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Secret-Key Generation Using Correlated
Sources and Channels
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Abstract—We study the secret-key capacity in a joint
source-channel coding setup—the terminals are connected
over a discrete memoryless channel and have access to side
information, modelled as a pair of discrete memoryless source
sequences. As our main result, we establish the upper and lower
bounds on the secret-key capacity. In the lower bound expression,
the equivocation terms of the source and channel components are
functionally additive even though the coding scheme generates
a single secret-key by jointly taking into account the source and
channel equivocations. Our bounds coincide, thus establishing
the capacity, when the underlying wiretap channel can be decom-
posed into a set of independent, parallel, and reversely degraded
channels. For the case of parallel Gaussian channels and jointly
Gaussian sources we show that Gaussian codebooks achieve the
secret-key capacity. In addition, when the eavesdropper also
observes a correlated side information sequence, we establish
the secret-key capacity when both the source and channel of the
eavesdropper are a degraded version of the legitimate receiver.
We finally also treat the case when a public discussion channel is
available, propose a separation based coding scheme, and establish
its optimality when the channel output symbols of the legitimate
receiver and eavesdropper are conditionally independent given
the input.

Index Terms—Information theoretic security, joint source-
channel coding, public discussion, secret-key agreement, wiretap
channel.

I. INTRODUCTION

I NFORMATION theoretic security encompasses the study
of source and channel coding techniques to generate secret-

keys between legitimate terminals. The wiretap channel model
[31] studies the problem of transmitting a confidential message
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to the legitimate receiver while keeping it secret from an eaves-
dropper. Secrecy is measured using the equivocation-rate func-
tion. Perfect secrecy-capacity, defined as the maximum informa-
tion rate under the constraint that the equivocation rate equals
the information rate asymptotically in the block length, is of par-
ticular interest. Information transmitted at this rate can be nat-
urally used as a shared secret-key between the sender and the
receiver. Several extensions of this channel have been studied
recently. See, e.g., [3], [11], [16], [20], [22]–[24], and [30].

In the source coding setup [1], [26], the two terminals observe
correlated source sequences and use a public discussion channel
for communication. Information sent over this channel is public
and also accessible to an eavesdropper. The terminals generate
a common secret-key that is concealed from the eavesdropper
in the same sense as the wiretap channel—the equivocation rate
asymptotically equals the secret-key rate. For some further ex-
tensions, see [9] and [10].

We introduce a joint source-channel model that combines the
aspects of both source and channel coding for secret-key gen-
eration. The legitimate terminals observe correlated side infor-
mation, modelled as a pair of discrete memoryless sources, and
communicate over a wiretap channel. One application of this
setup is in secret-key generation across sensors in a body area
network. Sensors placed at different locations on a human body
measure correlated biological signals which can be used to gen-
erate a secret-key. Further they need to communicate over a
wireless medium, in the presence of potential eavesdropping
sensors which would naturally be further away. While earlier
works [4], [5] only exploit signal correlation across sensors for
key generation, our information theoretic results indicate that
both signal correlation as well as channel equivocation must be
used to maximize the secret-key rate.

To simultaneously exploit both the source and channel
equivocations in generating a secret-key, we propose a two
step process. In the first step, the legitimate terminals agree on
a common reconstruction sequence. The source sequence is
quantized using a Wyner–Ziv codebook and the corresponding
bin index constitutes a message for a channel codebook. In
the second step, this sequence is mapped to a secret-key using
a secret-key codebook that simultaneously taken into account
the source and channel equivocations at the eavesdropper.
Optimality of our scheme is established when the wiretap
channel consists of parallel, independent, and reversely de-
graded channels.

We also study the case when the eavesdropper observes a
source sequence correlated with the legitimate terminals. Se-
cret-key capacity is established when the sources sequence of
the eavesdropper as well as the channel of the eavesdropper
are degraded versions of the corresponding source and chan-
nels at the legitimate receiver. When a public discussion channel
is available, we propose generating separate secret-keys from
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sources and channels and establish its optimality in some spe-
cial cases.

The problem studied in this paper also provides an opera-
tional significance to the rate-equivocation region of the wiretap
channel. Recall that the rate-equivocation region captures the
tradeoff between the conflicting requirements of maximizing the
information rate to the legitimate receiver and the equivocation
level at the eavesdropper [7]. To maximize the contribution of
the correlated sources, we must operate at the Shannon capacity
of the underlying channel. In contrast, to maximize the contri-
bution of the wiretap channel, we operate at a point of maximum
equivocation. In general, the optimal operating point lies in be-
tween these extremes. We illustrate this tradeoff in detail for the
case of Gaussian sources and channels.

In related work [15], [27], [32] study a setup involving
sources and channels, but require that a source sequence be
reproduced at the destination subject to an equivocation level
at the eavesdropper. In contrast, our paper does not impose any
requirement on reproduction of a source sequence, but instead
requires that the terminals generate a common secret-key.
A recent work [29], considers transmitting an independent
confidential message using correlated sources and noisy chan-
nels. This problem is different from the secret-key generation
problem, since the secret-key, by definition, is an arbitrary func-
tion of the source sequence, while the message is required to be
independent of the source sequences. Independently and con-
currently of our work the authors of [28] consider the scenario
of joint secret-message-transmission and secret-key-genera-
tion. The optimality claims in [28], however, appear limited to
the case when either the sources or the channel do not provide
any secrecy.

The rest of the paper is organized as follows. The problem
is defined in Section II and the main results of this work are
summarized in Section III. Proofs of the lower and upper bound
appear in Sections IV and V, respectively. The proof of the se-
crecy capacity for the case of independent, parallel, reversely
degraded channels is provided in Section VI. The case when the
wiretapper has access to a side information sequence is treated
in Section VII, while Section VIII considers the case of public
discussion. Conclusions appear in Section IX.

II. PROBLEM STATEMENT

As illustrated in Fig. 1 the sender and receiver communi-
cate over a discrete-memoryless-channel (DMC),
wiretap channel and observe components of a discrete memory-
less multisource sequence .

Throughout this paper assume that the source and channels
are independent i.e., holds. Further the
source sequences are known to the terminals before the com-
munication begins, i.e., noncausally. We furthermore consider
both the case when the public-discussion channel is available
and when it is not.

A. No Discussion Channel is Available

An secrecy code is defined as follows. The sender
samples a random variable 1 from the conditional distribution

. The encoding function

1The alphabets associated with random variables will be denoted by callig-
raphy letters. Random variables are denoted by sans-serif font, while their real-
izations are denoted by standard font. A length � sequence is denoted by � .

Fig. 1. Secret-key agreement over the wiretap channel with correlated sources.
The sender and receiver communicate over a wiretap channel and have access to
correlated sources. Both the case when a public discussion channel is available
and when it is not are considered.

maps the observed source sequence to the channel output.
In addition, two key generation functions
and at the sender and the receiver are used for
secret-key generation.

Definition 1: A secret-key rate is achievable with band-
width expansion factor if there exists a sequence of
codes, such that for a sequence that approaches zero as

, such that (i) (ii)
(iii) . The2 secret-key-capacity is the supremum
of all achievable rates.

We also study the case when the wiretapper observes a side
information sequence sampled i.i.d. and correlated
with . In this case, the secrecy condition in (iii) above
is replaced with

(1)

For some of our results we consider a special model when
the wiretap channel can be decomposed into a set of parallel
and independent channels each of which is degraded.

1) Parallel Channels:

Definition 2: A product broadcast channel is one in which the
constituent subchannels have finite input and output alpha-

bets, are memoryless and independent of each other, and

(2)

where denotes the se-
quence of symbols transmitted on subchannel , where

denotes the sequence of
symbols obtained by the legitimate receiver on subchannel ,
and where denotes the se-
quence of symbols received by the eavesdropper on subchannel

.

2Throughout this work we only require that the normalized mutual informa-
tion between the key and the eavesdropper output vanish as the block-length
goes to infinity. A stronger notion of secrecy can also be considered, which re-
quires that the mutual information approach zero as the block length increases
(see, e.g., [6] and [25]). We do not pursue this extension.
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A special class of product broadcast channels, known as
the reversely degraded broadcast channel [12] are defined as
follows.

Definition 3: A product broadcast channel is reversely de-
graded when each of the constituent subchannels is degraded
in a prescribed order. In particular, for each subchannel , one
of or holds.

Note that in Def. 3 the order of degradation need not be the
same for all subchannels, so the overall channel need not be
degraded. We also emphasize that in any subchannel the receiver
and eavesdropper are physically degraded. Our capacity results,
however, only depend on the marginal distribution of receivers
in each subchannel3. Accordingly, our results in fact hold for
the larger class of channels in which there is only stochastic
degradation in the subchannels. We also consider the case when
the parallel channels are Gaussian.

2) Parallel Gaussian Channels and Gaussian Sources:
Definition 4:

A reversely degraded product broadcast channel is Gaussian
when it takes the form

(3)

where the noise variables are all mutually independent, and
and . For this

channel, there is also an average power constraint

Furthermore we assume that and are jointly Gaussian
(scalar valued) random variables, and without loss of generality
we assume that and , where
is independent of .

B. Presence of a Public Discussion Channel

This setup involving public discussion is first introduced in
the pioneering works [1], [26]. The sender and receiver interac-
tively exchange messages on the public discussion channel after
each use of the wiretap channel.

The sender transmits symbols at times
over the wiretap channel. At these times the re-

ceiver and the eavesdropper observe symbols and
, respectively. In the remaining times the sender

and receiver exchange messages and . We consider a total
of rounds of exchanges i.e., and define

. Note that is an arbitrary integer in this setup. The eaves-
dropper observes . More formally,

• At time 0 the sender and receiver sample random variables
and , respectively, from conditional distributions

and . Note that
holds.

3However, when we consider the presence of a public-discussion channel
and interactive communication, the capacity does depend on joint distribution
� ���

• At times the sender generates
and the receiver generates

. These messages are exchanged over
the public channel.

• At times , , the sender generates
and sends it over the channel. The re-

ceiver and eavesdropper observe and , respectively.
For these times we set .

• For times , where , the
sender and receiver compute and

, respectively, and exchange
them over the public channel.

• At time , the sender and receiver compute
and the receiver computes

.
We require that for some sequence that vanishes as
, and

(4)

III. STATEMENT OF MAIN RESULTS

Below we consider the case when a public discussion channel
is not available. The results for the case of public discussion are
stated in Section III-E.

It is convenient to define the following quantities which will
be used in the sequel. Suppose that is a random variable such
that , and and are random variables such that

holds and and4

(5)

Furthermore, define

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

We establish the following lower and upper bounds on the
secret-key rate in Sections IV and V, respectively.

Theorem 1: A lower bound on the secret-key rate is given by

(7)

where the random variables , and defined above addition-
ally satisfy the condition

(8)

4The condition in (5) need not be explicitly enforced in the optimization of
Theorem 1. Suppose that � � � are such that the expression in (5) is violated.
We can find another choice � � � that satisfy (5) and achieve a higher rate in
(8). In particular, let � � � � and � � � �. Observe that �� � � �
�� � � whereas �� � � �� �� � � � � �. Note that the expression for
� in (7) increases whereas the constraint set in (8) remains unchanged with
this new choice of variables.
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and the quantities , , and are defined in
(6a)–(6d), respectively.

Theorem 2: An upper bound on the secret-key rate is given
by

(9)

where the supremum is over all distributions over the random
variables that satisfy , the cardinality of is
at-most the cardinality of plus one, and

(10)

The quantities , , , and are defined in (6c)–(f),
respectively.

Furthermore, it suffices to consider only those distributions
where are independent.

As suggested to us by an anonymous reviewer, the upper
bound in Theorem 2 can be further tightened as stated later.

Proposition 1: An upper bound on the secret-key rate is given
by

(11)
where the infimum is over three-receiver memoryless channels
of the form for which the distribution coin-
cides with the given channel whereas the maximization is over
independent random variables that satisfy (10).

A. Reversely Degraded Parallel Independent Channels

The bounds in Theorems 1 and 2 coincide for the case of re-
versely degraded channels as shown in Section VI-A and stated
in the following theorem.

Theorem 3: The secret-key-capacity for the reversely de-
graded parallel independent channels in Def. 3 is given by

(12)

where the random variables are mutually inde-
pendent, , and

(13)

Furthermore, the cardinality of obeys the same bounds as in
Theorem 2.

B. Gaussian Channels and Sources

For the case of Gaussian sources and Gaussian channels, the
secret-key capacity can be achieved by Gaussian codebooks as
established in Section VI-B and stated later.

Corollary 1: The secret-key capacity for the case of Gaussian
parallel channels and Gaussian sources in Section II-A-II is ob-
tained by optimizing (12) and (13) over independent Gaussian

distributions i.e., by selecting and ,
for some , independent of and ,

, and .

(14)

where also satisfy the following relation:

(15)

C. Remarks

1) Note that the secret-key capacity expression (12) exploits
both the source and channel uncertainties at the wiretapper.
By setting either uncertainty to zero, we can recover known
results. When , i.e., there is no secrecy from the
source, the secret-key-rate equals the wiretap capacity [31].
If , i.e., there is no secrecy from the channel,
then our result essentially reduces to the result by Csiszar
and Narayan [9], that consider the case when the channel
is a noiseless bit-pipe with finite rate.

2) In general, the setup of wiretap channel involves a tradeoff
between information rate and equivocation. The secret-key
generation setup provides an operational significance to
this tradeoff. Note that the capacity expression (12) in
Theorem 3 involves two terms. The first term is
the contribution from the correlated sources. In general,
this quantity increases by increasing the information rate

as seen from (13). The second term,
is the equivocation term and increasing this term, often
comes at the expense of the information rate. Maximizing
the secret-key rate, involves operating on a certain inter-
mediate point on the rate-equivocation tradeoff curve as
illustrated by an example in Section III-F.

D. Side Information at the Wiretapper

We consider the setup described in Fig. 1, but with a mod-
ification that the wiretapper observes a source sequence ,
obtained by —independent samples of a random variable .
In this case the secrecy condition takes the form in (1). We only
consider the case when the sources and channels satisfy a de-
gradedness condition.

Theorem 4: Suppose that the random variables sat-
isfy the degradedness condition and the broad-
cast channel is also degraded i.e., . Then, the se-
cret-key-capacity is given by

(16)
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where the maximization is over all random variables that
are mutually independent, and

(17)

holds. Furthermore, it suffices to optimize over random vari-
ables whose cardinality does not exceed that of plus two.

E. Secret-Key Capacity With Public Discussion

We now consider the case when a public discussion channel
is also available for communication.

Theorem 5: The secret-key capacity for source-channel setup
with a public discussion channel and a wiretap channel
that satisfies either or is

(18)

Equation (18) continues to be an upper bound in general.

The presence of a public discussion channels allows us to de-
couple the source and channel codebooks. We generate two sep-
arate keys—one from the source component using a Slepian-
Wolf codebook and one from the channel component using the
key-agreement protocol described in [1], [26]. Thus the achiev-
ability of (18) will not be discussed. The upper bound expression
(18) in Theorem 5 is established using techniques similar to the
proof of the upper bound on the secret-key rate for the channel
model [1, Theorem 3]. A derivation is provided in Section VII.

F. Example: Gaussian Channels With and Without Public
Discussion

Consider a pair of Gaussian parallel channels

(19)

where , , and . Furthermore,
and , where is independent of . The
noise variables are all sampled from the distribution
and appropriately correlated so that the users are degraded on
each channel. A total power constraint is selected and
the bandwidth expansion factor equals unity.

1) Without Public Discussion: From Theorem 1, in absence
of the public discussion channel

(20)

(21)

(22)

(23)

Fig. 3 illustrates the (fundamental) tradeoff between rate and
equivocation for this channel, which is obtained as we vary
power allocation between the two sub-channels. We also present

Fig. 2. An example of independent parallel and reversely degraded Gaussian
channels. On the first channel, the eavesdropper channel is noisier than the legit-
imate receiver’s channel while on the second channel the order of degradation
is reversed.

the function which monotonically increases with
the rate, since larger the rate, smaller is the distortion in the
source quantization. The optimal point of operation is between
the point of maximum equivocation and maximum rate as in-
dicated by the maximum of the solid line in Fig. 3. This corre-
sponds to a power allocation and the
maximum value is .

2) With Public Discussion: Fig. 4 illustrates the contribu-
tion of source and channel coding components for the case of
Gaussian parallel channels (19) consisting of (physically) de-
graded component channels. The term is independent
of the channel coding rate, and is shown by the horizontal line.
The channel equivocation rate is maximized at the se-
crecy capacity. The overall key rate is the sum of the two com-
ponents. Note that unlike Fig. 3, there is no inherent tradeoff
between source and channel coding contributions in the pres-
ence of public discussion channel and the design of source and
channel codebooks is decoupled.

IV. ACHIEVABILITY: PROOF OF THEOREM 1

We demonstrate the coding theorem in the special case when
and in Theorem 1. Furthermore via (5) we require

that

(24)

Accordingly, we have that (6a) and (6b) reduce to

(25a)

(25b)

The more general case, can be incorporated by introducing
an auxiliary channel and superposition coding [8] as
outlined in Appendix A. Furthermore, in our discussion later we
will assume that the distributions and are selected such
that, for a sufficiently small but fixed , we have

(26)

Remark 1: We note that the optimization over the joint dis-
tributions in Theorem 1 is over the region . If the
joint distributions satisfy that for some

, one can use the construction for a block-length and
then transmit an independent message at rate using a per-
fect-secrecy wiretap-code. This provides a rate of
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Fig. 3. Tradeoff inherent in the secret-key-capacity formulation. The solid curve is the secret-key-rate, which is the sum of the two other curves. The dotted curve
represents the source equivocation, while the dashed curve represents the channel equivocation (23). The secret-key-capacity is obtained at a point between the
maximum equivocation and maximum rate.

Fig. 4. Secret-key-rate in the presence of a public discussion channel in the Gaussian example (19). The solid curve is the secret-key-rate, which is the sum of
the two other curves. The horizontal line is the key rate from the source components. Regardless of the channel rate, the rate is 0.5 bits/symbol. The dashed-dotted
curve is the key-rate using the channel �� � � �.

as required.
The rate-expression stated in Theorem 1 is achieved in the

limit .

The rest of the proof is structured as follows. We first describe
an ensemble of codebooks as illustrated in Fig. 5 and the asso-
ciated encoding and decoding schemes at the receiver and at the
eavesdropper (with appropriate side information) for each such
codebook. We then show in Section IV-E that the error prob-
ability averaged over the ensemble of these codebooks can be
made arbitrarily small. This implies the existence of at-least one
codebook with the desired error probability. Finally our secrecy
analysis in Section IV-F for this particular codebook completes
the proof.
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Fig. 5. Construction of the codebook ensemble. The set � consists of � � sequences, each sampled uniformly from the set � of typical sequences.
The Wyner–Ziv codebook is formed by arranging these sequences into � bins, each consisting of � sequences. The elements of set � are then randomly
permuted to form the set ��� �. The elements of ��� � are then arranged to form the secret-key codebook as shown.

A. Codebook Construction

Throughout and are constants. Let5,

(27a)

(27b)

(27c)

(27d)

Substituting (6a)–(6d) and (26) into (27a)–(27d) we have that

(28)

• Selection of : Construct a set consisting of se-
quences, each sampled uniformly from the set of typ-
ical sequences6.

• Wyner–Ziv Codebook: Construct as follows. Parti-
tion the set into bins, each con-
sisting of codeword sequences so that bin con-
sists of sequences numbered to
in . The sequences in bin are enumerated as

(29)

• Secret-Key Codebook: Construct as follows. Ran-
domly permute the elements of to construct another
set . Partition the elements of into bins

, each consisting of sequences. The
bin consists of sequences that are numbered

in . The sequences in bin
are enummerated as

(30)

5We use the notation ��� ��� � � throughout the paper.
6Throughout we use the notion of strong typicality. See e.g., [13, Chapter 2].

• Channel Codebook Construct consisting of se-
quences each of which is sampled from
the typical set .

Remark 2: We note that our codebook construction does not
require binning as in the wiretap codebook construction [31].
The analysis of the error probability however reveals that our
source-channel codebook should also constitute a good code for
an eavesdropper when revealed the secret-key (36), analogous
to the wiretap codebook.

The codebooks are revealed to all the three terminals. As il-
lustrated in Fig. 5, note that while the Wyner–Ziv codebook is
obtained by arranging the elements of in a
table, the secret-key codebook is obtained by first randomly per-
muting the elements of and then arranging these elements into
a table. In the analysis of the error probability, av-
eraged over the ensemble of codebooks, this construction guar-
antees that two sequences belonging to the same bin in the se-
cret-key codebook are independently assigned to the bins of the
Wyner–Ziv codebook (cf. 172).

B. Encoding

• Given a sequence , the encoder searches for an element
such that . If no such sequence

exists then an error event is declared
• The encoder computes the Wynzer-Ziv bin index

. The function
is defined as follows:

(31)

• The encoder then selects the codeword and transmits it
over uses of the discrete memoryless channel.

• The encoder computes the Secret-key . The
function is defined as follows:

(32)
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Fig. 6. Source-Channel Code Design for secret-key distillation problem. The source sequence is mapped to a codeword in a Wyner–Ziv codebook. This
codeword determines the secret-key via the secret-key codebook. The bin index of the codeword constitutes a message in the channel codebook.

C. Decoding at Legitimate Receiver

The main steps of decoding at the legitimate receiver are as
follows.

• Given a received sequence , the receiver looks for a
unique index such that . An error event

happens if is not the transmitted codeword or no such
is found.

• Given the observed source sequence , the decoder then
searches for a unique index such that

. An error event is declared if a
unique index does not exist.

• The decoder computes and declares
as the secret-key.

The encoding and decoding steps are illustrated in Fig. 6.

D. Decoding With Side-Information at the Eavesdropper

We construct a decoder at the eavesdropper when the se-
cret-key is revealed as side information i.e., the decoder outputs

when it is revealed by the following steps:
• The eavesdropper constructs a set

.
• It searches for all sequences in , whose Wyner–Ziv bin

index belongs to , i.e.

(33)

Let be the event that the set does not contain the
sequence selected by the sender or contains more than
one sequence.

E. Error Probability Analysis

We show that averaged over the ensemble of codebooks

(34)

as . This implies the existence of at-least one codebook
in ensemble with this property. Since

it suffices to show that for each .
Recall that is the event that the encoder does not find a typ-

ical codeword in the Wyner–Ziv codebook. Since the number of
sequences it follows from standard argu-
ments that this event happens with vanishing probability. Since
the number of channel codewords equals ,
the error event which denotes the failure at the legitimate re-
ceiver to decode the channel codeword satisfies .
Since the number of sequences in each bin satisfies

, the event that the decoder fails to uniquely de-
code satisfies .

A proof for the fact that the error event also happens with
a vanishing probability when , i.e.

(35)

as is provided in Appendix B.
Now consider a codebook for which the error events have

vanishing probability. For this codebook the legitimate receiver
will be able to decode the secret-key with high probability.
Also since , applying Fano’s lemma

(36)

F. Secrecy Analysis

In this section, we show that for the codebook selected above,
the equivocation at the eavesdropper is close (in an asymptotic
sense) to .
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First we establish some uniformity properties which will be
used in the subsequent analysis.

1) Uniformity Properties:

Lemma 1: For any code in the random codebook ensemble,
the resulting random variable satisfies the following:

(37a)

(37b)

(37c)

The proof of Lemma 1 is provided in Appendix C.

Remark 3: Equation (37a) states that the Wyner–Ziv
bin index produced, is nearly uniformly distributed over

. The second condition (37a) states that in given
a bin all the codeword sequences in this bin are selected
with a nearly uniform probability. To interpret the last rela-
tion, recall that the Wyner–Ziv bin index is a message for the
channel codebook. Hence (37c) states that the equivocation rate
of the message at the eavesdropper is governed by the channel
equivocation.

We now complete the secrecy analysis using Lemma 1.

(38)

(39)

(40)

(41)

(42)

where (38) and (39) follow from the fact that is a de-
terministic function of and (40) follows from the fact that

holds for the proposed code construction,
and (41) follows via (37b) and (c) in Lemma 1 and via (36).

Thus we have that

as required.

V. CONVERSE: PROOF OF THEOREM 2

Given a sequence of codes that achieve a secret-key-
rate , there exists a sequence , such that as

, and

(43a)

(43b)

We can now upper bound the rate as follows:

(44)

(45)

(46)

where (44) and (45) follow from (43a) and (b), respectively.

Now, let be a random variable uniformly distributed over
the set and independent of everything else. Let

and , and
be a random variable that conditioned on has the dis-

tribution of . Note that since is memoryless, is inde-
pendent of and has the same marginal distribution as . Also
note that holds since the source sequences are
memoryless.

(47)

where (47) follows from the fact that is independent of and
has the same marginal distribution as .

Next, we upper bound as below.
Let denote the channel input distribution at time and
let denote the corresponding output distribution. Let

and let and be defined similarly.

(48)

(49)

(50)

where (48) follows from the Markov condition
and (49) follows from the fact that the channel is

memoryless and (50) follows from Jensen’s inequality since
the term is concave in the distribution (see, e.g.,
[19, Appendix-I]).

Combining (50) and (47) we have that

(51)

thus establishing the first half of the condition in Theorem 2. It
remains to show that

is also satisfied. Since holds, we have that

(52)

(53)

(54)

where the last inequality holds, since
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The last step holds via (43a) and the fact that .
Continuing (54), we have

(55)

(56)

(57)

(58)

where (56) follows from Csiszar’s Lemma (see, e.g., [8, Section
V]) which states that for any triple with an arbitrary
joint distribution and any we have that

(59)

Furthermore (57) follows from the fact that is indepen-
dent of and (58) again follows from the fact that
the random variables and are independent of and have
the same marginal distribution as and , respectively.

The cardinality bound on is obtained via Caratheordory’s
theorem and is shown in Appendix D.

Finally, since the upper bound expression does not depend on
the joint distribution of , it suffices to optimize over those
distributions where are independent.

A. Proof of Proposition 1

Following [14] we introduce a fictitious memoryless channel
whose marginal distribution coincides with

the original channel transition probability.

(60)

(61)

Following the steps leading to (50) we can establish that

(62)

and with we have via (47) that

(63)

and finally

(64)

(65)

where (64) follows from the secrecy constraint with respect to
the receiver who observes [cf. (43b)] and the last step can be
established in a manner analogous to that in (50). Substituting
(62), (63), and (65) into (61) and normalizing by we have that

(66)

The remaining constraint does not involve and directly follows
from (58).

Following the discussion in [14] we can interpret the bound
(66) as follows. We split the total secret-key into two parts. The
first part is kept secret from the fictitious user only and its rate is
upper bounded by whereas the second part is shared
with the fictitious user and kept secret from the eavesdropper.
Its rate is upper bounded by . The claim is that the
secret-key capacity in the original problem cannot exceed the
sum of two rates split in this way.

VI. REVERSELY DEGRADED CHANNELS

A. Proof of Theorem 3

First we show that the expression is an upper bound on the
capacity. From Theorem 2, we have that

where we maximize over those distributions where are
mutually independent , and

For the reversely degraded parallel independent channels, note
that

with equality when are mutually independent.
Thus it suffices to take to be mutually indepen-
dent, which establishes that the proposed expression is an upper
bound on the capacity.

For achievability, we propose a choice of auxiliary random
variables in Theorem 1, such that the resulting expression
reduces to the capacity. In particular, assume without loss in
generality that for the first channels we have that

and for the remaining channels we have that
. Let and where

the random variables are mutually independent. Note that
this choice of is feasible, i.e., it satisfies
and . It follows from (6a) and (6b) that

(67)

(68)
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(69)

where the last equality follows since for , we have
that . Substituting in (7) and (8) we recover the
capacity expression.

B. Gaussian Case (Corollary 1)

For the Gaussian case we show that Gaussian codebooks
achieve the capacity as in Corollary 1.

Recall that the capacity expression involves maximizing over
random variables , and

(70)

subjected to the constraint that and

(71)

Let us first fix the distribution and upper bound the objec-
tive function (70). Let and ,
where is independent of . We will use the condi-
tional entropy power inequality due to Bergmans [2],

(72)

for any pair of random variables independent of . The
equality happens if are jointly Gaussian.

Note that we can express (71) as

(73)

(74)

(75)

Letting

(76)

we have that

(77)

Rearranging we have that

(78)

The term in the objective function (70) can be upper
bounded as

(79)

(80)

where (79) follows by the application of the EPI (72) and (80)
follows via (76). Thus the objective function (70) can be ex-
pressed as

(81)

where satisfies (77).
It remains to show that the optimal has a Gaussian distri-

bution. Note that the set of feasible distributions for is closed
and bounded and hence an optimum exists. Also if is any op-
timum distribution, we can increase both and by
replacing with a Gaussian distribution (see, e.g., [21]) with
the same second-order moment. Since the objective function is
increasing in both these terms, it follows that a Gaussian also
maximizes the objective function (70).

VII. SIDE INFORMATION AT THE WIRETAPPER

A. Achievability—Theorem 4

The coding scheme is a natural extension of the case when
. In particular, the construction involves a subset

of partitioned into a Wyner–Ziv codebook and a se-
cret-key codebook . In addition the channel codebook
is a subset of the set . As before, the Wynzer-Ziv codebook
consists of bins, each consisting of a total of code-
words, where we select and

. However the parameters of the
secret-key codebook are selected to reflect the side information
at the eavesdropper. The secret-key codebook consists of a total
of bins, each consisting of sequences, where

(82)

(83)

reflect the increase in number of codewords in each bin to ac-
count for the side information at the eavesdropper. Furthermore
we replace in (6c) with

(84)

and the resulting secret-key rate in (7) is

(85)

as reflected in the exponent of . Finally since the channels
are assumed to be degraded note that and in (6a) and
(6b) are defined as

(86)

(87)

The channel codebook consists of a total of
codewords as in the no-side information case. Furthermore as
in (26), we present the coding scheme for

(88)
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and the case when follows by a time-sharing
argument. Thus the total number of codewords is

(89)

The encoder is analogous to the case without side informa-
tion described in Section IV-B. The transmitter upon observing

finds a sequence that is jointly typical. If there is
more than one sequence, any one of the candidates is selected
at random. The encoder declares the bin index of in the
as the secret-key codebook whereas the bin index of in
is used as the message for the channel codebook. The resulting
codeword is then transmitted over channel uses. The de-
coding at the legitimate receiver is as described in Section IV-C.
We summarize the main steps below

• The decoder searches for a unique sequence in that
is jointly typical with . If successful, it obtains the bin-
index of the Wyner–Ziv codebook.

• It then searches for a unique sequence in this bin jointly
typical with .

• It declares the bin-index of the resulting sequence in the
secret-key codebook to be the secret-key.

The decoding at the eavesdropper, with the knowledge of the
key described in Section IV-D, needs to be modified to take
into account the additional side information . The decoder
searches for a sequence in the set that is (a) jointly typical
with , i.e., and (b) the Wyner–Ziv bin
index is such that is jointly typical with
the received sequence , i.e., .

Analysis of the error probability at encoder and the legitimate
decoder follows from the no-side information case as there are
no modifications in the Wyner–Ziv codebook and the channel
codebook whereas the secret-key codebook is only used for a
lookup. To compute the error probability at the modified eaves-
dropper, note that the failure event can be expressed as

(90)

where denotes the index of the secret-key in i.e.,
and denotes the event that the sequence selected by

the transmitter fails to be in the typical set of the eavesdropper
while denotes the event that the sequence for
appears in the typical set of the eavesdropper. Thus we have that

(91)

From the law of large numbers it follows that .
Furthermore we can express

(92)

where denotes the event that is jointly typical with

and is the event that . Following the
analysis in Appendix B leading to (174) we have that

(93)

and furthermore since is selected independent of for
we have that . Since

the events and are due to atypical channel and source
events, respectively, they are mutually independent and hence

(94)

where . Using (82) we have that

(95)

(96)

which vanishes as . In the secrecy analysis in
Section VII-B we use the fact that any codebook satisfying (96)
also satisfies, from Fano’s lemma

(97)

B. Secrecy Analysis—Theorem 4

We show that the equivocation condition at the eavesdropper
(1) holds for the code construction. This is equivalent to showing
that

(98)

which we will now do.
We first provide an alternate expression for the left-hand side

(LHS) in (98)

(99)

(100)

(101)

(102)

where (100) follows from (97), (101) follows from the fact that
is a deterministic function of , while (102) follows from

the fact that forms a Markov chain.
The right-hand side (RHS) in (98) is established by showing that

(103a)

(103b)

To interpret (103a), recall that is the message to the
channel codebook. The equivocation introduced by the channel
codebook equals . Equation (103a)
shows that if in addition to , the eavesdropper has access to

, a degraded source, the equivocation still does not decrease
(except for a negligible amount). The intuition behind this
claim is that since the bin index is almost independent
of (see Lemma 2 below), it is also independent of
due to the Markov condition. Equation (103b) shows that the
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knowledge of reduces the list of sequences in any bin
from to .

To establish (103a)

(104)

(105)

(106)

where (104) follows from the fact that
, (105) from Lemma 1 and (106) from the fact that

so that

(107)

Thus we need to show the following.

Lemma 2:

(108)

Proof: From Lemma 1 note that

and hence we need to show that

as we do below.

(109)

Where (109) follows since each bin has
sequences, (from standard joint

typicality arguments) we have that

(110)

Furthermore

(111)

(112)

(113)

where (112) follows from the fact is an i.i.d. se-
quence whereas (113) follows via (179) since we have
that . Furthermore, define to
be an indicator variable that equals 1 if
and zero otherwise. From standard typicality arguments,

and and by
counting the number of jointly typical sequences in for
each we can show (see, e.g., [13, pp. 2.32—2.34])

(114)

Hence

(115)

(116)

(117)

where (115) follows from the fact that , since is
a binary random variable, and (116) follows from the fact that

and the last step follows from (114). Com-
bining (117), (113) and (109) completes the proof.

To establish (103b), we begin by observing that

(118)

(119)

(120)

(121)

(122)

(123)

(124)

where (119) follows from the fact that is a determin-
istic function of , and (120) follows through an argument
analogous to that used to establish (117) and (121) follows
from (37b), is established in Lemma 1, and (122) follows from
Lemma 2 since and (123) follows from
the fact that the sequence is i.i.d.

C. Converse—Theorem 4

Consider a sequences of codes that achieves a se-
cret key rate of . Let . Then using Fano’s Lemma,

and from the secrecy constraint.
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Combining these inequalities, we have that

(125)

(126)

(127)

where the (125) follows from the fact that
, and (126) follows from the Markov condition

that holds for the degraded channel,
while (127) follows from the fact that is a concave
function of (see e.g., [19, Appendix-I]) and we select

. Now, let , be a
random variable uniformly distributed over the set
and we have that

(128)

where we have used the fact that
which can be verified as follows:

(129)

where (129) follows from the fact that since the sequence is
sampled i.i.d., we have that

and since , it follows that:

Since, and are both independent of , we from (127)
that

Finally, using the steps between (55)–(58) as in the converse
for the case when , we have that

(130)

which completes the proof.

VIII. PUBLIC DISCUSSION CHANNEL

We establish the upper bound on the secret-key capacity in the
presence of interactive communication over a public discussion
channel.

Proof: We have the following:

(131)

(132)

(133)

where the last inequality follows from Fano’s lemma. Also from
the secrecy constraint we have that

which results in the following:

(134)

(135)

(136)

where the last step follows from the data-processing inequality
since and .

Using the chain rule, we have that

(137)

(138)

(139)
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where for each we define , , and via
(140)–(143) at the bottom of the page.

We now bound the expression in (139). First note that

where the third and fifth step follow from the fact that
and .

Recursively continuing we have that

(144)

where we use the facts that and that
are discrete and memoryless. Also note that

(145)

(146)

where (145) follows from the fact that
and that since the channel is memoryless

holds. The last two steps follow from the fact that conditioning
reduces entropy.

Finally as shown in the steps between (148) and (149), shown
at the bottom of the page, an upper bound is established
as

(147)

Furthermore since and
we have that

Continuing this process we have that

(150)

and thus
(151)

Substituting (144), (146), and (151) into (139) we have that

(152)

(153)

thus yielding the stated upper bound.

(140)

(141)

(142)

(143)

(148)

(149)
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IX. CONCLUSION

We introduce a secret-key agreement technique that harnesses
uncertainties from both sources and channels. Our lower bound
rate expression involves selecting an operating point that bal-
ances the contribution of source and channel equivocations. Its
optimality is established for the case of reversely degraded par-
allel channels.

We establish the secret-key capacity when the wiretapper has
access to a source sequence which is a degraded version of the
source sequence of the legitimate receiver. The case of public
discussion is also studied and a separation based scheme that
generates independent secret keys from the source and channel
components is shown to be optimal in some special cases.

APPENDIX A
EXTENSION OF THEOREM 1 TO GENERAL

In Section IV the coding theorem was derived for the case
when and . In this section we complete the
proof of the general case. We will only consider the case when

, since the general case follows by sampling the code-
words from the typical set and then passing each symbol of

through an auxiliary channel .
1) Codebook Construction: We describe the construction

of an ensemble of codebooks and by computing the error prob-
ability averaged over this ensemble, show that there exists one
codebook with the desired property.

2) Channel Codebook: Define and
and recall that since we have that
. We construct a base codebook consisting of

sequences, which forms the could center of
a superposition code. For each sequence we generate a
codebook consisting of
sequences. All sequences in are sampled uniformly at random
from the set while all sequences in are sampled uni-
formly at random from the conditionally typical set .
Here and as arbitrary constants such that

, which satisfies (26). If this condition is not sat-
isfied, as discussed in Section IV, time-sharing between trans-
mitting an independent message and the source coding approach
discussed here is necessary.

3) Source Codebooks: The Wyner–Ziv codebook is
constructed as in Section IV. A set consisting of se-
quences is constructed by selecting the sequences uniformly at
random from the set . These sequences are partitioned into

bins, each consisting of sequences where the con-
stants and are defined in (27a) and (b), respectively.
The secret-key codebook consists of a total of bins,
each with codewords, where

(154a)

(154b)

Via (26), note that

(155)

4) Encoding: The encoder finds a sequence jointly typ-
ical with and declares its bin index in the secret-key code-
book as the secret-key. The bin index in the Wyner–Ziv code-
book is the message that is transmitted to the receiver. The bin
index is split into two indices and

, which form messages for the two channel
codebooks and , respectively. Thus the encoder first
maps to a codeword in and then maps the message

to the codeword in . The sequence is trans-
mitted over channel uses.

5) Decoding: The decoder upon observing searches for
sequences and that are jointly typical
i.e., . By our choice of and this
succeeds with high probability. It then reconstructs the bin index

and searches for a sequence that lies in this bin
and is jointly typical with . As in Section IV-C, this step
succeeds with high probability. The secret-key is then computed
as .

6) Decoding With Side Information at the Eaves-
dropper: The eavesdropper, when revealed in addition
to , can reconstruct as follows. Upon observing

, the decoder searches for a sequence that is
jointly typical. This event succeeds with high probability
since . Thereafter it searches
for sequences in such that

satisfies: (1) and (2)
is jointly typical with .

The probability that a false sequence in satisfies these
conditions is

(156)

and hence the choice of in (154a) guarantees that the error
probability approaches zero provided .

Thus by Fano’s lemma, there exists one particular codebook
that satisfies

(157)

7) Secrecy Analysis: Following the steps leading to (40)
we have

(158)

(159)

where the second step follows from (157).
For the superposition codebook, since is the transmitted

message we have from [8, Corollary 2, p. 341]

(160)

and from (37b) in Lemma 1

(161)

Substituting these relations into (159) we have that

(162)
as required.
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APPENDIX B
PROOF OF (35)

We can express

(163)

where is the index of the sequence selected by the sender
in bin of , and where the event is defined as the
event

(164)

and for , is

(165)

It follows that

(166)

where denotes the compliment of the event .
By law of large numbers it follows that . To

evaluate we define the event as the event that
the Wyner–Ziv bin indices of the sequences and
are identical, i.e.

(167)

Using we can upper bound the error event as

(168)

where the first term is the error probability due to a collision
event and the second term is the error probability when there is
no collision.

The first term can be upper bounded as follows:

(169)

(170)

(171)

where (169) follows from the fact the event is due to the
atypical channel behavior and is independent of the random par-
titioning event , (170) follows from the fact that since both
the codebooks and are obtained by partitioning the set

after a random permutation, we have for any ,

(172)

and and (171) follows via rela-
tion (26). The second term reduces to an event that ,

sampled independent of satisfies . Hence
we have

(173)

Combining (171) and (173) we have

(174)

where we use the fact that from (24) in the last
step so that the required exists. Finally using relation (27c)
for , we have that

(175)

which vanishes with , whenever the decoding function selects
. Thus we have that as .

APPENDIX C
PROOF OF LEMMA 1

To establish (37a), define the function
which identifies the position of the sequence

in a given bin, i.e., and note that

(176)

(177)

(178)

(179)

where (176) follows from the construction of the joint-typicality
encoder, and (177) from the fact that the number of sequences

jointly typical with is equal to .
Since there are a total of codewords sequences, it
follows from (179) that:

(180)

Furthermore, marginalizing (176), we have that

(181)
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Fig. 7. Equivocation at the eavesdropper through the source-channel codebook. The channel codebook induces an ambiguity of � among the
codeword sequences when the decoder observes . Each sequence only reveals the bin index of the Wyner–Ziv codeword. In induces an ambiguity of
� at the eavesdropper, resulting in a total ambiguity of � .

Since it follows that:

(182)

Furthermore

(183)

To establish (37c) note that in our construction there is a
one-to-one correspondence between and . Hence we
have that

(184)

(185)

(186)

where (185) follows from (181) which provides a bound on the
probability of and the fact that there is a one-to-one corre-
spondence between and , and (186) follows by substi-
tuting the expression for in the relation (26).

To simplify the remaining two expressions let denote the
indicator variable, which equals 1 if and zero
otherwise. Recall that each is sampled uniformly from the set

and since the channel is memoryless it follows from
the conditional typicality lemma that
and also that

(187)

(188)

and furthermore

(189)

(190)

Substituting (188) and (190) in (186) establishes (37c).

APPENDIX D
CARDINALITY BOUNDS ON IN THEOREM 1

Let the alphabet of be denoted by and let
be a probability mass function indexed by . Define the

following functions of the :

(191)

The first functions are conditional probabilities
, each of which is a continuous function of the condi-

tional pmf . The function is also continuous in
by virtue of the continuity of the entropy function. Finally

the function is a continuous function of due
to the linear relation . Hence by the
Caratheodry theorem (see, e.g., [13, Appendix C]) there exists
another random variable taking no more than values
such that

(192)

(193)

(194)

Since the sum of the probability mass functions is 1 the last
relation also holds for . It is thus easy to see that any
point that can be achieved in Theorem 1 can also be achieved
by restricting to have cardinality no more than . This
completes the argument.



670 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

ACKNOWLEDGMENT

A. Khisti thanks M. Bloch for detailed comments and also
spotting an error in an earlier version of this paper.

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information
theory and cryptography—Part I: Secret sharing,” IEEE Trans. Inf.
Theory, vol. 39, pp. 1121–1132, Jul. 1993.

[2] P. Bergmans, “A simple converse for broadcast channels with additive
white Gaussian noise (corresp.),” IEEE Trans. Inf. Theory, vol. 20, pp.
279–280, 1974.

[3] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin,
“Wireless information theoretic security,” IEEE Trans. Inf. Theory,
vol. 54, pp. 2515–2534, Jun. 2008.

[4] F. Bui and D. Hatzinakos, “Biometric methods for secure communi-
cations in body sensor networks: Resource-efficient key management
and signal-level data scrambling,” EURASIP J. Adv. Signal Process.,
Special Issue on Adv. Signal Process. Pattern Recogn. Methods for
Biometr., pp. 1–16, Jan. 2008.

[5] S. Cherukuri, K. Venkatsubramanian, and S. Gupta, “Biosec: A bio-
metric based approach for securing communication in wireless net-
works of biosensors implanted in the human body,” in Proc. Workshop
on Wireless Security and Privacy (WiSPr), Int. Conf. Parallel Process.
Workshops, Taiwan, Oct. 2003, pp. 432–439.

[6] I. Csiszár, “Almost independence and secrecy capacity (in russian),”
Probl. Inf. Transmiss., vol. 32, pp. 48–57, 1996.

[7] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, pp. 339–348, Mar. 1978.

[8] I. Csiszár and J. Körner, Information Theory, Coding Theorems for Dis-
crete Memoryless Systems. Budapest, Hungary: Akadémiai Kiadó,
1981.

[9] I. Csiszár and P. Narayan, “Common randomness and secret-key gen-
eration with a helper,” IEEE Trans. Inf. Theory, vol. 46, pp. 344–366,
Mar. 2000.

[10] I. Csiszár and P. Narayan, “Secrecy capacities for multiple terminals,”
IEEE Trans. Inf. Theory, vol. 50, pp. 3047–3061, 2004.

[11] E. Ekrem and S. Ulukus, “The secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel,” IEEE Trans. Inf. Theory, sub-
mitted for publication.

[12] A. A. E. Gamal, “Capacity of the product and sum of two un-matched
broadcast channels,” Probl. Inf. Transmiss., pp. 3–23, Jan.–Mar. 1980.

[13] A. A. E. Gamal and Y. H. Kim, Lecture Notes on Network Information
Theory 2010, CoRR abs/1001.3404.

[14] A. Gohari and V. Anantharam, “Information-theoretic key agreement
of multiple terminals—Part I,” IEEE Trans. Inf. Theory, vol. 56, pp.
3973–3996, Jun. 2010.

[15] D. Gunduz, E. Erkip, and H. V. Poor, “Lossless compression with se-
curity constraints,” in Proc. Int. Symp. Inf. Theory, Toronto, Jul. 2008.

[16] X. He and A. Yener, “Secure degrees of freedom for Gaussian channels
with interference: Structured codes outperform Gaussian signaling,”
IEEE Trans. Inf. Theory, submitted for publication.

[17] A. Khisti, “Secret-key generation using correlated sources and noisy
channels,” in Presentation at the Inf. Theory and its Appl. (ITA) Work-
shop, San Diego, CA, Jan. 2008.

[18] A. Khisti, S. N. Diggavi, and G. W. Wornell, “Secret key generation
using correlated sources and noisy channels,” in Proc. Int. Symp. Inf.
Theory, Toronto, Canada, Jun. 2008.

[19] A. Khisti, A. Tchamkerten, and G. W. Wornell, “Secure broadcasting
over fading channels,” IEEE Trans. Inf. Theory, Special Issue on Inf.
Theoret. Secur., vol. 54, pp. 2453–2469, Jun. 2008.

[20] A. Khisti and G. W. Wornell, “Secure transmission with multiple an-
tennas: The MIMOME wiretap channel,” IEEE Trans. Inf. Theory, vol.
56, pp. 5515–5532, Nov. 2010.

[21] A. Khisti and G. W. Wornell, “Secure transmission with multiple an-
tennas: The MISOME wiretap channel,” IEEE Trans. Inf. Theory, vol.
56, pp. 3088–3104, Jul. 2010.

[22] O. O. Koyluoglu, H. E. Gamal, L. Lai, and H. V. Poor, “Interference
alignment for secrecy,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp.
3323–3332, Jun. 2011.

[23] L. Lai and H. E. Gamal, “The relay eavesdropper channel: Cooperation
for secrecy,” IEEE Trans. Inf. Theory, vol. 54, pp. 4005–4019, Sep.
2008.

[24] T. Liu and S. Shamai, “A note on the secrecy capacity of the mul-
tiple-antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55, pp.
2547–2553, Jun. 2009.

[25] U. Maurer and S. Wolf, “Information-theoretic key agreement: From
weak to strong secrecy for free,” in Proc. EUROCRYPT 2000, 2000,
vol. 1807, pp. 351–368.

[26] U. M. Maurer, “Secret key agreement by public discussion from
common information,” IEEE Trans. Inf. Theory, vol. 39, pp. 733–742,
Mar. 1993.

[27] N. Merhav, “Shannon’s secrecy system with informed receivers an its
application to systematic coding for wiretapped channels,” IEEE Trans.
Inf. Theory, vol. 54, pp. 2723–2734, 2008.

[28] V. Prabhakaran, K. Eswaran, and K. Ramchandran, Secrecy via
Sources and Channels—A Secret-Key—Secret Message Rate
Trade-Off Region [Online]. Available: http://arxiv.org/abs/0708.4219

[29] V. Prabhakaran and K. Ramachandran, “A separation result for secure
communication,” in Proc. 45th Allerton Conf. Commun., Contr., Com-
puting, Oct. 2007.

[30] E. Tekin and A. Yener, “The general Gaussian multiple-access and
two-way wiretap channels: Achievable rates and cooperative jam-
ming,” IEEE Trans. Inf. Theory, vol. 54, pp. 2735–2751, Jun. 2008.

[31] A. D. Wyner, “The wiretap channel,” Bell Syst. Tech. J., vol. 54, pp.
1355–1387, 1975.

[32] H. Yamamoto, “Rate distortion theory for the shannon cipher system,”
IEEE Trans. Inf. Theory, vol. 43, May 1997.

Ashish Khisti (M’09) received the B.A.Sc. degree in engineering sciences from
University of Toronto and the S.M. and Ph.D. degrees from the Massachusetts
Institute of Technology (MIT), Cambridge.

He is an Assistant Professor in the Electrical and Computer Engineering
(ECE) Department, University of Toronto, Toronto, Ontario, Canada. His
research interests span the areas of information theory, wireless physical
layer security, and streaming in multimedia communication systems. At the
University of Toronto, he heads the signals, multimedia and security laboratory.

Dr. Khisti was a recipient of the NSERC postgraduate fellowship, for his
graduate studies, a recipient of HP/MIT alliance fellowship, a Harold H. Hazen
Teaching award, and the Morris Joseph Levin Masterworks award.

Suhas N. Diggavi (M’99) received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Delhi, and the Ph.D. degree in electrical
engineering from Stanford University, Stanford, CA, in 1998.

After completing the Ph.D. degree, he was a Principal Member Technical
Staff in the Information Sciences Center, AT&T Shannon Laboratories, Florham
Park, NJ. After that, he was on the faculty at the School of Computer and Com-
munication Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland, where he directed the Laboratory for Information and Com-
munication Systems (LICOS). He is currently a Professor with the Department
of Electrical Engineering, University of California, Los Angeles. His research
interests include wireless communications networks, information theory, net-
work data compression and network algorithms. He has eight issued patents.

Dr. Diggavi is a recipient of the 2006 IEEE Donald Fink prize paper
award, 2005 IEEE Vehicular Technology Conference Best Paper Award,
and the Okawa Foundation Research Award. He is currently an editor for
ACM/IEEE TRANSACTIONS ON NETWORKING and the IEEE TRANSACTIONS

ON INFORMATION THEORY.

Gregory W. Wornell (S’83–M’91–SM’00–F’04) received the B.A.Sc. degree
(with honors) from the University of British Columbia, Canada, and the S.M.
and Ph.D. degrees from the Massachusetts Institute of Technology (MIT),
all in electrical engineering and computer science, in 1985, 1987, and 1991,
respectively.

Since 1991, he has been on the faculty at MIT, where he is Professor of Elec-
trical Engineering and Computer Science. At MIT, he leads the Signals, Infor-
mation, and Algorithms Laboratory within the Research Laboratory of Elec-
tronics, and co-directs the MIT Center for Wireless Networking. He is also
chair of Graduate Area I (Systems, Communication, Control, and Signal Pro-
cessing) within the EECS Department’s doctoral program, and a member of the
MIT Computational and Systems Biology Initiative. He has held visiting ap-
pointments at the Department of Electrical Engineering and Computer Science,
University of California, Berkeley, during 1999–2000, at Hewlett-Packard Lab-
oratories, Palo Alto, CA, in 1999, and at AT&T Bell Laboratories, Murray Hill,
NJ, during 1992–1993. His research interests and publications span the areas of
signal processing, digital communication, and information theory, and include
algorithms and architectures for wireless and sensor networks, broadband sys-
tems, and multimedia environments.

Dr. Wornell has been involved in the Signal Processing and Information
Theory societies of the IEEE in a variety of capacities, and maintains a number
of close industrial relationships and activities. He has won a number of awards
for both his research and teaching.


