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Abstract—An update efficient code is a mapping from messages
to codewords such that small perturbations in the message
induce only slight changes to the corresponding codeword. The
parameter that captures this notion is called update-efficiency. In
this paper we study update-efficient error-correcting codes and
develop their basic properties. While update-efficiency and error-
correction are two conflicting objectives, we deduce conditions for
existence of such codes. In particular, logarithmically growing
update-efficiency is achievable with a capacity-achieving linear
code in both binary symmetric and binary erasure channels.
On the other hand we show a tight converse result. Our result
implies that it is not possible to have a capacity-achieving code
in binary symmetric channel that has sub-logarithmic update-
efficiency. This is true in the case of the binary erasure channel
as well for linear codes. We also discuss a number of questions
related to update-efficient adversarial error-correcting codes.

I. INTRODUCTION

In a variety of applications such as distributed storage

networks, there is a need for update-efficient codes. Such

networks consist of multiple distributed and unreliable storage

devices across which dynamically changing information must

be stored. Each time a portion of the information content

changes, its associated reliable encoding must also change,

and the contents of the storage devices updated accordingly. In

such applications, to minimize the communication bandwidth

and power resources required by such networks, it is desirable

to have encodings that are update-efficient, i.e., minimize

the number of storage devices affected when the information

content changes. In this paper we examine aspects of the

degree to which such update-efficient codes are possible.

In our development, a code C ∈ F
n
2 is a collection of binary

n-vectors with a one-to-one encoding map φ : Fk
2 → C, k < n.

We restrict our attention specifically to error-correcting codes
(i.e., channel codes). The support of a vector x, denoted

supp(x), is the set of coordinates where x has nonzero values.

In turn, the weight of a vector, denoted wt(x), is the size its

support.

The notion of update-efficiency for channel codes is intro-

duced in [2]. A code is called update-efficient if for a small

change in the message x ∈ F
k
2 , the corresponding codeword

φ(x) changes only slightly. Formally, we have the following

definition.
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The results of this paper can be generalized to q-ary alphabets (q > 2)
with little effort.

Definition 1: A code (C, φ) is (u, t)-update-efficient if for

all x ∈ F
k
2 , and for all e ∈ F

k
2 such that wt(e) ≤ u, we have

φ(x+e) = φ(x)+e′, for some e′ ∈ F
n
2 such that wt(e′) ≤ t.

For much of our development in this paper, we focus on the

case where u = 1, and equivalently refer to an (1, t)-update-

efficient code as one having update efficiency t.
As background for the present work, much of the initial

work on update efficient codes has focused on their use on

the binary erasure channel (BEC), which is a natural model

for capturing server failures. For example, in [2] it is shown

that there exist capacity-achieving codes for the BEC with

update-efficiency O(log n). A subsequent paper [13] shows,

using the randomized codes proposed [2], that it is possible

for capacity-achieving codes for the BEC to have both update-

efficiency and repair-bandwidth efficiency, a property desirable

in distributed storage. Yet another recent paper [9] considers

the update-efficiency of linear codes.

In this paper we are concerned with update-efficient codes

that also correct errors. In addition to distributed storage

applications, another potential application for such codes is

transmitting uncompressed video over a noisy communication

link. As the messages (video-frames) only change slightly

from one frame to the next, update-efficient codes can be an

efficient mechanism for encoding the sequence of frames.

We consider two models of error: random and adversarial.

The random errors take the form of independent bit flips,

corresponding to a binary symmetric channel (BSC), with flip

probability 0 < p < 1/2. Such a channel is denoted via

BSC(p).

Correcting errors is generally a more difficult task than

correcting erasures. In this paper we show that the result for

erasures in the paper [2] carries over for the case of errors,

viz., there exist linear codes with update efficiency O(log n)
that achieve rates arbitrary close to the BSC(p) capacity of

1 − h(p), where h(p) = −p log p − (1 − p) log(1 − p) is the

binary entropy function, with probability of error approaching

zero. In addition, we show a converse result. To be specific,

we show that for a suitable α > 0, within the ensemble of

positive rate linear codes with update efficiency α log n, almost

all codes have a probability of error bounded away from zero

on the BSC(p). We also show a stronger version of this result,

namely, that for some other α > 0, there does not exist a code

with update-efficiency α log n that has both positive rate and

arbitrarily small probability of error.

All logarithms in this paper are base 2 unless otherwise indicated.
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For the case of adversarial errors, update-efficiency and

error correction are conflicting objectives. However, following

[2] and [11], it can be shown that there exist codes with update-

efficiency O(log n) that correct any pn adversarial errors if

there is sufficient shared randomness between the encoder and

the decoder. We discuss several properties of linear codes that

result in good update-efficient error correcting codes, and give

a number of examples. Finally, we turn our attention to general

(u, t)-update-efficient codes and provide bounds on the size of

an update-efficient code in terms of the minimum distance of

the code.

In this paper, we focus primarily on linear codes, which

are attractive in terms of representation and both encoding

and decoding complexity. A linear code (C, φ) is such that

φ : Fk
2 → C is a homomorphism. It can always be represented

by a k × n generator matrix G such that φ(x) = xTG, for

any x ∈ F
k
2 . Note that G for a code is not unique; distinct G

give different labelings. By an [n, k, d] code we mean a linear

code with length n, dimension k and minimum distance d.

For a linear code, the maximum number of bits that change

in the codeword when one bit in the message changes is the

maximum over the weights of the rows of the generator matrix.

Hence, for an update-efficient code, we need a representation

of the linear code where the maximum weight of the rows of

the generator matrix is low.

Proposition 1: A linear code C will have update-efficiency t
if and only if there is a generator matrix G of C with maximum

row weight t.
Proof: It is easy to see that if the maximum number of

ones in any row is bounded above by t, then at most t bits

need to be changed following a one bit change in the message.

On the other hand, if the code has update-efficiency

t then there must exist a labeling φ that gives a

sparse generator matrix. Specifically, the vectors

(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0 . . . , 1) ∈ F
k
2 must

produce vectors of weight at most t under φ, so the generator

matrix given by φ has row weight at most t.
Proposition II-B implies that given a linear code, to see

whether it is update-efficient or not, we need to find the

sparsest basis for the code. A linear code with a sparse basis

is informally called a low density generator matrix (LDGM)
code.

II. LDGM CODES AND CAPACITY OF BSC

A. No good codes with update efficiency < α log n

We start this section with a negative result regarding update-

efficient codes on the BSC. Suppose we want to construct a

code with update efficiency t. We will look at the ensemble

of linear codes with update-efficiency t and show that almost

all codes in this ensemble are bad for t less than certain

value. Proposition II-B shows that a linear code with update

efficiency t always has a generator matrix with maximum row

weight t. For simplicity, we consider generator matrices where

all rows have weight t, but all the results can be extended to

the case where the row weight is at most t.

Let Γn,k,t be the set of all k×n matrices over F2 such that

each row has exactly t ones. First, we recall the following

lemma from [5], which shows that almost all the matrices in

Γn,k,t generate codes with dimension k (i.e., the rank of the

matrix is k).

Lemma 2: Randomly and uniformly choose a matrix G

from Γn,k,t. If k is such that k ≤
(
1 − e−t

ln 2 − o(e−t)
)
n,

then with probability 1− o(1) the rank of G is k.

This lemma, along with the next theorem, prove that almost

all codes in Γn,k,t are bad for small t.
Theorem 3: Fix an 0 < α < 1/2, and assume that k ≥

nα, t ≤ √n/2. Then, for at least 1− t2n2α

n−t proportion of the

matrices in Γn,k,t, the associated linear code has probability

of error at least nα√
t
2−λpt over a BSC(p) for p < 1/2 and

λp = −1− 1/2 log p− 1/2 log(1− p) > 0.
Before proving this theorem, we state the following corollary.

Corollary 4: For at least 1 − o(1) proportion of all linear

codes with update efficiency t < α−ε
λp

log n, α < 1/2, ε > 0

and dimension k, k > nα, the probability of error is 1− o(1)
over a BSC(p) for p < 1/2.

In particular, this shows that codes with update efficiency <
log n/(2λp) and rate > nα−1 are almost always bad.

Proof of Corollary 4: From Lemma 2 it is clear that 1−
o(1) proportion of all codes in Γn,k,t have rank k. Hence, if 1−
o(1) proportion of codes in Γn,k,t have some property, 1−o(1)
proportion of codes with update-efficiency t and dimension

k also have that property. Plugging in the value of t in the

expression for the error probability from Theorem 3 gives the

corollary.

To prove Theorem 3 we will need the following series of

lemmas.

Lemma 5: Let x ∈ {0, 1}n be a vector of weight t. Let the

all-zero vector of length n be transmitted over a BSC with flip

probability p < 1/2. If the received vector is y, then,

Pr(wt(y) > dH(x,y)) ≥ 1√
t
2−λpt,

where λp = −1− 1/2 log p− 1/2 log(1− p) > 0.
The proof is omitted.

Lemma 6: Suppose two random vectors x,y ∈ {0, 1}n are

chosen independently and uniformly from the set of all length-

n binary vectors of weight t ≤ √n/2. Then,

Pr(supp(x) ∩ supp(y) = ∅) > 1− t2

n− t+ 1
.

Proof: The probability in question equals,(
n−t
t

)
(
n
t

) =
((n− t)!)2
(n− 2t)!n!

=
(n− t)(n− t− 1)(n− t− 2) . . . (n− 2t+ 1)

n(n− 1)(n− 2) . . . (n− t+ 1)

=
(
1− t

n

)(
1− t

n− 1

)
. . .

(
1− t

n− t+ 1

)

>
(
1− t

n− t+ 1

)t

≥ 1− t2

n− t+ 1
.
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In the last step we have truncated the series expansion of(
1− t

n−t+1

)t

after the first two terms. The inequality will be

justified if the terms of the series are decreasing in absolute

value. Let us verify that to conclude the proof. In the following

Xi denote the ith term in the series, 0 ≤ i ≤ t.

Xi+1

Xi
=

(
t

i+1

)
(
t
i

) · t

n− t+ 1
=
t− i
i+ 1

· t

n− t+ 1
≤ 1,

for all i ≤ t− 1.
Lemma 7: For 0 < α < 1/2, choose random vectors

xi, 1 ≤ i ≤ nα of weight t ≤ √
n/2 independently and

uniformly from the set of weight-t vectors. Then,

Pr(∀i 
= j, supp(xj) ∩ supp(xi) = ∅) ≥ 1− t2n2α

n− t .
This implies all of the vectors have disjoint supports with

probability at least 1− t2n2α

n−t .
Proof: The claim follows from taking a union bound over

all pairs of randomly chosen vectors.

Now we are ready to prove Theorem 3.

Proof of Theorem 3: We begin by choosing a matrix

G uniformly at random from Γn,k,t. This is equivalent to

choosing each row of G uniformly and independently from

the set of all weight-t binary vectors. Now k > nα, hence

there exist nα vectors among the rows of G such that any two

of them have disjoint support with probability at least 1− t2n2α

n−t

(from Lemma 7). Hence for at least a proportion 1− t2n2α

n−t of

matrices of Γn,k,t, there are nα rows with disjoint supports.

Suppose G is one such matrix. It remains to show that the

code C defined by G has probability of error at least nα√
t
2−λpt

over a BSC(p).

Suppose, without loss of generality, that the all zero vector

is transmitted over a BSC(p) and y is the vector received. Let

xi, 1 ≤ i ≤ nα be codewords of weight t with disjoint support,

guaranteed to exist by our assumption on C. The probability

that the maximum likelihood decoder incorrectly decodes y
to xi satisfies

Pr(wt(y) > dH(xi,y)) ≥ 1√
t
2−λpt

from Lemma 5. As the codewords x1, . . .xnα have disjoint

supports, the probability that the maximum likelihood decoder

incorrectly decodes to any one of them is at least nα√
t
2−λpt.

It should be noted that the above theorem is easily extend-

able to the random ensemble of matrices whose entries are

independently chosen from F2 with Pr(1) = t/n.

B. No good codes with update efficiency < α log n, revisited

In this subsection, for a smaller α than discussed above, we

show that no code can simultaneously achieve low probability

of error on the binary symmetric channel and have update

complexity less than α log n. More precisely, we give two

results. The first result says that linear codes cannot have low

update complexity when used over the binary erasure channel

(BEC). Since the binary symmetric channel is degraded with

respect to the binary erasure channel, this is a stronger result.

To see that a BSC(p) is a degraded version of BEC with

erasure probability 2p, one can concatenate a BEC(2p) with a

channel with ternary input {0, 1, ?} and binary output {0, 1}
such that with probability 1 the inputs {0, 1} remain the same,

and with uniform probability ? goes to {0, 1}.
Our second result says that for the binary symmetric chan-

nel, even non-linear codes cannot have low update efficiency.

We include both results because although the second result

applies to more general codes, we have not been able to

extend the second result to the binary erasure channel. We

conjecture that for positive rates, even nonlinear codes must

have logarithmic update complexity for the binary erasure

channel (at zero rate, trivial counterexamples can be found).

The proof for linear codes used over a binary erasure chan-

nel is based on Proposition , i.e., when the update complexity

is low, the generator matrix G is very sparse. Let the random

subset I ∈ {1, . . . , n} denote the coordinates not erased by

the binary erasure channel. Let GI denote the submatrix of G
induced by the unerased received symbols, i.e., the columns

of G corresponding to I . Then, because G is so sparse, it is

quite likely that GI has several all zero rows, and the presence

of such rows implies a large error probability. We formalize

the argument below.

Theorem 8: Consider using some linear code of length n,

dimension k and update-efficiency t, specified by generator

matrix G over BEC(p). Assume that, for some ε > 0, t <
ln −k2

2n ln ε/(−2 ln p). Then, the average probability of error is

at least 1/2− ε.
Proof: For linear codes over the binary erasure channel,

analyzing the probability of error essentially reduces to analyz-

ing the probability that the matrix GI induced by the unerased

columns of G has rank k (note that the rank is computed over

F2). To show that the rank is likely to be less than k for

sufficiently small t, let us first compute the expected number

of all zero rows of GI . Since G has update-efficiency t, every

row of G has weight at most t, so the expected number of all

zero rows of GI is at least kpt. The rank of GI , rk(GI), is

at most k minus the number of all zero rows, so the expected

rank of GI is at most k − kpt.
Now, observe that the rank is a 1-Lipschitz functional

of the independent random variables denoting the erasures

introduced by the channel. Therefore, by Azuma’s inequality

[1, Thm. 7.4.2], the rank of GI satisfies

Pr(rk(GI) ≥ E rk(GI) + λ) < e−
λ2

2n .

Therefore,

Pr(rk(GI) ≥ k − kpt + λ) < e−
λ2

2n .

In particular,

Pr(rk(GI) = k) < e−
k2p2t

2n .

Assuming the value given for t we see that

Pr(rk(GI) = k) < ε.
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Since even the maximum likelihood decoder makes an error

with probability at least 0.5 when rk(GI) < k, this shows

that when t < ln −k2

2n ln ε/(−2 ln p), the probability of error is

at least 1/2−ε. (In fact, the average error probability converges

to 1. The above argument can easily be extended to show that

the probability of decoding successfully is at most e−Ω( kδ

log k )

for some δ > 0, but we omit the details.)

Now, we show that even nonlinear codes cannot have

low update efficiency for the binary symmetric channel. The

argument is based on a simple observation. If a code has

dimension k and update efficiency t, then any given codeword

has k neighboring codewords within distance t, corresponding

to the k possible 1-bit changes to the information bits. If t is

sufficiently small, it is not possible to pack k + 1 codewords

into a Hamming ball of radius t and maintain a low probability

of error.

Theorem 9: Consider using some (possibly non-linear)

code of length n, dimension (possibly fractional) k, and

update-efficiency t over BSC(p). Assume that for some α > 0,

t ≤ (1−α) log k/ log((1−p)/p). Then, the average probability

of error is at least 1−o(1), where o(1) denotes a quantity that

goes to zero as k →∞.

The proof will appear in the full version of the paper.

C. Good codes exists with update efficiency O(log n)

On the other hand, it is relatively easy to construct a code

with update efficiency O(log n) that achieves capacity on the

binary symmetric channel. One can in principle choose the

rows of the generator matrix randomly from all low weight

vectors and argue that this random ensemble contain many

codes that achieve capacity of the binary symmetric channel

(BSC). Some steps in this direction have been made in [10].

However there are easier ways to construct capacity achieving

codes that have update efficiency O(log n). Let us describe

one such construction1 .

It is known that for every ε > 0 and any sufficiently large n,

there exist a linear code of length n and rate 1−h(p)− ε that

has probability of error at most 2−E(p,ε)n. There are numerous

evaluations of this result and estimates of E(p, ε) > 0. We

refer the reader to [3] as an example.

Let m = 1+α
E(p,ε) log n, for ε, α > 0 (we avoid using ceiling

and floor to have a clean presentation). We know that for

sufficiently large n, there exists a linear code Ĉ given by the

mR×m generator matrix Ĝ with rate R = 1− h(p)− ε that

has probability of error at most 2−E(p,ε)m.
Let G be the nR× n matrix that is the Kronecker product

of Ĝ and the n/m× n/m identity matrix In/m, i.e.,

G = In/m ⊗ Ĝ.
Clearly a codeword of the code C given by G is given by

n/m codewords of the code Ĉ concatenated side-by-side. The

probability of error of C is therefore, by the union bound, at

1This construction was suggested by Yury Polyanskiy in private commu-
nication.

most

n

m
2−E(p,ε)m =

nE(p, ε)

(1 + α)n1+α log n
=

E(p, ε)

(1 + α)nα log n
.

However, notice that the generator matrix has row weight

bounded above by m = 1+α
E(p,ε) log n. Hence, we have con-

structed a code with update efficiency 1+α
E(p,ε) log n, and rate

1−h(p)−ε that achieves a probability of error < E(p,ε)
(1+α)nα logn

on a BSC(p).

III. ADVERSARIAL CHANNEL

In the adversarial error model, the adversary is allowed to

introduce up to s errors at locations of his choice. It is known

that to correct s adversarial errors the minimum distance d(C)
of a code C needs to be at least 2s + 1. However, if a code

has update-efficiency t, then there must exist two codewords

within distance t of each other. Hence, small update-efficiency

implies limited error correction capability. We investigate these

observations in more detail below.

A. Correcting adversarial errors with a randomized code

Although it is impossible for a fixed error-correction code

with small update efficiency to correct a large number of

errors, if we randomize the code then it is possible to fool

the adversary. In fact, with a randomized code it is possible to

correct pn adversarial errors with a code rate approaching

the capacity of a BSC(p). This idea has been used in the

case of erasures in [2]. Let (Ĉ, φ̂) be a random code defined

as follows from another code (C, φ). Suppose σ ∈ Sn is

an uniform random permutation on the set {1, . . . , n}, and

z ∈ F
n
2 is a uniform random vector. The random encoding in

Ĉ is defined by φ̂(x) = σ(φ(x))+z,x ∈ F
k
2 . If the operation

of the decoding algorithm of C and Ĉ are denoted by ψ and ψ̂
respectively, then ψ̂(y) = ψ(σ−1(y + z)),y ∈ F

n
2 . We have

the following theorem that stems from [11].

Theorem 10: Let C be a codes with rate 1− h(p) − ε that

achieves probability of error approaching 0 as n → ∞ over

a BSC(p). Suppose Ĉ is a random code formed as above.

Then, against any adversarial pn errors, the code Ĉn will have

probability of error approaching 0 as n→∞.
In the above theorem if we take the code C to be the explicit

code designed in Section II-C, then the code Ĉ remains an

update-efficient code with update-efficiency O(log n). Hence

by sharing O(n log n) bits between the encoder and decoder,

it is possible to correct a large number of adversarial errors

with a high rate code. We omit the proof of the above theorem

here, as it follows directly from [11].

B. Codes with small weight bases and the Griesmer bound

As noted at the start of this section, in an error correcting

code minimum distance and update efficiency are conflicting

objectives. A code with distance d must have update-efficiency

at least d because the nearest codeword is at least distance d
away. If the update-efficiency of the code C is denoted by t(C)
then t(C) ≥ d(C), where d(C) is the minimum distance of the

code. Hence, the aim of a code-designer would be to design
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a code whose update-efficiency is as close to the distance as

possible. As we saw in the Introduction, for a linear code C
the update efficiency is simply the weight of the maximum

weight row of a generator matrix. We recall the following

theorem from [6].

Theorem 11: Any binary linear code of length n, dimension

k and distance d has a generator matrix consisting of rows of

weight ≤ d+s where s =
(
n−∑k−1

j=0

⌈
d
2j

⌉)
is a nonnegative

integer.

The fact that s is a non-negative integer also follows from the

well-known Griesmer bound [12] that states for any linear code

with length n, dimension k and distance d, n ≥∑k−1
j=0

⌈
d
2j

⌉
.

Corollary 12: For any linear [n, k, d] code C with update-

efficiency t, d ≤ t ≤ d+
(
n−∑k−1

j=0

⌈
d
2j

⌉)
.

It is clear that for codes achieving the Griesmer bound with

equality, the update-efficiency is exactly equal to the minimum

distance, i.e., the best possible. There are a number of families

of codes that achieve the Griesmer bound. For examples of

such families and their characterizations we refer the reader

to [4], [7].

Example: Suppose C is an [n = 2m−1, k = 2m−1−m, 3]
Hamming code. For this code t(C) ≤ 3+(n−3−2−(k−2)) =
n− k = m = log(n+ 1). In fact, for all n, Hamming codes

have update-efficiency 3. One way to prove this is by explicitly

constructing a generator matrix for the Hamming code with

weight 3 rows. One can also appeal to the following theorem

of Simonis [14].

Theorem 13: Any [n, k, d] binary linear code can be trans-

formed in to a code with same parameters that has a generator

matrix consisting of only weight d rows.

The implication of this theorem is that if there exists an

[n, k, d] linear code, then there exists an [n, k, d] linear code

with update-efficiency d. In his paper [14], Simonis gave

an algorithm to transform any linear code into an update-

efficient linear code (a code with update-efficiency equal to

the minimum distance). However, the algorithm is of expo-

nential complexity. It is of interest to have a polynomial time

algorithm for the procedure.

On the other hand, the above theorem says that there exists

a linear [n = 2m − 1, k + 2m − 1 − m, 3] code that has

update-efficiency only 3. All codes with these parameters are

equivalent to the Hamming code of the same parameters up to

a permutation of coordinates [8], providing an indirect proof

that Hamming codes have update-efficiency 3.

Analysis of the update-efficiency of BCH codes and other

linear codes is of independent interest. In general, finding a

sparse basis for a linear code seems to be a hard problem.

IV. GENERAL UPDATE EFFICIENT CODES

Let us now return now to codes satisfying Definition 1.

Extending the u = 1 case, clearly any (u, t)-update-efficient

code must satisfy t ≥ d, the minimum distance of the code,

but for general u we can strengthen this bound.

Proposition 14: Suppose a (u, t)-update-efficient code of

length n, dimension k and minimum distance d exists. Then

∑u
i=0

(
k
i

) ≤ B(n, d, t), where B(n, d, w) is the size of the

largest code with distance d such that each codeword has

weight at most w.
Proof: Suppose C is an update-efficient code where x ∈

F
k
2 is mapped to y ∈ F

n
2 . Now, the

∑u
i=0

(
k
i

)
different message

vectors that are within distance u from x should map to

codewords within distance t from y. Suppose these codewords

are y1,y2, . . . . Consider the vectors y−y,y1−y,y2−y, . . . .
These must be at least distance d apart from one another and

all of their weights are at most t. This proves the claim.

It is not very difficult to construct a (u,O(u log n)) update

efficient code that achieves the capacity of a BSC(p) by

modifying the constructions of Section II-C. On the other

hand, one expects a converse result of the form

u∑
i=0

(
k

i

)
≤ K(n, t, p),

where K(n, t, p) is the maximum size of a code with code-

words having weight bounded by t that achieves arbitrarily

small probability of error. A formal expression for K(n, t, p)
is a subject of our ongoing work.
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