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Abstract—The channel for a Comm-on-the-move (COTM) ter-
minal in a blockage environment communicating over a satellite
can be characterized as a packet erasure channel with long
channel memory and long feedback delay. The goal of our
research is to enable real-time application, such as a two-way
voice call, over such a challenging channel. These packets need to
be delivered reliably with strict order requirement. While various
automatic repeat request (ARQ) techniques are often used for
this purpose, they become ineffective when the channel is severely
blocked with long memory and long feedback delay, and the user
desires delay performance that is only a small amount above
the physical limit of the channel while not consuming too much
bandwidth.

We propose a simple periodic retransmit solution for this
problem. For example, for a 50% blocked channel with the round
trip time being about the same as the channel memory duration,
we can achieve average packet delay that is less than one channel
memory duration over the minimum possible, while being more
than 50% efficient with the bandwidth consumed.

For this simple periodic retransmit scheme, we analyze the
expected delay of a packet, and compute the difference from
the best possible delay. We evaluate the bandwidth consumption
and show a delay-throughput tradeoff. We also suggest rules for
selecting operating points that balances delay and throughput.
Furthermore, we characterize user perception metrics of expected
duration and frequency of playback interruptions. Simulations
are used to validate the analysis.

Index Terms—real-time communication; communications-on-
the-move (COTM); satellite; packet-loss channel; erasure; block-
age; channel with memory; Markov model; delay; throughput;
link-layer retransmission; ARQ;

I. INTRODUCTION

The channel for a Comm-on-the-move (COTM) terminal in
a blockage environment communicating over a satellite can be
characterized as a packet erasure channel with long channel
memory and long channel propagation and feedback delay.
The goal of our research is to enable real-time streaming,
such as video or voice, over such a challenging channel. The
stream may be a long stream, such as a surveillance video
for situational awareness, or short bursts, as in conversations.
A fundamental limitation on the delay performance is due to
the physical channel blockage, i.e., packets generated during
channel blockage cannot get through while the channel is
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blocked and must wait for channel to open up. We would
like to have a retransmission strategy that can achieve delay
performance that is only a small amount above the best
possible and yet not consume a large amount of bandwidth
with unnecessarily frequent retransmissions.

Traditionally, ARQ methods have been used for reliable
delivery of ordered packets over unreliable links. However,
known ARQ methods may not work well for severely-blocked
long-memory long-delay channels and may not work well for
packets that are generated and consumed sequentially in real
time with low desired delay. For examples, for an interactive
voice application (one packet per 20 ms), users may desire a
delay performance of no more than a few seconds, even when
the channel delay and channel blockage memory are both on
the order of a second and the channel is blocked 50% of the
time.

Basic ARQ techniques, stop-and-wait ARQ, go-back-N
ARQ, and selective-repeat ARQ, become inefficient as the
channel loss rate becomes higher than 10−3 [1]. Hybrid ARQ
schemes that utilize forward error correction (FEC) coding
were designed to reduce the effective channel loss rate [1]–[3].
When the channel degradation is mainly due to noise, FEC can
be quite effective. However, for blockage channels, the FEC
would have to span many (possibly tens) independent channel
realizations to achieve the same effect. When the channel
memory is long, the coding would induce a long delay and
a high complexity. Without coding, the ARQ mechanism still
needs to deal with the high packet loss rate. In [4], a hybrid
ARQ technique was used to support interactive voice over a
moderately blocked satellite channel as a COTM terminal was
driven in a city environment, and the user experience was poor.

Furthermore, most ARQ schemes focus on the throughput
achieved by the system rather than delay. In all ARQ schemes,
including the hybrid ARQ schemes, retransmissions are only
performed after a full round trip time (RTT). When the channel
loss rate is high, there is a non-negligible probability that it
would take several RTT for a packet to get through. When
ordered packet delivery is required, one such packet would
delay all packets that come after. For real-time applications,
it is desirable to achieve delay that is only a few RTT or
even less than one RTT. If the physical channel is blocked for
multiple seconds, the delay should be just a little bit beyond
that. To achieve this level of low delay over a severely-blocked
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Fig. 1. Streaming system block diagram.

long-memory long-delay channel, a different kind of scheme
is needed.

Our prior work [5]–[7] studied this problem without the
channel memory consideration; the blockages were modeled as
independent and identically distributed (IID) events. A multi-
burst transmission scheme was proposed where a number of
retransmissions are sent over independent channel realizations
in one RTT, and the number increases as we get close to
a desired delay target. The scheme has the option to yield
low delay very close to the physical channel limit by using
a large number of retransmissions. We showed that there is
a fundamental tradeoff between the delay achieved and the
bandwidth consumption; we could trade delay for bandwidth
saving and vice versa.

This work addresses the scenario with long channel mem-
ory, which could last for many seconds [4]. In this case, the
channel memory is longer than or on the same order as channel
delay and the duration of some short messages. One possible
scenario is where the channel memory, channel delay, and
message length are all on the order of one to a few seconds.

In this paper, we propose a rather simple periodic retransmit
scheme for the problem. It is likely that this is not the best
that can be done, but we will show that it has reasonably good
performance when the retransmission interval, δ, is chosen
appropriately. Generally, δ that is too large would lead to delay
much larger than the physical limit, and a δ that is too small
relative to the channel memory would gain little in delay and
yet incur a lot of bandwidth consumption.

This paper is outlined as follows. In Section II, the system
model is given including the model for the channel memory.
In Section III, we determine the expected delay of a packet
and compute the difference from the best delay achievable by
any scheme, which is only limited by the physical channel
blockages. In Section IV, the bandwidth requirement is evalu-
ated. Section V shows the tradeoff between the delay achieved
and the bandwidth requirement, while Section VI suggest
rules for selecting operating points depending on the channel
blockage probability and how the channel delay compares
with the channel memory duration. We show that it is indeed
possible to achieve delay that is slightly above the physical
limit with reasonable bandwidth consumption. For example,
for a 50% blocked channel with the round trip time being about
the same as the channel memory duration, we can achieve
average packet delay that is less than one channel memory
duration over the minimum possible, while being more than
50% efficient with the bandwidth consumed. In Section VII,
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Fig. 2. Continuous-time two-state Markov model for channel erasures.

we analyze the a few user perception metrics such as expected
duration and frequency of playback interruptions. Section VIII
presents simulation results that validate the analysis. SectionIX
provides some concluding remarks.

II. SYSTEM MODEL

The system block diagram is shown in Fig. 1 It is very
similar to the one used in [5]–[7], except modified to have a
continuous source and a channel with memory.

A source generates a constant-rate stream of duration L
from time 0 to time L. We assume the source symbol or packet
interval is sufficient small, so the discrete effects are negligible.
The transmitter transmits on integer multiples of a time step δ,
1 which is the one and only design parameter. Source data from
time (k − 1)δ to kδ, k = 1, 2, 3, · · · ,K, where K = dL/δe,
are bundled into a packet pk. Each packet pk is immediately
transmitted at time kδ, and repeatedly retransmitted at times
(k + 1)δ, (k + 2)δ, · · · , until an acknowledgment (ACK) for
packet pk is received. These (re)transmissions are carried out
for all packets independently and simultaneously. For example,
at time 3δ, if p1 and p2 have not be acknowledged, then p1,
p2, and p3 are transmitted together. One inherent assumption
here is dynamic bandwidth consumption, also used in [7]. It
enables channel adaptation and is feasible when the stream of
interest shares resources with other traffic. 2

The erasure channel with channel memory is modeled using
a continuous-time two-state Markov model, as shown in Fig. 2.

Let U and B denote the channel open (unblocked) and
blocked states. One common way to specify a continuous-
time two-state Markov model is using the average duration of
time spent in each state, i.e., TU and TB . An alternative way

1In practice, this may undesirably lead to bursty transmissions every δ.
Instead, each packet should be transmitted as it arrives and retransmitted every
δ on a packet by packet basis.

2Another assumption is unlimited peak bandwidth. In practice, it is suffi-
cient to set the peak bandwidth to be slightly more than the average bandwidth
consumption. [7]
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is to use the channel open probability ρ and channel memory
duration T0, where

ρ =
TU

TU + TB
and T0 =

TUTB

TU + TB
. (1)

The steady state probability of being in each state is

PU = ρ and PB = 1 − ρ. (2)

Let s(t) denote the channel state at time t. The state transition
probabilities across time τ > 0 are

PUU (τ) , Pr{s(t + τ) = 1|s(t) = 1} = ρ + (1 − ρ)e−τ/T0 ,

PBB(τ) , Pr{s(t + τ) = 0|s(t) = 0} = 1 − ρ + ρ e−τ/T0 ,

PUB(τ) = 1 − PUU (τ), and PBU (τ) = 1 − PBB(τ). (3)

Any transmission made at time t reaches the receiver after
a delay of dc if s(t) = 1, or is blocked if s(t) = 0. The
transmitter learns the channel state through an error-free packet
acknowledgment fed back after a further delay of dc. The
effective round trip time (RTT), i.e., the time it takes for a
packet loss to be responded by a new transmission, is RTT =
(b2dc/δc + 1)δ.

Even though the channel model is continuous-time, since
the transmitter only transmits on integer multiples of δ, the
effective channel is really a discrete-time one. However, as the
time step δ is a variable, it is necessary to define the model
in continuous-time terms to keep the discrete channel models
consistent as δ changes.

As stated earlier, this study focuses on the case where the
channel memory T0 is longer or is of the same order as dc.
The message duration L could be longer than or shorter than
T0. In the sequel, we will often need to express time quantities
relative to T0, such as in (3). For notational convenience, we
use ·̄ to represent time quantities scaled by T0. For example,
dc = dc/T0 and L = L/T0.

The receiver processes the received packets, sorts them, and
eliminates duplicate packets received. It passes the packets
sequentially to the playback buffer. It also sends acknowl-
edgments back to the transmitter over the error-free feedback
channel.

The playback buffer simply plays back the received packets
once per time step δ. In the event that there is no packet
to playback, which might happen after a long blockage,
there would be an interruption in the playback. When the
channel opens again, there would typically be a burst of
packets received simultaneously. The oldest (smallest index)
of those packets is played back first, all later packets are
buffered and played back sequentially. Consequently, after
each packet is received, it cannot be played back until all the
preceding packets that have been buffered are played back.
Although this causes additional delay, one benefit is that a
short blockage after a longer blockage had occurred does
not cause an interruption in playback, as there are buffered
packets to playback to help “ride over” the short blockage.
One potential way to reduce delay is to allow playback to
happen in a “catch up” mode, where the packets are played

back slightly faster (e.g., 10%) than normal. While we do not
assume such capability in this paper, it could be useful in
practice.

III. DELAY ANALYSIS - FROM A PACKET PERSPECTIVE

We use a similar packet delay definition as in [5]–[7]. In
particular, the delay experienced by packet pk is

Dk , Mk − kδ, (4)

where Mk denotes the time pk is played back and kδ is the
time pk is generated. For example, p1 is generated at time δ
and immediately transmitted. If s(δ) = 1 (channel open), then
p1 is received at dc + δ and playback finishes at time dc +2δ,
so D1 = dc + 2δ − δ = dc + δ. This is the minimum delay
every packet must experience.

More generally, a packet pk is generated at time kδ, and is
played back at time dc+(1+k+Bk)δ, where Bk is the longest
stretch of consecutive blockage experienced by any packet up
to and including pk. This was shown in [5]–[7]. The intuition
is that if any packet pj , 1 ≤ j ≤ k experiences Bk blockage
consecutively, pj itself suffers a delay of dc + (1 + Bk)δ. All
packets after it must suffer at least this delay.

The average packet delay for pk can be calculated using

E[Dk] = dc + δ + δ
∞∑

b=1

Pr{Bk ≥ b}. (5)

To evaluate Pr{Bk ≥ b}, we see that in order to have b
consecutive zeros, the channel sequence must take the form

0 · · · 0
︸ ︷︷ ︸

b

∗ · · · ∗,

or
∗ · · · ∗
︸ ︷︷ ︸

i−1

10 · · · 0
︸ ︷︷ ︸

b

∗ · · · ∗, for i = 1, 2, · · · , k − 1.

The probability of having a row of b blockages at the
beginning is PBPBB(δ)b−1. For each i = 1, 2, · · · , k − 1,
the probability of having a particular pattern of this form is
PUPUB(δ)PBB(δ)b−1. Using the union bound,

Pr{Bk ≥ b} ≤
min(1, PBP b−1

BB + (k − 1) PUPUBP b−1
BB . (6)

Combining (3), (5) and (6), the expected delay of an entire
stream of duration L, D(L) = DK=dL/δe, can be upper
bounded by

E[D(L)] ≤ dc + δ + δ
∞∑

b=1

min (1, (1 − ρ)· (7)

(

1 − ρ + ρ · e−δ̄
)b−1 (

1 +
(
dL̄/δ̄e − 1

)
ρ(1 − e−δ̄)

))

The right hand side of (7) contains the channel parameters, ρ
and dc, the stream duration L, and the time step δ, which is
a design parameter. Fig. 3 shows the excess delay above the
channel delay, E[D(L)]− dc, as a function of L in log scale,
for ρ = 0.5 and δ = 0.01, 0.1, 0.5, and 1.0.
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Fig. 3. Normalized excess expected delay E[D(L)] − dc as a function of
normalized stream duration L for δ = 0.01, 0.1, 0.5, and 1.0.

Looking at one curve at a time, each curve starts off flat for
L < 1. This is because when the stream duration is shorter
than the channel memory, the entire stream would essentially
see the same channel, and it is the average channel blockage
duration that dominates the delay. Indeed, the starting point
is approximately 1−ρ

ρ + 1+ρ
2ρ δ for δ ≤ 1. 3 The first term

is essentially PBTB , the probability that the stream sees a
blocked channel at onset times the expected blockage duration.

For large L, delay grows linearly with log(L), similar to the
conclusion in [5]–[7]. This is because with a two-state Markov
model, the blockage duration is exponentially distributed, so
statistically, it would take an exponentially longer stream to
hit a blockage that is a fixed amount longer. The asymptotic
slope of each curve with respect to ln(L) is approximately
1
ρ + 1−ρ

2ρ δ, for δ < 1. 4 5

Comparing the different curves, lower delays are achieved
for smaller values of δ. In the limit of δ → 0, the transmitter
essentially tries to transmit continuously (unrealistic, as it
would consume a prohibitively large amount of bandwidth), so
every packet is put through the channel as soon as the channel
opens after the source generates it, and thus achieving the
minimum delay physically possible. The bottom curve with
δ = 0.01 essentially corresponds to this limit. Compared to
this bottom curve, the delay gradually increases as δ increases.
δ = 0.1 has a very small gap to the minimum delay. δ = 0.5
suffers additional delay of less than 0.9 for L < 10; even at
L = 100, the additional delay is less than 1.4, or just 1.4%
of the stream length. For L > 100, the gap grows at a rate of
0.65 per decade. δ = 1.0 suffers about twice as much delay
degradation as δ = 0.5. The steps in the curves are due to the
dL̄/δ̄e term in (7).

Note that packet delay is independent of the channel RTT,
since the retransmission interval is δ rather than RTT used
in most traditional ARQ schemes. Also, for different values

3The exact starting point is 1−ρe−δ

ρ(1−e−δ)
δ ≈ 1−ρ

ρ + 1+ρ
2ρ δ + 1−ρ

12ρ δ
2

+ · · · .

4The exact slope with respect to ln(L) is −δ

ln(1−ρ+ρe−δ)
.

5The knee of the curve is at e−ρ

ρ(1−ρ) for δ = 0.

of ρ, such as 0.8 and 0.2, Fig. 3 retains its shape except the
delay scale is changed. More delay is expected for more severe
blockage.

Next, we define a delay metric (DM) that captures the
differences in delay. Let Dmin(L) be the minimum packet
delay achieved with δ = 0. This represents the physical limit
of the channel. We define

DM = lim
L→0

D(L) − Dmin(L). (8)

It is defined for L → 0 so it is independent of L. As shown
in Fig. 3, when L is small, the difference is about the same
as at L → 0; when L is large, although the gap grows, it
grows logarithmically at a slow rate. In the particular example
of ρ = 0.5 and δ = 0.5, the rate was just 0.65 per decade.

IV. THROUGHPUT METRIC

To capture the bandwidth consumption, we compute the
throughput metric, originally defined in [5]–[7]. In this setup,
the throughput metric TM is the ratio between the expected
total number of packets received and the total number of
packets that need to be sent. As packet retransmissions are
individually handled, this is equivalent to the expected number
of times each packet is received by the receiver. 1/TM is
essentially bandwidth efficiency. The minimum TM is 1, as
each packet must be received at least once. As there may be
unnecessary retransmission due to the long feedback delay,
TM could be much larger than 1 leading to low efficiency. For
example, if each packet is expected to be received 5 times on
average, the efficiency is 20%. The reason we define TM based
on reception rather than transmission is that the minimum TM
would be 1 independent of channel blockage, even when the
channel is severely blocked.

To compute TM, we see that after each packet is first
successfully transmitted through the channel, while waiting
for the ACK, the transmitter will continue transmission for
RTT/δ − 1 extra times. Therefore,

TM = 1 +
RTT/δ−1
∑

i=1

(

ρ + (1 − ρ)e−i·δ̄
)

=
RTT/δ−1
∑

i=0

(

ρ + (1 − ρ)e−i·δ̄
)

= ρ ·
RTT

δ̄
+ (1 − ρ) ·

1 − e−RTT

1 − e−δ̄
(9)

When δ = RTT, the scheme becomes standard ARQ, where
the transmitter waits for a full RTT to ensure that the packet
is indeed lost before retransmission, and the minimum TM of
1 is achieved. In (9), we see that the first term contains 1/δ.
6 When δ is small, TM would grow like 1/δ. Therefore, very
small δ should be avoided.

6In the second term, 1 − e−δ̄ ≈ δ̄ when δ̄ is small. So effectively, the
second term also contains 1/δ.
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V. DELAY-THROUGHPUT TRADEOFF

In Section III, we showed that packet delay suffers some
degradation with increasing δ. In Section IV, we showed that
bandwidth utilization, i.e., the throughput metric, could be very
large when δ is made too small. In this section, we study
the tradeoff between the delay achievable and the bandwidth
required.

Fig. 4 shows the DM-TM tradeoff for the case of ρ = 0.5
and RTT = 1. The curve shows the various DM/TM pairs
achieved as δ̄ takes the values of 0.01, 0.1, 0.2, 0.5, and 1.0.
7 The last point with δ̄ = 1.0 = RTT achieves the minimum
TM of 1. The second last point with δ̄ = 0.5 = ρ achieves
a DM of 0.71 and a TM of 1.8, which corresponds to delay
less than T0 over the physical minimum possible and about
∼ 55% bandwidth utilization efficiency.

Another way to get some intuition on the delay-throughput
tradeoff is through looking at approximate expressions of DM
and TM instead of the exact expressions. For DM, we have
(see second paragraph below (7))

DM ≈
1 + ρ
2ρ

δ ≤
δ
ρ
. (10)

For TM, the worst that could happen is that all RTT/δ − 1
retransmissions are received, so

ρ ·
RTT

δ̄
≤ TM ≤

RTT
δ̄

. (11)

So DM is proportional to δ̄ and TM is inversely proportional
to δ̄. The smaller the δ̄, the more frequent the retransmissions,
the better delay but higher bandwidth consumption. The prod-
uct is dictated by RTT

ρ , the channel statistics. While this is not
exact, it provides a good intuition.

VI. RETRANSMIT INTERVAL SELECTION

In the last section, we studied the delay-throughput tradeoff.
In this section, we provide some rule-of-thumb recommenda-

7While the DM is defined with L → 0, for larger values of L such as
100 and 1000, we saw that the shape of the curve remains the same with the
delay axis scaled by a factor of 2.2 and 3.0, respectively.

tion on how to select the retransmit interval δ for different
scenarios.

1) δ should never be more than RTT. The minimum TM
of 1 is achieved when δ = RTT, increasing δ further
would only hurt delay.

2) When RTT << 1, use δ = RTT. This is essentially the
ideal selective-repeat ARQ. 8

3) When RTT ≈ 1, for light to moderate blockage with
0.5 ≤ ρ ≤ 1, use δ̄ = ρ. This achieves DM between
0.75 and 1 and achieves TM between RTT and 2RTT.

4) When RTT ≈ 1 and severe blockage with ρ < 0.5, use
δ̄ = 0.5 if willing to suffer delay from 0.25/ρ to 0.5/ρ;
use δ̄ = ρ if willing to pay bandwidth up to RTT/ρ.

5) When RTT >> 1, use time step δ̄ between 1 and
2, so the transmissions see nearly independent channel
realizations. Also, instead of retransmit every δ, do
transmission only a few times per RTT according to the
multi-burst transmission strategy in [5]–[7].

In practice, we may not have accurate knowledge of the
channel parameters ρ, dc, and T0. In this case, we could
utilize the approximations of DM and TM in (10) and (11)
and select δ that leads to acceptable DM and TM given the
channel parameter ranges.

Another general rule is that when the primary performance
metric is low delay, the retransmission interval should scale
with channel memory; while if the the primary performance
metric is high throughput efficiency, the retransmission interval
should scale with the channel RTT. Indeed, in traditional
ARQ techniques, the primary performance metric is high
throughput efficiency, and retransmission typically occur once
every RTT. In the scenario of interest in this paper, we want
to support real-time applications with low delay requirement,
retransmission interval is often tied to the channel memory, so
we select δ̄, which is essentially how long the retransmission
interval is relative to the channel memory.

VII. USER PERSPECTIVE ANALYSIS

While this paper establishes the analytical results, we are
currently also working on an emulation 9 where two tele-
phones are connected via a PC emulating the severely-blocked
high-delay long-memory channel and running the proposed
algorithm. As our initial testing has revealed, in addition to
packet delay, playback interruptions also strongly impact the
user experience. These playback interruptions occur most often
early in the transmission. In this section, we analyze how long
the interruptions are and how frequently they occur.

To analyze the above quantities, we define a slightly dif-
ferent variant of delay. Let the user perceived delay, U(t) be
the difference between how much has been generated and how
much has been played back at time t. When t is an integer
multiple of δ, we have

Uk , U(kδ) = kδ − jδ, for k = 1, 2, · · · ,K, (12)

8If one were interested in reducing the number of transmissions, one could
potentially hold off retransmissions until there is an indication that the channel
has opened up.

9Developed by Dr. Mehmet Mustafa at MIT Lincoln Laboratory.
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where j < k is the most recent packet played back or 0 if
no packet has been played back at all. Values of U(t) for
t between integer multiples of δ can be obtained via linear
interpolation, as we assume packet generating and playback
both happen continuously at constant rate.

Fig. 5 shows an example of U(t). It always start at U(0) = 0
and initially climbs to U(δ+dc) = δ+dc (orange), as nothing
can be played back for at least that long. If the channel is
initially open, there would be an initial smooth period (blue);
if the channel is initially blocked, this period would have
zero duration. After that, Each time there is an interruption
in playback, U(t) would climb (red), and whenever there is
smooth playback, U(t) stays flat (green). We are interested
in the expected duration of each interruption period and each
smooth period.

Each interruption occurs when a blockage duration exceeds
the longest blockage that had occurred previously, and ends
when the channel opens up again. Since the channel is
memoryless, independent of how long a blockage has been,
the expected remaining blockage is always

E[interruption duration] (13)

=
δ

PBU (δ)
=

1
ρ
·

δ
1 − e−δ̄

= TB ·
δ̄

1 − e−δ̄
.

Similarly, each time the channel becomes open, the expected
open duration is δ

PUB
. Since there is a chance of ρ that the

channel is initially open, the expected initial smooth period is

E[initial smooth duration] (14)

= ρ ·
δ

PUB(δ)
+ (1 − ρ) · 0 = ρ · TU ·

δ̄
1 − e−δ̄

.

After the initial smooth period, the duration of each smooth
period is the sum of a number of blockage and open periods.
The number, denoted by N , is random, and depends on how
many blockages takes place before there is one that is longer
than all the previous blockages. The probability that one
blockage lasts (strictly) longer than Zδ, Z = 1, 2, 3, · · · , is
PBB(δ)Z . Therefore, E[N ] = PBB(δ)−Z . When N blockages
are required before an interruption occurs, the length of the
smooth period is the sum of N open periods, each expected
to be δ

1−PUU (δ) long, N − 1 blockage periods that are all no
longer than Zδ, and a final blockage period that is exactly Zδ
long, during which the playback buffer is depleted. Therefore,
when the user perceived delay U is δ + dc + Zδ, which is the
delay resulted from the longest blockage being Zδ, Z ≥ 1,
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Fig. 6. Normalized expected smooth duration E[smooth duration] as a
function of normalized excess delay U − dc = (Z + 1)δ for ρ = 0.8,
0.5, and 0.2 (different colors), and δ = 0.01, 0.1, 0.5, and 1.0 (different line
types).

the expected smooth duration is

E[smooth duration at U = δ + dc + Zδ, Z = 1, 2, 3, · · · ]
= E[N ] · E[one open period] +
(E[N ] − 1) · E[one blockage period | it is ≤ Zδ] + Zδ

=
δ

1 − e−δ̄

(

(1 − ρ + ρe−δ̄)−Z

ρ(1 − ρ)
−

1
ρ

)

(15)

= TU ·
δ̄

1 − e−δ̄
·
(1 − ρ + ρe−δ̄)−Z + ρ − 1

ρ
(16)

Fig. 6 shows the normalized expected smooth duration as a
function of the normalized excess delay, U − dc = (Z + 1)δ̄,
for various values of ρ and δ. The y-axis is on log scale, which
means that as delay increases, the smooth duration increases
exponentially. We see that for each ρ, the better performance,
longer smooth duration, is achieved with smaller δ. Similar to
what we saw with the packet based delay, δ = 0.1 is nearly
as good as δ = 0.01, and the performance degradation of
δ = 1.0 is about twice that of δ = 0.5. When ρ = 0.5, a
smooth period of 100 can be achieved with excess delay of
about 7. Since each interruption tends to last about 1/ρ =
2. it would take about 3 or 4 interruptions before we can
get such long smooth playback. When ρ = 0.8, the blockage
is relatively light, a smooth period of 100 can be achieved
with excess delay of just 4, which also corresponds to 3 to 4
interruptions. When ρ = 0.2, the blockage is heavy, a delay
of 15 is required, which is 3/ρ. Generally, the rule of thumb
is that after one interruption, the delay and smooth period are
about 1/ρ and 10, after two interruptions, 2/ρ and 30, after
three interruptions, 3/ρ and 100, all in the unit of channel
memory time T0.

VIII. SIMULATION RESULTS

This section shows simulation results to verify the analytical
results. The channel parameter is ρ = 0.5, T0 = 1 sec, and
dc = 1 sec. For this channel, the average open and blockage
durations are TU = TB = 2. Three values of δ are used,
0.1 sec for achieving near minimum delay at the expense of
bandwidth, and 0.5 seconds and 1.0 seconds for more practical
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δ = 0.1 sec δ = 0.5 sec δ = 1.0 sec
Simulation Analytical Simulation Analytical Simulation Analytical

Throughput Metric (TM) 15.12 15.11 3.668 3.666 2.252 2.252
E[D(L)], L = 1 sec 2.546 2.581 3.034 3.002 3.603 3.565
E[D(L)], L = 100 sec 9.020 9.723 10.14 10.86 11.56 12.43
E[interruption duration] 2.095 2.102 2.544 2.541 3.163 3.164
E[smooth duration], U = 2 + dc 9.048 9.042 9.740 9.668 10.77 10.36
E[smooth duration], U = 4 + dc 26.55 27.44 26.68 26.78 25.11 25.76

TABLE I
COMPARISON OF SIMULATION AND ANALYTICAL RESULTS FOR THE CASE ρ = 0.5, T0 = 1 SEC, AND dc = 1 SEC

operation. For each setting, over 10, 000 trials are run so that
the error on the measured quantities are less than 1%. The
results are shown in Table I.

Table I shows that for the throughput metric, the simulation
and analytical results match nearly perfectly. When δ̄ = 0.1,
TM is very large; when δ̄ increases to 0.5, TM is reduced
significantly; δ̄ = 1.0 further reduces TM, but the gain is
diminishing.

The second and third rows show the expected delay for
short L = 1 sec and long L = 100 sec messages. Delay
increases with δ as expected. However, even at δ̄ = 0.1 with
delay close to the physical channel limit, the delay is already
quite large. For the short message case with L = 1, the delay
is dominated by dc + 1−ρ

rho T0 = 2 sec; for the L = 100 sec
case, the delay is about 9 sec. Compare to δ̄ = 1.0, even
though δ̄ = 0.5 can achieve delay that is about 50% closer
the minimum possible, the absolute difference is small. This
behavior can also be seen in Fig. 3. Compare to the analytical
results, the simulation results are slightly less, because the
union bound used in calculating the analytical results leads to
over-estimation.

The fourth row shows the expected interruption duration.
Each duration only lasts 2 to 3 seconds. This would certainly
be noticeable by the users. However, as shown in (13), this is
essentially dominated by TB , which is the physically limit of
the channel. Using δ = 0.5 and 1.0 causes the interruption to
be about 30% and 60% longer, respectively.

The last two rows shows the expected smooth duration
when the user perceived delay U is 2 seconds and 4 seconds
above the minimum delay due to channel propagation. As δ
increases, the expected smooth duration decreases slightly. But
nominally, after having experienced 2 seconds of interruption,
the user can expect 10 seconds of smooth playback; after 4
seconds of interruption, the expected smooth duration is nearly
half a minute.

Another way of viewing this result is that if a user in such
a scenario were to limit the maximum perceived delay to 4 +
dc = 5 seconds, and skip packets that are not received in
time for playback, then this user can expect to have smooth
playbacks of half minutes long with interruptions that last 2
to 3 seconds. This translates to 6% to 10% of (bursty) packet
losses.

Finally, in both analysis and simulation, it is assumed
that acknowledgments are perfectly received. This may be
mitigated by sending acknowledgments that cumulatively ac-
knowledges a range of packets, which has been implemented

in emulation.

IX. SUMMARY

We studied the problem of real-time streaming over block-
age channel with long feedback delay and long channel
memory. We showed that most time quantities scales with the
channel memory duration T0, including the desired time step
size δ, the packet delay, as well as the interruption durations
and smooth playback durations. We showed that when stream
length is shorter than channel memory duration, packet delay
does not change much; when stream length gets longer, packet
delay grows logarithmically. We showed that we can expect
reasonably long smooth playback periods after suffering a few
interruptions. We evaluated the delay-throughput tradeoff and
made suggestions on how to pick the retransmission interval
δ̄ to achieve reasonably good delay while not consuming too
much bandwidth. The general rule is that when RTT << T0,
simply use standard ARQ with δ = RTT, wait a full RTT
before retransmission; when RTT >> T0, choose time step
δ = 2T0, so that the channel uses are essentially experience
IID blockage, and use multi-burst transmission in [5]–[7];
when RTT ≈ T0, using δ = ρ · T0 achieves TM of up to
RTT/ρ and delay that is only about one channel memory
duration above the physical limit. However, the minimum
delay due to physical limit could be quite large itself.
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