

1 − p0 − (b − 1)p1

− p0 log
1

p0
− (b − 1)p1 log

1

p1
(38)

4Throughout this paper we adopt the convention 0 log 0 = 0.

= p0 log b + p0 log
p0

p0 + (b − 1)p1

+ (b − 1)p1 log
bp1

p0 + (b − 1)p1
. (39)

At this point, we note that the PPM curves in Figure 1 are

obtained using (33) with (39), together with the choices (16)

and (18).

Using the fact that log(1 + a) ≤ a for all a ∈ R, we can

continue (39) to lower-bound C̃(E , c, b, η) as

C̃(E , c, b, η) = p0 log b − p0 log
p0 + (b − 1)p1

p0
︸ ︷︷ ︸

≤
(b−1)p1

p0

− (b − 1)p1 log
p0 + (b − 1)p1

bp1
︸ ︷︷ ︸

≤
p0−p1

bp1

(40)

≥ p0 log b − (b − 1)p1 −
b − 1

b
︸ ︷︷ ︸

≤1

(p0 − p1)
︸ ︷︷ ︸

≤p0

(41)

≥ p0 log b − (b − 1)p1 − p0. (42)

Next note that p0 can be upper-bounded as

p0 = e−(b−1)cE − e−η−bcE (43)

= e−(b−1)cE
︸ ︷︷ ︸

≤1

(

1 − e−η−cE
)

︸ ︷︷ ︸

≤η+cE

(44)

≤ η + cE , (45)

and can also be lower-bounded as

p0 = e−(b−1)cE − e−η−bcE (46)

≥ e−bcE − e−η−bcE (47)

= e−bcE
︸ ︷︷ ︸

≥1−bcE

(1 − e−η)
︸ ︷︷ ︸

≥η−η2

(48)

≥ (1 − bcE)(η − η2), (49)

where the last inequality holds if both multiplicands on its

RHS are positive, which, for our choices of b and η in (16)
and (18), is true for small enough E . Also note that p1 can be

upper-bounded as

p1 = e−η−(b−1)cE − e−η−bcE (50)

= e−η−(b−1)cE
︸ ︷︷ ︸

≤1

(

1 − e−cE
)

︸ ︷︷ ︸

≤cE

(51)

≤ cE . (52)

Using (45), (49) and (52) we can continue the chain of

inequalities (42) to further lower-bound C̃(E , c, b, η) as

C̃(E , c, b, η)

≥ (1 − bcE)(η − η2) log b − (b − 1)cE − η − cE (53)

= (1 − bcE)(η − η2) log b − bcE − η (54)

= (η − η2) log b − bcE (η − η2)
︸ ︷︷ ︸

≤η

log b − bcE − η (55)

≥ (η − η2) log b − bcEη log b − bcE − η. (56)
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Combining (33) and (56) yields

CPE—PPM(E , c) ≥
(η − η2) log b − bcEη log b − bcE − η

η
(57)

= (1 − η) log b − bcE log b −
bcE

η
− 1. (58)

We now set the values of b and η to be as in (16) and (18).
Note that, as E approaches zero, the RHS of (16) tends to

infinity, so we may drop the '·( operation without affecting
the asymptotic results. Hence we shall use the following:

b =
1

E log 1
E

(59a)

η =
1

log 1
E

. (59b)

Plugging (59) into (58) we obtain the following lower bound

on CPE—PPM(E , c):

CPE—PPM(E , c) ≥

(

1 −
1

log 1
E

)

log

(
1

E log 1
E

)

−
c

log 1
E

log

(
1

E log 1
E

)

− c − 1 (60)

= log
1

E
− log log

1

E
− 1 +

log log 1
E

log 1
E

− c

+
c log log 1

E

log 1
E

− c − 1 (61)

= log
1

E
− log log

1

E
− 2(1 + c) + o(1) (62)

= log
1

E
− log log

1

E
+ O(1). (63)

This establishes both (13) and (15).

IV. PROOF SKETCH OF THE UPPER BOUND (14)

To prove (14), like in [2], we use the duality bound [14]

which states that, for any distribution R(·) on the output, the
channel capacity satisfies

C ≤ sup E
[

D
(

W (·|X)‖R(·)
)]

, (64)

where the supremum is taken over all allowed input distribu-

tions. Since we are interested in the limit where E tends to

zero, we may assume that E < 1. In this case, we choose R(·)
to be the following distribution:

R(y) =

{

1 − E , y = 0

E(1 − a)ay−1, y = 1, 2, . . .
(65)

where a is a positive constant whose exact value is not

important for our analysis.

Using (64) with (65), after some calculations we obtain that,

for small enough E ,

C(E , 0) ≤ E log
1

E
− E log log

1

E

+ E log 12 + log
1

1 − E
+ E log

1

1 − a
︸ ︷︷ ︸

=O(E)

(66)

= E

(

log
1

E
− log log

1

E
+ O(1)

)

. (67)

At this point, we note that the upper bound in Figure 1 is

computed using (66) in the limit where a tends to zero.
Dividing both sides of (67) by E yields the desired upper

bound (14).
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