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Abstract—Based on recent work on asynchronous commu-
nication, this paper proposes a slotted asynchronous channel
model and investigates the fundamental limits of asynchronous
communication, in terms of miss and false alarm error exponents.
We propose coding schemes that are suitable for various asyn-
chronous communication scenarios, and quantify more precisely
the suboptimality of training-based schemes, i.e., communica-
tion strategies that separate synchronization from information
transmission. In particular, we show that under a broad set of
conditions, training-based schemes are suboptimal at all positive
rates. Finally, we demonstrate these performance differences by
specializing our results to BSCs and AWGN channels.

Index Terms—synchronization, error exponents, training-
based schemes

I. INTRODUCTION

Communication is inherently asynchronous because we
need to detect the presence of a codeword correctly before
decoding it to the correct message. Traditionally, this asyn-
chronism is handled by separating communication into two
sub-problems, synchronization and coding, where in synchro-
nization, a specific pattern of symbols are used to identify
the start of transmitted data/codeword. Therefore, performance
improvements for synchronization are in general attained by
using better synchronization patterns and/or detection rules
(e.g., [11, [2D.

Recently, inspired by emerging applications such as sensor
networks, [3] proposes a new framework for asynchronous
communication. It extends the classical coding problem to
incorporate the requirement of detection and considers syn-
chronization and coding jointly. This implies a question on
the “distinguishability” of a channel code, which is the “dif-
ference” between channel outputs induced by noise and by
codewords in the channel code. [3] investigates this problem
from the perspective of minimizing false alarms, which is the
error of confusing noise as codewords. In this paper, we also
introduce miss error, a type of error that considers a codeword
as noise. In addition, we simplify the asynchronous channel
model in [3] by imposing a slotted constraint. This leads
to sharper results than [4] on the suboptimality of training-
based schemes, and uncovers insights on codes that are more
distinguishable and useful for asynchronous communication.

A. Problem Formulation

We consider discrete-time communication over a discrete
memoryless channel (DMC), and use the asynchronous chan-
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(b) BSC

(a): an asynchronous DMC with input alphabet X, output alpha-
bet Y, “silent” symbol % and transition probabilities Wy x (-]-). (b): an
asynchronous BSC with crossover probability € and x output distribution
Bernoulli ().

(a) General model
Fig. 1.

nel model proposed in [3], which captures the channel condi-
tion when the transmitter is silent.

Definition 1 (Asynchronous discrete memoryless channel [3]).
An asynchronous discrete memoryless channel (Fig. 1(a))
(X, %, Y,W) is a DMC with input alphabet X, output al-
phabet ), and transition probabilities W (y|x), where the
special symbol x € X represents the channel input when the
transmitter is silent.

For example, an asynchronous binary symmetric channel
(BSC) has W (-|x) = Bernoulli(u) (Fig. 1(b)). Another
example is the asynchronous discrete-time additive white
Gaussian noise (AWGN) channel, which has average signal
power P, average noise power 1, and W (- |x) =N (0,1). In
other words, when the transmitter is silent, the channel output
distribution is the standard Gaussian distribution.

Furthermore, this paper assumes communication is slotted
(Fig. 2). In this case, channel outputs in each time slot are
induced by either a codeword ¢" (i) or the noise sequence %™.

For this channel, a length n block code with input al-
phabet X, output alphabet ) and some finite message set
My, ={1,2,...,|My, |} is composed of a pair of mappings,
encoder mapping f, : My, — A" and decoder mapping
Gn + Ay — My, where A, C Y". Given a message m,
which is chosen from My, uniformly, the encoder maps it to
a sequence z"(m) € X™ and transmits this sequence through
the channel, where we call z™(m) the codeword for message
m and the entire set of codewords {z"(m),m € My, } a
codebook. The receiver receives a sequence y" € )™, where

%7 iy %7 C(’L) %7 g C(j) g

Fig. 2. Slotted channel, with each time slot containing either a codeword or
a noise sequence with length n.
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W (g an(m)) 2 [T, W (gsla(m). Ity € A,
we consider the channel input to be a certain codeword
z™(m),m € My, , otherwise we consider the channel input
as x". Namely, A, is the acceptance region for codewords. In
addition, we define B,, = AS to be the rejection region for
codewords and denote (f,,g,) by C(™.

The performance of a codebook over a channel W can
be characterized by three types of error: 1) miss, where we
detect a codeword as noise; 2) false alarm, where we detect a
noise sequence as a codeword; 3) decoding error, where after
correctly detecting the presence of a codeword, we decode it
to an incorrect message. Formally, we define

P (c<”>)

P (c<">)

Py (C(")> £ max Py(m) = max > W (g, (m)

m#m

lI>

max Pn(m) 2 max W™ ({An}|2"™(m)),

(1>

W (A [+"),

In addition, we define the rate of a code (") as R(C(™)) £
log| M, | /n. For a sequence of codebooks Q@ = {C(™) n €
7}, we define its rate as Rg = liminf,, o, R(C™). When
the codebook sequence is clear from context, we denote
Py (C™), Py (C™) and P (C™) by P™, P and P,
and use R instead of Ro.

Without loss of generality, we assume that for every y € ),
there exists x € X such that W (x|y) > 0. Furthermore,
we only consider the most interesting case that the support of
W (-|x) is Y. For simplicity, we denote Q,(-) = W (-|*).

Definition 2 (Miss, false alarm, and decoding error exponents).
Given an asynchronous DMC (X,*,Y,W) and a codebook
sequence Q = {C™ n € Z, } with rate R and all three error
probabilities vanishing asymptoticallf), define its miss error
exponent as e,,(Q) £ liminf,, ., —— log Pr(nn). Similarly, we
define its false alarm error exponent e and decoding error
exponent eq in terms of P\" and P{".

A triplet of numbers (en(Q),er(Q),eq(Q)) is called
achievable if they can be achieved simultaneously, and is
denoted by £(Q, R). In addition, we let E(R) be the closure
of the region {£(Q,R) : Rg > R}.

The most general problem—characterization of the achiev-
able error exponent region £(R)—is open and this paper
focuses on the false alarm and miss errors by setting eq = 0. In
particular, this paper first investigates the reliability functions
for false alarm and miss errors, which are important for various
communication scenarios.

Definition 3 (Reliability functions). For an asynchronous
DMC (X, *,Y,W), given a rate R, we define the false alarm
reliability function and the miss reliability function as
Er(R) £ sup ef
(em:076f76(i:0)€g(R)

En(R) = sup €m.

(em,er=0,ea=0)€EE(R)

fn(m)) .

These two reliability functions are characterized in Sec-
tion II and Section III respectively. Then the tradeoff between
miss and false alarm exponents is investigated in Section IV.
With these characterizations, we compare the detection perfor-
mance of training-based schemes to the optimal performance
in Section V. This problem has been investigated in [4], where
training is shown to be suboptimal at high rate. In our work,
we show training is suboptimal at almost all rates and give a
more precise quantification on its performance loss.

B. Notation

Most notations in this paper follow [5]. Specifically, a
constant composition code is a code where all its code-
words have the same type (empirical distribution), and for
distributions P(-), Q(-) € P (X) and conditional distributions
W(]):X—=Y, V(]): X =Y, define

[P W(z,y) =W (y|z) P(x)
[P-Wly(y) £ Y W(y|z) P(e)

reX
. N Do W (y|z)
I(P,W) fxexzyeyP( YW (y|z) 1 S e W) P()’

D(V|W|P)£Ep[D(V (-|P)[|W(-|P))]
=Y P@D(V(-|2)[|W(-|2))
rzeX

where D (V ||W|P) is the expectation of the conditional
information divergence between V (-|-) and W (:|-) under P(-).

II. FALSE ALARM RELIABILITY FUNCTION

This section provides a complete characterization of the
false alarm reliability function (Theorem 1). We show that an
i.i.d. codebook is sufficient to achieve optimal performance,
and different codebook designs have different implications for
decoding procedures.

Theorem 1 (False alarm reliability function). An asyn-

chronous DMC (X, %,Y, W) has false alarm reliability func-

tion
E¢(R) = D(Py ||Q.) +1(Px,W)—R (1)

D (Py[|Qu), 2)

max
Px:I(Px,W)>R

= max
Px:1(Px ,W)=R
where Py (-) = [Px - Wly.

We omit the proof (including the converse, cf. [6] for
details) and present two strategies to achieve the above re-
liability function. The first strategy corresponds to (1), which
indicates a more flexible codebook design. In this case, an i.i.d.
codebook with any distribution Py such that [ (Px, W) > R
can be used. However, this flexibility requires a typicality
decoder, which declares a message m if there exist only one m
such that (z™(m),y") € T(Pyy),» OF DOise sequence *" if there
is no such m, otherwise decoding error. The second coding
strategy corresponds to (2) and imposes a stronger constraint
on the input distribution—an i.i.d. codebook with distribution

1072



(a) Typicality decoding
Fig. 3. The geometry of acceptance regions for codewords (shaded regions)
shows that detection based on typicality is more flexible than detection based
on type. Each concentric circle corresponds to a different input distribution and
a larger circle corresponds to the input distribution with higher I (Px, W).
The darken portion in Fig. 3(b) is the unnecessary part that leads to suboptimal
performance when I (Px, W) > R.

(b) Detection based on type

Px such that I (Px, W) = R is required. This allows a two-
stage decoding strategy. In the first stage, we detect based
on the type of the channel output and the receiver simply
conducts a binary hypothesis test between distributions Py
and Q,. In the second stage, the decoder follows the regular
channel code decoding procedure if the test result is Py, or
declare a noise sequence x" otherwise. When no codeword is
sent, this detection process is conceptually simpler, because
it only conducts one hypothesis testing, while in principle,
the one-stage decoder needs to check every codeword in the
codebook.

Fig. 3 illustrates the difference between these two strategies.
To maximize the false alarm error exponent, we can employ
a regular channel code and set the acceptance region A,, just
large enough to keep Py and P, small, which approximately
corresponds to the union of typical shells of codewords.
Therefore, typicality decoding achieves optimal performance
as long as the channel code is reliable and satisfies our rate
requirement (Fig. 3(a)). By contrast, the type detection strategy
based on (2) does not take the detailed codebook structure
into account, and hence requires a stricter codebook design.
If the codebook is generated by a distribution Px such that
I(Px,W) > R, then it would not be optimal as A, is set to
larger than necessary, as illustrated in Fig. 3(b).

Finally, we note that (1) and (2) are equivalent because
expression in (1) is linear and hence convex in Px and the set
{Px : I(Px,W) > R} is compact.

Examples of the false alarm reliability functions for BSC
and AWGN channel are shown later in Fig. 6 of Section V.

III. MISS RELIABILITY FUNCTION

This section provides the lower and upper bounds of the
miss reliability function (Theorem 2) and shows a constant
composition codebook with type decoding can achieve the
lower bound.

Theorem 2 (Miss reliability function). The miss reliability
Sunction of an asynchronous DMC (X, x,Y, W) satisfies

En(R) < En(R) < En(R),
where we define Qv = [Px - Vly, Py(-) £ [Px - W]y, and

E.(R) = in  D(V||W|Px),
Eu(R) PaI(PyW)>R V:Qv=Q. (VIIWlPx)
En(R) = max D(Q«|[|W|Px),

Px:I(Px,W)>R

The proof for lower bound is included in [6] and the upper
bound is based on an upper bound result for single-message
unequal error protection in [7]. Below we provide a sketch
on the coding strategy to achieve the lower bound as well as
some intuition on the upper bound.

To achieve Ey,(R), we use a constant composition code-
book with type Px such that I (Px,W) > R. Note that an
1.i.d. codebook is suboptimal here because atypical codewords
produced during the i.i.d. codebook generation process would
be harmful for the miss error exponent. Then to ensure P is
small, the typicality shell of the noise sequence ", which has
type @4, should be roughly included in the rejection region
B,,. Therefore, if a channel realization V' makes the output type
Qv “similar” to )., a miss error occurs. Based on this, we
partition the channel realization V' by the divergence between
Qv and Q,, and define

Va2 {V:D(Qv|Qs) > \.}, where A, — 0 as n —
oo. Then we can assign the following acceptance and rejection
region, A, = U; Uy ey, Ty (2™(4)) and B,, = {A,}°, which
are shown to achieve Fy,(R).

The upper bound E,,(R) can easily be derived by in-
terchanging the noise and codebook in Theorem 1. Pick a
codeword with type Px such that I (Px,W) > R to be
the noise, and consider a codebook consisting of the single
codeword x". The false alarm reliability function for the new
problem is an upper bound on E, (R), but we must modify (2)
to handle noise sequences with an arbitrary type. This requires
that we average over the exponent associated with each symbol
of the noise sequence, so (2) becomes D (Q, || W|Px).

IV. TRADEOFFS BETWEEN FALSE ALARM AND MISS ERROR
EXPONENTS

In addition to maximizing either false alarm or miss error
exponent, sometimes we may require positive error exponents
for both false alarm and miss. In this case, we are interested
in the tradeoff between these two exponents, or the “capacity
region” of the (e, er) pair at a given rate R. Characterizing
this tradeoff is more involved than characterizing the reliability
functions and only achievability results on DMC and AWGN
channels are presented (cf. [6] for achievability proofs, a multi-
letter outer bound for the error exponents capacity region of

DMC and a single-letter outer bound for BSC).
A. DMC

Theorem 3 (Achievability via constant composition code-
book). For an asynchronous DMC (X,%,Y, W), given a rate
R and a miss error exponent constraint e, the following
lower bound of the false alarm reliability function is achiev-
able via a sequence of constant composition codebooks

E¢(R,em) =

max min
Px:I(Px,W)>RV:D(V ||W|Px)<em

D(Qv Q)+ 1(Px,V)~RI*|,
where Qv is defined in Theorem 2.

Proof for this theorem is in [6] and here we provide some
intuition of the achievability strategy.
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Fig. 4. Acceptance region A, (shaded region) for two codewords. The region
with lighter shade indicates the typical shell of the codeword, and the darker
ring-like region indicates additional acceptance region needed to satisfy the
miss error exponent requirement.

Given a miss error exponent requirement e,,, we need to
make the acceptance region .4,, large enough to make the miss
error exponentially small. Meanwhile, we only need to keep
the decoding error probability small (but not exponentially
small). This scenario is illustrated for two codewords in
Fig. 4. Intuitively, if P < e~mem, for any V such that
D (V|| W|Px) < e, we have min,,, V" (A, | z™(m)) > 1—
e. In this way, we can represent .A,, as the union of all possible
typical V-shell of 2™ (m) and derive the achievable false alarm
error exponent, which eventually leads to Theorem 3 (cf. [6]
for details). Note that when e,, = 0, V = W. In this case,
Theorem 3 reduces to Theorem 1.

B. AWGN channel

Theorem 4 (Achievability for the AWGN channel). Given
a rate R, for an asynchronous AWGN channel with aver-
age power constraint P, the following error exponent pairs
(eg(n), em(n)) are achievable:

r? (n—r)?
< o the |\ T
€f(77) — (a,b)€[0,1]2 oegr»lglg_b |:2a2 + X% < b2 >:|

max
em(n) <  max min
(@b)E[0,L]2 n—byPotI<r<y

[ ()

2a2

where P, and P satisfy R =1log(1+ P.) /2, Ps = P — P,
and b<n <avPs+b0/P.+1,

1
Iﬁ(ﬂj)ég(a@—lnx—l)

1 VITaPn—1
Is(P,n)é§(P+77—\/1+4P77—10g [*27]3”])

The above error exponents can be achieved via the following
codebook and heuristic decoding rule.

Given a rate R, we generate a codebook as fol-
lows: choose e"® points uniformly from the surface of
a (n — 1)-dimensional sphere with radius \/nP., and let
these points be X"~1(1), X"~1(2),---. Then let X"(i) =
(\/nPs,Xl(i),-~- ,X,l_l(i)) io= 1,2,---,e™®, and use
{X"(i),i=1,2,--- ,e"®} as a codebook, which is named
“clustered spherical codebook™ due to its geometric structure,
as shown in Fig. 5. Note that here we use nF, amount of
power for communication, which is just enough to support
reliable communication at rate R, and allocate the rest of the
power nPs for synchronization.

Inspired by high dimensional geometry, we develop a
heuristic detection rule that allows asymptotic performance

Fig. 5. A clustered spherical codebook (n = 3). All the codewords are
clustered into a (n — 1)-sphere (circle when n = 3) on a n-sphere.

analysis:

An = {y" s ayn + ]|yl = Vn}
Bn={y" :ayr +blly3| < vnn},

where a € [0,1] and b € [0,1] are weights to be selected.
Intuitively, when a codeword is transmitted, y; should be large
as X™(0) = y/nPs, and |y%| should also be large as all
codewords reside on the (n — 1)-sphere. We take a linear
combination of these two to take both factors into account,
and by optimizing a and b at each rate R, good performance
can be obtained. Theorem 4 then follows the analysis in [6].

(declare a codeword)

(declare noise)

V. TRAINING-BASED SCHEMES IS SUBOPTIMAL ALMOST
EVERYWHERE

Under the unslotted model, [4] defines training-based
schemes precisely and shows that training-based schemes
achieve vanishing false alarm error exponent at capacity except
for degenerate cases. Using the slotted model, this paper
simplifies the definition of training-based schemes and is able
to quantify the suboptimality of these schemes more precisely
at any rate R € [0,C).

The definition of training-based schemes under the slotted
model is straightforward. To transmit n R bits of information in
n channel uses, the best training-based scheme uses a capacity-
achieving code with block length nR/C for information
transmission, and the rest kK = (1 — R/C)n symbols for syn-
chronization (Fig. 6). In addition to this code design constraint,
training also limits the detection algorithm to operate on the
k synchronization symbols only.

For the case of maximizing false alarm error exponents, it
is not difficult to see that the best synchronization word is
s*s* ... 5%, where s* = argmax,cy D (W (-|s) || Q). Then
standard large deviation arguments show that for training-
based schemes, the maximum achievable false alarm error
exponent is Ey(R) = (1 — R/C)D (W (-]s*) || @«) . There-
fore, Er(R) — E(R) is the gap between the maximum false
alarm error exponent attained by training-based schemes and
by the optimal scheme. Furthermore, Theorem 5 shows this
gap is strictly positive under a broad set of conditions.

Theorem 5 (The suboptimality of training-based scheme). For
an asynchronous DMC (X, x,Y, W) and 0 < R < C, in

81 S92 Sk capacity achieving code

k= (1 — R/C)n symbols nR/C symbols

Fig. 6. Training-based scheme, where the first (1— R/C')n symbols are used
for synchronization, and the next nR/C symbols are coded as a capacity-
achieving code for information transmission.
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SNR=10

Fig. 7. Performance gaps (in terms of false alarm error exponent) between
training-based scheme and joint synchronization and coding scheme on BSC
and AWGN channel. The gap is larger at higher rates.

general, E¢(0) = F¢(0) and E¢(R) < Ef(R). Furthermore,
if the capacity achieving output distribution Py satisfies
D (P ||Q«) >0, then for all R > 0, Ey(R) < E¢(R).

This theorem is based on the fact that E¢(R) is concave [6].

In Fig. 7, we demonstrate that for both BSC and AWGN
channels, the performance gap is more significant in the
high rate regime, because here training-based approaches uses
most of the degrees of freedom for information transmission,
leaving few for synchronization, resulting poor performance.

For the case of positive error exponents for both miss and
false alarms, performance analysis becomes more complicated,
because converses for both training and joint synchronization
and coding schemes are unknown. However, for two special
yet important asynchronous channels, BSC with v = 0.5
and AWGN channel, we can find the best training schemes,
and show that there exist joint synchronization and coding
schemes that achieve better tradeoffs, hence demonstrating the
suboptimality of training.

BSC with v = 0.5: For the asynchronous BSC with
uw = 0.5, it is not difficult to see that by symmetry, the
synchronization sequence with identical symbols attains the
best performance. Hence by standard large deviation argu-
ments, the optimal tradeoff between false alarm and miss
error exponents satisfies e, < (1 —R/C)D (gx|¢) and
er < (1= R/C) D (qx||u), where g = e*ul=*/(erul= +
1—e)1—-u)"1),0< A< 1.

Specializing the results in Section IV-A, given § €
(u,s), where s = (1 — e)p + (1 — p), we can
achieve any (ef(d),em(0)) such that ef(0) < D (4||w) and
em((s) < minne[ﬁ—i)s,ﬁ*] [ﬁD ( (5 - H)/ﬁ” E) +pD (/i/pH E)]’
where £ 1 — x and x* = min {§,p(1 — €)}.

We compare the performance of constant composition code-
book and training in Fig. 8, and show that the former achieves
a much better tradeoff than the latter, especially when we have
a strong requirement for ey,.

AWGN channel: Unlike the DMC, where the allocation
between synchronization and communication channel uses
matters, for the AWGN channel, it is the allocation between
synchronization power and communication power that matters.
Therefore, the best training scheme has the same codebook
structure as the clustered spherical codebook in Section IV-B,
but the detection is based on the synchronization power /n P
only. It can be shown that we can achieve any (e¢(7), em (7))

p = 0.60, R = 0.690 bits
0.003

p = 0.80, R = 0.492 bits

0.002
0.001
0+ + +
0 0.05 0.1
Fig. 8. Performance comparison between constant composition codebook

(solid line) and training (dashed line) for a BSC with € = 0.05 and v = 0.5.

SNR = 20dB, R = 0.5C SNR = 20dB, R = 0.8C

E, m

E, m

Fig. 9. Clustered spherical codebook with heuristic detection (dashed line)
is better than training (solid line) for AWGN channels, especially at high rate
and/or low SNR.

such that ey, (n) < (vVPs —n)?/2 and et(n) < n?/2. Then
applying results in Section IV-B, we get the performance
comparisons in Fig. 9. At low rates, the clustered spherical
codebook and training perform almost equally well, but at
high rates, the clustered spherical codebook achieves a much
better e,,—e¢ tradeoff.

These examples on BSC and AWGN channel demonstrate
that with better codebook designs and detection strategies,
joint synchronization and coding can achieve significant per-
formance improvements over training-based schemes, espe-
cially at high rates or when we have strict requirements on the
miss error probability. On the other hand, if we communicate
at low rate, we may use training without much performance
penalty, gaining the benefit of faster detection.
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