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Abstract—We consider the problem of minimizing playback
delay in streaming over a packet erasure channel with fixed
bandwidth. When packets have to be played in order, the expected
delay inherently grows with time. We analyze two cases, namely
no feedback and instantaneous feedback. We find that in both
cases the delay grows logarithmically with the time elapsed since
the start of transmission, and we evaluate the growth constant,
i.e. the pre-log term, as a function of the transmission bandwidth
(relative to the source bandwidth). The growth constant with
feedback is strictly better that the one without, but they have
the same asymptotic value in the limit of infinite bandwidth.

I. INTRODUCTION

In recent years there has been a widespread proliferation of

streaming applications. Unlike traditional file transfer where

only total delay matters, streaming imposes delay constraints

on each individual packet.

In the presence of lossless instantaneous feedback, the task

of transmission is simple: Automatic-repeat-request (ARQ)

protocols where the encoder only retransmits lost packets are

optimal under any delay metric. However, when feedback is

lossy, delayed or completely absent, more efficient erasure-

correcting codes are needed. This is because the encoder has

inherent uncertainty about the state of the decoder, and it

must strike a balance between transmitting new packets and

repeating old packets that could have been erased.

Only a few papers in literature have analyzed stream-

ing codes. Fountain codes [1] are capacity-achieving erasure

codes, but they are not suitable for streaming because the

decoding delay is proportional to the size of the data. Delay-

optimal codes without feedback for adversarial and cyclic burst

erasure channels have been extensively explored in [2]. The

thesis also proposed universal codes for more general erasure

models and analyzes their decoding delay. These codes are

based upon sending linear combinations of source packets;

indeed, it can be shown that there is no loss in restricting

the codes to be linear. This reduces the task of the coding

scheme to deciding which packets should be included in every

combination. The universal codes proposed in [2] are greedy

codes where all packets generated so far are included in a

combination. Greedy codes have also been proposed for other

applications: in [3] for packet networks, and in [4] for a

broadcast scenario with perfect feedback.

This work was supported in part by MIT Lincoln Laboratory, by AFOSR
under Grant No. FA9550-11-1-0183, and by Hewlett-Packard Laboratories.

Many streaming applications involve playback. We thus

choose to look at the playback delay, which takes this into

account and reflects the end-to-end performance, rather than

the more common decoding delay metric. While in audio

and video applications some packets can be dropped without

affecting the streaming quality, other applications have strict

order constraints on the playback of packets. Our definition

of playback delay is suitable for these applications. This

definition was previously used in [5].

The delay performance of greedy codes has not been ana-

lyzed and compared to other codes. This work aims to fill that

gap, and in particular consider the playback delay. We show

that expected playback delay grows proportionally to log n for

time index n. Thus, the key parameter in understanding the

asymptotic behavior of delay is the proportionality constant,

or pre-log. We find the optimal constant within a family of

schemes that we call time-invariant, and conjecture that this

is the optimum for any scheme. This optimum is attained by

the conceptually simple coded repetition scheme.

Further, we show that even with instantaneous feedback, the

playback delay has similar logarithmic growth, although with

a smaller pre-log term. We evaluate that constant, and prove

that feedback strictly helps reduce the growth of delay, though

the gain vanishes in the limit of infinite bandwidth.

The paper is organized as follows. We describe the system

model in Section II and introduce some preliminary concepts

in Section III. In Section IV we analyze streaming without

feedback and find the optimal pre-log term in the growth of

playback delay. In Section V we find the pre-log term for

streaming with instantaneous feedback and compare it with

the no-feedback case. Finally, Section VI concludes the paper

and presents future research directions.

II. SYSTEM MODEL

We consider a point-to-point packet streaming scenario

where the source generates one packet pn in every time slot n.

The encoder creates b coded packets yn,i = f(p1, p2 ..pn),
for 1 ≤ i ≤ b in each slot, where we assume that b is an

integer1. The channel is i.i.d erasure for every batch of b
packets. With probability ρ, all b coded packets are correctly

received, otherwise all are erased. We assume ρb > 1 to ensure

that the rate of packet generation is less than channel capacity.

1Since we are interested only in the asymptotic behavior of playback delay,
the main results of this paper also hold for non-integer values of b.
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Fig. 1: The time-invariant scheme with b = 3 and pattern

a = [0 2 3]. Each number n in the packets transmitted denotes

a linear combination of first n packets.

The receiver plays one packet per slot in exact order. Any

packet decoded out of order is buffered until all past packets

are received and played. We assume that a packet decoded in

slot n is available for playback from slot n+ 1 onwards. We

choose playback delay Pn, the time between the generation

and playback of packet pn as the metric of streaming quality.

III. PRELIMINARY CONCEPTS

A. Advantage of Coding

For the given system model, a simple repetition strategy is

to transmit packet pn in slots n, n+1, .. n+b−1. However,

if these b slots are erased, pn is lost permanently and the

playback ceases with probability 1. To avoid this, we can

transmit a linear combination yn =
∑n

j=1 cjpj of packets p1
to pn, instead of packet pn by itself. The coefficients cj ∈ Fq

and cj �= 0 for all j. For large enough field size q, there exist

coefficients such that all linear combinations transmitted are

independent. Although we consider yn as a linear combination

here, it can be a general function f(p1, p2, ..pn). Coding

offers the advantage that if yn is received when pn has been

already decoded, it can be used to decode previous packets.

We refer to this scheme as the coded repetition scheme. The

coded repetition scheme is a special case of a general class of

schemes which can be defined as,

Definition 1 (Time-invariant scheme). A time-invariant
scheme with pattern a = [a1 a2 .. ab] is the coding strategy
where the source transmits combinations yn−ai

, for 1 ≤ i ≤ b
in slot n, where ai > 0, ai < aj for all i < j, and yn is a
linear combination of packets p1 to pn.

The coded repetition scheme corresponds to pattern ai =
i − 1 for all 1 ≤ i ≤ b. Fig. 1 shows a typical time-

invariant scheme. A number k in the figure denotes the linear

combination yk =
∑k

j=1 cjpj , with cj �= 0 for all j. The

constraint ai < aj for all i < j ensures that each pattern

a gives a unique scheme. If for some i, ai = ai+1, setting

ai+1 = ai + 1 gives an equivalent scheme.

B. Renewals in Packet Decoding

The receiver is able to decode all packets up to the current

time when the number of combinations received exceeds the

number of packets generated. After this instant, the decoding

of future packets is independent of the past, and the system

behaves as if it was reset. This phenomenon gives rise to the

following definition of renewals in packet decoding.
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Fig. 2: Illustration of renewals for the coded repetition scheme.

Each number n in the packets transmitted denotes a linear

combination of all packets p1 through pn. The cross marks

denote erased slots and tick marks denote successful slots.

Definition 2 (Renewal). A renewal is defined as the earliest
time n when all packets pj , 1 ≤ j ≤ n have been decoded.

The time between the (i−1)th and ith renewal is defined as

inter-renewal time Ri, where we assume that the 0th renewal

occurs at time zero. It is easy to show that inter-renewal times

are i.i.d. Note that some packets can be decoded between

renewal instants. But at least one packet remains undecoded

until a renewal occurs.

In the special case of the coded repetition scheme, decoding

occurs only at renewal instants. Fig. 2 illustrates renewals

of the coded repetition scheme for b = 2. The plot at the

bottom of the figure shows the trajectory of the number of

undecoded combinations received with time. A renewal takes

place every time the trajectory hits the slope one line. For the

coded repetition scheme, the playback delay satisfies

Pn = max(R1, R2, ..RJ), (1)

where J is smallest integer such that
∑J

j=1 Rj ≥ n. There is

an interruption in playback when the new inter-renewal time

is longer than the current maximum.

The term information debt introduced in [2] is closely

related to renewals. Information debt is the amount of more

information needed for successful decoding. A renewal occurs

when the information debt becomes non-positive.

IV. STREAMING WITHOUT FEEDBACK

First, we consider the case where the encoder has no

feedback about channel erasures. We show that for all time-

invariant schemes the expected playback delay is asymptoti-

cally 1/λ·log n where we refer to λ as the growth constant. The
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coded repetition scheme achieves the largest growth constant

λ = λc where we define λc � D(1/b||ρ). In this definition,

D(p||q) is the binary information divergence function which

is defined for probabilities 0 < p, q < 1 as,

D(p||q) = p log
p

q
+ (1− p) log

1− p

1− q
.

We prove the following main theorem,

Theorem 1 (Expected Playback Delay). For the optimal time-
invariant scheme, the expected playback delay E[Pn] satisfies

E[Pn] =
1

λc
log n+O(log log n). (2)

The achievability and converse parts of Theorem 1 are

proved in the following subsections.

A. Achievability proof

The achievability part of Theorem 1 is an immediate corol-

lary of the following lemma.

Lemma 1 (Performance of the coded repetition scheme).
For the coded repetition scheme, the expected playback delay
E[Pn] satisfies

E[Pn] ≤ 1

λc
log n+O(1), (3)

E[Pn] ≥ 1

λc
log n− log log n+O(1). (4)

We prove the achievability by using the following lemmas

where we first determine the distribution of inter-renewal time

R for the coded repetition scheme and use it to analyze the

behavior of playback delay of the coded repetition scheme.

Lemma 2 (Distribution of inter-renewal time). For an i.i.d.
erasure channel with success probability ρ and bandwidth
b packets/slot, the probability mass function (PMF) of inter-
renewal time R for the coded repetition scheme is,

Pr(R = n) =

(
1− b(k − 1)

n− 1

)(
n− 1

k − 1

)
ρk(1− ρ)n−k, (5)

where k = �n/b�.
Proof: In each slot the decoder receives b equations with

probability ρ and 0 with probability 1 − ρ. Let Sn be the

number of equations received until time n. Define the event

Gn−1 = {Sj < j for 1 ≤ j ≤ n− 1}, which means that there

is no renewal until slot n−1. The Generalized Ballot theorem

from [6] states that

Pr(Gn−1|Sn−1) =

(
1− Sn−1

n− 1

)+

. (6)

For a renewal to occur at time n, b (k − 1) equations where

k = �n/b� should be received in n − 1 slots and the channel

should be good in the nth slot. Thus,

Pr(R = n) = ρ · Pr(Gn−1|Sn−1) Pr (Sn−1 = b(k − 1)) .

Substituting (6) and the PMF of binomial distribution for

Pr (Sn−1 = b(k − 1)), we get the result in (5).

Since we are interested in the long term evolution of

playback delay Pn, it is useful to look at the behavior of the

distribution Pr(R = n) for large n.

Lemma 3 (Asymptotic behavior of the PMF). For the coded
repetition scheme, the tail distribution of inter-renewal time R
decays exponentially with rate

− lim
n→∞

log Pr(R > n)

n
= D

(
1

b
‖ρ
)

= λc (7)

The above result can also be stated as, Pr(R > n)
.
= e−nλc

where
.
= stands for asymptotic equality. This lemma can be

proved by applying the Stirling’s approximation to the PMF

of R derived in Lemma 2. The full proof is omitted due

to space limitations. We now use this result to prove Lemma 1.

Proof of Lemma 1: For the coded repetition scheme,

Pn = max(R1, R2, ..RJ) where J is the smallest interger

such that
∑J

k=1 Rk ≥ n, and Rk’s are i.i.d. with distribution

of the inter-renewal time in Lemma 2. Thus,

E[Pn] = EJ

[
E

[
max(R1, R2, ..RJ)

∣∣∣∣∣
J−1∑
i=1

Ri < n,

J∑
i=1

Ri ≥ n

]]
.

We now evaluate upper and lower bounds (3) and (4) on E[Pn].
From Lemma 3 we know that the tail distribution

Pr(R > m) = e−f1(m)−mλc , (8)

where the function f1(m) is such that limm→∞ f1(m)/m = 0.

To get an upper bound we define a geometric random

variable G with decay rate λc. We know that Pr(G > m) =
e−mλc ≥ Pr(R > m) for all m. Thus,

E[max(R1, R2, ..RJ)] ≤ E[max(G1, G2, ..GJ)], (9)

≤ 1

λc
log J +O(1), (10)

where in (10) we use the result given in [7] that the expectation

of the maximum of J geometric random variables with decay

rate λc is 1/λc ·∑J
i=1

1/i, which is asymptotically equal to

log J . By the strong law of renewal processes [8], we know

that J grows linearly with n. Thus, the expectation over J of

(10) replaces J by n and adds an O(1) term to give the upper

bound (3).

Similarly, we derive the lower bound (4) by defining another

geometric random variable H with decay rate λc + ε(n) and

shifted g(n) units to the left of 0. The functions g(n) and ε(n)
are chosen such that for all m,

Pr(H > m) ≤ Pr(R < m),

e−(m+g(n))(λc+ε(n)) ≤ e−f1(m)−mλc ,

ε(n) ≥ f1(m)− λcg(n)

m+ g(n)
. (11)

We choose function g(n) = log log n. For large n, the right-

hand side of (11) will become negative and we can choose

2858
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Fig. 3: Difference between the time-invariant scheme with a =
[0 2] and its genie-assisted form. The two bottom rows show

the packets played in every slot for the two schemes.

ε(n) = 0. Thus for large n,

E[max(R1, R2, .. RJ)] ≥ E[max(H1, H2, .. HJ)],

≥ 1

λc + ε(n)
log J − g(n) +O(1),

=
1

λc
log J − log log n+O(1).

By the strong law of renewal processes and taking the expec-

tation over J we get the lower bound (4).

B. Converse proof

The converse part of Theorem 1 is a corollary of the

following lemma.

Lemma 4 (Performance of any time-invariant scheme). For
any time-invariant scheme with pattern a as defined in Defi-
nition 1, the expected playback delay E[Pn] satisfies

E[Pn] ≥ 1

λa
log n+O(log log n), (12)

where λa ≤ λc for all a.

To simplify the analysis of playback delay, we define a

genie-assisted version for every time-invariant scheme. In

the genie-assisted scheme, a renewal occurs whenever the

first packet in that interval is decoded. Fig. 3 illustrates the

difference between the time-invariant scheme with pattern

a = [0 2] and its genie-assisted version.

Let Ra be inter-renewal time of the genie-assisted scheme

with pattern a. Then, the playback delay after n slots P ∗n =
max(Ra,1, Ra,2 ..Ra,K) where K is the smallest integer

such that
∑K

i=1 Ra,i ≥ n. Let λa be the decay rate of its

tail distribution as defined in Lemma 3. We can prove the

following result,

Lemma 5 (Asymptotic decay rate for time-invariant schemes).
The decay rate λa of the genie-assisted time-invariant scheme
with pattern a is such that, λa ≤ λc for all a.

Proof: We lower bound the tail distribution of Ra by

Pr(Ra > n) ≥ (1− ρ)ab+1 Pr(Ra > n|slots [1, ab + 1] erased),

≥ (1− ρ)ab+1.Pr(R > n− ab − 1), (13)
.
= e−nλc .
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Fig. 4: The optimal ARQ-based scheme for streaming with

instantaneous feedback

where in (13), R is the inter-renewal time of the coded

repetition scheme and its tail distribution is as derived in

Lemma 3.

Proof of Lemma 4: Since the genie-assisted version gives

a lower bound on the playback delay of the actual time-

invariant scheme we have,

E[Pn] ≥ E[max(Ra,1, Ra,2 ..Ra,K)], (14)

where in K is the smallest integer such that
∑K

i=1 Ra,i ≥ n.

We then obtain (12) by using analysis similar to the proof

of Lemma 1, but applied to renewals of the genie-assisted

scheme.

Thus, we have shown that the coded repetition scheme gives

largest growth constant λ among all time-invariant schemes.

We have the following conjecture about time-varying schemes.

Conjecture 1. No scheme can achieve a larger value of
growth constant λ than λc for the coded repetition scheme.

We believe this is true because in absence of feedback, the

statistics of undecoded packets are asymptotically stationary.

Although the playback delay is not stationary, it is a function

of the undecoded packets. Thus, using a time-varying scheme

cannot improve the playback delay performance.

V. STREAMING WITH INSTANTANEOUS FEEDBACK

Now consider that the source receives instantaneous feed-

back about past erasures and thus can adapt its transmission

strategy. For this model, we determine λ, the growth constant

of playback delay, as a function of bandwidth b and channel

success probability ρ.

A. Streaming ARQ scheme

It is clear that a simple ARQ-based scheme as shown in

Figure 4 is optimal for streaming with instantaneous feedback.

In every slot, the source transmits the b minimum-index

packets that have not been decoded yet. If less than b packets

remain to be sent, the source transmits all of them.

The dynamics of the source and receiver buffers can be

modeled by considering an equivalent queueing system where,

in every slot one packet enters the source queue. In every slot

b packets depart from the queue with probability ρ and 0 with

probability 1− ρ. The departures from the source queue enter

the playback queue at the receiver which plays one packet

in every slot. There is an interruption in playback when the

receiver queue becomes empty.
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B. Analysis of playback delay

We prove the following theorem about E[Pn] with feedback.

Theorem 2. For the streaming ARQ scheme with instanta-
neous feedback, the expected playback delay satisfies (3) and
(4) with growth constant λ = log(1/α) where α is the real
positive root of

αb − 1

α− 1
=

1

ρ
, α �= 1. (15)

Proof: Define a renewal as the instant when the source

queue is empty, and Rk as the kth inter-renewal time. Assume

that the system resets to its initial state with both queues empty

when a renewal takes place. Let Ik be the number of packets

remaining in the playback queue at the kth renewal instant. For

the first renewal, I1 is equal to the number of interrupted slots

in that interval. For the kth renewal interval, an interruption

will occur only if Ik is greater than Ii for all 1 ≤ i < k. Thus,

the playback delay Pn of packet pn is

Pn = max(I1, I2, I3, .. IK) (16)

where K is the smallest integer such that
∑K

k=1 Rk ≥ n. The

random variables Ik are i.i.d. since each belongs to a different

renewal interval. We now determine the asymptotic decay rate

of Pr(I > t) as defined by Lemma 3 and use it to find E[Pn].
We can model the system by a random walk Sn = X1 +

X2+..Xn where Xi’s are i.i.d. binary random variables which

are b−1 with probability 1−ρ and −1 with probability 1−ρ.

Sn is the difference between the number of packets decoded

at receiver and number of packets generated at source until

time n. Since ρb > 1 this random walk has a positive drift.

Consider two thresholds 0 and −t such that the random walk

stops permanently when it crosses any one of them. A renewal

corresponds to crossing threshold 0. The tail distribution

Pr(I > t) = Pr (
⋃

n{Sn < −t}), the probability that the

random walk crosses −t before crossing 0. The Kingman

bound [8] is an asymptotically tight bound on this probability

for random walk Sn = X1 +X2 + ..Xn. It states that,

Pr

(⋃
n

{Sn < −t}
)

.
= ert (17)

where r is the negative root of γ(r), the semi-invariant moment

generating function of X . For the binary random variable X
defined above,

γ(r) = log
(
ρer(b−1) + (1− ρ)e−r

)
(18)

Replacing α = er we get (15). Thus, the tail distribution

Pr(I > t) decays with rate λ = log(1/α). We find the bounds

(3) and (4) by taking an expectation of (16) and applying

the strong law of renewal processes, as done in the proof of

Lemma 1.

VI. DISCUSSION AND FUTURE WORK

In this paper we analyzed the playback delay for streaming

over an erasure channel with bandwidth b and erasure proba-

bility 1−ρ. We showed that the dominant term in the growth of
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Fig. 5: Behavior of λ with bandwidth b packets/slot for the

no-feedback and instantaneous feedback cases. The success

probability ρ = 0.6, and logarithms are to the natural base.

playback delay with time index n is 1/λ · log n. We derived the

largest value of λ as a function of b and ρ for the no-feedback

and instantaneous feedback cases.

For streaming without feedback, the proposed coded rep-

etition scheme achieves λ = D(1/b||ρ). With instantaneous

feedback, a simple ARQ based scheme achieves λ = log(1/α)
where α is the real positive root of (15). The behavior of

λ with bandwidth b is illustrated in Fig. 5. As b approaches

infinity, both schemes converge to log(1/1−ρ). However the

instantaneous feedback converges at a much faster rate. The

achievable growth rate λ with delayed feedback will lie in the

region between the two curves in Fig. 5.

Finding the optimal scheme with delayed feedback is a part

of ongoing work. Another research direction is to consider

a broadcast streaming setup and investigate the trade-off

between delay and the number of users served by the source.

Although we assumed strict playback in this paper, the

proposed coding scheme can be extended to allow packet

dropping to reduce playback delay. Interested readers can refer

to [9] for details.
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