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ABSTRACT

A dense antenna array architecture is developed to ease the
circuit requirements of the radio frequency (RF) front-end in
beamforming applications. In the architecture, antennas are
spaced more closely than required by the sampling princi-
ple to exploit the available degrees of freedom. This array
structure is analogous to temporally oversampled data con-
version systems, which have reduced quantizer resolution re-
quirements. In [1], we have developed a spatial-domain ver-
sion of ∆Σ quantization, and have shown that with binary
quantization for the in-phase and quadrature components of
antenna weights, modest amounts of oversampling can repro-
duce beamforming patterns of interest to practically useful
levels of accuracy. In this paper, we incorporate mutual cou-
pling between antennas and impedance matching in the over-
sampling scheme and analyze their effects on the performance
of this dense-array architecture. These effects do not change
the validity of the dense array.

1. INTRODUCTION

Recent progress in millimeter-wave and microwave integrated
circuit (IC) manufacturing technology has created new op-
portunities for the development of novel, low-cost antenna
array architectures. The ability to integrate miniature mi-
crostrip antennas has expanded the realm of applications for
antenna arrays to various embedded communication and sens-
ing systems. In such systems, the associated specifications on
RF components such as phase-shifters, oscillators, and ampli-
fiers, can be challenging to meet in a cost-effective manner.
In [1], we have developed a dense antenna array to ease such
RF circuit requirements without sacrificing performance, and
have demonstrated its effectiveness for transmit and receive
beamforming. In this paper, we cast the dense array scheme
in a more realistic setting in RF design by incorporating mu-
tual coupling between antennas and impedance matching. We
also analyze their effects on the performance of the dense-
array system.

2. THE TRADITIONAL ARRAY ARCHITECTURE

In a traditional uniform linear array, two adjacent antennas
elements are separated with distance d and all the N anten-
nas form an aperture of length L. The “nominal” spacing
between elements is d = λ/2. As long as d ≤ λ/2, the maxi-
mum number of available degrees of freedom can be realized
and grating lobes in beamforming patterns can be avoided.
Thus, the minimum number of antenna elements required is
typically N◦ = 1 + 2L/λ.

Fig. 1 depicts the associated array architecture. A beam
pattern can be formed by choosing antenna element weights
wn = ane

jθn . This can be implemented via N amplitude at-
tenuators and N phase shifters. At the transmitter, the RF sig-
nal passes through such a beamformer, whose N outputs are
directed to N power amplifiers and then N antennas. At the
receiver, the N antenna signals that result from the incoming
wave pass through N low-noise amplifiers, are phase-shifted,
amplitude-adjusted, and superimposed via the beamformer to
form the output signal. The associated transmitter and re-
ceiver array radiation patterns are, respectively,

B
T(ψ) =

�����

N�

n=1

wne
−jnkd cosψ

����� , B
R(ψ) ≡

�����

N�

n=1

wne
jnkd cosψ

����� ,

(1)
where k = 2π/λ is the wave number and ψ is the target angle
of radiation.

The traditional array architecture poses challenges to cir-
cuit design and device technology. Accuracy of the array ra-
diation patterns in (1) depends on the accuracy of {θn} and
{an}. This implies that the phase shifters in the beamformers
must be implemented with high resolution, and the power am-
plifiers at the transmitter must have high linearity. Although
a variety of approaches have been proposed to improve the
precision of these components, most remain expensive and
complicated; see, e.g., [2–7].

3. AN OVERSAMPLING ARRAY ARCHITECTURE

As an alternative to the traditional architecture, we have pro-
posed in [1] to pack more antennas N in the given aperture
than would otherwise be required, i.e., N > N◦, for both
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Fig. 1. The traditional antenna array architecture.

transmit and receive array configurations. This density is then
exploited in a manner analogous to the way temporal over-
sampling is exploited in data converter design. Just as sam-
pling at a rate exceeding that dictated by the Nyquist criterion
reduces quantization resolution requirements, the dense array
uses N lower-quality RF components instead of N◦ higher
quality ones.

Spatial ∆Σ Quantization

To reduce the RF component specifications, we constrain
our system to use coarsely quantized versions of the weights
wn, and exploit the oversampling to minimize the effect of
such quantization. In particular, we exploit the principle of
∆Σ quantization [8] by directly translating it to the spatial
domain. (For other rather different multidimensional exten-
sions of ∆Σ quantization motivated by image processing and

space-time coding, see, e.g., [9–11].)
The spatial ∆Σ architecture is depicted in Fig. 2, and in-

volves creating a sequence of quantized weights vn that “act”
in a manner asympotically indistinguishable from the desired
weights wn. Here is the processing procedure: At the nth
antenna, we obtain the difference between the input of the
(n − 1)th quantizer and vn−1 at the output of the (n − 1)th
quantizer, corresponding to the ∆ part of the structure. We
then add that difference to the desired weight wn, correspond-
ing to the Σ part of the structure. The result is then quan-
tized using 4-PSQ (phase-shift quantization, where the input
is quantized to a constant amplitude and one of four phases:
45◦, 135◦, 225◦, 315◦), which corresponds to quantizing each
of the in-phase and quadrature components to a single bit. As
such only crude 4-angle phase shifters and (nonlinear) bilevel
power amplifiers are required in the RF front-end.
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Fig. 2. The spatial ∆Σ architecture at the transmitter. The
corresponding receiver architecture is obtained by reversing
the beamformer to have multiple inputs and a single output,
i.e., the nth antenna input from the low-noise amplifier is
mixed with vn, then all such terms are summed.

Error Analysis for Spatial ∆Σ

Spatial ∆Σ oversampling works in a similar way to tradi-
tional temporal ∆Σ oversampling. In the latter, a time se-
ries {wn} is quantized into another time series {vn}, from
which one can recover {wn} by low-pass filtering. That re-
covery is possible follows from the fact that the feedback
structure of ∆Σ forces the average value of the quantized
output to track the average input, which has the advantage of
suppressing the quantization error spectrum at low frequen-
cies. Similar behavior takes place in the case of our spatial
∆Σ scheme. To see how the associated spatial low-pass fil-
tering arises, note that the transmit and receive array patterns
BT(ψ) and BR(ψ) in (1) are effectively the Fourier trans-
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forms of the weights {wn} or {vn} at the spatial frequency
ω = ±kd cosψ = ±kL cosψ/(N − 1). Hence, ω → 0 as
N → ∞, i.e., the beamforming operation itself provides the
required spatial low-pass filtering.

Ignoring mutual coupling between antennas for the mo-
ment, one can show formally that (for transmit arrays)

B̂
T(ψ)−B

T(ψ) = O

�
1√
N

�
, (2)

where

B̂
T(ψ) =

�����

N�

n=1

vne
−jnkd cosψ

����� . (3)

The corresponding receive array expressions B̂R(ψ)−BR(ψ)
are obtained by replacing j with −j.

The derivation of (2) has been sketched in [1].

4. ANTENNA MUTUAL COUPLING AND
IMPEDANCE MATCHING

As more antennas are packed into a fixed aperture, the de-
creased inter-element separation leads to greater mutual cou-
pling effects. To incorporate antenna mutual coupling into
the analysis of the ∆Σ oversampling scheme, we model an
N -antenna array with an N -port characterized by voltages
v ≡ [v1...vN ]T and currents i ≡ [i1...iN ]T . Both are re-
lated with an impedance matrix v = Za · i. Consider per-
fect conducting, vertically aligned, cylindrical dipole anten-
nas. From the induced EMF method, we can obtain the an-
tenna self-impedances (the diagonal entries of Za) [12] and
mutual impedances of two elements with separation x (the
off-diagonal entries of Za) [13]:

Zself ≈
jη

2π

1

sin2(kla/2)

� la/2

0
dz sin[k(la/2− z)]×

�
e
−jk

√
(z−la/2)

2+r2a
�
(z − la/2)

2 + r2a

+
e
−jk

√
(z+la/2)

2+r2a
�
(z + la/2)

2 + r2a

− 2 cos(kla/2)
e
−jk

√
z2+r2a

�
z2 + r2a

�
, (4)

Zmutual(x) ≈
jη

2π

1

sin2(kla/2)

� la/2

0
dz sin[k(la/2− z)]×

�
e−jk

√
(z−la/2)
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�
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+
e−jk

√
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�
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− 2 cos(kla/2)
e−jk

√
z2+x2

√
z2 + x2

�
, (5)

The antenna impedance matrix is used to compute the ar-
ray radiation patterns in the following way: Assume free exci-
tation (which is more realistic in RF systems). Then the actual

antenna currents, which are employed to determine the array
patterns in (1), are not equal to the forward traveling array
signals. Instead, they have to be calculated based on the ar-
ray signals and impedance matrix from the transmission line
theory.

Mutual coupling influences not only radiation patterns
but also antennas’ power transfer efficiency. Individually
matching antenna self-impedances does not warrant an ad-
equate matching network for the array. One must take into
account the mutual impedances between antennas. Several
approaches of multi-element impedance matching have been
proposed, such as eigen-value decomposion and multi-port
conjugate matching [14–16]. Although these methods are
mathematically sound, they are physically impractical for an
array with many elements, as they require extensive intercon-
nectivity between antennas.

Another method is based on the “scan-impedance” of an
array. In this method, the matching network is dynamically
adjusted to match the active element input impedance for each
particular array excitation. In theory, this can provide optimal
array efficiency, but at very high complexity costs, since the
matching network has to be adjusted whenever the antenna
excitation is changed. In this work, we examine a less ag-
gressive version of this method by employing fixed individ-
ualized matching networks at all elements. The parameters
for these networks are chosen such that the array is perfectly
matched for the case of uniform excitations to each array el-
ement. The motivation behind this approach is as follows.
As the array becomes more densely packed, we expect more
severe coupling issues. However, the excitation from one
element to the next will also become increasingly uniform.
Therefore, designing a matching network based on uniform
exitation causes each element to be well matched to its near-
est neighbors (the primary source of mutual coupling effects).
Further, the ∆Σ outputs will also be increasingly uniform
with increasing N , implying this seemingly simple match-
ing network is well suited to these complicated conditions.
Figs. 3 and 4 illustrate the fixed scan-impedance matching
network at the transmitter and receiver, respectively.

5. SIMULATION RESULTS

In this section, we present some simulation results. The pa-
rameters are set as follows: The wavelength is λ = 3 cm (fre-
quency 10 GHz). The uniform 1-D array has overall length
L = 5λ = 15 cm. Each cylindrical antenna has length la =
1 cm and radius ra = 1 mm. The signal-feeding transmis-
sion lines have characteristic impedance R0 = 50 ohm, length
lt = 0.8λ = 2.4 cm, and attenuation αt = 5.0/m. The an-
gular range for beamforming is ψ ∈ [0, π]. The matching
network is based on the scan impedances for uniform excita-
tions at the transmitter and the receiver. To prevent regular
quantization errors that may cause systematic bias on the sys-
tem, we employ the dithering technique by introducing ran-
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dom phase noise before quantization and the opposite of the
same amount of phase shift after quantization. This proce-
dure effectively relaxes our dependence on the particular four
quantization levels in the 4-PSQ and hence reduces the chance
of regular quantization errors.

Power Transfer Efficiency

We define the power transfer efficiency for the impedance-
matching network ηP ≡ Pout/Pin as the ratio of the out-
put power of the signal-feeding transmssion lines to the in-
put power to the signal-feeding transmission lines. At the
transmitter, four matching schemes are compared: the scan-
impedance matching, the individualized matching based only
on the antennas’ self-impedances, no matching at all, and a
nearest-neighbor coupled matching. Fig. 5 shows the average
power transfer efficiency of the four matching scheme over
uniformly distributed beam steering angles at the transmitter.
At the receiver, the first three of the four matching schemes
are considered. Fig. 6 shows the average power transfer effi-
ciency of the matching scheme at the receiver when the input
signal is a plane wave with a random incident angle uniformly
distributed within [0, π].

In Fig. 5, we can see that the scan-impedance matching
outperforms the other matching schemes at most of the N val-
ues. The power transfer efficiency under the scan-impedance
matching only decreases slightly with N , contrasting the
other more rapid falls. This implies that the scan-impedance
matching can maintain the same power transfer efficiency
even when the array becomes much denser. The results in
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Fig. 4. The architecture of the fixed scan-impedance-
matching network at the receiver.

Fig. 6 also show that the power transfer efficiency of the
scan-impedance matching remains steady when N is large
enough, at which it outperforms the other matching schemes.

These results indicate that the scan-impedance matching
at the transmitter and the receiver outperforms some com-
mon impedance matching networks in power transfer effi-
ciency. Its efficiency does not degrade as N becomes large for
some important array inputs we encounter in practice. Thus
the scan-impedance matching is a “good-enough” matching
scheme for the dense array.

Array Pattern Error

The antenna pattern error �B̂ − B� is defined as the dif-
ference between the actual array pattern and the ideal array
pattern averaged over the looking angle and separable pat-
terns. We compute the array-pattern error when the antenna
mutual coupling and the matching network are incorporated.
In Fig. 7, we present the numerical results for the transmit
phased array under three conditions: scan-impedance match-
ing, no impedance matching, and no antenna mutual coupling.
The curve without mutual coupling demonstrates the sheer
effect of ∆Σ quantization error, which diminishes toward 0
with N as asserted in Sec. 3.

Fig. 7 shows that antenna mutual coupling does incur
some penalty in convergence rate of the beam pattern quan-
tization error. (The individualized scan-impedance matching
does not affect radiation patterns notably.) While a detailed
analysis is ongoing, we have found that the mutual coupling
effect on pattern errors can be reduced to a multiplicative
factor at large N , owing to the antenna impedance matrix’s
Toeplitz structure, i.e., Bcoupled(ψ) ≈ C(ψ)Buncoupled(ψ).
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Fig. 5. The power transfer efficiency for the matching net-
works at the transmitter; phased array; varying N (∆0 denotes
the phase angle based on which the fixed scan impedance
matching is set; it represents uniform excitation.)

Our calculations indicate that C(ψ) slowly converges to a
fairly flat pattern as N becomes large. In any case, the bene-
fits of oversampling are apparent in this analysis.

Compare with the earlier results in [1], the curves in Fig. 7
are considerably smoother. This shows that the dithering tech-
nique is effective in reducing the fluctuations of the array pat-
tern errors with respect to the number of antennas.

We can reach the same conclusion for a receive array.
Fig. 8 shows the receive array pattern errors with respect to
N . We compare the case in which the scan-impedance match-
ing and antenna mutual coupling are taken into account with
the default case in which none of the two effects are present.
Again, the figure shows the benefit of oversampling, in spite
of mutual coupling and scan-impedance matching.

6. CONCLUSIONS

A dense, spatially oversampling antenna array system can re-
duce the requirements on the quality of RF devices, including
power amplifiers and phase shifters. In such a system, we can
reproduce given array radiation patterns with much coarser
antenna signals when the number of antennas is large, In this
paper, we have elaborated this dense array system developed
in [1] by incorporating mutual coupling between antennas and
impedance matching. We develop a fixed impedance match-
ing scheme for the dense array based on the array’s average
scan impedances. This matching scheme is easy to imple-
ment, and the preliminary analysis shows that it has “good
enough” power transfer performance. Moreover, the antenna
array’s impedance matrix is computed from electromagnetic
theory, and is used to recalculate the array radiation patterns.
It can be shown that although mutual coupling indeed incurs
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Fig. 6. The power transfer efficiency for the matching net-
works at the receiver. Plane-wave incidence. Varying N . (Ψ0
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impedance matching is set; it represents uniform excitation.)

extra array pattern errors, the asymptotic advantage of the
dense array in beamforming applications still holds.
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