
Channel State Quantization in MIMO Broadcast Systems:

Architectures and Codes

by

Charles Swannack

B.S. Computer Engineering
Clemson University (2003)

S.M. Electrical Engineering and Computer Science
Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

c© Massachusetts Institute of Technology 2010. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

March 19, 2010

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gregory W. Wornell

Professor, Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Terry P. Orlando

Professor, Department of Electrical Engineering and Computer Science
Chairman, Department Committee on Graduate Students





Channel State Quantization in MIMO Broadcast Systems:

Architectures and Codes

by
Charles Swannack

Submitted to the Department of Electrical Engineering and Computer Science
on March 19, 2010, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

It is now well understood that the use of a multiple-element antenna array at the transmitter
can, in principle, greatly increase the capacity of wireless systems. However, little is known
about the performance characteristics of such wireless systems in a network setting, or
about how to optimize the design of such systems, especially when complexity is taken into
account as a practical constraint. This thesis studies the problem of multi-user multiple-
antenna broadcast system design with an emphasis on the role that channel feedback plays
in a network setting. We develop new design principles for channel feedback design in
such systems and show that the system designer is afforded extra degrees of freedom in
the choice of the channel quantizer due to the multi-user diversity of the system. As such,
the system designer may use the extra degrees of freedom to design structured quantizers
that aid in user selection and allow the system to adapt to heterogeneous user populations
with different fading characteristics. We construct an adaptive quantization framework
which, when paired with low-complexity graph algorithms, enables efficient and robust user
scheduling for multi-user multiple-antenna broadcast systems.
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Chapter 1

Introduction

Wireless communication systems have seen remarkable growth in the past century with an
impressive rate of expansion in the past few decades. In 1895, Gugliemo Marconi succeeded
in establishing the first documented wireless communication link via radio signals sending
Morse code (i.e. a sequence of dots and dashes) over a wireless channel to a receiver 18 miles
away. While Marconi’s message was accurately received over this long distance, at the time
there was little understanding on the fundamental limits of the wireless signaling and the
rate at which one could transmit over such a wireless channel reliably. It was not until
Shannon’s pioneering work in 1948 on the capacity of the additive white Gaussian noise
(AWGN) channel that communication engineers understood the fundamental limits on the
communication rate for reliable transmission [108]. Presently, third and fourth generation
communications technologies are being designed to push the limits of the wireless channel
aiming to deliver data rates of up to 100 Mbit/s. More ambitiously, system designers are
developing wireless system to replace the standard wired last mile of service providing a
wireless alternative to cable modems and digital subscriber lines, a wireless backbone for
Wi-Fi (IEEE 802.11) hotspots as well as providing general telecommunications and data
services. The current IEEE 802.16 standard (WiMAX) aims to deliver local as well as
metropolitan network service where the base stations are mounted on homes or buildings
rather than towers. Current development of such next-generation wireless networks call for
the support of a wide variety of data services. To provide this functionality, the current
IEEE 802.16 Standard [1] provides a high-rate framework aimed to replace conventional last
mile of networking with a wireless link which provides five quality-of-service (QOS) classes,
three for real-time data connections and an additional two classes for delay tolerant [1].
Thus, state of the art wireless design is a problem of cross-level design where both the
aspects of the network as well as the physical channel must be considered as part of the
design.

It is now well understood that the use of a multiple-element antenna array at the trans-
mitter can, in principle, greatly increase the capacity of such systems. However, little is
known about the performance characteristics of such wireless systems in a network setting,
or about how to optimize the design of such systems, especially when complexity is taken
into account as a practical constraint. The richness of this system design problem stems
from the fact that it is one of spatio-temporal scheduling, i.e., both temporal scheduling and
spatial multiplexing aspects of the design must be considered. This thesis investigates key
aspects of joint scheduler-multiplexer design problem for multi-input multi-output (MIMO)
systems, focusing on the problem of delivering high throughput as well as broader quality
of service (QOS) guarantees while being subject to complexity and limited feedback con-
straints. In particular, we consider such a system when the number of users who must
be served is greater than the number of elements in the antenna array. A general depic-
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Figure 1-1. The MIMO downlink system with an m-antenna transmitter and n uncoordinated receivers
each having a single receive antenna. Arrivals occur at the beginning of every scheduling interval and each
arriving packet is destined for a single-user.

tion of this network scenario may be seen in Figure 1-1. An m-antenna transmitter and
n uncoordinated receivers each having a single receive antenna are distributed throughout
some geographic area. At the beginning of each scheduling arrivals occur at the transmitter
destined for a single-user. These messages are placed in a queue for the appropriate user.
Then, based on the state of both the queue as well as the channel, the transmitter precodes
and transmits messages for a subset of users.

Current MIMO systems must be developed in a way as to be robust to a variety of
radio environments to be easily (and quickly) deployed on a large scale. To do such a
system designer may design a system under some minimum number of assumptions (for
example number of users, user mobility etc.) while leaving free a few degrees of freedom
in the design which may be set independently at each deployment site. An even more
desirable approach is to design a system that may infer these parameters through some set
of minimal training data as this removes much of the complexity of system deployment as
well as provides the system with the ability to adapt to possible future changes in the radio
environment. A simple approach to provided this functionality is to design a feedback link
for users of the system to report the current state of their radio channel to the transmitter.
It is well known that this approach (knowledge of the channel state at the transmitter)
can yield considerable increase in the system throughput and hence should be incorporated
in system design. However, little is known about how this feedback effects QOS in this
broader network context or how to optimally design this feedback link in a variety of radio
environments.

In this thesis we consider how to design efficient MIMO systems with a particular em-
phasis on the role of channel feedback plays in this broader network context. In particular,
we examine present feedback design rules used currently in the IEEE 802.16 standard [1]
when the broader network problem as well as the overall system complexity is considered.
As the design of the feedback link is intimately tied to the radio environment we addition-
ally present methods which allow a system to adapt an existing channel feedback design to
more closely match the characteristics of the fading process at a given deployment site in a
way that boosts transmission rates while keeping the overall system complexity low.
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In a MIMO system where the number of users exceeds the number of transmit elements
one expects to improve a particular performance criterion as the number of users in the
system grows. In particular, by taking a heuristic approach [6, 7, 49, 107] or restricting
the scheduler to a pure time-division strategy, whereby at most one user is selected to
transmit to at any time, it has been shown that the system throughput can be improved be
selecting the user with the highest signal to noise ratio (SNR). Under infinite backlogs such
a schedule can maximize throughput for a single-antenna broadcast channel [80], provided
the channel is allocated to the strongest user at any time. However, for the multiple-
antenna broadcast channel, such approaches, while low in complexity, fail to exploit the
large available throughput gains from spatial multiplexing. In particular, it is clear that in
a system where the transmit array has multiple elements one may more generally consider
selecting a subset of users for which the corresponding sub-channel achieves the highest
rate.

With perfect channel state information (CSI) at the transmitter and infinite backlogs, a
throughput maximizing scheduling/multiplexing scheme is to successively encode (i.e. em-
ploy dirty paper coding) the set of users which at that time can achieve the highest sum
rate. Such an encoding strategy has a quite high complexity as it is sensitive to the or-
der in which users are encoded and lower complexity solutions are of interest in practical
systems. When many users are present in the system it is reasonable to expect that there
is a subset of users that negligible interfere with one another. As such, it is reasonable to
expect that lower complexity multiplexing schemes will achieve a similar rate to that of
successive encoding for such a set. However, there is no guarantee that a subset of users
that negligible interfere with one another will in general be the subset of users that achieve
to highest rate and in general all subsets of users will have to be considered. This search
has high algorithmic complexity in the number of users n and transmit dimension m, and
for purposes of implementability it is of interest to find lower-complexity solutions. The
complexity of such an optimization is dominated by the underlying search for the best user
subset to multiplex across the transmitter array, which must be performed each time an
arriving packet or channel variation changes the system state. To reduce this complexity,
one may limit the search to a smaller pool of users while ensuring that a set of users can
be found in this restricted pool that obtains a sum rate which is close to optimal with
high probability. When the number of users in the system approaches infinity it has been
shown that both successive encoding and a much lower complexity multiplexing strategy
achieve the optimal scaling in rate [110,111]. More precisely, the ratio of the rates achieved
by successive encoding and a random beamforming strategy tend to one as the number of
users tends to infinity. However, this says little about the actual system performance for a
user population of fixed size which employs a sub-optimal multiplexing or the complexity
of the search for a subset of users that are nearly orthogonal that can multiplexed with a
chosen sub-optimal multiplexing scheme with negligible penalty in rate.

In a practical system finding the set of users that achieve the maximum sum rate may
not be feasible due to complexity constraints. Thus, it is of interest to develop scheduling
algorithms that choose a set of users who achieve a rate close to that of the optimal set
with as few operations as possible. It has been recognized that using sets for which there
are guarantees on the channel norms and the magnitudes of pairwise inner products can
provide close to optimal performance [111, 120–124, 131, 140–142]. Such an approach aims
to find a set of users that are nearly orthogonal so that the penalty in rate incurred using a
sub-optimal multiplexing scheme will be negligible for the selected set . However, in general
there is no guarantee that a nearly orthogonal set will in fact be the optimal set and one
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in general expects to pay some price in SNR for using such multiplexing and scheduling.
In particular, it is not clear that one may simultaneously find a subset of users with good
channel gains that simultaneously are nearly orthogonal. More precisely, with this greedy
approach to reduce the interference between users there are two competing forms of multi-
user diversity:

1. the order statistic gain, the multi-user diversity stemming from one’s ability to sched-
ule the users that are individually at high SNR

2. the multi-node matching gain, the multi-user diversity stemming from one’s ability to
schedule users that negligibly interfere with one another

For example, if one attempts to select only the users whose channels are individually at
high SNR it may not be possible to find a subset of users that are nearly orthogonal.
Alternatively, if one first searches for sets that are nearly orthogonal it may not be possible
to select users that are individually at high SNR. Hence, for this greedy approach and more
generally in the interest of system complexity, it is of interest to understand when these
two problems decouple. In the sequel we say that the order statistic gain decouples from
the multi-node matching gain if, with high probability, one is able to find a subset of users
that are nearly orthogonal from the restricted pool of users that are individually at high
SNR. We have shown that in the large user limit and a fixed number of transmit antennas
the order statistic gain decouples from the multi-node matching gain [123] (i.e. [123] shows
that asymptotically one can first select users based off their individual statistics then find
an orthogonal set from the resulting population). However, it is not clear how large n must
be for these asymptotic insights to be relevant for system design. In particular, for a user
pool of fixed size it is not clear how to design systems to jointly optimize the order statistic
gain and multi-node matching gain. Moreover, as obtaining exact knowledge of the channel
is unrealistic in many MIMO channels due to bandwidth limitations on the feedback link, in
practice each user terminal must quantize the observation of its channel and feed back this
representation to the transmit base. Thus, in practice one must additionally optimize the
trade-off between the rate and structure of the quantizer and the order statistic gain and
multi-node matching gain.

In a multi-user MIMO system knowledge of the channel state at the transmitter is neces-
sary to realize the multiplexing gain. However, when finite rate feedback is used to convey
a users channel state to the transmitter there is some uncertainty at the transmitter of
each users channel state. Hence, the transmitter can not employ an intelligent multiplexing
method to fully eliminate the co-channel interference. As this interference scales linearly
with the SNR one must decrease the co-channel interference proportionally with the SNR,
leading to the need to linearly increase the feedback rate. Thus, high rate systems with few
users and finite rate feedback must use large codebooks to ensure that the system perfor-
mance is not limited [68]. In such cases it is of interest to develop structured codebooks that
enable user terminals to efficiently quantize their channel vectors. One of the most crucial
insights to our development in the sequel is that when the number of users is greater than
the number of transmit elements the diversity of the system decreases the uncertainty at
the transmitter of each users channel state for a subset of the user pool largely independent
of the particular feedback design allowing the system designer to rather focus the feedback
design on increasing the transmitter’s knowledge of the co-channel interference offsetting
the rate of scaling of the feedback per user. This results stems from our asymptotic develop-
ment that when the number of users tends to infinity a quantizer which consist of a single
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orthonormal basis is sufficient to achieve the optimal rate. Thus, in a multi-user system
there is a natural desire to develop quantization schemes that contain orthogonal bases as
well as have good mean square error characteristics.

In Chapter 5, we show that in a multi-user MIMO system with finite rate feedback
the effect on the expected quantization error from adding an additional user to the sys-
tem roughly equals the effects of adding an additional codeword to an optimally designed
codebook. Thus, multi-user diversity in a system makes the constraint that a quantizer be
good in terms of the quantization error largely irrelevant and a system designer may choose
a quantization scheme that helps identify users with low co-channel interference to boost
the achieved signal-to-interference-to-noise ratio (SINR). However, to make this precise we
must first overview our system model. This is done in Chapter 2 after a brief summary of
this thesis.

Thesis Outline and Contributions

We have identified the problem of feedback design as a central issue in reducing the com-
plexity of both multiplexing as well as user selection in a multi-user MIMO channel. Hence,
in the subsequent sections we develop a systematic framework to treat both of these issues
so that the trade-off between the complexity reduction of multiplexing as well as user se-
lection can be optimized by the system designer. We note that these trade-offs are highly
dependent on the particular model assumed for the MIMO channel. Thus, this thesis will
develop the relevant insights needed for system design in two parts. First, which includes
the majority of this thesis, we assume that the MIMO channel is isotropic and develop a
framework for feedback design and scheduling under this assumption. Then, we consider a
class of channel models for which a system developed assuming an isotropic channel model
will degrade and develop a simple method with which a system may adapt the feedback
framework to compensate.

We begin this development by first making the model for our system precise in Chapter
2. Then, we proceed to develop a systematic structured finite rate feedback framework in
Chapter 3 which can be used to balance the trade-off between the mean squared quantiza-
tion error and the number of orthogonal bases contained in the quantizer. Then, in Chapter
4 we present a simple model and associated base station architecture in which the system
designer may study the trade-off between the order statistic gain and the multi-node match-
ing gain and how this trade-off is affected by the variations in the structure of the feedback
design. Further, in Chapter 4, we present efficient algorithms for user selection that exploit
the structure of our systematic feedback. A benefit of the models and algorithms of Chapter
4 is that they additionally allow one to examine the effects that variations in the channel
model have on the system performance of such a system. As such, we proceed to identify
the relevant statistical models for the fading process in multi-user MIMO systems as well as
present a discrete model for user user feedback in Chapter 5. Further, in Chapter 5, we show
that our systematic feedback framework of Chapter 3 may also be viewed as a method to
adapt the channel feedback to better match the covariance structure of the channels which
significantly degrades system performance. This has practical relevance as the feedback
framework of Chapter 3 provides a common framework in which one may simultaneously
develop good structured high rate quantizers as well quantizers that may adapt to unknown
channel covariances.
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CHAPTER 1. INTRODUCTION

To summarize, the major contributions of this thesis are:

1. Identifying the problem of feedback design as an integral part of the joint design
of efficient channel aware schedulers as well as robust low complexity multiplexing
schemes (Chapter 1)

2. Providing a systematic feedback framework in which the system designer may trade-
off between the order statistic gain and the multi-node matching gain to meet certain
system objectives (Chapter 3)

3. Providing a simple base station architecture to understand to trade-off between the
order statistic gain, the multi-node matching gain and system complexity (Chapter
4)

4. Identifying an appropriate discrete model for user feedback and identifying an as-
sociated expectation-maximization algorithm to estimate this distribution under un-
known channel conditions and identify clusters of users with similar channel correla-
tion (Chapter 5)

5. Providing a systematic method to adapt our feedback framework so that the resulting
design remains stable as the statistics of the underlying channel change (Chapter 5)

6. Providing a new class of algorithms for user selection that exploit the structure of our
feedback framework to solve the user scheduling problem (Chapter 6)

We now proceed to provide our model for the multi-user MIMO system of interest before
moving to our new design for the feedback problem.
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Chapter 2

Multi-User MIMO System Models
and Metrics

Wireless communications systems continue to develop providing increased data throughput
and enhanced quality of service. However, wireless transmission is hampered by the time
varying nature of the channel of which the transmitter only has causal knowledge. Such
channel variation are caused by the underlying physical structure of the environment for
which an electromagnetic information-bearing signal propagates between a transmit and
receive pair. In the most simple scenario where the electromagnetic signal propagates
through free space in the absence of physical structure one minimally expects the signal
to be attenuated proportionally to the inverse square of the distance between the transmit
and receive pair. However, current high rate wireless systems are being deployed in urban
environments that are wrought with obstacles and as such one would expect that the channel
variations to be much different than that experienced in free space. In particular, wireless
signal propagation may be affected by [100]

1. reflections which occurs when a electromagnetic wave impinges upon a smooth surface
of much larger size than the signal wavelenght

2. diffractions which occur when dense bodies of size greater than the signal wavelenght
are present in the propagation path between the transmit and receive pair

3. scattering which occurs when a electromagnetic wave impinges upon either a rough
surface of size greater than the signal wavelenght or any surface whose size is on the
order of the wavelength

In the sequel we do not need to distinguish between these effects but rather their bulk
effect and refer to reflection, diffraction and scattering simply as scattering and the objects
causing these effects as scatterers.

If there are scatters in the propagation path between the transmitter and receiver one
expects the received waveform to be attenuated. However, the particular scale of this
attenuation is dictated by the particular number, position and physical properties of these
scatters. Given the location and relevant material properties of the scatters along the
propagation path one could solve1 the relevant wave equations to find the signal attenuation
between the transmitter and receiver. However, any change in this geometry, whether due
to the mobility of the receiver, transmitter or other scatter can dramatically alter the
signal attenuation over a short period of time. The length of time one may assume this

1Minimally, one can find a close numerical approximation via finite difference methods or the method of
moments [8]
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CHAPTER 2. MULTI-USER MIMO SYSTEM MODELS AND METRICS

fading is constant we call the coherence2 time of the channel. In a channel with such
fluxuations, one may not be able to ensure the channel is in a sufficiently good state for
reliable transmission due to the signal attenuation. Moreover, as in practice one does
not know the precise characteristics of every scatter for every deployment site one generally
forms parametrized statistical models that can characterize a variety of possible propagation
environments. That is, in practice one more generally seeks to form statistical models for
the channel fluxuations based on some basic assumptions on the dynamics of the transmitter
and receiver as well as the distribution and dynamics of the scatterers. To this end one
needs to understand how the modeling assumptions and prior information given about the
channel effect the figure of merits used to measure the performance of the system and avoid
any assumptions that are not supported by prior information that unduly influences these
figures of merit. In the sequel, we first consider the relevant figures of merit and models for
a single-antenna system before returning to the more general question of multiple antenna
systems.

� 2.1 Single-Antenna Systems

Wireless communication systems have seen remarkable growth in the past 100 years, in large
part, due the ability for one to accurately model and predict the relevant aspects of the
wireless communication channel. In 1895, Gugliemo Marconi succeeded in establishing the
first documented wireless communication link via radio signals using a very fundamental
understanding of the electromagnetic associated to radio wave propagation which enabled
him to send Morse code (i.e. a sequence of dots and dashes) over a wireless channel. However,
at the time there was little understanding on the fundamental limits of the wireless signaling
and the rate at which one could transmit over such a wireless channel reliably. It was not
until Shannon’s pioneering work in 1948 on the capacity of the additive white Gaussian noise
(AWGN) channel that communication engineers understood the fundamental limits on the
communication rate for reliable transmission [108]. In particular, Shannon considered the
discrete time power-constrained AWGN channel given by

y[k] = x[k] + z[k] (2.1)

where the power constraint is 1
nb
‖x‖2 ≤ P (nb being the block length) and where the noise

z[k] is a zero mean Gaussian random variable with variance σ2. Shannon showed that for
sufficiently long transmissions one may signal at a rate that scaled linearly in the spatial
degrees of freedom reliably with a nominal spectral efficiency of

log2

(
1 +

P

σ2

)
bits/complex dimension.

However, the capacity of the AWGN channel is not sufficient to fully characterize a wireless
channel as in general the channel fluxations led to a time varying signal quality.

A wireless communication system is subject to not only the thermal additive noise
effecting wireline channels, but also from the structure of the propagation environment of the
signal. In particular, in urban environments the location and geometry of near by buildings
and other scatterers may introduce self interference due to copies of the same signal arriving

2The channel coherence is normally only used to describe a narrow band block fading channel which we
introduce in the sequel.
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2.1. SINGLE-ANTENNA SYSTEMS

at the receiver delayed in time due to the increased path length caused by the scattering.
Hence, in the absence of a relevant model of the propagation of the electromagnetic signal
it is unclear how to address the limits of such a wireless communication system. Moreover,
dynamics of the system may make the overall channel input response time varying. That is,
the input-output relationship for the wireless channel in general must be described as [128]

y(t) =

∫ ∞

−∞
h(τ, t)dτ.

where h(τ, t) is the time varying channel impulse response. Assuming a multipath channel
with finitely many scatterers one may write the channel impulse response, h(τ, t), as

h(τ, t) =
∑

i

ai(t)δ(τ − τi(t))

Sampling the channel outputs at multiple of 1/W , where W is the system bandwidth, the
resulting baseband discrete time model for the channel becomes [128]

y[k] =
∑

n

x[n]
∑

i

ab
i (m/W ) sinc[m− n− τi(m/W )W ] (2.2)

where
ab

i (t) = ai(t) exp(−2π
√
−1fcτi(t))

and in turn where fc is the carrier frequency of the signal.

In a wireless system with sufficiently high bandwidth, the scattered signals, which arrive
at the receiver delayed in time, may be resolved and coherently combined for a gain in overall
received signal power. However, in more narrow band systems the delayed signals can not
be resolved and combined and either constructively or destructively attenuates the received
signal. Such attenuation of the received signal we refer to as fading. It is important to note
that by (2.2) the position, number and dynamics of the scatterers completely determine the
signal propagation at a given frequency. However, in general the transmission frequency
influences the signal propagation. It is reasonable to suspect that, at least in the cases of
interest, frequency response of the channel at near by frequencies will be quite similar and
hence attenuate a signal equally over narrow frequency band. If the transmitted signal is
attenuated approximately equally over the frequency band used for transmission we say
that the system experiences flat fading. The largest possible bandwidth that can be used
while ensuring a flat fading behavior is called the coherence bandwidth. In this thesis
we assume a narrowband system for which the transmission bandwidth is less than the
coherence bandwidth so that the resulting system experiences flat fading.

In a narrowband flat fading channel with a single transmit element the complex discrete
time baseband model for each user in the system is:

yi[k] = h∗i [k] · x[k] + zi[k] (2.3)

where yi[k] is the received signal, x[k] is the transmitted signal, hi[k] is the channel fading
coefficients and zi[k] is independent identically distributed (i.i.d.) CN (0, 1) noise, and where
the channel gain hi[k] ∈ C. The noises are independent from receiver to receiver, from block
to block and further are independent of the channel gains. The transmitter is subject to an
average total power constraint P . In a single-antenna system the instantaneous signal to
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noise ratio (SNR) is of interest as it describes the instantaneous capacity of a user’s channel.
For the k-th signaling interval the instantaneous signal to noise ratio (SNR) is

SNRi[k] =
P · |hi[k]|2

σ2

which leads to a corresponding time varying spectral efficiency for the i-th user of

log(1 + SNRi[k]) bits/complex dimension (2.4)

If the channel varies rapidly the coherence time may not be long enough to enable
reliable transmission over a single interval. Hence, one can transmit over multiple fades to
achieve some overall performance which, if the transmission occurs over sufficiently many
realization of the fading coefficient, typically becomes deterministic. For such a transmission
approach, the expected rate

Cergodic = Eh [log(1 + SNR[k])] (2.5)

is the relevant figure of merit which we call the ergodic capacity. The ergodic capacity alone
does little to guarantee the channel quality at a particular instance in time will be good
but rather measures the quality of the signal over several fades. We are interested in the
role feedback plays in the broader design and in the sequel we assume a flat fading model
with a sufficiently long coherence time to allow for reliable transmission with in each fading
block.

If the fading process varies slowly, i.e. if the coherence time of the channel is significantly
long, one may transmit a signal over a single fade reliably at a rate determined by the fading
process. In practice one uses one or more fixed rate coding schemes to ensure reliability.
When the channel quality drops below the SNR threshold for which the fixed rate coding
scheme can be used reliably one will have a high probability of bit errors. Thus, in practice
there is some SNR threshold τ0 for which communication can not be performed reliably and
the probability that the SNR is not sufficiently high as to not support reliable transmission
is an important figure of merit. We call this the outage probability. More precisely the
outage probability is

Poutage(τ0) = Pr [SNR[k] ≤ τ0] . (2.6)

While the ergodic capacity does not directly relate to the problem of interest it is important
to note that the outage probability has a very useful interpretation in the problem of channel
aware scheduling. In particular, a single-user system for which the outage probability
for every selected user is low implies that the service rate for the wireless link becomes
approximately constant. Thus, the outage probability can alternatively be viewed as a
coarse measure of how strongly coupled the particular channel realization is to the scheduling
decision. That is, if a system employs a given fixed rate coding scheme and the probability
of outage is low then one only needs to first determine the subset of users that are over this
threshold then do a simple weight matching. As noted in Chapter 1, under infinite backlogs
opportunistic scheduling of the system (allocating the channel to the strongest user at any
time) can maximize throughput for this single-antenna broadcast channel [80]. Thus, in
such a system one is more generally interested in a generalized notion of outage

Pfail(τ0) = Pr

[(
max

i=0,1,...,n−1
SNRi[k]

)
≤ τ0

]
. (2.7)
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It is clear that in such a multi-user single-antenna broadcast channel one may have a dra-
matically lower probability of outage for the selected user assuming that Pfail(τ0) is low
as

Poutage(τ0) > Pfail(τ0).

While this identification is not needed to reduce the complexity in a single-user system
it will help us substantially reduce the system complexity for a multiple-antenna system
in the sequel. This is exactly the perspective that led to our definitions of order statistic
gain and multi-node matching gain in Chapter 1 and we wish to develop a similar definition
to Pfail(τ0) for the multi-user MIMO channel.

For the transmitter to make an informed scheduling decision, as in (2.7), the transmitter
must have some knowledge of each users signal strength. If the channel is not reciprocal
(i.e. the propagation characteristics from the transmitter to receiver is not identical to
that from the receiver to the transmitter) then the transmitter must receive some sort of
feedback from the users to indicate their signal strength for inference of the channel state
to be possible. Moreover, each user must be able to measure their signal strength for
such feedback to be possible. Throughout this thesis we assume that each user has perfect
knowledge of their channel state and that some imperfect representation of this channel
state is known by the transmitter. In particular, we assume that each user has fed back
some quantized representation of the fading state through a finite bandwidth communication
link. In this thesis we do not consider the design of this link nor do we consider how much
bandwidth is needed by such a link. Rather, we assume that this feedback link has been
sufficiently designed so that every transmission occurs without error and examine how the
rate of the associated quantization scheme affects the system throughput.

As seen in the single-antenna broadcast system the figures of merit (for both the outage
probability as well as the ergodic capacity) rely heavily on the distribution of the fading
process and hence one must accurately model the fading process for the results to be mean-
ingful. In a single-antenna system the effects of user dynamics and the geometry of the
propagation environment are well understood [100, 128]. However, in the MIMO channel
there are far more effects that must be modeled which not only effects the system throughput
but also the feedback design. In particular, one must model the effects of the array geome-
try, electromagnetic coupling of the transmit elements as well as the co-channel interference
between the different users.

In order to model the co-channel interference in a multi-user MIMO system one in
general must understand effects the propagation environment has on the users in the system.
In particular, one must model the effects the propagation environment has on the co-
channel interference. As the multiple transmit elements led to more propagation paths the
problem of modeling the multi-user MIMO channel is far more complex than a system with
a single element. This modeling problem is compounded by the many different propagation
environments for which current multi-user MIMO devices and standards are being designed.
In particular, as the current IEEE 802.16 standard has modes of operation for urban,
suburban, and rural radio transmission and it is not clear what assumptions can be made
about the multi-user MIMO channel, or more generally, the number of degrees of freedom
available in the multi-user MIMO channel. In the absence of strong modeling it seems that
a system designer must make either too strong or too weak assumptions on the channel
model which may be overly optimistic or pessimistic causing poor performance at one or
more deployment sites. However, in the sequel we show that one may design robust multi-
user MIMO systems by constructing quantizers for an isotropic channel which have a large
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degree of symmetry. Thus, in the sequel we provide a brief introduction to multiple-antenna
systems and proceed to design quantizers that perform well assuming isotropic fading. Then,
in Chapter 5 return to the question of modeling multi-user MIMO channel more generally.

� 2.2 Multiple-Antenna Systems

Current MIMO wireless systems have shown the potential for increasing wireless system
capacity without the price of power or bandwidth [126]. These results stem from the fact
that a MIMO channel allows the construction of parallel communication channels that are
separated in space affording path diversity for the transmitted signal. As the transmitted
signal follows multiple spatial paths it is likely (under reasonable assumptions) that each
path does not simultaneously undergo poor fading and hence common figures of merit used
to measure the performance of single-antenna systems (i.e. the ergodic capacity as well as
the outage probability) are likely to be improved. In particular, [126] has shown that in a
rich scattering environments the resulting ergodic capacity scales approximately linearly in
the minimum of the number of transmit and receive antennas.

In a MIMO system with m transmit antennas and n receive antenna one must in general
consider all transmit and receive pairs to accurately model the channel. More precisely, in
order to derive the input-output relationship for a MIMO system one must generally derive
the input-output relationship for each transit and receive pair. That is, the general input-
output relationship for the MIMO channel is

y(t) =

∫ ∞

−∞
H(t, τ)x(t − τ)dτ + z(t) (2.8)

where y(t) is the vector of received signals for the users, x(t) it the signal transmitted from
the array, z(t) is the time varying noise process and in turn where

H(t, τ) =




h0,0(t, τ) h0,1(t, τ) · · · h0,m−1(t, τ)
h1,0(t, τ) h1,1(t, τ) · · · h1,m−1(t, τ)

...
...

. . .
...

hn−1,0(t, τ) hn−1,1(t, τ) · · · hn−1,m−1(t, τ)


 (2.9)

is the time varying impulse response of the channel. In the sequel, we assume that each
one of these mn links are narrowband flat fading with a sufficiently long coherence time
to allow for reliable transmission with in each fading block. More precisely, we assume a
narrowband discrete-time channel model that is block fading where, in any particular block,
the signal yj [k] received by user j at time k in response to a signal x[k] transmitted from
the array is of the form

yj[k] = h
†
j[k]x[k] + zj [k] (2.10)

where zj [k] is independent identically distributed (i.i.d.) CN (0, 1) noise, and where the
(normalized) channel gain vectors hj[k] ∈ Cm are of length m. The noises are independent
from receiver to receiver, from block to block and further are independent of the channel
gains. The transmitter is subject to an average total power constraint P , i.e.

E
[
Tr
(
x[k]x[k]†

)]
≤ P, (2.11)

within each signaling interval which is equivalent to power constraint imposed on the single-
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antenna system. As in the single-antenna system we assume that channel gains in each sig-
naling interval are known perfectly (i.e., measured to arbitrary accuracy) at the respective
receivers at the beginning of each such interval. Moreover, a feedback link exists by which
individual users can inform the transmitter of their channel gains (or more generally quan-
tized versions thereof), also at the beginning of each associated signaling interval. Further,
we assume the users do not know each others channel gains, nor are they able to more gen-
erally share information between each other. As results on modeling and measurement for
the multi-user MIMO channel have only recently begun to be reported we from time to time
appeal to cooperative results. If this is the case we refer to the system as the cooperative
MIMO system or as a MIMO system with cooperative receivers. Note, however, that unless
otherwise identified we assume that the users may not cooperate.

Any message scheduled for delivery is transmitted within one block and the blocks are
long so that the messages can be reliably received. Thus each block corresponds to a new
signaling (and hence scheduling) interval. Within each signaling interval, the transmitter
sends from its array a group of messages, one for each of a subset of the user pool. We
denote the set of n users as U = {0, 1, 2, . . . , n− 1} and the set of user selected to receive a
message we call the active set of users which is denoted by A. We further refer to A as the
activation set.

In Chapter 5 we examine appropriate models for the joint distribution of each users
channel gains and hence collect every users channel gain vector in a matrix H[k] where

H†[k] =




h
†
0[k]
...

h
†
n−1[k]


 .

However, as previously noted, a main contribution of the thesis is that one may design
channel feedback for many multi-user MIMO systems with general fading distributions given
that one has a class of “good” quantizers for a system with an isotropic fading distribution.
Hence, in the sequel we assume that H[k] is modeled as a random matrix where by each
element of H[k] are i.i.d complex Gaussian CN (0, 1/2m) random variables. In particular,
let

H[k] = G[k] (2.12)

where G[k] is a m × n random matrix with i.i.d CN (0, 1/2m) elements. We refer to this
model for the MIMO channel as the Rayleigh model. In order to extend our results to
more general model we, from time to time, also assume that each user’s channel vector is
spatially correlated to examine how non-isotropic channel distribution effect our results.
More precisely, from time to time, we assume each user channel is distributed as

hi = Σ1/2 · h(0)
i

where the elements of h
(0)
i are i.i.d CN (0, 1/2m) and make clear when this assumption is

made. Such an approach leads to developing a quantization framework which is described
in terms of the relevant model and geometric parameters thus leading to a quantization
framework that may be adapted to match channel conditions for general fading distributions.
In order to make this precise we now state our general quantization model and examine the
effects a system with finite rate feedback has on multi-user system performance. Then, in
Chapter 3 we present our systematic quantization framework.
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� 2.2.1 Channel Quantization

In a multi-user MIMO system the quantizer design not only effects the order statistic
gain through the mean square error, but also the multi-node matching gain through the
transmitters ability to infer channel interference. This relationship can be quite difficult
to model exactly and as such, we outline the effects a correlated Gaussian random vector
has on a general quantization scheme and latter address how this general picture relates
to the relevant channel model of the multi-user MIMO channel identified in Chapter 5.
Such an approach has practical relevance. Indeed, part of our motivation for the feedback
design problem is to develop a system which is robust to a variety of fading conditions.
However, such a modeling approach leads to developing a quantization framework which is
described in terms of the relevant model and geometric parameters leading to a quantization
framework that may be chosen to match channel conditions. This allows us to later develop
a framework that may be dynamically modified to adapt to changes in statistics of the
channel. All of the relevant insights and geometric motivation may be gained by considering
a Gaussian fading model. However, we first require a few more details concerning channel
quantization before proceeding to develop this framework.

We assume that the quantization codebook C is such that the codewords c ∈ C all lie on
the unit sphere in m (complex) dimensions. We let r denote the number of bits to which
a channel direction is quantized, so the codebook is of size 2r. We label the codewords in
the codebook C = Cr as c1, c2, . . . , c2r . An important property of a code is the sparsity of
the code. We say that a code is k-sparse if every vector of a code has at most k non-zero
entries. We note that every quantizer in Cm may be viewed as the union of a 0-sparse,
1-sparse, . . ., m− 1-sparse and m-sparse codes.

The quantization codebook C is fixed and the same for all users and the corresponding
quantization rule corresponds to

Q(hj) = arg max
c∈C

d(c,hj) where d(c,hj) =
∣∣∣c†hj

∣∣∣ . (2.13)

We denote the quantization of hj as

ĥj
∆
= Q(hj)

and for any subset of channel vectors {ha1 , . . . ,haℓ
} we denote by

Φ̂A = Q(HA)
∆
=




Q(ha1)
†

...
Q(hal

)†


 (2.14)

the set of quantized channel vectors for the set of users A = {a1, . . . , aℓ}.
The quantization rule (2.13) leads to a quantizer design which may be thought as of a

system of lines through the origin rather than discrete points on the unit sphere. Thus, the
current system only quantizes the channels direction and not the gain. We note one may
more generally quantize the gain. However, the corresponding results do not dramatically
effect our results and thus we only consider feedback schemes which quantize the direction
of each users channel.

In a system where the channel state is quantized the set of rates that may be achieved
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by the system may be considered to be discrete3. Moreover, in such a system, the number
and distribution of these discrete operating points is directly tied to the structure of the
associated feedback scheme as the channel feedback is the only knowledge the transmitter
has of the channel state. Thus, the transmitter may only infer each users channel and the
co-channel interference from the descriptions of users channels given by the feedback scheme.
Hence, the transmitter may only schedule users based on the discrete set of channel vectors
used by a feedback scheme. In the sequel we leave many parameters of the quantizer and
channel model free and as such it is unrealistic to precisely compute the joint distribution
of the quantization error and the transmitters estimate of the co-channel interference and
achievable rates for the system in general. To circumvent this issue we present a parametric
model for the feedback process in Section 5.1 that may be used to estimate the fading
distribution of the channel. More precisely, for any given fading distribution, in Section 5.1
we present a systematic method to estimate the probability that any user is quantized to a
given codeword. With this in hand one may then in turn approximate the distribution of
the joint fading statistics. More precisely, in Section 5.1 we present a systematic method to
estimate the probability vector

pi(Cr) = (pi,0(Cr), pi,1(Cr), . . . , pi,2r−1(Cr))

where
pi,j(Cr) = Pr [ user i is quantized to codeword j | Cr] .

In the sequel we present how one may compute this distribution exactly for a user which
has a spatially correlated channel vector. Although, we do not use the following methods
to compute the exact user assignment distribution directly from the channel model we
examine how one may compute the marginal distribution for the feedback from user i as
this development provides useful insights we use in the sequel.

Assume for the present that the channel vector of each user in the system is marginally
distributed as a jointly Gaussian random complex vector of length m and covariance Σ. In
particular, in the sequel we assume

hi = Σ1/2 · h(0)
i

where the elements of h
(0)
i are i.i.d CN (0, 1/2m). With this assumption each user’s channel

vector has a norm that has a Chi-squared distribution (for some suitable parameters) and
a direction that is distributed non-uniformly over the complex unit m-sphere. As we are
interested in quantizing the direction of each users channel gain vector the quantization
rule (2.13) determines a set of 2r regions on the complex unit m-sphere which determine
which points of the sphere are quantized to each codeword. That is, (2.13) determines the
collection of Voronoi regions for any code Cr. We let Vi be the Voronoi region for ci, i.e. Vi

is the set of all points on the complex unit m-sphere that are closer to ci then any other
codeword in Cr (where ties are broken arbitrarily). More precisely,

Vi = {x ∈ Cm : ‖x‖ = 1 and d(ci,x) ≤ d(cj ,x) ∀cj ∈ Cr \ {ci}} . (2.15)

and the probability that user i is quantized to any codeword of Cr, say cj , is equal to the

3This is true, for example, in a system which omits power control and time-division schemes
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(a) (b)

Figure 2-1. An illustration of how the shape of the Voronoi cell effects the mean square error for users
with isotropic fading. Two possible arrangement of 12 lines in R3. (a), a uniform collection of lines that has
a low mean square error. (b), a structured collection of 12 lines with higher mean square error. Note that
by assuming Voronoi regions are isomorphic a high coherence implies the Voronoi region has points that lay
far from center increasing the inertia of the region and hence the mean square error.

weighted volume of Vj . That is,

Pr [Q(hi/‖hi‖) = cj ] =

∫

x∈Vj

dµm(x;Σ) (2.16)

where dµm(x;Σ) is a continuous measure on the unit m-sphere induced by the covariance
matrix Σ. A similar argument holds if one is interested in computing the mean squared
quantization error.

In a system with correlated fading the expected MSE error is directly related to the size
and shape of the Voronoi cells. In particular, the MSE of any cell is the (weighted) second
moment of the cell, ∫

x∈Vj

‖cj − x‖2 dµm(x;Σ).

Thus, a code book with a smaller (weighted) second moment has a smaller MSE and hence
achieves a higher expected rate. To see how the shape of the Voronoi cell effects the mean
square error for users with isotropic fading consider the two codebooks in R3 in Figure 2-1.
Note, that the quantizer on the left has a much smaller second moment than the one on the
right as the mass of Voronoi cells for the quantizer on the left is more evenly distributed
about its center. However, channel correlation may significantly change this picture and
a significant mismatch may led to a high mean square quantization error regardless of the
codebook coherence.

If a MIMO system has isotropic fading and one employs a quantizer which has isomorphic
Voronoi regions both the MSE and the cell probability, pj, are the same for every region.
However, if the fading process is correlated or the Voronoi cells have irregular shape then
one must compute the probability of every cell directly using (2.16). That is, repeating
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(2.16) for every Voronoi cell of the code yields a discrete distribution

pi(Cr) = (pi,0(Cr), pi,1(Cr), . . . , pi,2r−1(Cr))

which describes the probability that user i is quantized to a codeword in Cr.

In practice one does not have knowledge of the particular covariance matrix of each
user and hence can not in general compute pi(Cr). However, observations of the feedback
process from every user does allow one to make reasonable inference of pi and may be
further used to estimate Σ. In a multiple-antenna system one may, through observation of
a users feedback, estimate the covariance of the ith users channel

Khi

∆
= E

[
hih

†
i

]

by first forming an estimate of pi(Cr), say p̂i(Cr), and then estimate the covariance of the
ith user’s channel through the empirical covariance

K̂hi

∆
=

2r−1∑

j=0

p̂jcjc
†
j . (2.17)

With this approach it is additionally possible to estimate the principle eigenmode of
the channel covariance. Indeed, given the empirical covariance the principle eigenmode of
K̂hi

is the ML estimate of the principal invariant subspace of the covariance [115]. Hence
one can identify the dominate mode of the correlation to aid in adapting the quantization
codebook. This is an important observation as the ability to infer characteristics of the
propagation environment coupled to a quantization scheme which has the ability to adapt
to match the dominate features of the propagation environment allows a system to be stable
under a wide range of channel conditions. We exploit this observation in Chapter 5. In
particular, in Section 5.1 we develop a discrete framework to model the feedback process
directly which allows one to make reasonable inference of the propagation environment and
adapt the feedback framework to better match the channel. However, this requires a base
design, which in the absence of a prior on the channel covariance, must perform well for
the Rayleigh model. In this direction we turn to the relevant figures of merit for channel
quantization assuming an isotropic channel distribution.

� 2.2.2 Quantization Figures of Merit and MSE vs. Orthogonality Trade-off

The figures of merit chosen to evaluate a quantization codebook must be chosen to ade-
quately reflect the problem of interest. In our development, we have advocated a quanti-
zation design which balances one’s ability to estimate the co-channel interference with the
incurred mean squared quantization error. However, most feedback designs for the MIMO
channel at present choose a figure of merit that characterizes the mean square quantization
error characteristics of the quantizer. It is natural to consider how these two approaches dif-
fer. Thus, in this section we develop the relevant figures of merit for MSE centered designs
as well as the design we advocate. In particular, we show how the problem of designing
a quantizer for which the mean square quantization error is low is often at odds with a
design which increases one’s ability to estimate co-channel interference by enforcing that
every codeword is pairwise orthogonal with a specified number of other codewords.

With the quantization rule (2.13) a key figure of merit for the codebook is its coherence
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µ0(C) = max
i6=j

∣∣∣c†icj

∣∣∣ . (2.18)

In general, 0 ≤ µ0 ≤ 1, and, for a given r and many codes of interest, smaller values
of µ0 correspond to quantizers in which the lines are more equally spaced relative to the
quantization rule (2.13). We note that there is not a one to one correspondence between
the coherence of a quantizer and the mean squared quantization error as the coherence of a
quantizer only describes the distance of the closest codeword and not the second moment.
However, as seen in the sequel, codes in which µ0(C) is small, often have symmetric Voronoi
cells and hence low mean squared quantization error.

Previous work on MIMO feedback design [82, 90, 105, 137, 144] has taken the coherence
as the sole figure of merit. Indeed, for a given code rate lowering the coherence by making
the Voronoi cell more symmetric reduces the mean squared quantization error in isotropic
fading, which increases the user’s SNR on average. Thus, with the implicit assumption that
small µ0(C) implies a more symmetric Voronoi cell, minimizing µ0(C) is a relevant design
rule for minimum mean squared error quantizer design. In this thesis we show that in a
multi-user system one often should consider other figures of merit for the system as well.
In this direction consider a second, weaker, figure of merit of a code book, the k-norm of
the cross correlation

µk(C) = k

√ ∑

ci,cj∈C
|c†icj |2k. (2.19)

The corresponding lower bound on µk(C), for a codebook with 2r codewords, is [135]

µk(C) ≥ µ̄k(2
r,m) = 2k

√
22r

(m+k−1
k

) . (2.20)

While the coherence roughly describes the minimal angle between codewords the k-norm
of the cross correlation relates to the average angle between codewords. As the maximum
of a sum with 2r terms must be greater than 1/2r times the sum, we can use µ̄k(2

r,m) to
arrive at a lower bound on µ(C). That is,

∑

ci,cj∈C
|c†icj |2k = |C| +

∑

ci,cj∈C
|c†icj |2k (2.21a)

≤ |C| + (|C| − 1)|C| max
ci ,cj∈C

|c†icj |2k. (2.21b)

Hence,

µ0(C) ≥ 2k

√
µ̄k(2r,m) − 2r

2r(2r − 1)
.

This yields the best known bound on µ0(C) [70,135], which, for any positive integer k, is

µ0(C) ≥ 2k

√√√√ 1

2r − 1

(
2r

(m+k−1
k

) − 1

)
. (2.22)

With this derivation one can see that a code meeting (2.22) has a uniform minimum distance
and hence symmetric Voronoi cells. While finding codes with optimal coherence is in general
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an open problem finding codes meeting (2.20) has been largely solved [106]. In fact, a large
number of codebooks are known to meet (2.20).

In this thesis we seek to understand the trade-off between one’s ability to represent
any user’s channel well (with respect to (2.13)) and one’s ability to infer the co-channel
interference between user groups. In the preceding discussion we have provided a bound
on how well one may hope to do in terms of coherence which roughly corresponds to the
achieved mean squared quantization error. However, it is of interest to understand how
this bound and the weaker bound on the k-norm on the cross correlation are influenced
by placing some constraint on the codebook to help the transmitter infer the co-channel
interference between users. A particularly natural constraint to place on the codebook to
help the transmitter infer the co-channel interference between users is a requirement that
each codeword in the quantization codebook should have many orthogonal vectors from
which many orthogonal sets may be selected. Such an approach allows a user to indicate a
plurality of subspaces for which it is near. As such, we let

η(C) = min
ci∈C

∣∣∣
{
cj : c†icj = 0

}∣∣∣ .

To see how constraining a code to have a given number of orthogonal vectors has on the
coherence we begin by noting that any feedback scheme should minimally meet the k-norm
of the cross correlation (2.19). Thus, repeating (2.21), this time adding in prior knowledge
of η(C), yields4

∑

ci,cj∈C
|c†icj |2k = |C| +

∑

ci,cj∈C
|c†icj |>0

|c†icj |2k (2.23a)

≤ |C| + (|C| − η(C) − 1)|C| max
ci,cj∈C

|c†icj|2k (2.23b)

We note that (2.23b), while simple to derive, illustrates the necessary trade-off between
the order statistic gain and multi-node matching gain in terms of the feedback design.
That is, as we have previously shown, the multi-node matching gain is enhanced when the
quantizer has many orthogonal sets while the order statistic gain is improved when the
mean squared quantization error is decreased. Equation (2.23b) shows exactly how these
two design objectives are at odds. To see this suppose, in order to increase the multi-node
matching gain, one designs a quantizer such that every codevector is orthogonal with η
other codevectors. Then, by inserting (2.19) in (2.23b) for a fixed k, the bound on the
maximum cross correlation for the resulting code is

µ0(C) ≥ µ̄k(2
r,m; η) = 2k

√
µ̄k(2r,m)2k − 2r

(2r − η − 1)2r
. (2.24)

If η is chosen to be a constant fraction of the codebook size then, for large 2r, (2.24)

4This bound is loose as in general as one could re-derive the result for the k-norm on the cross correlation
for non-orthogonal codewords or given the number of distinct cross correlation values employ the results
of [44,57].
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can be substantially larger than (2.22) as

µ̄k(2
r,m;α · 2r) = µ̄k(2

r,m; 0) · 2k

√
(2r − 1)

(2r − η − 1)

≈ µ̄k(2
r,m; 0) · (1 − α)−1/(2k)

Thus, if one imposes a strong orthogonality constraint on our codebook, i.e. η ∝ 2r, then
(2.24) predicts a non-negligible increase in the maximum cross correlation. Alternatively,
any attempt to maximize the multi-node matching gain by increasing the number of orthog-
onal sets will, by (2.24), likely increase the codebook coherence. In Chapter 3 we describe a
quantization framework in which the system designer can balance these design objectives.
However, we first must identify the effects that quantization has of system performance in
a multi-user MIMO system.

� 2.3 Figures of Merit for MIMO Channels and Beamforming

The figures of merit we consider in the sequel are identical to those provided for the single-
antenna channel. That is, we again consider the appropriate generalizations of the ergodic
capacity, outage probability as well as the scheduling failure probability. To begin, we
consider the ergodic capacity of the MIMO channel. If the fading between transmit pairs
vary rapidly one may have to again transmit over multiple realizations of the fading process
to achieve reliable transmission. To be concrete we at present assume the Rayleigh model.
For such a model the channel matrix H[k] is modeled as a random matrix where by each
elements of H[k] are i.i.d complex Gaussian CN (0, 1/2m) random variables. Assuming
the Rayleigh model one can show that with high probability every realization of the channel
matrix H provides approximately min{n,m} parallel paths from the transmitter to each
receiver. With such path diversity it is likely that if one path undergoes a deep fade
the remaining paths will be better provided that these paths are not highly correlated.
This is the basic intuition behind the ergodic capacity scaling results of [126]. That is, if
one assumes the channel follows the Rayleigh model (2.12) then the ergodic capacity of a
cooperative MIMO channel is

Cergodic = EH

[
log

(∣∣∣∣I +
P

σ2m
HH†

∣∣∣∣
)]

≈ min{M,N} · log
(

1 +
P

σ2

)

If the MIMO channel is sufficiently slow fading so that one may reliably transmit over
a single fade one is again interested in the instantaneous SNR of the channel. However, in
multi-user MIMO there are two ways in which a transmitter may exploit the extra spatial
degrees of freedom afforded by the MIMO channel. The transmitter may transmit to only
a single-user, thereby providing that single-user with full path diversity or the transmitter
may more generally multiplex signals for multiple users together using the spatial degrees of
freedom to transmit multiple streams of data simultaneously. If the transmitter only exploits
the spatial diversity of the array by transmitting to a single-user then the instantaneous
SNR of user i is

SNRi[k] =
|hi[k]

†x[k]|
σ2
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resulting in a spectral efficiency of

log(1 + SNRi[k]) bits/complex dimension.

If the user’s channel state is known to the transmitter the transmitter may, in order to
provide a desired signal-to-interference-to-noise ratio (SNR) for a user, use transmit and
receive beamforming . That is, one may select

x[k] = uiwi

where ui is the message symbol for users i and where in turn wi is the beamforming vector
for user i. We assume throughout that |ui|2 = Pi, where Pi is the power allocated to user
i. Using transmit and receive beamforming, the instantaneous SNR of user i becomes

SNRi[k] =
P · |hi[k]

†wi|
σ2

. (2.25)

In a system with perfect channel state information at the transmitter one may optimize the
SNR in (2.25) by choosing wi = hi[k] and hence (2.25) becomes

SNRi[k] =
P · ‖hi[k]‖2

σ2
.

A beamforming system with channel state information thus can significantly increase the
performance of a system. However, as in a single-antenna system, the channel fading may
still cause a user to have a significantly poor fading state and hence the channel quality
may be below the SNR threshold for which a chosen fixed rate coding scheme can be used
reliably. Thus, one is again interested in the outage probability,

Poutage(τ0) = Pr [SNRi[k] ≤ τ0] . (2.26)

It is important to note that due to the spatial diversity of MIMO the outage probability of
a multiple-antenna system may be much lower than that of a single-antenna system for a
given SNR threshold. If one additionally has multiple users in the system and a scheduler
allocates the channel to the strongest user at any time one may see an additional increase
in the SNR of the channel and even further reduce outage probability. Thus, in a multi-user
MIMO system it is of further interest to know when a scheduler which chooses the single
best user is in outage, i.e.

P
(S)
fail(τ0) = Pr

[(
max

i=0,1,...,n−1
SNRi[k]

)
≤ τ0

]
. (2.27)

As previously noted, in a multi-user MIMO system there are additional ways one may
choose to exploit the degrees of freedom. In particular, in a multi-user MIMO system
one may alternately use the spatial degrees of freedom of the MIMO channel to multiplex
many users across the array simultaneously by reducing the diversity of each user. This
may, however, introduce interference if the users channels are not orthogonal and one must
balance the system gains one receives by increasing the number of users multiplexed across
the array with the decrease in each user’s rate.

In a MIMO system in which multiple users are multiplexed across the array it is the
job of the multiplexer to construct a beamforming matrix WA which balances each users
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SNR and level of interference for a given set of users A. The achieved signal to interference-
plus-noise ratio (SINR) is a function of every users channel state and when the multiplexer
is informed of this channel state the multiplexer may intelligently choose the beamforming
matrix WA. In the sequel we consider linear multiplexers as they are an attractive choice
when overall system complexity is of interest.

We focus on the case where the instantaneous signal x can be represented as the linear
combination

x =
∑

i∈A
uiwi = WAu (2.28)

where again ui is the message symbol for users i, wi is the beamforming vector for user i
and WA is the beamforming matrix for the set of user A. The vectors wi in general may
be optimized for each transmission but may also come from some finite codebook. With
this definition, assuming flat power allocation as we do throughout, the power allocated to
each user is,

Pi =
P

Tr(WAW
†
A)
. (2.29)

Thus, the baseband model for the system becomes

yi = h
†
iwi · ui +

∑

j∈A
j 6=i

h
†
iwj · uj + ni.

We now examine the achievable signal to interference-plus-noise ratio (SINR) using common
beamforming techniques.

Let σi be the correlation between the normalized channel vector

h̃i =
h

‖h‖

and wi,
σi = h̃

†
iwi.

Further, let σi,A be the vector of correlations between the ith channel vector and the
beamforming vectors of the other users in the set A,

σi,A = WA\ih̃.

If the receiver employs an MMSE receiver to maximize the receive SINR the resulting SINR
for the ith user is

SINRi(WA,HA, P ) =
P‖hi‖2σ2

i

Tr(WAW
†
A) + P‖hi‖2‖σi,A‖2

. (2.30)

Note that (2.30) illustrates the trade-off between the order statistic gain and multi-node
matching gain in a beamforming system. Indeed, if the channel state if perfectly known at
the transmitter, one may, by ignoring the interference from the other users (letting σi,A be
arbitrary) greedily take WA = H̃A in an attempt to increase the channel SNR(by ensuring
σi = 1). Alternatively, one may attempt to precancel the interference from the other users
(by ensuring σi,A = 0) using some of the possible transmit power to null the co-channel
interference.
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In a MIMO system the multiplexer that ignores the co-channel interference by taking
WA = H̃A we call the interference ignoring multiplexer and write

WII(HA) = H̃A. (2.31)

The interference ignoring multiplexer transmits a signal of power

P II
i =

P

|A|

to every user i ∈ A which yields a corresponding SINR equal to

SINRII
i (HA, P ) =

P‖hi‖2

|A| + P‖hi‖2
∑

j∈Aj 6=i
|h†

jhi|2
. (2.32)

At the other end of the spectrum in the zero-forcing multiplexer which uses some of the
available transmit power to precode the signal so there is no co-channel interference. We
call this multiplexer the interference-cancelling multiplexer. More precisely, the interference-
cancelling multiplexer chooses the psudo-inverse of the channel as the beamforming matrix,
i.e.

WIC(HA) = HA · (H†
AHA)−1.

If one multiplexes users with the interference-cancelling multiplexer the power allocated to
every user i ∈ A is

P IC
i =

P

Tr

((
H

†
AHA

)−1
)

with corresponding SNR

SINRIC
i (HA, P ) =

P

Tr((HAH
†
A)−1)

(2.33)

Examining (2.33) one may see that if the channel matrix HA is ill conditioned each user
receives only a small fraction of the peak transmit power P . To combat this power loss one
may more generally consider a regularized inverse of the channel [98],

WMMSE(HA; ρMMSE) = HA · (ρMMSE · I|A| + H
†
AHA)−1 (2.34)

where ρMMSE ≥ 0 and I|A| is an |A| × |A| unitary matrix. We call this multiplexer the
MMSE beamforming multiplexer. Such a multiplexer trades off the received signal power
with the co-channel interference which may be seen through examining the power allocated
to every user [98]

PMMSE
i =

P
∑|A|−1

i=0
λi(H

†
AHA)“

λi(H
†
AHA)+ρMMSE

”2

where {λi(H
†
AHA)}|A|−1

i=0 are the eigenvalues of H
†
AHA. Note that if ρMMSE = 0 then the

MMSE beamforming multiplexer is simply the zero forcing multiplexer. We do not provide
the explicit SINR expression for the MMSE beamforming multiplexer as it is generally quite
complex.
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In a multi-user MIMO system which employs multiplexing one may opportunistically
allocate the channel to the subset of users with the highest SINR at any time. In such a
multi-user MIMO system it is of interest to know when a scheduler which opportunistically
searches for a subset of user meeting a prescribed SINR target fails to meet its objective.
That is, one may further generalize the notion of outage to include

P
(M)
fail (SINR0) = 1 − Pr [A ⊂ U such that SINRi(A) ≥ SINR0 ∀i ∈ A] . (2.35)

Of particular interest is whether one may meet specified SINR targets in a system with
finite rate feedback. We address this question in detail in Chapter 4. At present we examine
the effects of finite rate feedback on the achievable SINR in a multi-user MIMO system.

In a system with finite rate feedback one may employ the same beamforming techniques
used as when the transmitter had perfect feedback. In particular, we focus our attention
on the interference-cancelling multiplexer as the insights for the interference-ignoring mul-
tiplexer do not differ greatly from that when the transmitter has perfect channel state
information. In order to derive the relevant expression for the SINR we, for simplicity, fix

WA = WIC(Q(HA))

and
RA = Φ̂

†
AΦ̂A.

Let µi,A be the vector of correlations between the ith beamforming vector and the remaining
beamforming vectors in the set A, i.e.

µi,A
∆
= Φ̂

†
A\iwi.

Then, we show in Appendix C.1.2 the received SNR for user i is

P

Tr
(
R−1

A
)‖hi‖2c2i (A)

where

ci(A)
∆
=

∣∣∣σi − σ†i,AR−1
A\iµi,A

∣∣∣

1 − µ†i,AR−1
A\iµi,A

(2.36)

and the corresponding co-channel interference caused by choosing WA is

P‖hi‖2c2i,⊥(A)

Tr
(
R−1

A
)

where
ci,⊥(A)

∆
= ‖(σ†i,A − σiµ

†
i,A)(RA\i − µi,Aµ

†
i,A)−1‖. (2.37)

Thus, the SINR for the quantized interference canceling multiplexer may be written as

SINRQIC
i (A, P ) =

P‖hi‖2c2i (A)

Tr
(
R−1

A
)

+ P‖hi‖2c2i,⊥(A)
. (2.38)

We note that (2.38) makes explicit the need to reduce the uncertainty of the co-channel
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interference at the transmitter as the SNR of the channel scales. That is, examining (2.37)
one may see that using a quantized zero-forcing multiplexer the co-channel interference is
a weighted function of the difference in the estimated co-channel interference µi,A and the
realized co-channel interference σi,A. Additionally, this error is scaled based on the metric
properties of the beamforming matrix. In particular,

ci,⊥(A) = ‖(σi,A − σiµi,A)(RA\i − µ†i,Aµi,A)−1‖ (2.39a)

≤ ‖σi,A − σiµi,A‖
λmin

(
RA\i − µ†i,Aµi,A

) (2.39b)

≤ ‖σi,A − σiµi,A‖
λmin

(
RA\i

)
− ‖µi,A‖2

(2.39c)

Hence, a feedback scheme which better estimates the co-channel interference and leads to
beamforming matrices with better singular values likely leads to high rates when paired
with a quantized zero-forcing scheme.

If the beamforming matrix is unitary, which corresponds to an orthogonal set of code-
words, one has

ci,⊥(A) = ‖σi,A‖2.

Then, from (2.38), one has the received SINR of user i is5,

SINRi(A) =
P/|A| · ‖hi‖2|h̃†

ici|2
σ2

n + P/|A| · ‖hi‖2
∑

j 6∈A |h̃†
icj |2

(2.40a)

=
|h̃†

ici|2
|A|σ2

n
P‖hi‖2 +

∑
j 6∈A |h̃†

icj |2
. (2.40b)

Examining (2.40b) it is easy to see that as the SNR of the system grows it is not necessary
that the SINR does if there is finite rate feedback. In particular, in the limit of infinite
SNR, assuming that the channel feedback vectors from each user are pairwise orthogonal,
one has

SINRi(A) =
|h†

ici|2∑
j 6∈A |h†

icj |2
(2.41a)

≈ |h̃i
†
ci|2

1 − |h̃†
ici|2

· 1

|A| − 1
. (2.41b)

If |h̃†
icj |2 does not tend to 1 as the SNR scales it is clear from (2.41b) that the SINR of the

system saturates as the co-channel interference scales proportionally with the SNR. This
phenomenon may be seen in Figure 2-2. Thus, in order for the spectral efficiency of the
system to scale as the SNR grows one must ensure that |h̃†

icj |2 tends to 1. In a system
with finitely many users this implies that systems with higher transmit powers must have
higher feedback rates to fully realize the gains one expects with an increase in power [68].
Thus, in the sequel we use a normalized version of the expected value of the high SNR
approximation of the SINR to characterize the performance of a beamforming scheme with

5We note that in this special case the SINR of the quantized zero-forcing multiplexer coincides with the
interference ignoring multiplexer.
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Figure 2-2. A plot of the spectral efficiency of each user in a MIMO system with 4 transmit antennas
and a given quantization error. Note that as the SNR scales the spectral efficiency of a user is limited by
the quantization error. Thus, a MIMO system which operates in the high SNR regime must use high rate
feedback codebooks to ensure the system achieves high throughput.

finite rate feedback. That is, from (2.41b) one has

SINRi(A) ≈ |h̃†
ici|2

1 − |h̃†
ici|2

· 1

|A| − 1
.

Hence, for any code Cr, we let

SINRsat(Cr)
∆
= Ehi

[
max
c∈Cr

|h̃†
ic|2

1 − |h̃†
ic|2

]
(2.42)

be the relevant metric for a MIMO beamforming system with finite rate feedback.

It is natural to consider how well one may do with regards to this metric. In the
following section we consider an achievable lower bound on SINRsat based on random vector
quantization (RVQ) and provide a simple argument due to Shannon to provide an upper
bound on SINRsat.

� 2.4 Bounds on MIMO System Performance with Finite Rate Feedback

In this section we provide an upper bound on SINRsat and derive the performance of random
vector quantization. To begin, we recall some basic facts about the distribution of the inner
product between an isotropic vector distributed on the complex unit m-sphere and a fixed
vector. In particular, let h̃i be the direction of any user’s channel vector. Then, from [16]
one has that h̃i is isotropic and

Pr
[
|h̃†

ic|2 < x
]

= 1 − (1 − x)m−1 (2.43)

for any unit norm vector c. Random vector quantization is a simple technique to ana-
lyze the achievable performance of quantization schemes which exploits the simple form of
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(2.43). Random vector quantization simply generates 2r quantization vectors independently
at random with a uniform distribution over the complex unit m-sphere. We denote the en-
semble of every such code as Wr. Using this code ensemble one may analyze the system
performance by averaging over the codebook ensemble Wr as well as the channel fading
distribution. Such an approach can be shown to yield an achievable lower bound that is
quite close to the best known upper bound on the mean squared quantization error. In
particular, it has been shown that the expected mean square quantization error for random
vector quantization is

Ehi,Wr

[
‖h̃i −Q(h̃i)‖

]
= 2 · Ehi,Wr

[
1 − h̃

†
iQ(h̃i)

]
= 2 ·

(
1 − 2r ·B

(
2r,

m

m− 1

))

where B(·, ·) is the beta function

B(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx.

In a multi-user MIMO system one is interested in not only the expected value of the
quantization error, but also the expectation of the ratio of the channel correlation to the
mean square quantization error, SINRsat. In this direction, let

SINRRVQ
sat (r,m) = Ehi,Wr

[
max
c∈C

|h†
ic|2

1 − |h†
ic|2

]
.

Then, we have the following lemma as a direct extension of the results of [16].

Lemma 2.4.1. Consider the ensemble of rate r random vector quantizers Wr. Then,

SINRRVQ
sat (r,m) = −1 + 2rB

(
m− 2

m− 1
, 2r

)
.

Further, for large r

SINRRVQ
sat (r,m) ∼ −1 + 2r/(m−1)Γ

(
m− 2

m− 1

)
.

Proof. The achievable performance of random vector quantization may be derived through
direct computation. The asymptotic expression follows directly from the asymptotic ex-
pression for the beta function with one fixed parameter [10]. �

Lemma 2.4.1 provides important insights into the performance of random vector quanti-
zation. In particular, for high rate codebooks one gains approximately 3 (dB) in SINRRVQ

sat

for each additional m − 1 bits of feedback. Thus, without multi-user diversity and user
selection one must increase the feedback rate linearly with SNR for the system not to sat-
urate [67]. It is natural to consider whether one may do better in general. In the sequel we
present a few quantization schemes that outperform random vector quantization for a fixed
(small) number of feedback bits.

It is of additional interest to determine an upper bound on SINRsat(r,m) for arbitrary
quantization schemes to see if the scaling predicted by Lemma 2.4.1 may be improved as
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well as determine how far our constructed quantizers are from the optimal scheme. We let,

SINRUB
sat (r,m) = −1 + 2r/(m−1)m− 1

m− 2
. (2.44)

Then we have the following lemma providing an upper bound on SINRsat.

Lemma 2.4.2. Let Cr be any rate r quantizer in Cm. Then,

Ehi

[
|h†

ici|2
1 − |h†

ici|2

]
≤ SINRUB

sat (r,m). (2.45)

Proof. See Appendix B.1. �

Note that the achievable values for SINRsat provided using random vector quantization
and the upper bound in (2.45) are quite similar. The main difference being the presence
of the beta function for random vector quantization. In general, one can show that these
two expression are quite close. Examining the extremes one may see that they are equal for
r = 0 as B(1/x, 1) = x and similarly using the asymptotic expression for SINRRVQ

sat (r,m)
one may see that the asymptotic gap6 in dB is not too large. In particular,

10 log10 SINRUB
sat (r,m) − 10 log10 SINRRVQ

sat (r,m) ∼ 10 log10
m− 1

m− 2
− 10 log10 Γ(

m− 2

m− 1
).

Hence, for large m and high quantization rates the gap between the random vector quantiza-
tion and the upper bound vanishes. This is to be expected due to the asymptotic optimality
of RVQ in large dimensions [16]. However, this asymptotic gap is, for m > 2, a decreasing
function of m and hence as r → ∞ is never larger than

10 log10
2

1
− 10 log10 Γ(

1

2
) = 0.5246 dB

which corresponds to the asymptotic gap for m = 3.

It is important to note that SINRsat is a high SNR approximation of the achieved
SINR of a system that uses a particular quantization scheme and not a measure of the
achieved SINR for a given SNR. For a multi-user system to approach the limit predicted by
SINRsat one needs a subset of users which simultaneously have large channel norms, small
quantization error as well as have nearly orthogonal quantized channel vectors. Thus, for a
system to achieve an SINR close to the limit predicted by SINRsat one needs a quantizer with
orthogonal codewords as well as an algorithm to select users that are nearly orthogonal. We
turn to the problem of user selection in Chapter 4 after first developing our quantization
framework. However, before proceeding we note that there are two system regimes of
interest; one regime where the number of users is fixed and the SNR growth is a function
of power and a second regime where the number of users in the system grows and the SNR
growth is caused by the order statistic gain.

In a MIMO system with a fixed number of users which operates in the high SNR regime
one must scale the feedback rate per user linearly with the signal-to-noise ratio (SNR) of

6We caution the reader attempting to compute SINRRVQ
sat (r, m) for large r that care needs to be taken to

ensure the numerical accuracy of SINRRVQ
sat (r, m) as the direct expression is often numerically unstable.
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the channel for SINRsat to grow unbounded [68]. Hence, one needs to develop high rate
quantizers for high data rate systems. For a fixed value of SINRsat a system will have
improved performance if the codebook has multiple orthogonal bases as one can better
estimate the co-channel interference and perform a more accurate interference cancelling
scheme. Alternatively, when number of users in the system increases and the SNR scaling is
caused by the order statistic gain a scaling in the feedback rate is not needed. In particular,
we show in Chapter 4 that the order statistic gain for the quantization error tends to zero
faster than the growth of the order statistic for the channel norm. Hence as the SNR
approaches infinity the throughput scales unbounded with only logm bits of feedback per
user. That is, as the number of users in the system increases the optimal quantization
scheme in isotropic fading tends to any arbitrary basis of Cm. This observation is the
underpinning of our order statistic gain and multi-node matching gain trade-off and suggests
a general design rule for feedback design in a multi-user MIMO system:

If one is interested in optimizing the SINR as the SNR scales in a multi-user
system one should jointly design the feedback link to balance the trade-off be-
tween the quantization error and the number of orthogonal bases contained in
the quantization codebook.

It is this perspective we take in our development in the sequel. In particular, in Chapter 3
we develop a systematic quantization framework to balance the number of orthogonal bases
contained in a code with the quantization error.
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Chapter 3

Systematic Design of MIMO Channel
Quantizers

Obtaining exact knowledge of the channel is unrealistic in many MIMO channels. One in
practice must often quantize a channel realization and feed this finite rate representation
back to the transmit base. In a single-user system the relevant aspects of feedback design
have been well studied for an isotropic fading channel. Much of this work originated from
the work of Narula et. al. [91] that studied the relevant aspects of system design when min-
imizing the mean square error (MSE) or maximizing the mutual information is of interest.
Subsequent work has shown that both of the problems of minimizing the mean square error
(MSE) as well as the problem of maximizing the mutual information may be treated in a
common framework by considering the problem of minimizing the weighted mean square
quantization error [105]. The authors of [91, 105] have proposed the use of a numerical
algorithm to design a quantization codebook with near minimum (weighted) mean square
error as well as maximum mutual information for a specified quantizer rate [91,105].

In a multi-user MIMO system knowledge of the channel state at the transmitter is
necessary to realize the multiplexing gain. Specifically, it has been shown that a MIMO
system with a fixed number of users must scale the feedback rate per user linearly with the
signal-to-noise ratio (SNR) of the channel for the spectral efficiency of the system to scale
unbounded [68]. The nexus of this result is that when finite rate feedback is used to convey
a users channel state to the transmitter there is some uncertainty at the transmitter of
each users channel state. Hence, the transmitter can not employ an intelligent multiplexing
method to fully eliminate the co-channel interference. As this interference scales linearly
with the SNR one must decrease the co-channel interference proportionally with the SNR,
leading to the need to linearly increase the feedback rate. In Section 2.3, we encapsulated
this observation in our definition of SINRsat(C),

SINRsat(C)
∆
= Ehi

[
max
c∈C

|h†
ic|2

1 − |h†
ic|2

]

which we let be the relevant metric for MIMO beamforming systems with finite rate feed-
back. Thus, MIMO systems which operate in the high SINR regime with a fixed number
of users and finite rate feedback must use large codebooks to ensure that the system per-
formance is not limited. In such cases it is of interest to develop structured codebooks that
enable user terminals to efficiently quantize their channel vectors as often the user terminals
are power and complexity constrained.

In a multi-user MIMO system with finite rate feedback one may show that the feedback
design directly effects the statistics of both order statistic gain and multi-node matching
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(a) (b)

Figure 3-1. An example of the trade-off between mean squared quantization error and the number of
orthogonal bases contained in the code. Two possible arrangement of 12 lines in R3. (a), a uniform collection
of lines that has a low mean square error. (b), a structured collection of 12 lines containing more orthogonal
bases at the cost of higher mean square error.

gain. In particular, as the feedback received from the user terminals is the only knowledge
that the transmitter has of each users channel the choice of the representation of the channel
vectors in the feedback design affect both the order statistic gain and multi-node matching
gain. More precisely, by one’s choice in the feedback design one may reduce the mean
squared quantization error (as in the currently proposed schemes) or increase the number
of orthogonal bases so the transmitter may better identify users with low interference. An
example of this trade-off in R3 can be seen in Figure 3-1. Thus, in a multi-user system there
is a natural desire to develop quantization schemes that contain orthogonal bases as well as
have good mean square error characteristics. Such an approach uses some of the feedback
rate to identify when the interference between users is low and uses the remaining code rate
to decrease the quantization error. Thus, in this chapter we provide a systematic way to
design codebooks that have many orthogonal bases as well as regular structure to ensure
the mean squared quantization error is low. More precisely, in this chapter we develop
a systematic construction of channel quantizers which consists of three main structural
components; a family of low-rate codes which contain many orthogonal bases, a systematic
method to construct intermediate rate codes through unions of low-rate codes and a rate
doubling operation which may be used to construct high rate codes with low complexity
quantization algorithms.

To construct low-rate channel quantizers, we construct a family of structured codes in
which one may trade-off the mean squared quantization error and the number of orthogonal
bases contained in the code. We call these low-rate codes component codes. As we have
previously stated, a MIMO system which operates in the high SNR regime with a fixed
number of users needs high rate feedback from each user so that the co-channel interference
does not limit the system performance. In order to increase the rate of a code one may
form a union of low-rate component codes. However, in order to ensure that the resulting
quantizer has low mean squared error one must ensure that the chosen component codes
pair together well. In particular, from rate distortion theory one would like, in the limit of
high quantization rates, the distribution of the codewords of the quantizer to approximately
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match that of the channel vectors. In the particular case of isotropic fading one would like
a quantizer to be distributed as uniformly over the surface of the complex unit m-sphere as
possible. That is, in the high quantization rate limit the distribution of a codeword selected
uniformly at random should be isotropic and hence the quantization codebook should be
invariant to every unitary transformation. Thus, we develop a systematic framework in
which one may form a union of component codes which ensures the resulting code has a
large group of symmetries and hence good mean square quantization error.

Our development of component codes and methods to construct unions of component
codes only produce quantizers that perform well up to intermediate rates. Specifically, our
constructions of component codes of length 4 produce codes that out perform random vector
quantization up to 8 bits. However, as we have previously noted, multi-user MIMO systems
which operate in the high SNR regime must have good high rate channel quantizers. As the
channel quantization occurs at the user terminals, we would like to find a way to extend
our constructions to higher rates which allow for low complexity quantization.

As a final component of our systematic construction, we develop a methodology to
double the rate of any existing channel quantizer. Such a method may be used in con-
junction with random vector quantization as well as with our construction of component
codes. Specifically, we develop a method to construct quantizers with 22r codewords from
an existing rate r channel quantizer, say Cr, which allows the application of multi-stage
quantization algorithms. This is achieved by taking the union of the image of the code
Cr under a set of 2r linear transformations1 producing a rate 2r code, C2r. An important
characteristic of these linear transformations is that they may be chosen to ensure that the
resulting quantization complexity is only two times the complexity of quantization associ-
ated with the code Cr. More precisely, the quantization of any channel vector, say h, to
one of the codewords of C2r according to (2.13) amounts to first quantizing h to a codeword
of Cr, multiplying h by the inverse of one of the 2r linear transformations used in the rate
doubling operation (which is determined by the first stage of quantization) and then per-
forming a second quantization of the transformed channel vector to a codeword of Cr. Thus,
one may systematically construct rate 2r channel quantizers which have exponentially lower
quantization complexity than a general rate 2r channel quantizer. We note, however, that
codes produced with this component of our systematic construction often suffer slightly in
performance when compared to other approaches which have no complexity restrictions.
However, our high rate constructions have greater practical applicability than general rate
2r channel quantizers as one may have an intolerable quantization complexity with a general
scheme leading to a quantizer which is unimplementable in practice.

We plot the performance of our length 4 codes constructed using our systematic frame-
work in Figure 3-2. Component codes are plotted with a circle, the systematic union of com-
ponent codes with a square and our high rate, low complexity codes with pentagons. These
constructions are plotted relative to the best known upper bound on SINRsat, SINRUB

sat , the
values of which are labeled at 0. We also plot the performance of random vector quantiza-
tion, which provides an achievable bound for quantization with no complexity restrictions.
One can see that at low to intermediate rates (3 – 7 bits) our construction of component
codes and the associated unions perform quite well and are within 0.5 dB of the upper
bound. Additionally, these codes outperform the achievable lower bound provided by ran-
dom vector quantization. At high quantization rates the performance of our systematic

1We note that this process may be repeated ad infinitum to produce higher and higher rate codes with
low quantization complexity.
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Figure 3-2. The performance of a few channel quantizers for a 4 transmit antenna system which we
construct in the sequel. The performance of these quantizers are plotted relative to the best known upper
bound on SINRsat. The values taken by the upper bound are labeled at 0 and the performance of random
vector quantization is plotted as a solid curve. Component codes are plotted with a circle, constructions
consisting of unions of component codes are plotted with squares and codes constructed through the rate
doubling framework are plotted with pentagons. For low-rates, specifically 3 and 4 bits, our construction
of length 4 component codes perform well as do our constructions consisting of unions of component codes.
Note that as the rate of the code increases from 3 bits to 9 bits the achieved performance is within 0.5 dB
of the upper bound. Our low complexity codes perform worse that random vector quantization from 10 to
12 bits. However, the performance is with in 0.81 dB of the upper bound and 0.35 dB of RVQ.

construction falls slightly. However, these constructions remain within 0.81 dB of the upper
bound and within 0.35 dB of random vector quantization.

We develop the basics of our channel quantizer constructions in full in Section 3.2
along with our insights on why different constructions work well. Further, in Section 3.2
we provide a concrete example of how one may develop good channel quantizers for a 4
transmit antenna system. As a channel quantizers for a m transmit antenna system is a
set of lines in Cm in the sequel we use the statements “a channel quantizer in Cm” and
“a channel quantizers for a m transmit antenna system” interchangeably. We use these
constructions in C4 throughout this chapter to illustrate important concepts. However,
our constructions are applicable to dimensions other than 4 and can be used to develop
quantizers of arbitrary length2. In Sections 3.3 – 3.6 we proceed to develop each one of the
components of our systematic construction in depth. In particular, we present our basic
construction for component codes with a fixed sparsity in Section 3.3 and develop how one

2Our discussion will be limited to the when the number of transmit antennas is equal to some prime power.
However, we note that the constructions may be extended to arbitrary integers, however that development
is overly cumbersome and does not yield any new insights and hence is neglected from the development.

46



3.1. STRUCTURED QUANTIZATION FOR MIMO SYSTEMS

may form low-rate codes with many orthogonal bases and low mean square quantization
error in Section 3.4. In Section 3.5 we develop how one may systematically construct channel
quantizers at intermediate rates by taking unions of component codes with varying sparsity.
Then, in Section 3.6 we present a framework to extend code rates by a factor of two by
using a family of linear operators, yielding a method to extend existing codes to higher
rate codes for which channel quantization may be performed with multi-stage quantization
algorithms. However, before proceeding to these construction we begin by examining the
performance of a few known quantization schemes.

� 3.1 Structured Quantization for MIMO Systems

The study of quantizer design to maximize the achieved rate in a single-user system leads
to design criterion which minimizes the mean squared quantization error and often, for high
quantization rates, is unstructured as some of the best known codes are designed through
a Lloyd algorithm or RVQ. When only approaching system design from the standpoint of
optimizing SINRsat, random vector quantization is an appealing option as there is little
room for improvement as we have shown that asymptotically there is at most a 0.5246 dB
gap between RVQ and the optimal scheme. However, one drawback of RVQ is that it is
unstructured. Thus, one must do an exhaustive search over a list to perform quantization
which becomes prohibitive in terms of complexity and power use at the user terminals for
high feedback rates. Further, in a multi-user system RVQ does little in terms of helping the
transmitter identify the users that are nearly orthogonal which leads to an SINR penalty
due to the inversion of non-orthogonal users. In particular, if a code contains no orthogonal
bases then any set of users with small quantization error are not orthogonal and hence
will suffer a SINR penalty caused by channel inversion with the interference canceling
multiplexer or higher co-channel interference using the interference ignoring multiplexer.
Thus, as previously noted, it is natural to consider embedding as many orthogonal bases
in a code as possible, while not substantially degrading SINRsat, to enable a transmitter
to select users that are orthogonal, boosting the overall SINR. Thus, while RVQ has good
performance in terms of SINRsat there are other practical system objectives which make
the development of structured quantizers that have performance close to that of RVQ of
interest.

An alternative line of work for single-user systems has considered the design of quantiza-
tion codebooks with near minimum mean square error that have added structure [82,90,105,
137,144]. In particular, if one is interested in the probability of outage, i.e. the probability
that the channel realization cannot support a desired rate, the authors of [82, 90, 137, 144]
suggest the use of structured, so called Grassmannian line packings, as efficient quantiza-
tion alternatives to the less structured quantization codebooks proposed by [91]. The term
“Grassmannian line packings” is a misnomer when used in the context of MIMO beamform-
ing. We note that as the SINR and hence rate and outage probability are a function of the
quantization error. As such one is more interested in a “Grassmannian line covering” rather
than a packing. Indeed, one may have quite good mean square error performance without
having a large minimum distance, i.e. with out having a large packing radius. However, as
noted in Section 2.2.2, with the implicit assumption that a large minimum distance implies
a uniform distribution in the distance between codewords, implying a small covering radius,
optimization of a codebook with regard to this metric should perform well.

One of the simplest approaches to low complexity structured quantization is scalar
quantization [91, 104]. Scalar quantization is a simple scheme where by each coordinate of
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a channel vector is quantized independently with a fixed number of bits. Although this
scheme is extremely simple, it has been shown to perform reasonably well when compared
to RVQ [66] as it has been shown numerically to have a constant rate gap relative to RVQ.
Thus, scalar quantization appears to provide a throughput scaling with the same slope as
random vector quantization and can be shown numerically in C6 to have a 2.7 dB loss
relative to RVQ [66]. Thus, from a pure complexity standpoint, scalar quantization is a
natural choice. However, this scheme in general has no orthogonal bases and hence will
suffer the same SINR penalty due to the inversion of non-orthogonal users as RVQ. Thus,
while we have gained in complexity we now suffer in performance and still have a code which
lacks orthogonal bases. As practical system design requires choosing a balance between the
complexity of quantization at the user terminals as well as the achieved throughput of
the system it is of interest to develop structured quantization methods that balance the
quantization complexity, number of orthogonal bases as well as achieved high values for
SINRsat.

A class of structured quantizers of great interest in the sequel are the quantization
schemes developed by Hochwald [56] and the subsequent modifications which have been
incorporated in to the 802.16e standard [1,143]. The quantization scheme of Hochwald [56]
forms a rate r codebook in Cm by choosing m columns of the scaled 2r × 2r DFT matrix

DFT(2r,m)
∆
=

1√
m




1 1 1 · · · 1

1 e
√−1 2π

2r 1 e
√−1 2π

2r 2 · · · e
√−1 2π
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1 e
√−1 2π2

2r 1 e
√−1 2π2
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√−1 2π2
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...
...

...
. . .

...

1 e
√
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√
−1
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√
−1
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.

More precisely, one may systematically construct rate r quantizers by choosing some subset
of columns u and letting

CDFT(r,u) = {DFT(2r,m)[i,u]}2r−1
i=0 . (3.1)

One may then systematically design quantizers with high SINRsat by solving the discrete
optimization problem

u∗ = arg max
u∈Zm

2r

0≤u0<···<um−1≤2r−1

SINRsat(CDFT(r,u)).

Such a design may be shown to have good performance for a small number of bits, but
performs worse than RVQ at higher rates. Thus, [143] proposed removing the constraint
that the codewords are columns of the DFT matrix by performing a rotation to all but
one vector of CDFT(r,u). More precisely, let a be any complex vector and let e0 be the
vector where a 1 stands in the first coordinate and is 0 elsewhere. Then, [143] proposed a
systematic codebook construction in Cm by fixing the first codeword of every codebook to
be

c0 = DFT(m,m)[:, 1]

and using a sequence of transformations to the codeword to form the remaining codewords.

48



3.1. STRUCTURED QUANTIZATION FOR MIMO SYSTEMS

Index Construction Reference

(3,1) WiMax 3-bit [1, 143]
(3,2) CDFT(3, [1, 2, 7, 6]) [56]
(4,1) MUB(4) [61,76]
(6,6) WiMax 6-bit [1, 143]
(6,4) CDFT(6, [1, 45, 22, 49]) [56]

Table 3.1. A table of existing channel quantization constructions from literature and existing standards
for 3, 4 and 6 bits. The performance of these channel quantizers may be seen in Figure 3-3.

In particular, let

P(a) = I− 2

‖w†w‖ww†

where in turn w = c0 − a and let

Q(u) = diag(DFT(2r,m)[1,u]).

Then, one may form a codebook with 2r codewords by letting

ci = e
√−1φi ·P(a)Q(u)iP(a)†c0

for some chosen phase φi which makes the first coordinate have zero phase. We denote the
resulting quantizer as CWiMax(r,u,a). Inside this framework one may systematically design
a rate r quantizer by solving the mixed optimization problem

(a∗,u∗) = arg max
(a,u)∈Cm×Zm

2r

0≤u0<···<um−1≤2r−1

SINRsat(CWiMax(r,u,a)).

Due to fewer constraints this scheme in general does better than the construction (3.1). A
depiction of the performance of these schemes as well as other well known constructions,
which we list in Table 3.1, maybe seen, relative to the performance of RVQ and the upper
bound (2.44), in Figure 3-3. Note that the WiMax construction does quite well relative
to RVQ for 3 bits, but is much closer to RVQ at 6 bits. Additionally, the WiMax design
outperforms Hochwald’s constructions at both 3 and 6 bits. However, in general these
constructions contain no orthogonal bases and have no guarantee that at higher rates there
exist efficient quantization schemes with complexity comparable to multi-stage quantization.

We note that the design of structured quantizers with many orthogonal bases has been
considered previously by Ashikhmin et. al. in [13]. In [13] a quantization framework was
developed which produces at most one channel quantizer per dimension. Each quantizer
performs quite well in terms of SINRsat for the given rate, relative to the upper bound,
but yields no systematic construction for various rates in a given dimension. We seek a
more systematic approach to the design of MIMO feedback codebooks that allows a system
designer to trade-off the quantization error for more orthogonal bases if, for instance, one
knows apriori there are a large number of users in the system. At present we do not describe
the quantization scheme of [13] as it follows from our general quantization scheme, which
we develop in full in Section 3.2. At present, we only plot a few of our best constructions,
which are listed in Table 3.2 alongside the existing results in Figure 3-4.
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Figure 3-3. The difference in SINRsat between random vector quantization the upper bound (2.44) an
various existing constructions for a 4 antenna system. The upper bound is plotted as a solid curve and the
performance of random vector quantization is the reference and corresponds to a value of 0 at each rate.
Note that both the construction of Hochwald and that used in the WiMax standard perform similarly for 3
bits. However, the gap is much larger at 6 bits. However the quantizer from the WiMax standard performs
similar to that of RVQ at 6 bits.

Examining Figure 3-4 one may see that the constructions presented do very well in
terms of SINRsat relative to the performance of RVQ as well as contain many orthogonal
bases for a system in which there are very few users. However, in general, codes that
contain many orthogonal bases perform worse then those which contain fewer orthogonal
bases in terms of the quantization error and SINRsat. However, this does not mean in
general that a system which employs a channel quantizer with many orthogonal bases will
in fact suffer an average loss in SINR as great as depicted in Figure 3-4. It is important
to recall that SINRsat is a high SNR approximation of the achieved SINR of a system that
uses a particular quantization scheme and not a measure of the achieved SINR for a given
SNR. Further, SINRsat by definition assumes that there is a set of nearly orthogonal users
and hence SINRsat by definition does not favor codebooks with many orthogonal bases. In
particular at moderate SNR there may be a considerably smaller gap between the expected
SINR achieved by one of our constructions and RVQ as in general there will be a SINR
penalty due to channel inversion with RVQ. Further, the definition of SINRsat is only in
terms of the quantization error of a single-user. As previously noted, in MIMO systems
with many users the order statistic for the quantization error leads to similar performance.
In the sequel, we show that the same is true for systems in which the number of users is
only a small multiple of the size of the transmit array. Hence, in such systems one expects,
by choosing the users that have the best quantization error, the gap between the achieved
average SINR of a system which uses a channel quantizer with many orthogonal bases and
one without many orthogonal bases to be smaller. As our general constructions perform
well independent of this effect we postpone this discussion until Section 4.6.
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Index ⊥-Bases Construction Reference
(r,⊥-Bases)

(3,4) 4 C(2,4)
Z

(3; [[0, 1]]) (3.6)
(3,Z1) 0 Hochwald 3-bit [56]
(3,Z2) 0 WiMax 3-bit [1, 143]

(4,8) 8 C(2,4)
Z

(3; [[0, 1]]) ∪ C(2,4)
Z

(3; [[1, 0]]) (3.6)
(4,4) 4 MUB(4)/CT (2, [0, 0], 0) [61,76]/(3.54)
(4,12) 12 CT (2, [1, 0], 0) (3.54)
(5,26) 26 C∗

ASC(2, 2) Example 3.2.6

(5,36) 36 C(2,4)
Z

(3; [[0, 0], [0, 1]]) ∪ C(2,4)
Z

(3; [[1, 0]]) ∪ CT (2, [0, 0], 0) (3.6),(3.54)
(5,32) 32 CT (2, [0, 0], 0) ∪ CT (2, [0, 0], 2) (3.54)

(5,12) 12 C(2,4)
sparse(2) (3.7)

(6,105) 105 CASC(2, 0) [13]/Example 3.2.6
(6,16) 16 CT (3, [1, 0], 0) (3.54)

(6,4) 4 CF(0.6777, 0.5305 + 0.7425 · i, C(2,4)
Z

(3; [[0, 1]])) (3.11)
(6,Z3) 0 Hochwald 6-bit [56]

(6,48) 48 C(2,4)
sparse(3) (3.7)

(6,Z5) 0 WiMax 6-bit [1, 143]
(7,233) 233 CASC(3, 2) Example 3.2.6

(7,112) 112 C(2,4)
Z

(4; [[0, 1]]) ∪ C(2,4)
Z

(4; [[1, 0]]) ∪ CT (3, [0, 0], 0) (3.6),(3.54)
(7,128) 128 CT (3, [0, 0], 0) ∪ CT (3, [0, 0], 2) (3.54)

(7,192) 192 C(2,4)
sparse(4) (3.7)

(8,393) 393 CASC(3, 1) Example 3.2.6
(8,4) 4 CF(0.2303, 0.6817 + 1.9577 · i, CT (2, [0, 0], 0)) (3.11)

(8,768) 768 C(2,4)
sparse(5) (3.7)

(9,1097) 1097 CASC(3, 0) Example 3.2.6
(9,26) 26 CF(0.0100, 0, CASC(2, 2)) (3.11)

(10,2289) 2289 CASC(4, 1) Example 3.2.6
(10,1521) 1521 CASC(4, 2) Example 3.2.6
(10,26) 26 CF(0.5872, 0.4628 + 0.6790 · i, CASC(2, 2)) (3.11)

(11,14577) 14577 CASC(4, 0) Example 3.2.6
(12,105) 105 CF(0.3639, 1.9529, CASC(2, 1)) (3.11)

Table 3.2. A list of good quantizers in C4 we develop in the sequel. Pre-existing constructions are
highlighted. The first column is used to index the simulated performance of each code in Figure 3-4 and
Figures 3-10 – 3-14. The second column contains the number of orthonormal bases for C4 contained in the
code and the last column contains a reference (possibly forward in the thesis) to the construction. The
performance of these constructions may be seen in Figure 3-4.
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Figure 3-4. The difference in SINRsat between random vector quantization the upper bound (2.44) and
various constructions for 4 antennas as labeled in Table 3.2. The upper bound is plotted as a solid curve
and the performance of random vector quantization is the reference and corresponds to a value of 0 at each
rate. We note that the quantizers from Table 3.2 which achieve a value for SINRsat that is 1.3 dB or more
dB below RVQ are not depicted. The constructions presented do very well in terms of SINRsat relative to
the performance of RVQ as well as contain many orthogonal bases for a system in which there are very
few users. However, in general, codes that contain many orthogonal bases perform worse then those which
contain fewer orthogonal bases in terms of the quantization error and SINRsat.
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� 3.2 Systematic Construction of Channel Quantizers

In a multi-user MIMO system it is of interest to have a quantization codebook for which
the average quantization error is small and the codebook contains many orthogonal bases.
In this section we examine a framework to construct channel quantizers that can balance
these properties. To achieve this flexibility we begin by constructing codebooks of fixed
sparsity, i.e. codebooks in which every codeword has a support of fixed size. We then
overview the constraints that one must place on codes of varying sparsity used in a union
to form higher rate codes with good mean squared quantization error. Then, we proceed to
our geometric motivation for the linear operations used to form high rate codes with low
complexity quantization algorithms.

� 3.2.1 Introduction to Component Code Constructions

In order to derive our systematic construction of component codes we start with a simple
construction that leads to our more general construction to follow. We are interested in
forming a code with fixed sparsity. That is, a code in which every codeword has a support of
fixed size. A natural way to form such a channel quantizer is to embed a lower dimensional
channel quantizer in a higher dimensional space. Suppose one is given a dense matrix, say
CB ∈ Cm0×J , where m0 < m and suppose that the columns of CB form a “good” channel
quantizer in Cm0 . At present we let CB be an arbitrary complex m0 × J matrix and note
we develop a family of good dense matrices which we use in our construction in Section 3.5.
Now, the most natural way to construct a quantizer in Cm from CB is to view the columns
of CB as the non-zero components of a set of sparse vectors in Cm by choosing a constant
support for each vector. In particular, let

I0 = {i0, i1, . . . , im0} ⊂ {0, 1, 2, . . . ,m− 1}

be the support chosen for the code in Cm and let

s = [i0, i1, . . . , im0 ]

be the vector3 which indexes the non-zero coordinates of the constructed code in Cm. Then,
one may construct a quantizer in Cm associated to the columns of the matrix

C0[s, :] = CB.

More precisely, one may construct a code C0 ⊂ Cm, where

C0 = {C0[:, i]}J
i=0 .

The code C0 will leave portions of the complex unit m-sphere poorly covered leading to a
small value of SINRsat at high rate as any channel vector which has a dominate component
off the support of C0 will have a large quantization error. Thus, in our construction we
permute the code C0 several times to form a higher rate code which better covers the
complex unitm-sphere. In particular, let {Πτ1 ,Πτ2 , . . . ,Πτt} be a set of tmatrices describing
permutations to the rows of C0. Then, one may consider a channel quantizer which consists

3We note that the ordering may be taken arbitrarily with out effecting the results.
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Figure 3-5. A depiction of the general quantization scheme for component codes. First a subset of
coordinates are selected for the base code as depicted in (a) where the first two coordinates have been
selected. Then a code is formed over this subset of indices as depicted in (b). Last, a larger code is formed
by permuting the coordinates of the base code as seen in (c)–(f).

of the columns of the m× (J · t) complex matrix

C = [C0,Πτ1 · C0,Πτ2 · C0, . . . ,Πτt ·C0] .

That is, one can construct a channel quantizer

C = {C[:, i]}J ·t
i=0

with J · t codewords. Thus, in this framework every quantizer of interest is specified by

1. A dense m0 × J matrix CB

2. A support for CB in Cm, I0

3. A collection of permutations {Πτ1 ,Πτ2 , . . . ,Πτt}
A depiction of this construction may be seen in Figure 3-5.

One may systematically construct component codes of varying rates through one’s choice
of CB, I0 and {Πτ1 ,Πτ2 , . . . ,Πτt}. In particular, one may systematically construct a rate r
code by solving

max
0<m0<m

max
J>0

max
CB∈Cm0×J

max
I0⊂{0,1,2,...,m−1}

max
Πτ1 ,Πτ2 ,...,Πτ⌊2r/J⌋

SINRsat(C)

However, as one may expect, optimization of codes from this construction is quite hard
in general as there are many free parameters. Thus, we take a more formal position to
specify our component codes in the sequel which allows us to identify good systems of
dense matrices as well as structured sets of permutations.

To begin we note that our general construction may introduce non-distinct codewords.
That is, as we have placed no restriction on the relationship of the support I0 of CB in Cm,
the structure of CB and the set of permutations {Πτ1 ,Πτ2 , . . . ,Πτt} we have no guarantee
that a chosen “rate r” construction contains 2r distinct codewords. Thus, for more efficient
optimization of codes one may develop a systematic method to develop channel quantizers
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which intelligently excludes combinations of I0, CB and {Πτ1 ,Πτ2 , . . . ,Πτt} that yield non-
unique codewords. In this direction, we note that the elements of C0 determine a bi-variate
function. That is, for any matrix C0 we may associate a bi-variate function

c(i, j) = C0[i, j].

More precisely, c(i, j) is a function from {0, 1, 2, . . . ,m− 1}×{0, 1, 2, . . . , J − 1} to C where
c(i, j) = C0[i, j].

A crucial observation we exploit in the sequel is that one has the freedom to choose
both the domain and the range of the function c(i, j). That is, our present choice of labels
for the rows and columns of C0 and CB are irrelevant. We may rather choose two abstract
sets D1 and D2 such that |D1| = m and |D2| = J as labels for the rows and columns of C0

and CB. Then, by determining a function c̃(i, j) from D1×D2 to C equivalent to c(i, j) one
may obtain an equivalent definition for any quantizer in our previous framework. This is an
important observation as one’s choice for D1, D2 and function c(i, j) effect the mean square
error performance as well as one’s ability to provide a succinct representation of codewords
which makes identifying orthogonal bases simple.

In the sequel we label the rows of C0 by the set I and label the support of a code by
I0. Alternately, one may view I0 as the row labels of CB. We label the columns of C0 (or
alternatively CB) by Υ1 and denote the set of permutations {Πτ1 ,Πτ2 , . . . ,Πτt} now defined
on an abstract set as Υ2. Thus, every quantizer in this framework may be alternatively
given by

1. I, row labels for C0

2. I0, the support of the rows of C0

3. Υ1, an index set for the columns of C0 (or CB)

4. Υ2, a set of permutations of I
5. c(i, j), a map from I0 × Υ1 to C which describes the entries of CB

This new characterization of our component codes gives rise to a new representation in which
the relationships between c(i, j), Υ1 and Υ2 may be better understood. In particular, this
yields a framework in which we can identify orthogonal codewords and orthogonal bases.
We present the framework we use to identify orthogonal bases as well as constructions that
produce co-linear codewords in Section 3.3. There we also develop a usefully choice for the
function c(i, j). Then, in Section 3.5 we present a family of good choices for the matrix CB

which yield codes of varying rates.
To begin, let ei be the element of the standard basis such that a one stands in the ith

position and is otherwise zero. More precisely,

ei = (0, 0, . . . , 0, 1, 0 . . . , 0).

Now, for any given codebook C0 ⊂ Cm of cardinality J let I0 be the support of the code
C0, i.e. the subset of {0, 1, . . . ,m−1} for which there is an element c0 ∈ C0 such that c

†
0ei 6= 0

if i ∈ I0. In the sequel we index the codewords in C0 via a set Υ1 = {j1, j2, . . . , jJ}. Thus,
the code C0 consist of the vectors

c(j) =
∑

i∈I0

c(i, j) · ei (3.2)

for some set of complex numbers {c(i, j)}i∈I0 ,j∈Υ1. We note that the set of coefficients
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{c(i, j)}i∈I0 ,j∈Υ1 are simply the elements of CB in our previous construction. Given a set
of permutations Υ2 = {τ̂1, τ̂2, . . . , τ̂t} we extend the codebook C0 by including the complex
vectors that are permutations of vectors in C0. In particular, we extend C0 to a higher rate
code, say C, by including the complex vectors

c(j, τ̂k) =
∑

i∈I0

c(i, j) · eτ̂k(i). (3.3)

We note that the above description of our quantization framework is still quite general.
In particular, this description may be used to characterize any quantizer by taking I0 =
{0, 1, . . . ,m − 1} and {c(i, j)} to be an arbitrary set of complex numbers. The case when
the numbers c(i, j) come from a structured set is of particular interest. In fact in the sequel
we present a systematic construction of sets of coefficients c(i, j) that is general enough to
describe a large set of constructions of quantizers found in literature [13,48,55,56,113,138].
Before proceeding we briefly consider some examples of quantizers of the form (3.3).

Example 3.2.1 A Unit Cube in C4

We now consider a construction of a code that is the standard basis in C4 using the frame-
work of (3.3). To begin we first construct the standard basis using our original notation.
In this direction, let CB = [1] and s = [0]. Then, C0 = [1, 0, 0, 0]† . As this is obviously
a poor choice for a channel quantizer we permute this code using the “right circular shift”
permutation 3 times.

Πrshift =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

That is, we permute the code using the permutations Πrshift,Π
2
rshift and Π3

rshift. In our more
formal framework this may alternatively be constructed as

1. I0 = {0}
2. Υ1 = {0},
3. Υ2 = {(0, 0), (0, 1), (0, 2), . . . , (0,m − 1)}
4. c(i, j) = δ(i − j)

where δ(x) = 1 if x = 0 and is 0 otherwise and in turn where (i, j) is the permutation that
takes i → j and j → i and leaves all other elements fixed. Then, it is easy to see by direct
computation that

c(0, (0, 0)) = [1, 0, 0, 0]† , c(0, (0, 1)) = [0, 1, 0, 0]† ,

c(0, (0, 2)) = [0, 0, 1, 0]† , c(0, (0, 3)) = [0, 0, 0, 1]†

We note that one may also construct the standard basis in C4 using I0 = {0, 1, 2, 3}, Υ2 =
{(0, 0)} and c(i, j) = δ(i− j) in this framework.

A second simple example considers the selection of columns of a discrete Fourier trans-
form matrix (DFT). This serves as the core construction for the WiMax (802.16e) standard.
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Figure 3-6. The cross correlation spectrum of the codewords from Example 3.2.2. Each stem represents
an inner product between a fixed (arbitrary) codeword selected for the code of Example 3.2.2 and another
codeword from this code. Note that there is only one vector orthogonal to any given vector of the code while
the remaining correlation values are approximately constant. Thus, the associated Voronoi has a low second
moment and small mean squared quantization error. The inner product which obtains a value 1 is the inner
product of the fixed codeword with itself.

Example 3.2.2 Hochwald 3-Bit DFT Code in C4

We now examine the systematic construction of beamforming vectors of Hochwald et. al.
[56]. Recall that the N ×N DFT matrix is the matrix for which the entry at position (i, j)
is the complex exponential ζij where ζ = exp(2π

√
−1/N) is an N -th root of unity. One can

construct a 4 dimensional codebook by selecting 4 out of the N columns of the N ×N DFT
matrix to use as the components of the codeword. That is, let

1. I0 = {1, 2, 3, 4}
2. Υ1 = {0, 1, 2, . . . , 7}
3. Υ2 = {(0, 0)}
4. c(i, j) = ζiuj

Hence,

c(i, (0, 0)) =
3∑

j=0

ζiujej . (3.4)

We note that proposals for the WiMax standard [143] the 3 bit quantizer considered uses a
vector w = [1, 2, 7, 6]. We note that with this choice of vector there are is a very diverse
range in the magnitude of the cross correlation between codewords. This can be seen in
Figure 3-6.

Note that (3.3) is general enough to describe every set of lines in Cm and hence we
will look a subclass of this framework in order to identify quantizers with many subsets of
orthogonal bases. In particular, we will show that by considering quantizers for which only
a subset of permutations are allowed in the choice of Υ2 will provide a useful mechanism in
understanding the configurations of lines in the corresponding quantizer. To begin, we first
slightly extend (3.3) by allowing a general indexing of the standard basis. In particular,
we let I be an arbitrary indexing of the standard basis such that there is a one-to-one
correspondence between I and {0, 1, 2, . . . ,m− 1}. We assume that this indexing has been
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chosen so that the permutations from Υ2 act as linear translations on I, i.e.

τ̂(i) = i+ τ,

for some τ ∈ I and all i ∈ I. Hence, in the sequel we require that I is closed under addition
and restrict Υ2 to only contain permutations that act as translation on I. Then, (3.3)
becomes

c(j, τ̂k) =
∑

i∈I0⊂I
c(i, j) · eτk+i. (3.5)

In the sequel we let Υ2 = {τ1, τ2, . . . , τk} ⊂ I be the set of linear shifts that describe the
coordinate permutations. Thus, every quantizer in this framework is given by

1. I, an indexing of the standard basis

2. I0, the support of the base code C0

3. Υ1, an index set for the base code C0

4. Υ2, a subset of I describing the “shifts” on the basis

5. {c(i, j)}i∈I0 ,j∈Υ1, a set of complex numbers describing the codewords of C0

We now provided a re-derivation of Example 3.2.1 using the framework in (3.5).

Example 3.2.3 A Second Construction of a Unit Cube in C4.

We now consider a less trivial construction of the code of Example 3.2.1 where we index
elements of the standard basis by elements of F2

2, i.e. binary vectors of length 2. If a =
[a1, a2] ∈ F2

2 we let
ea = ea1+2a2 .

To construct our quantizer we let

1. I = F2
2

2. I0 = {[0, 0]},
3. Υ1 = {[0, 0]},
4. Υ2 = I
5. c(a,b) = (

√
−1)a

†b

where a†b is the inner producta of a and b as vectors in C2 (not as binary vectors). That
is

a†b = a1b1 + a2b2.

Then it is easy to see by direct computation that

c[0,0],[0,0] = [1, 0, 0, 0]† c[0,0],[1,0] = [0, 1, 0, 0]†

c[0,0],[0,1] = [0, 0, 1, 0]† and c[0,0],[1,1] = [0, 0, 0, 1]†

aThis could be defined equivalently to be the inner product modulo 4 as
√
−1 is a fourth root of unity

and the elements of a and b are integral.

In the sequel we consider a framework for the development of quantizers similar to that
of Example 3.2.3. In particular, we will consider quantizers in which the basis is labeled by
a finite field and the support is described by a sub-field (sub-space) of the finite field used to
label the basis. Further, we use functions c(i, j) which have a range that is a subset of the
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unit circle. Hence, every quantizer in this framework contains codewords with coordinates
that have a magnitude of zero or one. We show that this framework is general enough to
yield a design framework that is flexible enough to meet a variety of design objectives. In
this direction we provide the following example of a 3-bit quantizer over C4. We note that
this particular example illustrates many of our insights to follow and use it frequently in
the sequel.

Example 3.2.4 Four Orthgonal Bases for C4 with 3-Bits

We now consider a simple code of the form (3.5) that is the union of two non-standard
orthogonal bases in C4. As in Example 3.2.3 we index elements of the stadard basis by
elements of F2

2 and let c(a,b) = (
√
−1)a

†b where a†b is the inner product of a and b

as vectors over C2. However, here we let I0 = {[0, 0], [0, 1]} and index codewords by the
elements of Z2

4. In particular, we let:

1. I = F2
2

2. I0 = {[0, 0], [0, 1]}

3. Υ1 = {[0, 0], [0, 1], [0, 2], [0, 3]}

4. Υ2 = {[0, 0], [1, 0]}

5. c(a,b) = (
√
−1)a

†b

Then, by direct computation it is easy to see that the resulting code is the union of the two
orthgonal bases:

B1 = {[1, 1, 0, 0], [0, 0, 1, 1], [1,−1, 0, 0], [0, 0,−1, 1]}

for Υ1 = {[0, 0], [0, 2]} and

B2 = {[1,
√
−1, 0, 0], [1,−

√
−1, 0, 0], [0, 0,

√
−1, 1], [0, 0,−

√
−1, 1]}

for Υ1 = {[0, 1], [0, 3]}. Note using this construction the magnitude of any inner product
between the two bases is quite regular. In particular, the magnitude of the inner product
between any vector from B1 with any vector from B2 is 0 or

√
2. The orthgonal codewords

may be seen in Figures 3-8 and 3-9. The remaining inner product relations may be seen in
Figure 3-7.

The quantizer of Example 3.2.4 is the best performing three bit quantizer we develop.
It is natural to wonder if such a simple construction will perform as well in general.

� 3.2.2 Introduction to Systematic Unions of Component Codes

As a first attempt to systematically construct a quantizer of varying rates, one may consider
constructing higher and higher rate codes by considering a quantizer for which the codewords
are indexed by elements of Z2k as opposed to Z4. In the sequel, we consider a class of
quantizers similar to that in Example 3.2.4 where I0 is chosen to be a subspace of F2

2

and Υ1 is taken over a ring of larger and larger cardinality to increase the code rate. In
particular, in the sequel we consider a quantizer with:
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Figure 3-7. The cross correlation spectrum of the codewords from Example 3.2.4. Each stem represents
an inner product between a fixed (arbitrary) codeword selected for the code of Example 3.2.4 and another
codeword from this code. Note that each codeword is orthogonal to 5 codewords while the code from
Example 3.2.2 only has one. However, for this property the code of Example 3.2.4 has considerably higher
coherence and an irregularly shaped Voronoi cell leading to higher mean squared quantization error.

c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((0, 1), (1, 0))
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c((0, 2), (1, 0))
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Figure 3-8. A depiction of the orthogonality relations between the codevectors of Example 3.2.4 as a
graph. The codevectors of Example 3.2.4 are the vertices and an edge is place between any two vertices
if the corresponding codevectors are orthogonal. The vectors of basis B1 are depicted as circles while the
vectors of basis B2 are depicted with a diamond. Note that this graph has 20 of the possible

`

8
2

´

= 28 edges.
More over, there are four subsets of vectors that form and orthogonal basis. Two such subsets of nodes
are depicted that correspond to the orthogonal bases B1 (filled red nodes) and B2 (filled blue nodes). The
remaining two orthogonal bases can be seen in Figure 3-9.
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c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((0, 1), (1, 0))

c((0, 3), (1, 0))

c((0, 2), (0, 0))

c((0, 0), (0, 0))

c((0, 2), (1, 0))

c((0, 0), (1, 0))

Figure 3-9. Two additional orthogonal bases for the codevectors of Example 3.2.4 as a graph. Here
two vectors from basis B1 have been swapped with two vectors form B2 so that the resulting sets remain
orthogonal.

1. I = F22

2. |I0| = 2 and a subspace of F2
2

3. Υ1 is the additive subset Z2
2k−1 ,

Υ1 = 〈v |v ∈ I0〉Z
2k−1

=




∑

vi∈I0

ai vi | ai ∈ Z2k−1





4. Υ2 = F2
2/I0

5. c(a,b) = exp
(

2π·√−1
2k−1 · a†b

)

which we denote as
C(2,4)

Z
(k;I0 \ {[0, 0]}). (3.6)

With this definition the quantizer of Example 3.2.4 is simply C(2,4)
Z

(3; [0, 1]). Thus, as

C(2,4)
Z

(3; [0, 1]) performs well, it is natural to consider the sequence of codes C(2,4)
Z

(k; [0, 1])

as this sequence inherits the same structure as C(2,4)
Z

(3; [0, 1]). However, this will do quite

poorly for isotropic channel vectors as C(2,4)
Z

(k; ·) only quantizers a few subspaces of dimen-
sion two.

In an attempt to more uniformly cover the complex unit m-sphere one may increase the
quantization rate by forming codes over different supports by choosing different subspaces
of F2

2 to index the support of the code. For example, in C4, one may construct a new code
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Figure 3-10. The performance of RVQ (solid curve) and the sequence of codes C(2,4)
sparse(k) relative to

the upper bound (2.44). Note that as the rate of the code increases from 3 bits to 8 bits the achieved
performance rapidly deteriorates as the only channel vectors that have two dominate components will have
low quantization error. That values taken by the upper bound are labeled at 0.

by taking the union of the codes which use the 3 subspaces of F2
2 ,

{[0, 0], [0, 1]}, {[0, 0], [1, 0]}, {[0, 0], [1, 1]},

to index the support of the codes. This, yields the code of size 3 · 2k+1,

C(2,4)
sparse(k)

∆
= C(2,4)

Z
(k; [0, 1])

⋃
C(2,4)

Z
(k; [1, 1])

⋃
C(2,4)

Z
(k; [1, 0]). (3.7)

As C(2,4)
sparse(k) covers the sphere more uniformly than C(2,4)

Z
(k + 2;I0 \ {[0, 0]}) for any choice

of I0, one should expect C(2,4)
sparse(k) to perform better. However, it is still unclear how close

to the upper bound (2.44) this code will be. We plot the performance of C(2,4)
sparse(k) for

k = 3, 4, . . . , 8 in Figure 3-10.

Note that as the rate of the code C(2,4)
sparse(k) increases from 3 bits to 8 bits the achieved

performance rapidly deteriorates compared to the upper bound. As the code C(2,4)
Z

(3; [0, 1])
performs quite well one may be curious to understand why this sequence does so poorly.
The answer to this question may be seen naturally in R3 as depicted in Figure 3-11. As
one increase the cardinality of the underlying ring only a few subspaces are more accurately
quantized and regions of the sphere will be poorly covered as depicted in Figure 3-11 (a).
However, by adding vectors from the standard basis, as seen in Figure 3-11 (b), one may
obtain a more uniform covering of the sphere.
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(a) (b)

Figure 3-11. An illustration of the poor performance of the sequence of sparse codes. In (a) a code which
is the union of vectors from a system of two dimensional subspaces. If one only increases the quantization
rate in these subspaces regions of the sphere will be poorly covered as depicted in (a). However, by adding
vectors from the standard basis for R3 to the code yields a more uniform covering of the sphere.

Only using codewords with a fixed sparsity to quantize channel vectors led to portions
of the unit sphere being poorly covered. In particular, vectors that are more or less sparse
will fall in regions that are distant from codewords. Thus, as the distribution of the user’s
channel vectors are assumed to be isotropic, channel vectors which have a single dominate
coordinate will fall in one of the “wholes” of the quantizer. Similarly vectors with no
dominate coordinate will also fall into these “wholes”. More precisely, if the magnitude of
each coordinate of a channel vector is approximately constant will incur a quantization error
that is approximately one half. Hence, for isotropic channel distributions it is of interest
to develop codes which have both sparse and dense subcodes for accurate quantization of
channel vectors with variations in the number of dominate components.

To design quantizers with low mean squared quantization error one in general should
consider both dense and sparse codes. However, if one is interested in forming a union of
such codes, one should not design the sparse and dense codes independently. One should
rather ensure that they pair well together. In particular, from rate distortion theory one
would like, in the limit of high rates, that the distribution of the codewords of the quantizer
approximately match that of the channel vectors. In the particular case of isotropic fading
one would like a quantizer to be distributed as uniformly on the sphere as possible. In
the high rate limit this would imply that the resulting code is invariant to every unitary
transformation to the code book. That is, in the high rate limit the distribution of a
codeword selected uniformly at random should be isotropic and hence invariant to every
unitary transformation. As such, an important metric for channel quantizers is the number
of unitary transformations that fix the codebook. In this direction, we say that a unitary
matrix, U , acts transitively4 on a codebook C if every element of C can be represented as

4We note that this definitions varies slightly from what is common in literature. However, in the cases
we will study in the sequel a unitary matrix U acting on C will be an element of a doubly transitive matrix
group acting on the codebook by left multiplication.
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the multiplication of U and an element of C. More precisely, U acts transitively on C if

U · C = {U · c | ∀ c ∈ C} = C (3.8)

and we let
Sym(C) = {U | U · C = C} (3.9)

be the set of all unitary matrices that act transitively on C. Thus, |Sym(C)| is a measure
of how isotropic the quantizer is. We note that as RVQ uses an isotropic distribution to
generate the codebook, one expects that code books from this ensemble to not behave poorly
with regard to this metric, especially at high rates. However, for finite rates |Sym(C)| =
0 with probability one for any randomly generated vector quantizer and hence it is not
unreasonable to expect that explicit constructions perform well at low-rates relative to
RVQ if one ensures that |Sym(C)| is large. In our present development this means that
one must find sparse and dense codes that have similar symmetries. Using an equivalent
constructions for every code on support of fixed sized one can ensure that this collection
of codes has similar symmetries. However, this approach will led to the collection of codes
with small supports naturally having more symmetries than the union of denser codes.
This results from the symmetries arising from the “shifts” in the support. More precisely,
to construct a plurality of sparse codes our quantization framework took translations of the
linear space that indexed the coordinates. As this describes a coordinate permutation, which
is a unitary transformation, sparse codes will in general have larger groups of symmetries
than denser codes. Thus, to ensure the union of a dense code and sparse code have a large
symmetry group, it is natural to impose this same structure on the dense quantizers to
ensure the symmetries of the sparse code may be extended to the entire code increasing
|Sym(C)|. This is an important subtlety of our construction that will take a bit of care and
exposition to develop and make precise. However, we note that this is developed fully in
Section 3.5 where we we define a family of “good” component codes with varying degrees of
sparsity and rate which are all invariant to “shifts” in the support of the code. Thus, using
the identified family of good sparse and dense codes5 , say Cgood, one may systematically
construct quantizers by solving the design problem

max
T⊂Cgood

SINRsat

(
⋃

C∈T

C
)
. (3.10)

This is developed fully in Section 3.5 and at present overview how one may use this forth
coming result to systematically design quantizers for multi-user MIMO systems.

� 3.2.3 Introduction to Constructions of Low Complexity, High Rate Quantizers

In the preceding discussion we have described the key ingredients to our quantizer construc-
tion as a union of codes with differing supports which are all invariant to a set of shifts to
the coordinate set. To increase the rate of the quantizer one may take one or many possible
unions of codes and increase the cardinality of the integer ring underlying the construction
of each of the constituent codes in the union. As each component code only contains code-
words with coordinates that have a magnitude of zero or one, increase the cardinality of

5In the sequel we show that this is equivalent to optimizing over subsets of {0, 1, 2, . . . , m} which satisfies
a system of constraints provided in Theorem 3.5.5 which in general is much easier than the construction
(3.1) at high rates.
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Figure 3-12. The performance of RVQ (solid curve) and a sequence of systematic constructions of codes
constructed by first taking the union of sparse and dense codes then increasing the cardinality of the integer
ring underlying the construction of each of the constituent codes in the union. The performance is plotted
relative to the upper bound (2.44), the value of which is labeled at 0. Note that as the rate of the code
increases from 3 bits to 7 bits the achieved performance is within 0.5 dB of the upper bound and performs
better than RVQ. However, from 8 bits to 11 bits this approach once again rapidly deteriorates as only the
phase of each coordinate is known more precisely.

the integer ring underlying the construction of each of the constituent codes in the union
constructs codes of higher and higher rates by increasing the precision of the phase of each
coordinate. Thus, in the high rate limit this scheme will only produce a code in which the
phase of each coordinate is known precisely while the magnitude of each coordinate is only
known only to finite precision. The performance of a code which takes unions of sparse
and dense codes may be seen in Figure 3-12. Note the construction does quite well, out
performing RVQ from 3 bits to 7 bits and is within 0.5 dB of the upper bound. However,
the performance begins to degrade at higher rates as only the phase of each coordinate is
known more precisely.

For a truly systematic structured construction of channel quantizers one must find a
systematic way to increase precision of the magnitude of every coordinate and not just
the phase. To do this, one may consider taking unions of codes that are simple linear
transformations of a “good” base code, say Cr, in order to construct higher rate codebooks
which uses some of the rate to increase the precision of the magnitude of each coordinate.
In Section 3.6 we introduce a simple parametric family of operators that serves this purpose.
In particular, we introduce a “localization” operation, F(c0 α, γ), which takes any point on
the complex sphere to a neighborhood of c0 described by α and γ. The freedom of α and
γ allows one to tune this operation to optimize the performance of the resulting code. In
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this direction, let

CF(α, γ, C) =
⋃

ci∈C
C(ci;α, γ, C) where C(ci;α, γ, C) = F(ci α, γ) · C (3.11)

One of the greatest benefits to this approach is it allows one to form multi-resolution code-
books which greatly simplifies the problem of quantization in high rate codes. In particular,
by appropriately choosing the parameters α and γ one may ensure that each element of
C(ci;α, γ, C) is inside the Voronoi cell of the codeword ci in the original code. To illustrate
this concept we now present an example of a universal codebook associated to a codebook
in R3.

Example 3.2.5 An Interpolated Icosohedron

In the following we successively refine the icosahedron to obtain a finer and finer quantization
of the unit sphere in R3. We do this by using the interpolation in (3.68). To begin, let
t = (1 +

√
5)/2, τ = t/

√
1 + t2 and ω = 1/

√
1 + t2. Then, the set of unit norm vectors that

form the vertices of the icosahedron are the rows of

Qicos =




τ ω 0
−τ ω 0
−τ −ω 0
τ −ω 0
ω 0 τ
ω 0 −τ

−ω 0 −τ
−ω 0 τ

0 τ ω
0 −τ ω
0 −τ −ω
0 τ −ω




The rows of Qicos are a set of 12 points forming 6 lines in R3. We note that each row
of the Gram matrix QT

icosQicos takes on the values 1 once, −1 once, ±(τ2 − ω2) twice, and
±τω = ±(τ2−ω2). Hence, the rows of Qicos are a set of 6 equiangular lines in R3. We form
a refinement of Qicos by adding the 30 lines (60 points) corresponding to the (unnormalized)
set of points a1ci + a2cj for 0 ≤ cT

i cj < 1 to Qicos and a fixed choice for a1 and a2. The
points of the icosahedron and the points of the universal code can be seen in Figure 3-13.

Thus, in this special case one may quantize any channel vector by first performing
quantization using C then, using the same quantization algorithm, perform quantization
inside the local code C(ci;α, γ, C) where ci is the result of the first stage of decoding.
A multi-resolution codebook is a quite important property for a quantizer to have in a
MIMO system as the quantization is performed at the user terminals. In many cases the
user terminals are power and complexity limited and hence may not have the resources to
perform high complexity quantization needed to obtain high rates. However, employing a
well chosen base code Cr and parameters α and γ one has the complexity of quantization
at the user terminals using CF(α, γ, Cr) is two times that of the complexity of quantization
using Cr. Hence, irregardless of the performance of the codes CF(α, γ, Cr) relative to RVQ
there is great practical relevance in a high rate system to employ the codes CF(α, γ, Cr).

The performance of the resulting codes may be seen in Figure 3-14. One can see that
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(a) (b)

(c)

Figure 3-13. A depiction of the code in R3 that corresponds to the vertices of the icosahedron (a) and
an associated universal code constructed by interpolating between the lines defined by the code in (a). The
lines corresponding to the codewords in (a) are colored black. Note that each interpolation adds lines locally
around each codeword from (a). The code in (c) is an additional interpolation of the lines defined by the
code in (b).

these codes do perform quite well in C4 and up to 12 feedback bits are no more that 0.81 dB
away from the optimal quantization scheme and no more than 0.35 dB away from random
vector quantization.
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Figure 3-14. The performance of RVQ (solid curve) and our complete systematic constructions of codes.
The performance is plotted relative to the upper bound (2.44), the value of which is labeled at 0. One firsts
takes the union of sparse and dense codes then uses a family of 2r linear transformation to double the rate
of the code. Note that as the rate of the code increases from 3 bits to 9 bits the achieved performance is
within 0.5 dB of the upper bound, while from 10 to 12 bits the performance is with in 0.81 dB of the upper
bound and 0.35 dB of RVQ.

� 3.2.4 Systematic Code Construction Summary

Our approach to channel quantization has quite a few components in the design. One
must first find a good base code then solve for the parameters α and γ which maximize
SINRsat. A particularly useful method to construct quantizers of varying rate is to find a
family of “good” component codes of varying degrees of sparsity and rate, all of which are
invariant to shifts in the coordinate set. Then one may pair these codes together to form
larger and larger rate codes by increasing the cardinality of the integer ring underlying the
construction of each of the constituent codes. Lastly, one may increase the code rate by
taking the union of codes resulting from applying a system of linear transforms as in (3.11).
This allows one to systematically construct good low-rate quantizers then, using these good
low-rate quantizers as building blocks, construct higher and higher rate codes that have
associated low complexity quantization algorithms. Thus, our systematic construction first
finds a family of good sparse and dense codes, say Cgood, then solves the design problem

max
T⊂Cgood

max
(α,γ)

0<α<1 γ∈C

SINRsat

(
CF(α, γ,

⋃

C∈T

C)

)
. (3.12)

An example construction following this principal may be seen in Example 3.2.6.
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Example 3.2.6

In this example we provide a systematic construction for a family of good quantizers in C4

with an arbitrary number of bits. We construct several good dense codes that may be paired
with sparser codes to yield a systematic construction of quantizers with good performance
in terms of SINRsat. In this direction we denote CIdentity as the set

CIdentity =
{

[1, 0, 0, 0]† , [0, 1, 0, 0]† , [0, 0, 1, 0]† , [0, 0, 0, 1]†
}

and let CSparse(k) be the union of the codes with supports indexed by the 3 subspaces of F2
2,

{[0, 0], [0, 1]}, {[0, 0], [1, 0]}, {[0, 0], [1, 1]},

with index sets, Υ1,
{[0, 0], [0, 1], [0, 2], . . . [0, 2k1 − 1]},
{[0, 0], [1, 0], [2, 0], . . . [2k1 − 1, 0]}

and
{[0, 0], [1, 1], [2, 2], . . . [2k1 − 1, 2k1 − 1]},

respectively. To specify the dense codes we use a slightly different notation as the map in to
our general framework will require more formalities. However, at present we may specify our
dense codes by letting the coordinate set be indexed by the integers {0, 1, 2, 3} and codewords
be indexed by integer vectors of length 4 over Z2k2 . We employ 3 dense codes each of which
may be described by a simple generator matrix. In this direction, let

G0(k) =




0 0 1 1
0 1 0 1
0 0 0 2




G1(k) =




2 3 3 0
3 2 3 0
0 0 0 2k−1




G2(2) =




0 2 2 0
2 0 2 0
0 0 0 2


 and for k > 2 G2(k) =




4 6 6 0
6 4 6 0
0 0 0 2




Then, we let the codes CDense(j, k2) be indexed by the unique elements of the set

IDense(j, k2) = {Gj(k2) · v}

where v ∈ Z3
2k2

and all operation are performed modulo 2k2 . To form codewords we let

c(a, j) = exp

(
2π

√
−1 · aj

2k1

)
.

With this formality we let

CDense(k2, j) =
{
[c(a, k)]3k=0 |a ∈ IDense(j, k2)

}
.
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2-bits 6 · 2k-words

Identity Sparse(k)

Union

C

F (α, γ)

CF

3 · k − 1-bits 2 · k + 1-bits 3 · k − 3-bits

Dense(0, k) Dense(1, k) Dense(2, k)

Figure 3-15. A depiction of the systematic construction of the 5-bit quantizer C∗
ASC(2, 2) and the 10-bit

quantizer CF(α, γ, C∗
ASC(2, 2)). Our systematic construction first chooses several good dense and sparse codes

of varying rates which may be paired together to yield a higher rate code with low mean squared error. In
this particular example both a sparse and a dense code are selected and a union of these two codes is
formed to yield, for k = 2, a 5 bit code which is indicated by the dark arrows and shaded boxes. Then, to
construct a 10 bit code one may optimize over the choice of α and γ in the construction of the universal
code CF(α, γ, C∗

ASC(2, 2)).

Example Continued

It should be clear from the definition of Gj(k2) that

|CDense(0, k2)| = 22·k+k−1,

|CDense(1, k2)| = 22·k+1,

and
|CDense(2, k2)| = 23·(k−1).

Thus, the code

CASC(k, j) = CDense(j, k)
⋃

CSparse(k)
⋃

CIdentity

has 4 + 3 · 2k−1 + 22·k+k−1, 4 + 3 · 2k−1 + 22·k+1 or 4 + 3 · 2k−1 + 23·(k−1) codewords for
j = 0, 1 and 2 respectively. We similarly let

C∗
ASC(k, j) = CDense(j, k2)

⋃
CSparse(k1).

which yields codes with 3·2k−1+22·k+k−1, 3·2k−1+22·k+1 or 3·2k−1+23·(k−1) codewords for
j = 0, 1 and 2 respectively. Then, using these quantizers, one can form higher and higher
rate codes by forming universal codes CF, improving performance by optimizing one’s choice
for α and γ. A depiction of the construction may be seen in Figure 3-15.
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� 3.3 Systematic Construction of Component Codes

In Section 3.2 we have argued that the performance of a quantizer is enhanced if the
quantization codebook has a large set of unitary transformation that act transitively on
the codebook. Hence, in this section we consider the design of quantizers that have this
property. This construction relies heavily on the theory of linear codes over rings. We
present a full discussion of this in Appendix A and provide overview here that is less reliant
on that theory. For the uninterested reader, or one who wishes to experiment with these
codes before proceeding, the developed codes many be found at [119].

Recall from Section 3.2, that in order for a quantizer to uniformly cover the sphere6 the
quantizer in the architecture of interest is described by the union of several permutations of a
fixed base code C0. As seen in Example 3.2.4 such constructions can yield regular structures
that aid in algorithm development for user selection. To further simplify algorithms for user
selection as well as quantization7 we consider codes that are images of linear codes over rings.
As we show in the sequel such constructions yield large groups of unitary transformations
that act transitively on the codebook. In order to derive the group of transitive actions
we use a generalization of a method of Sidelnikov [113] which in turn can be viewed as an
extension of the quantum coding frame work of Calderbank, Shor and Stean [28,116,117].
We present our first and most simple generalization in the following and present our most
general quantization framework in Section 3.4.

� 3.3.1 A Generalization of Sidelnikov’s Codes

In the sequel, we consider the case when the number of transmit antennas is equal to some
prime power8, say m = pm′

, and we index the standard basis with the elements of the vector
space (Zp)

m′
. That is, in the sequel we let

I = (Zp)
m′

and, for any λ = [λ0, . . . , λm−1] ∈ I,

eλ = ea where a =
a−1∑

i=0

λip
i.

Recall from our previous discussion we require that the support for the base quantizer, I0,
as well as I to be closed under addition. Hence, I0 is a sub-space of (Zp)

m′
. We denote the

sub-space I0 as L to stress the fact that this set is linear, i.e. closed under addition.

Every code supported on a subset, L, of (Zp)
m′

is indexed by a subset Υ1 of the Zpa-
module (Zpa)m

′
. We note that an element of (Zpa)m

′
may be viewed as a “vector” of

length m′ over Zpa. Moreover, in the current context the term module and vector space
and sub-module and sub-space may be used interchangeably. We will make clear when the
distinction in needed in later sections. The set of coefficients {c(λ, γ̄)}λ∈Υ1,γ̄∈L will be a
function of the inner product between λ and γ̄ where γ̄ is viewed as an element of (Zpa)m

′

6 We note that this construction has a greater applicability than described at present. In particular, this
construction can be used to design interesting space-time codes [2] quantum stabilizer codes [113], nested
diversity codes [47] as well as geometrically uniform frames [48].

7Efficient quantization algorithms can be derived by direct extension of [13].
8 We note that the present discussion may be extended to arbitrary integers, however that development is

overly cumbersome and does not yield any new insights and hence is neglected from the present development
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in a natural way. In particular, for λ = [λ0, . . . , λm−1] ∈ Υ1 and β̄ = [β0, . . . , βm−1] ∈ L,
we let

c(λ, β̄) = ζ
〈λ,β̄〉
pa

where ζpa = exp
(

2π
√−1
pa

)
is a pa-th root of unity and

〈λ, β̄〉 = 〈λ,β〉Zpa =

m′−1∑

i=0

λiβi (3.13)

where in turn βi is a natural lifting of β̄i to Zpa, i.e. where β̄i is regarded as an element of
Zpa. In particular, βi is the element of Zpa for which

β̄i ≡ βi (mod p) and βi − ((βi (mod p)) ∩ Zpa) = 0. (3.14)

As we will see in the sequel the choice of this lift dramatically alters the structure of the
associated quantizer . In particular, we will show that by altering how this lift is defined
(or alternatively how we define the inner product in (3.13)) one can trade off between the
coherence of a quantizer and the number of orthogonal bases contained in the quantizer.
However, the current definition of lift illuminates the trade-off while not obfuscating the
results with the precision we require to fully describe lifts in the sequel. Hence, at present,
every quantizer in the architecture of interest is described by:

1. I, the vector space (Zp)
m′

2. L, a sub-space of (Zp)
m′

3. Υ1, a subset, (Zpa)m
′
which describes the base quantizer C0

4. Υ2, a subset of (Zp)
m′

which describes the “shifts” of L
(i.e. the coordinate permutations to be applied to C0)

5. the function c(λ, β̄) = ζ
〈λ,β̄〉
pa

where at present we have left the degree of freedom for the choice of 〈λ, β̄〉 implicit. We let

C(Υ1,Υ2;L) =
⋃

β̄∈Υ2

⋃

λ∈Υ1

{
c(λ, β̄;L, pa)

}
(3.15)

where, for λ ∈ (Zpa)m
′
and β̄ ∈ (Zpe)

c(λ, β̄;L, pa) =
∑

γ̄∈L

ζ〈λ,γ̄〉eγ̄+β̄. (3.16)

Recall that it is our ultimate goal to determine a group of transitive unitary actions on the
codebook. Hence, in the sequel we will characterize the effects one’s choice of a, L, Υ1 and
Υ2 has on the associated group of transitive unitary actions for our present choice of lift. At
present the geometric interpretation of these parameters may seem a bit abstract. Closely
examining these parameters one can see that these parameters do in fact relate closely
to our physical description of our quantizer thus far. In particular, the parameters a, L,
Υ1 specify the precision of the quantizer in the subspace of Cm described by L while the
choice of Υ2 specifies additional subspaces of Cm in which the quantizer has this specified
precision. More precisely, a describes that rate one allocates to quantize the phase of each
coordinate of the channel vector, dimL is equal to the dimension of the subspace the base
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Quantizer
Geometric Interpretation

Parameter

a rate allocated to phase of each coordinate
L subspace describing support of base codebook

|Υ1| rate allocated to each subspace
|Υ2| number of subspaces

Figure 3-16. The relation of the parameters of our general construction to our geometric interpretation.
The parameters a, L, Υ1 specify the precision of the quantizer in the subspace of Cm described by L. The
choice of Υ2 specifies additional subspaces of Cm in which the quantizer has this specified precision.

code quantizes, |Υ1| describes the rate allocated to each one of the dominate subspaces and
|Υ2| describes the number of subspaces of Cm in which the quantizer has the this specified
precision. Hence, the choice of Υ1 and Υ2 allow one to balance how bits are allocated
on the feedback link. That is |Υ1| approximately describes the coherence in the subspaces
described by Υ2 and L while |Υ2| approximately describes the number of subspaces in which
the quantizer measures. We summarize these points is Figure 3-16. Hence, it is of interest
to determine the effects a, L, Υ1 and Υ2 has on the associated group of transitive unitary
actions as this will allow the system designer to balance the algorithmic complexity of user
selection with the precision and robustness of the associated quantizer. In order to proceed
in this direction we require the following lemma.

Lemma 3.3.1. For any λ ∈ (Zpa)m
′
and β̄ ∈ (Zp)

m′
the map 〈λ, β̄〉 is linear in both of its

arguments.

Proof. See Appendix C.2.1. �

We now proceed and address how L, Υ1 and Υ2 may be chosen so that there exists a
large group of unitary transformations that act transitively on CL(Υ1,Υ2). In this direction,
we let T(λ) be the matrix that acts diagonally on the basis {eᾱ} by

T(λ)eᾱ = ζ〈λ,ᾱ〉eᾱ. (3.17)

It is clear that T(λ) is unitary as

T(λ)†T(λ)eᾱ = T(λ)†
(
ζ〈λ,ᾱ〉eᾱ

)

= ζ−〈λ,ᾱ〉ζ〈λ,ᾱ〉eᾱ
= eᾱ.

Moreover,

T(λ′)c(λ, β̄;L, pa) =
∑

γ̄∈L

ζ〈λ+λ′,γ̄〉eγ̄+β̄ = c(λ+ λ′, β̄;L, pa) (3.18)

as the map 〈λ, γ̄〉 is linear in both its arguments by Lemma 3.3.1. Thus, if Υ1 is closed
under addition each matrix T(λ) for λ ∈ Υ1 acts transitively on C(Υ1,Υ2;L) for any Υ2

and L. We state this in the following lemma.

Lemma 3.3.2. Let Υ1 be a sub-module of (Zpa)m
′
and let Υ2 and L be non-empty subsets

of (Zp)
m′

. Then, T(λ) acts transitively on C(Υ1,Υ2;L) for all λ ∈ Υ1.
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Proof. This trivially follows from the fact that Υ1 is a subspace of (Zp)
m′

. Hence,

T(λ′)c(λ, β̄;L, pa) = c(λ+ λ′, β̄;L, pa) ∈ C(Υ1, {β̄};L)

as λ+ λ′ ∈ Υ1. �

We seek a results similar to Lemma 3.3.2 for the set Υ2. In this directions, let S(β̄) be
the matrix that permutes the basis {eᾱ} by translations. More precisely,

S(β̄)eᾱ = eᾱ+β̄. (3.19)

It is clear that S(β̄) is unitary as S(β̄) is a permutation matrix. Additionally,

S(β̄
′
)c(λ, β̄;L, pa) =

∑

γ̄∈L

ζ〈λ,γ̄〉e
γ̄+β̄+β̄

′ = c(λ, β̄ + β̄
′
;L, pa) (3.20)

and hence if Υ2 is closed under addition each matrix S(β̄) for β̄ ∈ Υ2 acts transitively on
C(Υ1,Υ2;L) for any Υ1 and L. We state this in the following lemma.

Lemma 3.3.3. Let Υ2 be a sub-space of (Zp)
m′

, let Υ1 be a non-empty subset of (Zpa)m
′

and let L be a non-empty subset of (Zp)
m′

. Then, S(β̄) acts transitively on C(Υ1,Υ2;L) for
all β̄ ∈ Υ2.

Proof. This trivially follows from the fact that Υ2 is a subspace of (Zp)
m′

. Hence,

S(β̄
′
)c(λ, β̄;L, pa) = c(λ, β̄ + β̄

′
;L, pa) ∈ C({λ},Υ2;L)

as β̄ + β̄
′ ∈ Υ2. �

We note that the matrices T(λ) and S(β̄) have very simple interpretations in terms of
their actions on subcodes. In particular, by Lemma 3.3.2 the matrix T(λ) acts transitively
on the subcode C(Υ1, {β̄};L) for any fixed β̄ while by Lemma 3.3.3 S(β̄) acts transitively
on the subcode C({λ},Υ2;L) for any fixed λ. This can be seen in Figure 3-17. Note, if
Υ1 and Υ2 are both closed under addition then S(β̄)T(λ) and T(λ)S(β̄) act transitively on
C(Υ1,Υ2;L). Hence, one may guess that any choice for Υ1 and Υ2 such that both Υ1 and
Υ2 are linear will produce a quantizer with a large set of transitive unitary transformations.
However, note by combining (3.17) – (3.20) one can see that for any ᾱ ∈ (Zp)

m′

T(λ)S(β̄)eᾱ = ζ〈λ,ᾱ+β̄〉eᾱ+β̄ (3.21)

while
S(β̄)T(λ)eᾱ = ζ〈λ,ᾱ〉eᾱ+β̄. (3.22)

Hence,
T(λ)S(β̄) = ζ〈λ,β̄〉S(β̄)T(λ) (3.23)

and the actions of S(β̄)T(λ) and T(λ)S(β̄) on C(Υ1,Υ2;L) only differ by the phase ζ〈λ,β̄〉.
As in our problem we are only interested in the magnitude of the correlation we are interested
in the lines defined by a quantizer, not the points. Thus, as considering T(λ) and S(β̄) that
do not commute will only produce results differing in phase we would like to only consider
the matrices for which S(β̄)T(λ) = T(λ)S(β̄). More precisely, we like to identify the sets
of S(β̄) and T(λ) that form a commutative group.
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c(0, β̄1;L, p
a) c(0, β̄2;L, p

a)

c(λ1, β̄1;L, p
a) c(λ1, β̄2;L, p

a)

...
...

c(λk, β̄1;L, p
a) c(λk, β̄2;L, p

a)

C(Υ1, β̄1;L) C(Υ1, β̄2;L)

S(β̄2 − β̄1)

T(λk) T(λk)

Figure 3-17. A depiction of the actions of T(λ) and S(β̄) on the codebook C(Υ1, Υ2; L) where Υi is closed
under addition. For any λ ∈ Υ1, the matrix T(λk) permutes the elements of any subcode C(Υ1, {β̄i}; L). In
particular, for λk ∈ Υ1, the matrix T(λk) maps c(0, β̄i; L, pa) to c(λk, β̄i; L, pa). Additionally, for β̄ ∈ Υ2,
S(β̄) permutes the subcodes C(Υ1, {β̄i}; L). In particular, for any two elements β1 6= β2 of Υ2, the matrix
S(β̄2 − β̄1) maps the subcode C(Υ1, {β̄1}; L) to C(Υ1, {β̄2}; L).

It is clear from (3.23) that the matrices S(β̄) and T(λ) commute if and only if 〈λ, β̄〉 = 0.
Hence, if S(β̄) and T(λ) commute for all λ ∈ Υ1 and β̄ ∈ Υ2, the set Υ1 and Υ2 must lay
in “orthogonal” spaces. More precisely, for any subspace L of (Zp)

m′
let L⊥

a be the set of
elements of (Zpa)m

′
orthogonal to the lifted elements of L. That is,

L⊥
a =

{
ᾱ ∈ (Zpa)m

′ | 〈ᾱ, γ̄〉 = 0 ∀γ̄ ∈ L
}

Then the set of matrices

HL,a =
{
T(λ)S(β̄) | λ ∈ L⊥

a , β̄ ∈ L
}

is commutative.

Recall from Example 3.2.4 transitive unitary actions on the codebook that have fixed
points were shown to be a valuable tool for searches for orthogonal bases. In fact, such
a sequence of transformations allowed us to enumerate all orthogonal bases in the code
by swapping in and out pairs of vertices in the graph. We would like to develop this
approach more generally. That is we would like to identify unitary transformations that act
transitively on the codebook for which a portion of the code words are in the eigenspace of
the transformation. This allows one to embed many orthogonal bases into a single quantizer.
In this direction, we have the following regarding the eigenspace of HL,a.

Lemma 3.3.4. Let (λ′, β̄′
) ∈ L⊥

a ×L be given. Then, T(λ′)S(β̄
′
) ∈ HL,a and c(λ, β̄;L, pa)

is an eigenvector of T(λ′)S(β̄
′
) with eigenvalue ζ−〈λ,β̄

′〉 for all λ ∈ (Zpa)m
′
and β̄ ∈ (Zp)

m′
.
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Proof. For any (λ′, β̄′
) ∈ L⊥

a × L one has that

T(λ′)S(β̄
′
)c(λ, β̄;L, pa) = c(λ+ λ′, β̄ + β̄

′
;L, pa) (3.24a)

=
∑

γ̄∈L

ζ〈λ+λ′,γ̄〉e
γ̄+β̄+β̄

′ (3.24b)

=
∑

γ̄∈L

ζ〈λ+λ′,γ̄−β̄′〉eγ̄+β̄ (3.24c)

= ζ−〈λ+λ′,β̄
′〉∑

γ̄∈L

ζ〈λ+λ′,γ̄〉eγ̄+β̄ (3.24d)

= ζ−〈λ,β̄
′〉∑

γ̄∈L

ζ〈λ,γ̄〉eγ̄+β̄ (3.24e)

= ζ−〈λ,β̄
′〉c(λ, β̄;L, pa) (3.24f)

where (3.24a) follows from (3.18) and (3.20), (3.24b) follows from the definition of the
codeword c(λ+ λ′, β̄ + β̄

′
;L, pa) in (3.16), (3.24c) uses the fact that β̄

′ ∈ L and L is a
linear space, (3.24d) uses the fact that the map 〈λ, β̄〉 is linear in both of its arguments,
(3.24e) use the condition that (λ′, β̄′

) ∈ L⊥
a × L and (3.24f) follows from the definition of

c(λ, β̄;L, pa), (3.16). �

Examining Lemma 3.3.4 one can see that every codevector c(λ, β̄;L, pa) for λ ∈ (Zpa)m
′

and β̄ ∈ (Zp)
m′

is an eigenvector of HL,a. Hence, as this describes p(a+1)·m′
codewords a

large subset of the vectors must be linearly dependent9 and hence correlated. In particular,
examining (3.24a) and (3.24f) in the proof of Lemma 3.3.4 it is clear that the codewords
c(λ, β̄;L, pa) and c(λ+ λ′, β̄ + β̄

′
;L, pa) are colinear if (λ′, β̄′

) ∈ L⊥
a × L. However, if

(λ′, β̄′
) 6∈ L⊥

a ×L then it is not clear when the codewords are colinear, correlated or orthog-
onal.

Lemma 3.3.5. The codewords are c(λ, β̄;L, pa) and c(λ′, β̄′
;L, pa) are colinear if and only

if β̄ − β̄′ ∈ L and λ− λ′ ∈ L⊥
a

Proof. See Appendix C.2.2 �

Examining Lemma 3.3.5 we can see that so long as Υ1 is chosen such that λ′ −λ 6∈ L⊥
a

and β − β′ 6∈ L we can guarantee that the constructed quantizer does not contain colinear
points. As L, Υ1 and Υ2 are all linear this requires us to choose Υ1 and Υ2 from a set
complimentary to L⊥

a and L respectively. In this direction let Lc be any sub-space of (Zp)
m′

complimentary to L and let Ld
a be any sub-module of (Zpa)m

′
that is complimentary to L⊥

a .
More precisely, Lc is any sub-space of (Zp)

m′
such that

(Zp)
m′

= L⊕ Lc

and Ld
a is any sub-module of (Zpa)m

′
such that

(Zpa)e = L⊥
a ⊕ Ld

a.

Then we have the following theorem.

9How does this related to nested diversity space time codes
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Theorem 3.3.6. Let L be a fixed subspace of (Zp)
m′

and suppose Υ1 is a sub-module
of Ld

a and Υ2 is a subspace of Lc. Then, C(Υ1,Υ2;L) is invariant to multiplication by
any element of HL,a. Moreover, any matrix H′ ∈ HLc,a such that H′ = T(λ′)S(β̄

′
) where

(λ′, β̄′
) ∈ Υ1 × Υ2, acts transitively on the code C(Υ1,Υ2;L) and leaves no codeword fixed

if β̄
′ 6= 0 or λ′ 6= 0. More precisely, for all c ∈ C(Υ1,Υ2;L), if H′ = T(λ′)S(β̄

′
) ∈ HLc,a

and (λ′, β̄′
) ∈ Υ1 × Υ2 then

H′ · c ∈ C(Υ1,Υ2;L) and if β̄
′ 6= 0 or λ′ 6= 0 then H′ · c 6= c

and for any H ∈ HL,a,
H · c = c.

Proof. This is a direct consequence of the preceding discussion. That is by Lemma 3.3.4
one can see that for any H ∈ HL,a, H · c = c. Moreover, as (λ′, β̄′

) ∈ Υ1 × Υ2 and

T(λ′)S(β̄
′
)c(λ, β̄;L, pa) = c(λ+ λ′, β̄ + β̄

′
;L, pa)

we have that c(λ+ λ′, β̄ + β̄
′
;L, pa) ∈ C(Υ1,Υ2;L) as Υ1 and Υ2 are both linear. Thus,

H′ = T(λ′)S(β̄
′
) acts transitively on C(Υ1,Υ2;L) for (λ′, β̄′

) ∈ Υ1 × Υ2. To see that no
codeword of C(Υ1,Υ2;L) is fixed if β̄

′ 6= 0 or λ′ 6= 0 note that if β̄
′ 6= 0 then β̄− (β̄+ β̄

′
) =

−β̄′ ∈ Lc and hence by Lemma 3.3.5, we have that c(λ, β̄;L, pa) and c(λ+ λ′, β̄ + β̄
′
;L, pa)

are not colinear. Similarly, if λ′ 6= 0 then λ − (λ + λ′) = −λ′ ∈ Ld
a and by Lemma 3.3.5,

we have that c(λ, β̄;L, pa) and c(λ+ λ′, β̄ + β̄
′
;L, pa) are not colinear. �

We note that Theorem 3.3.10 only considered the case when the subspace L was fixed.
However, it should be clear that one may want to create quantizers that are indexed over
multiple subspaces or for that matter other maps that are linear in both arguments. Hence,
in the sequel we consider how one may choose additional subspaces and maps in a “good”
way, i.e. in a way as to yield many orthogonal subsets which cover the sphere well. In
particular, recall that we previously noted that unitary transformations that fix part of
the codebook provided a structure that aided in the design of user selection algorithms.
However, to present we have only exhibited unitary transformations that either fix the
entire codebook or leaves no codevector fixed (if the transformation is of course not the
identity). In particular, as a consequence of Theorem 3.3.6 we saw that the matrix group
HL,a acted invariantly on any code while HLc,a acted strictly as translation. However, if
we exchange L with Lc we obtain a code for which HL,a acts transitively while HLc,a acts
invariantly on the code. Thus, any quantizer that is the union of eigenvectors of HL,a and
HLc,a will yield a codebook for which a subsets of HL,a and HLc,a will act invariantly on
a faction of the code while strictly transitive on the remaining fraction. We will say that
such codes are complimentary. That is, the codes C(Υ1,Υ2;L) and C(Υ̃1, Υ̃2;L

c). We make
the preceding discussion more precise in the following Theorem. Then, to be concrete, we
present a simple example of complimentary codes in Example 3.3.1 and a simple diagram
illustrating the effects of the actions of elements of HL,a and HLc,a on cosets in Figure 3-18.

Theorem 3.3.7. Let L be a fixed subspace of (Zp)
m′

and suppose Υ1 is a sub-module of Ld
a

and Υ2 is a subspace of Lc. Further, suppose that Υ̃1 is a sub-module of L⊥
a and Υ̃2 is a

subspace of L. Then, every H′ = T(λ′)S(β̄
′
) for (λ′, β̄′

) ∈ Υ1 × Υ2 acts transitively on the
code C(Υ1,Υ2;L) and invariantly on the code C(Υ̃1, Υ̃2;L

c). Moreover, every H = T(λ)S(β̄)
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c(0, β̄1;L, p
a) c(0, β̄2;L, p

a) c(0, ˜̄β1;L, p
a) c(0, ˜̄β2;L, p

a)

c(λ1, β̄1;L, p
a) c(λ1, β̄2;L, p

a) c(λ̃1,
˜̄β1;L, p

a) c(λ̃1,
˜̄β2;L, p

a)

...
...

...
...

c(λk, β̄1;L, p
a) c(λk, β̄2;L, p

a) c(λ̃k,
˜̄β1;L, p

a) c(λ̃k,
˜̄β2;L, p

a)

C(Υ1, β̄1;L) C(Υ1, β̄2;L) C(Υ̃1,
˜̄β1;L

c) C(Υ̃1,
˜̄β2;L

c)

H′

H H′

H

Figure 3-18. A depiction of the actions of HL,a and HLc,a on two complimentary codes C(Υ1, Υ2; L)
and C(Υ̃1, Υ̃2; L

c). Any H ∈ HL,a acts invariantly on C(Υ1, Υ2; L) and hence maps c(0, β̄1; L, pa) to itself.

However, if H = T(λ̃)S(˜̄β) where (λ, β̄) ∈ Υ̃1 × Υ̃2 then H acts transitively on C(Υ̃1, Υ̃2; L
c). Further,

and H′ ∈ HLc,a acts invariantly on C(Υ̃1, Υ̃2; L
c) while operating as translation on C(Υ1, Υ2; L) if H′ =

T(λ′)S(β̄
′
) where (λ′, β̄

′
) ∈ Υ1 × Υ2.

for (λ, β̄) ∈ Υ̃1 × Υ̃2 acts transitively on the code C(Υ̃1, Υ̃2;L
c) and invariantly on the code

C(Υ1,Υ2;L). Moreover, the magnitude of the inner product between any two elements of
C(Υ1,Υ2;L) and C(Υ̃1, Υ̃2;L

c) is 1/
√
m.

Proof. We note that everything but the last statement follows from the discussion preceding
the statement of the theorem. To see the last statement regarding the inner product between
any two codevectors from C(Υ1,Υ2;L) and C(Υ̃1, Υ̃2;L

c) note that by definition Lc ∩ L =
{0}. Hence, {βc + L} ∩ {β + Lc} = {βc + β} for every βc ∈ Lc and β ∈ L. Hence the
supports of any two codevector from C(Υ1,Υ2;L) and C(Υ̃1, Υ̃2;L

c) intersect in exactly
one location. As the component of the codeword from C(Υ1,Υ2;L) has a modulus 1/

√
|L|

at this location and the component of the codeword from C(Υ̃1, Υ̃2;L
c) has a modulus

of 1/
√

|Lc| =
√

|L|/m at this location the inner product of any two codevectors from
C(Υ1,Υ2;L) and C(Υ̃1, Υ̃2;L

c) is
√

1/m. �

Example 3.3.1 Two Complimentray Codes

Recall from Example 3.2.4 we constructed a code that was the union of two orthgonal bases
by an appropriate choice for I0,Υ1 and Υ2. In the sequel we consider a yet larger codebook
by take the union of two codes with different choices of I0,Υ1 and Υ2. In particular, here
we derive a 6 bit quantizer by letting we letting Υ1 be a one dimensional subspace of Z2

16

and hence use 4 bits to index an element of Υ1. We then use the remaining 2 bits to index
which code is being used and which element of Υ2. In particular,

For C1 let:

1. I0,0 = {[0, 0], [0, 1]},
2. Υ1,0 = {[0, i] | 0 ≤ i < 16},
3. Υ2,0 = {[0, 0], [1, 0]}

For C2 let:

1. I0,1 = {[0, 0], [1, 0]},
2. Υ1,1 = {[i, 0] | 0 ≤ i < 16}
3. Υ2,1 = {[0, 0], [0, 1]}

We note that with this choice of parameters there is a regular structure to the magnitude of
the cross correlation between codewords as. This can be seen in Figure 3-19.
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Figure 3-19. FIX ME..A depiction of the performance of two 6 bit quantizers in C4. (a) The complimentary
code from Example 3.3.1 and (b) a 6 bit code used in the 802.16 standard (c) The Grassmannian Packing
from [13]. We note that while complimentary code has quite regular the code from the 802.16 standard does
not.

We note that the code C2 paired with C1 in Example 3.3.1 is not unique. In fact, one may
have alternatively chosen Υ2 = {[0, 0], [1, 1]}. This should be reminiscent of out development
of our quantization framework in the preceding section. Indeed, we saw that one may form
a sparse code of increasing rate by choosing, in the present context, Υ2 = {[0, 0], [0, 1]},
Υ2 = {[0, 0], [1, 1]} and Υ2 = {[0, 0], [1, 0]}. Thus, from Theorem 3.3.7 one can see that
there is a far greater motivation for choosing this system of codes. By choosing codes of
this form there is a large group of accompanying unitary transformations which, from our
preceding discussion, should make the resulting code appear more isotropic reducing the
mean squared quantization error.

We now identify the orthogonal subset of the code C(Υ1,Υ2;L) and their structure so
that we may further develop how one may develop isotropic codes with many orthogonal
bases. In this direction we call any a set of vectors, say C, self orthogonal if

c
†
icj = 0 ∀ ci, cj ∈ C and ci 6= cj

and say that two sets of vectors, C1 and C2, are mutually orthogonal if

c
†
1,ic2,j = 0 for all c1,i ∈ C1 and c2,j ∈ C2

Lemma 3.3.8. If β̄− β̄′ 6∈ L then the codes C(Υ1, {β̄};L) and C(Υ1, {β̄′};L) are mutually
orthogonal for any choice of Υ1.

Proof. We note that if β̄− β̄′ 6∈ L then β̄+L and β̄
′
+L define different cosets of L. Hence,

any two codewords c(λ, β̄;L, pa) and c(λ′, β̄′
;L, pa) have non-intersecting supports and are

hence orthogonal. �

We note that Lemma 3.3.8 provides valuable insights into the construction of orthogonal
sets. In particular, given that Υ1 has been found such that C(Υ1, {β̄};L) is self orthogonal
we can form larger orthogonal sets by taking a union over different choices of β̄. This
observation allows us to easily identify all possible orthogonal bases that are contained in
C(Ld

a, L
c;L) in Theorem 3.3.10. However, before proceeding we require the following lemma.

Lemma 3.3.9. Let a = 1. Then, for any Υ1 ⊂ Ld
1 the code C(Υ1, L

c;L) is self orthogonal.
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Moreover, C(Ld
1, L

c;L) is an orthogonal basis for Cm.

Proof. See Appendix C.2.3 �

Note that Lemma 3.3.9 states that the code C(Ld
1, L

c;L) is a single orthogonal basis for
Cm. As C(Ld

a, L
c;L) contains many more lines than C(Ld

1, L
c;L) it is natural to guess that

C(Ld
a, L

c;L) contains more than one orthogonal basis for Cm. In the sequel we will show
that every orthogonal basis for Cm that is contained in C(Ld

a, L
c;L) is not too different from

that in Lemma 3.3.9. In order to see this note that ζpa−1

pa = ζp as

ζpa−1

pa = exp

(
2π

√
−1pa−1

pa

)
= exp

(
2π

√
−1

p

)
= ζp.

Hence, any codevector derived over Zp can be lifted to a codevector over Zpa using the lift
defined in (3.14) and multiplying this lifted element by pa−1. Thus, for any a > 1 we can
embed the orthogonal basis described by Lemma 3.3.9 (constructed with a Ῡ1 ⊂ Zp) in a
code derived over Zpa as

C(pa−1 · Ld
1, L

c;L).

We note, as C(pa−1 · Ld
1, L

c;L) forms as basis for Cm, so will

T(λ) · C(pa−1 · Ld
1, L

c;L) (3.25)

for all λ ∈ Ld
a as T(λ) is a unitary transformation and preserves inner product relations.

However, there will clearly be an equivalence between some orthogonal bases if one naively
tries to enumerate all orthogonal bases using every element of Ld

a and (3.25). In this
direction, we let

↓Ld
a = (Ld

a (mod pa−1)) ∩ Ld
a

be the set of elements of Ld
a that are complimentary to pa−1 ·Ld

1, i.e. the set of elements in
Ld

a such that each element λ of Ld
a can be written uniquely as

λ = λ̂+ λ̄

where λ̂ ∈ ↓Ld
a and λ̄ ∈ pa−1 ·Ld

1. Intuitively ↓Ld
a is the subset of Ld

a for which each coordi-
nate of every element of Ld

a has been reduced modulo pa−1. Thus, as C(pa−1 · Ld
1, L

c;L)
is an orthogonal basis for Cm, so will C(λ̃+ pa−1 · Ld

1, L
c;L) for all λ̃ ∈ ↓Ld

a. More-
over, each λ̃ ∈ ↓Ld

a defines a unique basis as the vectors from any two orthogonal bases
C(λ̃1 + pa−1 · Ld

1, L
c;L) and C(λ̃2 + pa−1 · Ld

1, L
c;L) have zero intersection for λ̃1 6= λ̃2 ∈

↓Ld
a. However, it is not at all clear whether two arbitrary codewords c1 = c(λ̃1 + λ̂1,β;L, pa)

and c2 = c(λ̃2 + λ̂2,β;L, pa) are orthogonal where (λ̃i, λ̂i) ∈ ↓Ld
a × (pa−1 · Ld

1). It is clear
from our previous discussion that if λ̃1 = λ̃2 and λ̂1 6= λ̂2 then c1 and c2 are orthogonal. We
note that this observation is a special case of our more general theorem to follow. However,
before stating this more general theorem we require a few definitions.

To begin, note that in the current framework the inner product between any two vectors
c1 = c(λ1,β;L, pa) and c2 = c(λ2,β;L, pa) from C(Ld

a, L
c;L) is a function of the difference
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of λ1 and λ2. More precisely,

c
†
2c1 =

∑

γ̄∈L

ζ〈λ1,γ̄〉ζ−〈λ2,γ̄〉eγ̄+β̄ (3.26a)

=
∑

γ̄∈L

ζ〈λ1−λ2,γ̄〉eγ̄+β̄. (3.26b)

Hence, we let

ΓC(a;β, L) =
∑

γ̄∈L

ζ〈a,γ̄〉eγ̄+β̄. (3.27)

With this definition it is easy to see from (3.26b) that

c(λ2,β;L, pa)†c(λ1,β;L, pa) = ΓC(λ1 − λ2;β, L).

Thus, in order to understand the orthogonality properties of the code C(Ld
a, L

c;L) it is
sufficient to understand when the function ΓC(a;β, L) is 0. In this direction, note that as
the sum of (3.27) is over the elements of the subspace L of (Zp)

m′
, we may alternatively

write (3.27) as the sum
p−1∑

xi0
=0

p−1∑

xi1
=0

· · ·
p−1∑

xid−1
=0

ζ〈a,x〉ex+β̄ (3.28)

where {i0, i1, . . . , id−1} = supL, d = dimL and in turn where

x = [x0, x1, . . . , xm′−1]
†.

where we let xj = 0 if j 6∈ supL. Representing (3.27) as the multivariate sum (3.28) is
quite important in understanding when two codewords are orthogonal. In particular, for
any vector x ∈ (Zp)

m′
let

x̃j = x − xjej.

Then, for any a and any 0 ≤ j < m′ one may write

〈a,x〉 = 〈ãj, x̃j〉 + aj · xj = 〈ãj, x̃j〉 + (âj + pa−1 · āj)xj (3.29)

for all x ∈ L. Thus, we may rewrite the sum from (3.28) as

p−1∑

xij
=0

ζ
(âj+pa−1·āj)·xj

pa




p−1∑

xi0
=0

p−1∑

xi1
=0

· · ·
p−1∑

xij−1
=0

p−1∑

xij+1
=0

· · ·
p−1∑

xid−1
=0

ζ
〈ã,x̃〉
pa ex+β̄


 . (3.30)

That is, if a ∈ (Zpa)m
′
permits the decomposition (3.29) then we can “marginalize out” the

variable xj in the multivariate sum from (3.28). However, from elementary Fourier analysis
on groups [92] (e.g. from our knowledge of the discrete Fourier transform) we know that

∣∣∣∣∣∣

p−1∑

xij
=0

ζ
aj ·xj

pa

∣∣∣∣∣∣
=





0 if aj 6= 0 and pa−1 | aj

> 0 if aj 6= 0 and pa−1 ∤ aj

p if aj = 0

Thus, if for a given a and some 0 ≤ j ≤ m′ we can marginalize out a variable in the sum
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(3.28) such that
aj = 0 + pa−1 · āj (3.31)

for some 0 < āj < p then ΓC(a;β, L) = 0. Hence, to show that ΓC(a;β, L) = 0 it is
sufficient to show that (3.28) can be marginalized as in (3.30). Thus, we next examine a
simple condition to test for this property. In this direction, recall that the Hamming weight
of an element β ∈ Zpa is 1 if β 6= 0 and is 0 otherwise. We denote the Hamming weight of
β ∈ Zp as wtH(β) and the Hamming weight of any vector β ∈ (Zpa)m

′
as wtH(β). Thus,

wtH(β) =

{
0 if β = 0

1 o.w.

and

wtH(β) =

m′−1∑

i=0

wtH(βi)

In order to identify orthogonal bases we will need a slightly modification to the Hamming
weight which incorporates our prior observation that C(pa−1 · Ld

1, L
c;L) is an orthogonal ba-

sis for Cm. In particular, for any two codewords c1 = c(λ1,β;L, pa) and c2 = c(λ2,β;L, pa)
from C(λ+ pa−1 · Ld

1, L
c;L) one has

wtH(λ̃1 − λ̃2) = 0 while wtH(λ̂1 − λ̂2) = m′. (3.32)

However, from our preceding discussion it is clear that if λ1 and λ2 satisfy (3.32) then
one may marginalize any coordinate of the sum (3.28) such that (3.31) holds. However,
from our discussion it is clear that in general a far less strict requirement can be placed on
the difference to determine orthogonality. In particular, reexamining (3.28) it is clear that
so long as there is some coordinate for which (3.31) holds then ΓC(a;β, L) = 0. In this
direction, we let the twisted Hamming weight of an element β = (β̂, β̄) ∈ ↓Ld

a × (pa−1 · Ld
a)

be the number of coordinates for which β̂ is zero and for which the corresponding entry of
β̄ is non-zero. We denote this by quantity as twtH(β). More precisely,

twtH(β) =

m′−1∑

i=0

(
1 − wtH(β̂i)

)
wtH(β̄i)

=
∣∣∣
{
i | β̂i = 0 and β̄i 6= 0

}∣∣∣ .
(3.33)

This leads us to our characterization of all of the orthogonal bases for Cm contained in the
code C(Ld

a, L
c;L).

Theorem 3.3.10. Let c1 = c(λ1,β;L, pa) and c2 = c(λ2,β
′;L, pa) be any two codevectors

of C(Ld
a, L

c;L). Let λ̂i = (λi (mod pa−1)) ∩ Ld
a and λ̄i = λi − λ̂i. Then, c1 and c2 are

orthogonal if and only if one of the following hold:

(i) β′ − β 6∈ L

(ii) λ̄1 6= λ̄2 and λ̂1 = λ̂2

(iii) 0 < twtH((λ̂1 − λ̂2, λ̄1 − λ̄2))

Moreover, for any set S ⊂ ↓Ld
a × (pa−1 · Ld

a) such that (ii) and (iii) holds for every pair of
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distinct elements, the set of vectors

⋃

β∈Lc

⋃

(λ̂s,λ̄s)∈Sβ

C(λ̂s + λ̄s, {β};L) (3.34)

is an orthogonal basis of Cm contained in C(Ld
a, L

c;L). Additionally, every basis contained
in C(Ld

a, L
c;L) is of the form (3.34).

Proof. See Appendix C.2.4 �

Note that Theorem 3.3.10 encapsulates our discussion this far on the conditions needed
for two codewords from our codebook to be orthogonal. Moreover, Theorem 3.3.10 shows
that these conditions are in fact necessary to be orthogonal. Additionally, we note that
condition (iii), by our previous discussion, implies condition (ii). That is, as we have seen
any two distinct vectors from C(λ̂+ pa−1 · Ld

a, L
c;L) have a twisted hamming weight of m′.

However, we keep this case separate as it will be useful in the sequel. In particular, exam-
ining Example 3.2.4 one can see that vectors from the associated code that are orthogonal
meet not only condition (iii) but (ii). Additionally, we note that this condition identifies
a special type of orthogonality relations. That is, condition (ii) identifies the orthogonal
codewords using a twisted hamming weight of m′,i.e. for which λ̂i = λ̂j. We note that this
particular case is important as it identifies disjoint orthonormal bases contained in a code.
In particular, we have the following corollary.

Corollary 3.3.11. Let Υ̂1 be any arbitrary subset of ↓Ld
a and let

Υ1 = Υ̂1 + pa−1 · Ld
1.

Then, C(Υ1, L
c;L) is a disjoint union of |Υ̂1| orthonormal bases forming pm′ · |Υ̂1| distinct

lines.

Proof. This is a simple extension of Theorem 3.3.10. As, λ+ pa−1 ·Ld
1 forms a basis for Cm

and λ1 + pa−1 ·Ld
1 ∩λ2 + pa−1 ·Ld

1 = ∅ and hence Υ̂1 + pa−1 ·Ld
1 determine a disjoint union

of orthogonal bases. �

Note that Theorem 3.3.10 greatly simplifies the problem of finding codebooks with
many orthogonal bases with a large number of unitary matrices that act transitively on
the codebook. In particular, by Theorem 3.3.10 it is sufficient to select a set from ↓Ld

a

that is closed under addition modulo pa−1, say Υ̂1, and select Υ1 = Υ̂1 + pa−1 · Ld
1. Then,

the number of orthogonal bases can be determined by counting the number of subsets of
Υ̂1 × (pa−1 · Ld

a) of cardinality |pa−1 · Ld
1| that satisfy Theorem 3.3.10. In this direction, we

let Ωk,m′(Υ̂1) be the collection of sets of Υ̂1 × (pa−1 ·Ld
a) cardinality k that satisfy Theorem

3.3.10. That is,

Ωk,m′(Υ̂1) =
{
S ⊂ Υ̂1 × (pa−1 · Ld

a) | for every (λ̂i, λ̄i) 6= (λ̂j, λ̄j) ∈ S (3.35)

either (ii) or (iii) of Theorem 3.3.10 holds
}

This leads to the following corollary to Theorem 3.3.10.

Corollary 3.3.12. Let Υ̂1 a subset of ↓Ld
a that is closed under addition modulo pa−1. Then,

Υ1 = Υ̂1 + pa−1 · Ld
1
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is a linear subset of (Zpa)m
′
and C(Υ1, L

c;L) contains |Υ̂1| · |Ld
1| · |Lc| distinct lines which

form |Ωk,m′(Υ̂1)| orthogonal bases.

Proof. See Appendix C.2.5. �

In the sequel we will identify the set of orthogonal bases given in Theorem 3.3.10 as
Ua(L). Then, so long as we can identify a group of matrices that act two transitively on
the set of orthogonal bases we can naturally find a subset that will act two transitively on
any subset. That is, we let

Ua(L) =





⋃

β∈Lc

⋃

(λ̂s,λ̄s)∈Sβ

C(λ̂s + λ̄s, {β};L) | Sβ ∈ Ω|pa−1·Ld
a|,m′(↓Ld

a)





(3.36)

It is clear that for any λ′ ∈ Ld
a and for any β̄ T(λ′) acts transitively on the collection of

orthogonal sets Ua(L) as the set of differences of cosets are equal, i.e. ∆S = ∆(λ′ + S). In
this direction, we let

R
(
λ; β̄

)
eᾱ =

{
T (λ) eᾱ if ᾱ ∈ β̄ + L

eᾱ otherwise

be the unitary transformation which acts as the identity for ᾱ 6∈ β̄ +L and diagonally for
ᾱ ∈ β̄ + L. For any subset D of ↓Ld

a we let the set of matrices

RL(D) =




∏

β̄∈Lc

R
(
λβ̄; β̄

)
| λβ̄ ∈ D ⊂ ↓Ld

a



 .

Clearly, RL(↓Ld
a) acts transitively on Ua(L) and the subgroup RL(Υ1) will act transitively

on a code selected according to Corollary 3.3.12 as Υ̂1 is closed under addition. Moreover,
S(γ̄) transitively on the set Ua(L) by permuting the terms of (3.34). These observations
are the content of the following theorem.

Theorem 3.3.13. Let Υ̂1 be a subset of ↓Ld
a that is closed under addition modulo pa−1 and

let Υ1 = Υ̂1 + pa−1 ·Ld
1. Then, every element of RL(Υ̂1) acts transitively on the orthogonal

bases of C(Υ1, L
c;L) as well as transitively on the code. Moreover, S(γ̄) acts transitively

on the orthogonal bases of C(Υ1, L
c;L) for all γ̄ ∈ Lc as well as transitively on the code.

Further, 〈
S(γ̄) · R

(
λβ̄; β̄

)
| R

(
λβ̄; β̄

)
∈ RL(Υ̂1) and γ̄ ∈ Lc

〉

acts transitively on the code C(Υ1, L
c;L) as well as the collection or orthogonal bases con-

tained in C(Υ1, L
c;L).

Proof. See Appendix C.2.6 �

We now return to examine Example 3.2.4 in light of Theorem 3.3.10 to provide a more
concrete illustration of how Theorem 3.3.10 applies to the problem of interest.
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Example 3.3.2 Two Orthogonal Bases Continued

Recall from Example 3.2.4 that we considered a set of lines in C4 that was the union of
two orthgonal bases. Morover, upon closer examination there were two additional orthgonal
bases that came from exchanging two elements from each basis. To be more precise recal
from Example 3.2.4 we chose:

1) I = F2
2 = {[0, 0], [0, 1], [1, 0], [1, 1]}

2) I0 = L = {[0, 0], [0, 1]}

3) Υ1 = {[0, 0], [0, 1], [0, 2], [0, 3]} ⊂ Z4

4) Υ2 = {[0, 0], [1, 0]} ⊂ F2
2

which yielded a codebook that was the union of the two orthgonal bases:

B1 = {[1, 1, 0, 0], [1,−1, 0, 0], [0, 0, 1, 1], [0, 0,−1, 1]}

for Υ1 = {[0, 0], [0, 2]} and

B2 = {[1,
√
−1, 0, 0], [1,−

√
−1, 0, 0], [0, 0,

√
−1, 1], [0, 0,−

√
−1, 1]}

for Υ1 = {[0, 1], [0, 3]}.
We now examine this codebook along the lines of Theorem 3.3.10. To begin, note that
Υ2 = Lc, i.e. it is complimentrary to L, and Ld

1 = L. Thus,

2 · Ld
1 = {[0, 0], [0, 2]},

B1 = C([0, 0] + {[0, 0], [0, 2]},Υ2;L)

and
B2 = C([0, 1] + {[0, 0], [0, 2]},Υ2;L).

Hence, by Theorem 3.3.10 the two orthgonal bases B1 and B2 are self orthogonal as they are
cosets of 2 · Ld

1. Moreover,

B2 = R([0, 1]; [0, 0]) R ([0, 1]; [1, 0]) · B1 = T([0, 1]) · B1.

However, by Theorem 3.3.10 the orthgonal bases

B′
1 = R([0, 1]; [1, 0]) · B1 = {[1, 1, 0, 0], [1,−1, 0, 0], [0, 0,

√
−1, 1], [0, 0,−

√
−1, 1]}

and

B′
2 = R([0, 1]; [1, 0]) · B2 = {[1,

√
−1, 0, 0], [1,−

√
−1, 0, 0], [0, 0, 1, 1], [0, 0,−1, 1]}

are orthogonal as well and as [0, 1] ∈ Υ̂1 are contained in the code as. In fact, again
by Theorem 3.3.10 these are all of the ortogonal subsets of C(Ld

a, L
c;L). The relationship

between the orthogonal bases B1,B2,B′
1 and B′

2 can be seen in Figure 3-20.

Note that we have discussed the relevant aspects of the construction of sparse quantizers,
but have yet to discuss how one may develop dense codes that are invariant to the shifts in
the coordinate sets which act transitively on the base code. A naive approach to construct
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T((0, 1))

c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((0, 1), (1, 0))

c((0, 3), (1, 0))

c((0, 2), (0, 0))

c((0, 0), (0, 0))

c((0, 2), (1, 0))

c((0, 0), (1, 0))

T((0, 1))

c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((0, 1), (1, 0))

c((0, 3), (1, 0))

c((0, 2), (0, 0))

c((0, 0), (0, 0))

c((0, 2), (1, 0))

c((0, 0), (1, 0))

R ((0, 1); (1, 0))R ((0, 1); (1, 0))

Figure 3-20. A depiction of the relationships between the four orthogonal bases of Example 3.2.4. Two
copies of the code from Example 3.2.4 are depicted in the figure; one copy is located at the top of the figure
and the other at the bottom. Note that the operator T(λ) translates between pairs of orthogonal bases, as
seen in both the copy of the code at the top of the figure as well as at the bottom. The operator R (λ;β)
interchanges elements of a basis. The action of the operator R (λ;β) if depicted by the change in groupings
(represented by rectangles) between the two copies of the code.
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such dense codes is to consider indexing the dense codes by a weighted sum elements of the
linear space indexing the coordinated sets, for example F2 + 2 · F2 , in the natural manner
over the larger integer ring. We now provide a second illustration of Theorem 3.3.10 using
a dense code of this form.

Example 3.3.3 A 4-bit Quantizer with Near Optimum Correlation

We now examine a 4-bit quantizer in the context of Theorem 3.3.10 and Corollary 3.3.12.
In particular, we consider the code defined by

1. I = F2
2 = {[0, 0], [0, 1], [1, 0], [1, 1]}

2. L = F2
2

3. Υ1 = I + 2 · I

4. Υ2 = {[0, 0]}

which yields a code containng 16 codewords. We note that this could be obtainded directly
from Corollary 3.3.12 as |F2

2 | · |Ld
1| · |Lc| = 4 · 4 · 1 = 16. Further, note that in the current

example Ld
2 = (Z4)

2 and 2 · Ld
2 = 2 · F2

2. Now, in order to identify the orthogonal bases,
we explicitly enumerate the elements of Ω4,2(Υ̂1) which contain [0, 0]. These elements are
(with the corresponding elements of 2 · Ld

a at the top of each collum):

[0, 0] [2, 0] [0, 2] [2, 2]

S1 = { [0, 0], [0, 0], [0, 0], [0, 0] }
S2 = { [0, 0], [0, 0], [1, 0], [1, 0] }
S3 = { [0, 0], [0, 1], [0, 0], [0, 1] }

Repeating this for each element of Υ̂1 and noting that each step defines 3 unique orthgonal
bases one can see that there are 3 · |Υ̂1| = 12 orthgonal bases for C4 contained in this code.
These are depicted in Figure 3-21. By direct computation one can further see that this code
is orthgonal to 7 codevectors, has correlation of magnitude of 1/

√
2 with 4 codevectors and

correlation of magnitude of 1/2 with the remaining 4 codevectors.

We note that the code of Example 3.3.3 meets the RMS Welch bound for correlation
(2.20) while having many orthogonal sets. This may be seen in Figure 3-23 (a). Moreover,
if for every codevector the 4 codevectors with correlation of magnitude of 1/

√
2 could be

moved so that they have correlation of magnitude 1/2 and 4 vectors that are orthogonal
could be moved so that they have correlation of magnitude 1/2 then this code would meet
the Welch bound for coherence and hence would have a uniform cross correlation yielding
low mean squared quantization error. This may be seen in Figure 3-23 (b). We note,
however, if the vectors that are orthogonal are not moved then the resulting code would
violate the average Welch bound and hence such a rearrangement would not be possible.
That is, as previously mentioned, there is a trade-off between the number of orthogonal sets
and maximum correlation between any two codewords. It is natural to consider whether
there is a systematic way to see this trade-off in our current quantization framework. We
note that this, in part, has been answered by Theorem 3.3.10. Indeed, if we modify our
choice for Υ̂1 Theorem 3.3.10 describes how many orthogonal bases are removed. We now
illustrate this observation with a very important example, the Kerdock line set [30].
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c((3, 2), (0, 0))

c((3, 0), (0, 0))

c((1, 2), (0, 0))

c((1, 0), (0, 0))

c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((2, 1), (0, 0))

c((2, 3), (0, 0))

c((0, 2), (0, 0))

c((0, 0), (0, 0))

c((2, 2), (0, 0))

c((2, 0), (0, 0))

c((3, 1), (0, 0))

c((3, 3), (0, 0))

c((1, 1), (0, 0))

c((1, 3), (0, 0))

(a)

c((3, 2), (0, 0))

c((3, 0), (0, 0))

c((1, 2), (0, 0))

c((1, 0), (0, 0))

c((0, 1), (0, 0))

c((0, 3), (0, 0))

c((2, 1), (0, 0))

c((2, 3), (0, 0))

c((0, 2), (0, 0))
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Figure 3-21. An illustration of the orthogonal sets of the code from Example 3.3.3. (a) The orthogonal
sets that correspond to condition (ii) of Theorem 3.3.10 and (b-e) the orthogonal sets that correspond to
condition (iii) of Theorem 3.3.10 which contain a fixed element of Ω4,2(Υ̂1) (b) [0, 0] is fixed, (c) [0, 1] is
fixed, (d) [1, 0] is fixed and (e) [1, 1] is fixed.
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Example 3.3.4 The Kerdock Line Set in C4

We now examine a 4-bit quantizer that trades the number of orthgonal bases for better
codebook coherence as compared to the 4-bit quantizer from Example 3.3.3. For this example
we do not assume that the basis is labeled by a linear space and hence revert to the notation
of (3.5). In particular, we consider the code defined by

1. I = {[0, 0], [0, 1], [1, 0], [3, 3]}

2. I0 = I

3. Υ1 = I + 2 · I

4. Υ2 = {[0, 0]}

which yields a code containng 16 codewords. Now, in order to identify the orthogonal bases,
we explicitly enumerate the elements of the code that form orthgonal bases (this can be done
with a slight modification to Theorem 3.3.10 that is not provided here). These elements are
(with the corresponding elements of 2 · I at the top of each collum):

[0, 0] [2, 0] [0, 2] [2, 2]

S1 = { [0, 0], [0, 0], [0, 0], [0, 0] }
S2 = { [0, 1], [0, 1], [0, 1], [0, 1] }
S3 = { [1, 0], [1, 0], [1, 0], [1, 0] }
S4 = { [3, 3], [3, 3], [3, 3], [3, 3] }

Thus, the only orthgonal bases of this code are the ones satisfying condition (ii) of Theorem
3.3.10. These are depicted in Figure 3-22. By direct computation one can further see that
every codevector is orthgonal to 3 codevectors and has correlation of magnitude of 1/2 with
12 codevectors.

It should be clear from Examples 3.3.3 and 3.3.4 that two similarly defined quantizers
can results in quite different objects. In particular, upon closer examination the set Υ1 in
Examples 3.3.3 and 3.3.4 are equal. Thus, the only difference was in the set chosen for the
basis, or alternatively, the bilinear form used for the inner product. In the sequel we will
provide a generalization of our present quantization framework that will make this subtlety
more clear. In particular we explicitly give quantizer constructions that interpolate between
the competing design objects of orthogonality and coherence.

� 3.4 Component Codes with Varying Degrees of Orthogonality

In the previous section we developed a framework to construct a family of component codes
which contained many orthogonal bases. To do this we fixed a natural “lift” from Zp to Zpa.
However, in Examples 3.3.3 and 3.3.4 we saw that while these two quantizers were almost
identically defined the “lift” caused the number of orthogonal bases contained in the code
as well as the distribution of the inner product between codewords to vary. In this section
we provide an explanation of this phenomenon and show that the generalizations of these
two examples contain the fewest and greatest number of orthogonal bases in our framework.
Hence, in this section we provide a method in which one may interpolate between these two
extremes, providing a family of good low-rate component codes. To do this we generalize
our preceding results to include more general bilinear maps. That is, recall that in our
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c((3, 2), (0, 0))

c((3, 0), (0, 0))

c((1, 2), (0, 0))
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c((0, 0), (0, 0))
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c((1, 3), (0, 0))

c((1, 1), (0, 0))

c((3, 3), (0, 0))

c((3, 1), (0, 0))

Figure 3-22. An illustration of the orthogonal sets of the code from Example 3.3.4. Note that this shows
only 4 non-intersecting orthogonal bases while the code of Example 3.3.3 had 12 orthogonal bases (see Figure
3-21).

derivations of the unitary matrices that acted transitively (or invariantly) on the codebooks
C(Υ1,Υ2;L) it was the bilinear nature of the inner product that allowed us to identify how
the actions of T(λ), S(β) and their products behaved on the codebook. In particular, the
key equations (3.18), (3.24a)–(3.24f) that led to the insights in to the matrices that act
transitively on the codebook relied on the fact that the inner product defined in (3.13) was
a bilinear map. In particular, the inner product allowed us to explicitly characterize the
orthogonal bases as well as index the codewords that were eigenvectors of the set of matrices
HL,a. Thus, it is natural to extend the quantization framework (3.5) of Section 3.2 in terms
of a set of bilinear maps. In the sequel we consider a more general class. In particular, we
consider Zpa-valued bilinear forms on a module that is a finite extension of Zpa. To make
this more precise we make the following definitions and offer a more complete exposition in
Appendix A.

� 3.4.1 Finite Extensions of Zpa

We now make the definitions regarding rings that are a finite extension of Zpa that we
require in the sequel. For the reader who is unfamiliar with the theory of finite extensions
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Figure 3-23. The cross correlation spectrum of the quantizers from Example 3.3.3 and Example 3.3.4. (a)
The correlation spectrum of the quantizer from Example 3.3.3 which has more orthogonal vectors per code
word but higher coherence. (b) The correlation spectrum of the quantizer from Example 3.3.4 which has
few orthogonal vectors per code word but lower coherence and uniform cross correlation spectrum yielding
a low mean squared error.

of Zpa we note that in many ways this theory coincides with the theory of finite fields10

(i.e. finite extensions of Zp). To be more precise, recall that a polynomial f̄(x) ∈ (Zp)[x] of
degree m over Zp is the a polynomial such that

f̄(x) =

m∑

i=0

āix
i

where āi ∈ Zp. The polynomial f̄(x) is monic if ām = 1 and f̄(x) is irreducible over Zp if it
does not factor over (Zp)[x], i.e. if f̄(x) = ḡ(x)h̄(x) where ḡ(x), h̄(x) ∈ (Zp)[x] then either
ḡ(x) or h̄(x) is constant. The polynomial f̄(x) is primitive over Zp if it is irreducible and
the smallest natural number n such that f̄(x) divides xn − 1 is n = pm − 1. It is natural
to wonder whether knowledge of a the characteristics of a polynomial over Zp in anyway
relates to those over Zpa. In this direction, let µ be the homomorphism from Zpa to Zp that
reduces any element of Zpa modulo p. We then have the following lemma from [29,85].

Lemma 3.4.1. Let f̄(x) ∈ (Zp)[x] be a degree m′ monic irreducible divisor of xpm′−1 − 1

10However, there is one notable exception: the generator of the Galois group of an extension of Zpa is not

the power map on every element in an extension of Zpa .
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over Zp. Then there exists a unique irreducible polynomial f(x) ∈ (Zpa)[x] which divides

xpm′−1 − 1 over Zpa such that f̄(x) = µf(x).

In the sequel we will for any monic irreducible divisor of xpm′−1 − 1 over Zp, say f̄(x),

denote the unique divisor of xpm′−1 − 1 over Zpa such that f̄(x) = µf(x) simply as f(x)
and say that f(x) is the lift of f̄(x). We note that Lemma 3.4.1 describes a quite strong
correspondence between polynomials over Zp and Zpa. In particular it provides a corre-
spondence between the roots of f̄(x) and f(x). In particular, if ζ is a primitive root of f(x)
then ζ̄ = µζ is a primitive root of f̄(x). As the finite field Fpm′ is by definition Zp[ζ̄] it
is likely that many of the properties of an extension of Zp will carry over to an extension
of Zpa. Thus, it is natural to define an analogous object over Zpa. In this direction let ζ
be a primitive root of a monic irreducible polynomial over Zpa of degree m′. Then, we let
GR (pa,m′) = Zpa[ζ] be the Galois ring of degree m′ over Zpa. The reader should note that

if a = 1 the Galois ring GR (p,m′) is simply the standard Galois field GF
(
pm′
)

= Fpm′ and

if m′ = 1 the Galois ring GR (pa, 1) is simply the ring of integers modulo pa, Zpa.

In the sequel we will say that a primitive root ζ ∈ GR (pa,m) is the “lift” of the primitive

element ζ̄ ∈ GF
(
pm′
)

if ζ̄ = µζ. That is, ζ ∈ GR (pa,m) is the “lift” of ζ̄ to GR (pa,m)

if f(x) is the unique lift of f̄(x) implied by Lemma 3.4.1, ζ is a root of f(x), ζ̄ is a root
of f̄(x) and ζ̄ = µ(ζ). Recall that primitive element of ζ̄ ∈ Fpm′ generates the non-zero
elements of Fpm′ . Hence, µ induces an isomorphism from Fpm′ to the set

Tpa,m′ =
{
0, ζ, ζ2, . . . , ζpm′−1

}

The elements of GR (pa,m′) have two simple representations. First, for any r ∈ GR(pa,m′),
we have (analogous to the representation of finite fields)

r =
m′−1∑

i=0

riζ
pi

(3.37)

where ri ∈ Zpa and ζ is a primitive element of GR (pa,m′). Second, for any r ∈ GR(pa,m′),
we have

r =

a−1∑

i=0

piui (3.38)

where ui ∈ Tpa,m′ . In order to use the results of the preceding section we will need a bilinear
map from GR(pa,m′) × GR (pa,m′) to Zpa. In this direction let for any r ∈ GR(pa,m′),
using the expansion (3.38)

φ (r) =

a−1∑

i=0

rp
i p

i. (3.39)

This is the Frobenius automorphism of GR (pa,m′) which acts as a power map on the ele-
ments of Tpa,m′ and leaves the elements of Zpa fixed. We caution the reader that the Frobe-
nius automorphism does not in general act as a power map on every element of GR (pa,m′)

as it does on GF
(
pm′
)
. That is, examining (3.39) one can see that the Frobenius auto-

morphism in general only the power map if a = 1. Now, we define the trace map from
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GR(pa,m′) to Zpa as

TrGR(pa,m′)/Zpa (r) =

m′−1∑

i=0

φi (r) (3.40)

We note that both of the representations defined in (3.37) and (3.38) will be useful in
the sequel. In fact, carefully examining (3.37) and (3.38) one can notice that both of these
representations appeared in the previous section in a veiled form. In particular note by
examining (3.37) that GR (pa,m′) is a Zpa-module. More precisely, to any r ∈ GR(pa,m′)
such that,

r =

m′−1∑

i=0

riζ
pi

(3.41)

we can associate a vector

r = [r0, r1, . . . , rm′−1] ∈ (Zpa)m
′

(3.42)

One may be tempted to use this representation to define the inner product. Although this is

not possible in general a simple alternative is. In this direction, let {ζp
⊥, ζ

p2

⊥ , . . . , ζ
pm′

⊥ } be the

trace dual basis for the normal basis {ζp, ζp2
, . . . , ζpm′

}. More precisely, {ζp
⊥, ζ

p2

⊥ , . . . , ζ
pm′

⊥ }
is the set of elements

Tr
(
ζpi · ζpj

⊥

)
= δ(i − j)

which always exists [25, 85]. Then, one may write the inner product between the two
elements r, s ∈ GR (pa,m′) by

TrGR(pa,m′)/Zpa (r · s) =

m′−1∑

i=0

ris
⊥
i (mod pa). (3.43)

where

r =

m′−1∑

i=0

riζ
pi

and s =

m′−1∑

i=0

s⊥i ζ
pi

⊥ .

Comparing (3.43) to (3.13) it is clear that

〈r, s⊥〉 = TrGR(pa,m′)/Zpa (r · s) .

Moreover, by examining (3.38) one can see that it is quite easy to identify the elements of
interest from our previous discussion. In particular,

↓Ld
a =

{
r | r =

a−2∑

i=0

piui where ui ∈ Tpa,m′

}
. (3.44)

Hence, our many of our results from Section 3.3.1 can be restated by replacing (Zpa)m
′

with GR (pa,m′), 〈r, s〉 with TrGR(pa,m′)/Zpa (r · s) and ↓Ld
a with the natural embedding of

GR
(
pa−1,m′) in GR (pa,m′), (3.44). This will be done in our most general results to follow.

However, we first need to generalize our existing results to account for the bilinear form
Tr (·)
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� 3.4.2 Codes Defined Through The Trace Map

Now with these new definitions at hand we return to the question of explaining why Exam-
ples 3.3.3 and 3.3.4 have such different properties. Then, we provide a method in which one
may interpolate between these two extremes. This will be done by generalizing our results
for our bi-variate map c(i, j) to include more general bilinear maps. In this direction, a
Zpa-valued bilinear map on GR (pa,m′) is a map β : GR (pa,m′)×GR(pa,m′) → Zpa such
that for all a, b, ai, bi ∈ GR (pa,m′) and α ∈ Zpa one has

β(a1 + a2, b) = β(a1, b) + β(a2, b) (3.45)

β(a, b1 + b2) = β(a, b1) + β(a, b2) (3.46)

β(αa, b) = αβ(a, b) = β(a, αb) (3.47)

Further, a Zpa-valued quadratic map on GR (pa,m′) is a map fQ : K → F such that

β(y, z) = fQ(z + y) − fQ(z) − fQ(y) + fQ(0)

is a bilinear map. To make this more concrete, recall that for any two vectors α,β ∈ (Zpa)m
′

2〈α,β〉 = ‖α+ β‖ − ‖α‖ − ‖β‖

is a bilinear map where

‖α‖ =
n−1∑

i=0

α2
i

and in turn where α = [α0, α1, . . . , αm′−1]. Hence, ‖β‖ is a quadratic map on (Zpa)m
′
.

From our discussion in the previous section (Section 3.4.1)

2〈α,β⊥〉 = 2Tr (α · β) (3.48)

where α and β⊥ were the elements in GR (pa,m′) corresponding to the vectors α and β
in (Zpa)m

′
respectively. Hence Tr

(
x2
)

is a quadratic map on GR (pa,m′) and Tr (x · y) is
a Zpa-valued bilinear map on GR (pa,m′). Of particular interest in the sequel is the trace
map Tr (·).

For any polynomial with coefficients in GR (pa,m′), say f(x) ∈ GR (pa,m′) [x], any
subfield K of Zp and any index set Υ1 ⊂ GR(pa,m′) and shifts Υ2 ⊂ Zp let

C(Υ1,Υ2; K, f) =
⋃

τ∈Υ2

⋃

y∈Υ1

{c(y, τ ; K, f)} (3.49)

where in turn
c(y, τ ; K, f) =

∑

z∈K

ζTr(y·f(z))ez+τ .

In the sequel we show that the codes C(Υ1,Υ2; K, f) has a large group of transitive actions
that are easily identifiable for appropriately chosen Υ1 and Υ2 analogous to our derivation
in Section 3.3.1. In this direction as a natural analogue to (3.17) we let for any polynomial
f ∈ GR (pa,m′) [x],

T (ℓ; f) eα = ζTr(y·f(z))eα

be the diagonal transform associated with the polynomial f . Further, we let S(τ) be the
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corresponding permutation matrix corresponding to shifting every basis element by τ , i.e.

S(τ)ez = ez+τ .

In order to relate these current results to those previously we again need to show that
T (ℓ; f) and S(τ) act linearly on the index sets for the codewords,i.e.

T (ℓ; f) c(y, τ ; K, f) = c(y + ℓ, τ ; K, f)

and
S(τ ′)c(y, τ ; K, f) = c(ℓ, τ + τ ′; K, f).

This is stated in the following lemmas which are direct analogues to Lemma 3.3.2 and
Lemma 3.3.3.

Lemma 3.4.2. Let Υ1 be a subring of GR(pa,m′) and let Υ2 and K be non-empty subsets of
Fpm′ . If the image of f(K) in GR(pa,m′) is an additive group then, T (ℓ; f) acts transitively
on C(Υ1,Υ2; K, f) for all λ ∈ Υ1.

Proof. This follows directly from the proof of Lemma 3.3.2 with the assertion that if
f(K) forms an additive group then ζTr(y·f(z)) is a linear character of the group and hence
ζTr(y·f(z1)) · ζTr(y·f(z2)) = ζTr(y·f(z3)) for some z3 ∈ K. �

Lemma 3.4.3. Let Υ2 and K be subfields of Fpm′ and let Υ1 be a non-empty subset of
GR(pa,m′). Then, S(τ) acts transitively on C(Υ1,Υ2; K) for all τ ∈ Υ2.

Proof. This follows directly from Lemma 3.3.3. �

Lemma 3.4.2 and Lemma 3.4.3 again form the base to our results on the unitary matrices
that act transitively on the orthogonal bases contained in a code. However, we note one im-
portant subtlety that has appeared that was absent in out prior discussion. In Lemma 3.4.2
the introduction of the polynomial introduced an important constraint on the polynomial
f , its image must form an additive group for our previous results to push through. This is
an important observation exploited in the sequel. However, from the proof of Lemma 3.4.2
we can that this simple constraint puts us in a quite unnatural position. That is, we no
longer have a guarantee that the lift respects the addition in K. Thus, the definition of a
dual space and commutativity of the operators no longer may be clearly interpreted. In this
direction, we note that no where in our design do we require the set indexing the basis to
be a finite field. One may just as easily take it to be any additive group. In this direction,
for any polynomial for which the image of f(K) is an additive group, we let

Rf (K) =
{
r ∈ GR

(
pa,m′) : r = f(k) some k ∈ K

}

be the image of f(K). We emphasize11 that the addition which defines the additive group
Rf (K) need not follow the addition law of the Galois ring GR (pa,m′). That is, as this
set only describes actions permuting the basis one may choose any additive group inside
this framework. Indeed, this was implicit in our discussion in Section 3.3.1 regarding our

11We note that this approach was similarly used in [113] to construct a new class of quantum Hamming
codes.
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original lift. With this in mind one may naturally extend our preceding definitions for any
additive group R contained in GR (pa,m′). In this direction, let

C(Υ1,Υ2;R, id) =
⋃

τ∈Υ2

⋃

y∈Υ1

{c(y, τ ;R, id)} (3.50)

where Υ1 ⊂ GR (pa,m′), Υ2 ⊂ R and

c(y, τ ′;R, id) =
∑

z′∈R
ζTr(y·z′)ez′+τ ′ .

where τ ′ ∈ R. With this formality we let, abusing notation as to illuminate an equivalence,
let T(ℓ) be the operator which acts diagonally on the basis and S(τ) be the corresponding
coordinate permutation. With this formalism we note that the results of Lemma 3.4.2 and
Lemma 3.4.3 with out modification.

We begin our extension of our previous result assuming that the image of f(K) is a
additive group contained in GR (pa,m′) and repeat the steps in (3.21) – (3.22) from this
viewpoint. In this direction note one immediately has

T(ℓ)S(τ)ez = ζTr(ℓ·τ)S(τ)T(ℓ)ez. (3.51)

Thus, the matrices T(ℓ)S(τ) commute if and only if ζTr(ℓ·τ). As we are only interested in
quantizers that form a system of lines, codewords that differ by a simple phase are not of
interest. Thus, we again consider the subset of GR (pa,m′) that is “orthogonal” to Rf (K).
We let, for any additive group R ⊂ GR(pa,m′),

R⊥ =
{
z ∈ GR

(
pa,m′) | Tr (z · r) = 0 ∀ r ∈ R

}

be the trace dual subset of R. Then, again abusing notation,

HR,a =
{
T(ℓ)S(τ) | l ∈ R⊥, τ ∈ R

}

is a commutative group of matrices. Then analogous to Lemma 3.3.4 and Lemma 3.3.5 we
have the following lemmas.

Lemma 3.4.4. Let (λ′, τ ′) ∈ R⊥ ×R be given. Then, T(λ′)S(τ ′) ∈ HR,a and c(λ, τ ;R, id)
is an eigenvector of T(λ′)S(τ ′) with eigenvalue ζ−Tr(λ·τ ′) for all λ ∈ GR(pa,m′) and τ ∈ R.

Lemma 3.4.5. The codewords c(λ, τ ;R, id) and c(λ′, τ ′;R, id) are colinear if and only if
τ − τ ′ ∈ R and λ− λ′ ∈ R⊥.

We wish to identify matrices that acts transitively on the codewords. However, to extend
the proceeding results one must find a way to decompose the Galois Ring GR (pa,m′) to
permit a direct summand. A natural way to do this is to extend the addition law of Rf (K)
to GR (pa,m′). In this direction, let ⊕|f be the addition law on Rf (K). We say that ⊕|f
may be extended to GR (pa,m′) if there exists a ⊕ for which (GR (pa,m′) ,⊕) is an additive
group and

r ⊕ s = r ⊕ |fs ∀ r, s ∈ Rf (K)

If the addition law on Rf (K) may be extended to GR (pa,m′) we say that Rf (K) extends to
GR(pa,m′). If Rf (K) extends to GR (pa,m′) then Rf (K) is a subgroup of (GR (pa,m′) ,⊕)
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and such a decomposition is natural. In this direction let, for R which extends to GR (pa,m′)
Rc be any subgroup of (Rf (F),⊕) that is complimentary to R and let Rd

a be any subgroup
of (GR (pa,m′) ,⊕) that is complimentary to R⊥. That is, Rc is any subgroup

Rf (K) = R⊗Rc

and Rd
a is any subgroup such that

GR
(
pa,m′) = R⊥ ⊗Rd

a

where we have used ⊗ to represent the direct sum. Then, as an analogue to Theorem 3.3.6
and Corollary 3.3.7 we have the following.

Theorem 3.4.6. Let R be additive group which may be extended to GR (pa,m′) and suppose
Υ1 is an additive subgroup of GR(pa,m′) and Υ2 is an additive subgroup of Rc. Then,
C(Υ1,Υ2;R) is invariant to multiplication by any element of HR,a. Moreover, any matrix
H′ ∈ HR,a such that H′ = T(λ′)S(τ ′) where (λ′, τ ′) ∈ Υ1 × Υ2, acts transitively on the
code C(Υ1,Υ2;R). More precisely, for all c ∈ C(Υ1,Υ2;R), if H′ = T(λ′)S(τ ′) for some
(λ′, τ ′) ∈ Υ1 × Υ2 then

H′ · c ∈ C(Υ1,Υ2;R)

and for any H ∈ HR,a,
H · c = c.

Proof. This follows directly from the preceding discussion and the results from the proof of
Theorem 3.3.6. �

Recall we used the analogue of Theorem 3.4.6 to motivate our notion of complimentary
codes. That is, as a large part of our quantizer design has been motivated by developing
unitary transformations that fix part of the codebook provided as this provides structure
to aided in the design of user selection algorithms. However, Theorem 3.4.6 only exhibits
unitary transformations that either fix the entire codebook or leaves no codevector fixed
(if the transformation is of course not the identity). Recalling our consequence of Theorem
3.3.6 we saw that the matrix group HL,a acted invariantly on any code while HLc,a acted
strictly as translation. However, if we exchange L with Lc we obtain a code for which HL,a

acts transitively while HLc,a acts invariantly on the code. As our present framework mimics
that of Theorem 3.3.6 this is again the case.

Corollary 3.4.7. Let R be additive group which may be extended to GR (pa,m′) and suppose
Υ1 is an additive subgroup of GR (pa,m′) and Υ2 is an additive subgroup of Rc. Further,
suppose that Υ̃1 is an additive subgroup of R⊥ and Υ̃2 is an additive subgroup of R. Then,
every H′ = T ((;λ′))S(τ ′) for (λ′, τ ′) ∈ Υ1×Υ2 acts transitively on the code C(Υ1,Υ2;R) and
invariantly on the code C(Υ̃1, Υ̃2;Rc). Moreover, every H = T(λ)S(τ) for (λ, τ) ∈ Υ̃1 × Υ̃2

acts transitively on the code C(Υ̃1, Υ̃2;Rc) and invariantly on the code C(Υ1,Υ2;R).

We are now left to identify the orthogonal subset of the code C(Υ1,Υ2;R) and their
structure. We begin with our most elementary result.

Lemma 3.4.8. If τ ⊖ τ ′ 6∈ R then the codes C(Υ1, {τ};R) and C(Υ1, {τ ′};R) are mutually
orthogonal for any choice of Υ1.
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Recall that the analogue to Lemma 3.4.8 in the preceding discussion provided valuable
insights into how one may form many orthogonal bases. In fact, it led to the observation
that altering the dimension of linear space L leads to a rapid growth in the number of
orthogonal bases. Additionally, Lemma 3.3.8 provided condition (i) in Theorem 3.3.10 to
test if any two vectors are orthogonal. Thus, the influence one’s choice of the dimension of
K has on the number of orthogonal bases in C(Υ1,Υ2;R) is identical to that of L. That
is, the insights developed for one’s choice of L in Section 3.3.1 carry over to K without
modification.

In the sequel we show that condition (ii) in Theorem 3.3.10 carries over as well. That is,
a constant shift to the “canocial” basis corresponding to a Fpm is again a basis. Thus, so long
as Υ1 is an additive subgroup then there exists unitary matrices in Sym(C(Υ1,Υ2;R)) which
act transitively on these bases. However, in the present context, i.e. by looking at codes
define thourgh the trace map over the Galois Ring GR (pa,m′), there is no general analogue
to condition (iii) in Theorem 3.3.10. In particular, we show that if one chooses f = id there
is no way to generalize the twisted hamming weight to test for orthogonality along the lines
of condition (iii) in Theorem 3.3.10. We note that this observation is quite important in
the problem of interest. That is if one is interested only in minimizing the coherence then
sequences define by the trace function is the appropriate choice. More precisely, reexamining
(2.24), one can see that if one wishes to minimize the coherence then one should consider
the class of codes defined over a Galois Ring as this framework constrains the number of
orthogonal sequences to be small. It is this subtlety which allows us to choose polynomials
which provide a good trade off between the coherence properties and the orthogonality
properties of a quantizer. In particular, we show that by simply modifying once choice of
lift from the finite field indexing the basis one can achieve a desired level orthogonality while
keeping the coherence low. Moreover, as the twisted hamming weight was the driving force
behind our algorithmic insights into the enumeration of orthogonal bases in Section 3.3.1,
in the sequel we focus on how one’s choice of lift influences when and how an analogue to
the twisted hamming weight may be defined.

To begin, recall that our definition of the twisted hamming weight arose by examining
the function ΓC(a;β, L). That is, as the correlation of any two codewords was a function
of ΓC(a;β, L) it was sufficient to study the elements of (Zpa)m

′
for which ΓC(a;β, L) = 0.

In the sequel we show how a similar analysis will hold. More precisely, let for any r ∈
GR(pa,m′)

ΓR(r; τ,K, f) =
∑

z̄∈K

ζ
Tr(r·f(z))
pa . (3.52)

Then, by some simple computation one can see that

c(r, τ ; K, f)†c(s, τ ; K, f) = ΓR(s− r; τ,K, f)

so again it is sufficient to understand which elements of a ∈ GR (pa,m′) satisfy ΓR(a; τ,K, f) =
0 to develop a test for orthogonality. In Section 3.3.1 this was achieved by identifying coor-
dinates that were divisible by pa−2, so one one could “marginalize” ΓC(a;β, L) and easily
see the result was zero. From (3.52) it is clear that we could attempt to do the same in the
current context. However, this in general is not fruitful as the lift from K to GR (pa,m′) is
a cyclic group which does not have an additive structure. Thus, in order to generalize our
insights one must find a way to chose K which allows some similar decomposition. We begin
by showing a negative result in this direction by choosing f = id. While this in general
will not provided the quantizer of interest it does provide a very fundamental insight in our
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development. To begin we provide the following example.

Example 3.4.1 A Second Take at the Kerdock Line Set

We now reexamine a 4-bit quantizer from Example 3.3.4. For this example we now assume
that the basis is labeled using GR

(
22, 2

)
. In particular, we consider the code defined by

1. I = T22,2

2. I0 = T22,2

3. Υ1 = T22,2 + 2 · T22,2

4. Υ2 = {0}

which yields a code containing 16 codewords. To see that this is equivalent to Example 3.3.4
we note [

Tr
(
0 · ζ2

)
,Tr

(
0 · ζ4

)]
= [0, 0]

[
Tr
(
ζ · ζ2

)
,Tr

(
ζ · ζ4

)]
= [1, 0]

[
Tr
(
ζ2 · ζ2

)
,Tr

(
ζ2 · ζ4

)]
= [0, 1]

[
Tr
(
ζ3 · ζ2

)
,Tr

(
ζ3 · ζ4

)]
= [3, 3]

In vector form our definition of the code becomes

1. I = {[0, 0], [0, 1], [1, 0], [3, 3]}

2. I0 = I

3. Υ1 = I + 2 · I

4. Υ2 = {[0, 0]}

Thus, once again the only orthogonal bases of this code are the ones satisfying condition
(ii) of Theorem 3.3.10.

From Example 3.4.1 it is clear that determining the orthogonality properties of a quan-
tizer, at least in the case where f = id, is more subtle in the case of a trace codes over a
Galois Ring than in the case examine in Section 3.3.1. That is while in Section 3.3.1 one
could attempt to marginalize ΓC(a;β, L) using every coordinate it is not clear that in this
case there is any coordinate for which one may marginalize ΓR(a; τ,K, f). In this direction
we have the following theorem from [76]

Lemma 3.4.9. Let p > 1 be be a given prime number and let a ∈ GR
(
p2,m′) for some

m′ > 1. Then,
ΓR(a; τ,K, id) = 0

if and only if a = p · ζ for some ζ ∈ Tp2 ,m.

As the sum ΓR(a; τ,K, id) is only zero when a = p · ζ two vectors c(r, τ ; K, id) and
c(s, τ ; K, id) are only orthogonal on a very limited basis. This is a quite discouraging
result as this implies that one has no hope in developing codewords with many orthogonal
codewords (with f = id) in this framework for low quantization rate. One may attempt
to construct a codebook at higher rate by increasing a in the hopes this provided enough
freedom to produce more orthogonal vectors. The following lemma shows that this is not
possible in general.
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Lemma 3.4.10. Let p be given and consider a code defined over GR
(
p2,m′) for some

m′ > 1. If, for i ≥ 2,
|ΓR(r′; τ,K, id)| > 0

for all r′ ∈ pe−iGR
(
pi,m′) then

|ΓR(r; τ,K, id)| > 0

for all r ∈ pe−i−1GR
(
pi+1,m′)

Proof. See Appendix C.2.7 �

Examining Lemmas 3.4.9 – 3.4.10 one can see that in the case f = id we can not
guarantee that there will be any codewords for which condition (iii) of Theorem 3.3.10
holds. We state this in the following theorem.

Theorem 3.4.11. Let c1 = c(λ̃1, τ ; K, id) and c2 = c(λ̃2, τ
′; K, id) be any two codevectors

of C(Kd
a,K

c; K, id). Let λi = (λ̃i (mod pa−1)) ∩ Kd
a and λ′i = λ̃i − λi. Then, c1 and c2 are

orthogonal if and only if one of the following holds:

(i) τ ′ − τ 6∈ K

(ii) λ′1 6= λ′2 and λ1 = λ2

Moreover, every orthogonal basis of Cm contained in C(Kd
a,K

c; K, id) has the form

⋃

τ∈Kc

C(λτ + pa−1 · Kd
1,K

c; K, id) (3.53)

where λτ are not necessarily distinct elements of ↓Kd
a.

We note that while Theorem 3.4.11 appears quite pessimistic in terms of one’s hopes to
develop codebooks with a large degree of orthogonality it is in fact far more illuminating
than one may expect. Before proceeding in this direction we reiterate a key observation:

If one is interested in only minimize the coherence then sequences define by the
trace function is the appropriate choice as it constrains the number of orthogonal
sequences to be small12. If one is interested only in maximizing the number of
orthogonal bases contained as subcodes then a quantizer defined over the cross
product of integers modulo pa is the appropriate choice as this provides a large
number of orthogonal vectors.

In practical systems one is, more often than not, interested in balancing the objectives
of coherence and orthogonality it is natural to consider the question on how one may
interpolate between these two extremes. In the sequel we show that Theorem 3.4.11 is far
more positive for this broader question than one may expect. In particular, we show in
Section 6.2 that the orthogonal bases that satisfied condition (ii) of Theorem 3.3.10 (or
in the present context condition (ii) of Theorem 3.4.11) have the most orthogonal bases
that satisfy Theorem 3.3.10 (iii) within a given distance (a notion we make more precise
in the sequel). That is, the orthogonal bases that satisfy condition (ii) of Theorem 3.3.10
are the easiest to modify to obtain new orthogonal bases. Hence, it is reasonable to expect

12 Hence by (2.23) the coherence of quantizers from this class should be small
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that starting from the present framework over Galois rings will provide a good starting
point to understand exactly how one may interpolate between the extreme cases described
by Theorem 3.3.10 and Theorem 3.4.11.That is, while codes defined with f = id have
quite good coherence, it appears that one may introduce many orthogonal bases while not
dramatically altering the cross correlation spectrum starting from this particular design.

We note that known results on sums of the form ΓR(a; τ,K, f) extend far beyond those
presented to this point. In fact, they may be extended to some what arbitrary functions
over Tpa,m′ . Indeed, this is the well known extension of the theorem of Weil, Carlitz and
Uchiyama. In particular, consider a polynomial over GR (pa,m′),

f(x) =

d∑

i=0

aix
i

of degree where ai ∈ GR(pa,m′). Further, let

f(x) =
a−1∑

i=0

piFi(x)

be the corresponding p-adic expansion of f(x) where Fi(x) ∈ Tpa,m′ [x]. We note that such
an expansion is always possible by considering the p-adic expansion of the coefficients of
f(x), ai. We say a polynomial is degenerate if the degrees of each polynomial in the p-adic
expansion of f(x) is divisible by p. Lastly, let nj be the degree of the polynomial Fj(x).
Then, the weighted degree of the function f(x) is

wtd(f)
∆
= max{n0p

a−1, n1p
a−2, . . . , na−1}

Then, we have the following result from [78].

Proposition 3.4.12. Let f(x) ∈ GR(pa,m′) [x] be a polynomial with weighted degree
wtd(f) and suppose that the degree of each polynomial in the p-adic expansion is not divisible
by p. Then, ∣∣∣∣∣∣

∑

x∈Tpa,m′

ζ
Tr(f(x))
pa

∣∣∣∣∣∣
≤ (wtd(f) − 1)

√
pm′

We note that when p = 2 and a = 2 one can show that this bound is in fact tight for
quadratic functions and hence this provides a tight bound on the Kerdock code of Example
3.4.1. However, we note that this results also has a strong influence our our development
of codebooks that have many orthogonal bases. Indeed, as we have seen in Section 2.2.1
if one has a codebook with many orthogonal bases then the bound on the maximal inner
product, and hence in the present context ΓR(a; τ,K, id), will increase. Thus, while one
may not find a code which contains many orthogonal bases with a quadratic function,
one may with a function of higher degree. However, our approach taken in Section 3.3.1
employed marginalization of the sum ΓC(a;β, L) to identify orthogonal codewords. Thus,
it is of interest to find a polynomial for which we have an identifiable set of coordinates for
which to marginalize the sum ΓR(a; τ,K, f) . In particular, as our previous quantizer from
Section 3.3.1 was defined over the cross product of the integers and there was a natural
way to break up the sum. At present, we have no such identification as the set Tpa,m′ is
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cyclic. However, the set Tpa,m′ is only a small subset of GR (pa,m′) and one may ask if
there is a different subset which will fit our purposes. In particular, for our previous results
concerning transitive unitary actions on the code we need a map that will break up the sum
ΓR(a; τ,K, f) as well as have an image that forms an additive group that may be extended
to GR (pa,m′).

A set that is of particular interest is the unit group of GR (pa,m′) as it is the direct
product of Tpa,m′ as well as additional cyclic groups. In particular, the group of units of
GR (pa,m′) is

GR∗ (pa,m′) = Zpm′−1 × Zpa−1 × Zpa−1 × · · · × Zpa−1︸ ︷︷ ︸
m′ times

if p = 2 and a ≤ 2 or p > 2 and when p = 2 and a ≥ 3 one has

GR∗ (2a,m′) = Zpm′−1 × Z2 × Z2a−1 × Zpa−1 × · · · × Zpa−1︸ ︷︷ ︸
m′−1 times

Recall, we seek a map for which one may marginalize the sum ΓR(a; τ,K, f) as well as forms
an additive group that may be extended to GR (pa,m′). In the context of the unit group
it appears, conceptually, that a natural choice for the polynomial f is a function which
has its image in GR∗ (pa,m′) a few of the groups isomorphic to Zpa−1 and not exclusively
Tpa,m′ . However, it is not clear at present how one may do this in a way that the image
is an additive group that may be extended to GR (pa,m′). A natural choice is to chose a
polynomial which respects that addition law of the underlying finite field K. That is, we
are interested in a map from Tpa,m′ to GR∗ (pa,m′) which, when reduced modulo p again
lays in GR∗ (p1,m′). In particular, we want a sequence of maps

ϑA(ζi) : Fpm′ → Tpa,m′ → GR
(
pa,m′)

where the composite map ζ̄i → ϑA(ζi) from Fpm′ → GR (pa,m′) is injective. Any such map
for which µ ◦ ϑA(Tpa,m′) = Fpa we say is a lift of Fpa.

The notion of a lift played a key role in our previous development. In particular, it
allowed us to use the simple addition of the finite field to describe the permutations to the
coordinate set that act as shifts. Hence, we seek “lifts” of Fpa that again will play this role.
A particularly useful map is

ϑI(x) = x
∏

i∈I

(
1 + pa−1ζpi

Tr
(
xζpi

))

It should be clear that such a map satisfies the require criterion. What is less clear is that
is also provides our desired interpolation. In particular we have the following theorem.

Theorem 3.4.13. Let I ⊂ {0, 1, . . . ,m′} for p = 2 and a ≤ 2 or p > 2 and I ⊂
{0, 1, . . . ,m′ − 1} for p = 2 and a ≥ 3 be given. Then, the map ϑI(ζj) from Tpa,m′ \ {0} is
injective and

ϑI(ζi) ≡ ζ̄i (mod p)

so that ϑI(Tpa,m′) is a lift of Fpm′ in GR (pa,m′). Moreover,

ϑI(ζi) : Tpa,m′ → GR∗ (pa,m′)
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and ϑA(Tpa,m′) forms an additive group that may be extended to GR(pa,m′).

Proof. See Appendix C.2.8. �

We note that Theorem has a particularly useful consequence in the design of quan-
tizers for the channel-aware scheduling problem. In particular, the map ϑi(x) “unlocks”
coordinates which allows us to marginalize the inner product computation and identify-
ing orthogonal codewords. This produces a code which has more orthogonality in general
than the original trace codes. A code of particular interest chooses Υ1 = GR (pa,m′) and
Υ2 = {0}. In this direction we let

CT (a,m,I, h) = C(GR
(
pa,m′) , {0},F, ϑI(·)) + [ζh

pa, 0, 0, . . . , 0] (3.54)

Then in order to identify orthogonal codewords in this new code one may now define a
restricted twisted hamming weight for which one may test for orthogonality. In this direction
we have the following theorem.

Theorem 3.4.14. Let p be prime and let a,m′ ∈ Z be given such that a > 0 and m′ > 1.
Further, suppose I ⊂ {0, 1, . . . ,m′} for p = 2 and a ≤ 2 or p > 2 and I ⊂ {0, 1, . . . ,m′− 1}
for p = 2 and a ≥ 3 is given. Then, for any y ∈ GR(pa,m′) if µ(y) ∈ {0, 1}, then

Tr (y · ϑI(x)) =

m′−1∑

i=0

xiTr
(
ŷ · ζpi

⊥

)
+ pa−1

m′−1∑

i=0

xi

(
Tr
(
ya−1 · ζpi

⊥

)
+ 1{i∈I} · xi

)
(3.55)

Proof. See Appendix C.2.9. �

As a consequence to Theorem 3.4.14 one can see that it is possible to once again
marginalize as one may expand any element of GR∗ (pa,m′) into a vector of length m′

over Zpa by using the representation of the element in terms of the dual basis. That is, one
can consider expanding any element of GR∗ (pa,m′), say r, with regard to this basis as

r = [Tr (r · b0) ,Tr (r · b1) , . . . ,Tr (r · bm′1−1)].

and consider the problem of marginalizing the sum (3.55) as done previously. However,
we note that the conditions for the twisted hamming weight have slightly changed. Recall,
to define the twisted hamming weight we decomposed any element of β ∈ (Zpa)

m′
as

β = (β̂, β̄) ∈ ↓Ld
a × (pa−1 · Ld

a) where β̄ was the component of β divisible by pa−1. Then,
in the context of Section 3.3.1, we defined the twisted Hamming weight of an element as

twtH(β) =
∣∣∣
{
i | β̂i = 0 and β̄i 6= 0

}∣∣∣ .

We note that the present context has changed the conditions on r̂ as well as the conditions
on r̄ have. Indeed, examining Theorem 3.4.14 one can see that for any index, say j, such
that r̂j = 0 two vectors are orthogonal if either r̄j 6= 0 or j ∈ I, However, while on one had
this have gotten better in terms of the flexibility one has in constructing bases in terms of r̄

things have gotten worse in terms of the constraints of r̂. Indeed, for the conditions of the
theorem to hold one must have µ(r) ∈ {0, 1}. Thus, as a natural extension to the twisted
weight we let

twtI(r) = 1{µ(r)∈{0,1}} ·
∣∣{ 0 < i < m′ − 1 | r̂i = 0 and (r̄i 6= 0 or i ∈ I)

}∣∣ (3.56)
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We note that with this approach we have not only our former insights gained through the
twisted hamming weight, but also through Proposition 3.4.12 which illustrates that the
inner product between two vectors can not grow too fast. As a brief illustration of the
generalized switches formed using this approach can be seen in Figure 3-24. The resulting
cross correlation spectrum can be seen in Figure 3-25.

We note that with this definition hand one can proceed to extend all the results one
had for codes over the cross product of the integers. In particular, one has a natural gen-
eralization of Theorem 3.3.10, now using the restricted twisted hamming weight twtI(r).
Moreover, all of the subsequent discussion and theorems follow directly with the twtH(r)
replaced by twtI(r). In particular, one can again show that Sym(C) contains unitary ma-
trices that act two transitively on the all orthogonal bases contained in a code using the lift
ϑI(x).

As the map allows one to marginalize over a coordinate set as well forms an additive
group which may be extended to GR (pa,m′) one may for any appropriate choice of I use
this quantizer in conjunction with our previous theorems to see that there exists a large
symmetry group, hence leading to low mean squared error. In particular, the present ob-
servation to the twisted hamming weight has direct applications to the tradeoff between
orthogonality and coherence which has great importance in developing quantizers and as-
sociated algorithms which identify users with low co-channel interference. Indeed, in our
present framework one may obtain the quantizers with the best mean squared quantization
error, i.e. one may choose ϑ∅(x), if only the mean squared quantization error is of interest.
However, in order to maximize this figure of merit one must exclude relations that led to
many orthonormal bases and the resulting code only contains a disjoint union of orthogonal
bases. Hence, quantizers which use ϑ{i}(x) seem like a natural choice for use in a multi-
user MIMO systems as they admit quite a few orthogonal bases with a minimal effect on
the mean squared quantization error. The cross correlation spectrum, which relates to the
shape of the Voronoi region and the MSE, may be seen in Figure 3-25. Moreover, as seen in
Figure 3-24 they yield quite regular structures which reflects the large group of transitive
unitary transformations contained in Sym(C). However, this construction will only yield
constructions of size pa·m′

. As we have seen, in general, codes which increase the quanti-
zation rate by increasing the size of the underlying ring do not perform well. Hence, to
have a truly systematic approach to channel quantization one must have additional ways
to increase the quantization rate. We now turn to this final problem; constructing a quan-
tization framework which allows one to increase the quantization rate with out modifying
the cardinality of the underlying ring.

� 3.5 Component Codes at Intermediate Rates

In Section 3.4 we developed the function ϑI(x) to interpolate between the competing design
objectives of orthogonality as well as mean squared error. As previously noted inside this
framework the only way one could increase the code rate was to increase the cardinality
of the base ring which was shown to yield poor performance. In this section our goal is
two fold. First, we develop methods to increase the rate of the code by developing a class
of functions which may be paired with ϑI(x) to yield codes of higher rates. Second, we
develop how one may choose these functions so that the resulting codes are invariant to
shifts in the coordinate set yielding a system of codes that may be paired with sparser codes
to construct good high rate quantizers with large symmetry groups. As such, throughout
this section we consider the design of dense codes. One may then develop sparse codes using
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Figure 3-24. An example of the orthogonality relations between codewords of the quantizer developed
using the lift ϑI(x) in 8 complex dimensions. The generalized switch for the orthogonal processing modes
for (a) ϑ∅(x) and (b) ϑ{1,2}(x). Note that the code represented in (a) only has non-intersecting orthogonal
bases which correspond to condition (ii) in Theorem 3.4.11. However, using the map ϑ{1,2}(x) allows on to
marginalize over a set of coordinates leading to more bases which have intersection.
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Figure 3-25. An example of the cross correlation spectrum of the quantizer developed using the lift ϑI(x)
in 8 complex dimensions. The cross correlation spectrum for any codeword of the quantizer for (a) ϑ∅(x)
and (b) ϑ{1,2}(x). Note that while the code in (b) contains many more orthogonal bases it suffers from a
more irregular cross correlation spectrum and hence has a higher mean square error than the code in (a).

these results in a lower dimension using the methods of Section 3.2.

Recall that in our development in Section 3.3.1 we used the structure of a bilinear map
(the inner product) to understand the structure of the symmetry group associated with
a quantizer in our framework. In order to extend these results we must find other such
maps. In this section we begin by using some classically known results from linear codes
over finite fields to achieve this goal. Then, using some more contemporary results provide
these results in general. To begin, recall that the trace map is a linear map from Fpm

to Zp. In fact, every linear map from Fpm to Zp is of the form TrFpm/Zp
(α · x) for some

α ∈ Fpm [106]. Thus, using functions of the form TrFpm/Zp
(y · x) one may develop a set of

bilinear functions to use in our constructions. However, to develop dense codes which are
invariant to shifts we require a larger set of maps.

We note that all of the codes used in the sequel are (affine invariant) extended cyclic
codes over integer rings. In particular, we consider extended cyclic codes over the integer
ring Zpa. We note that these codes have been shown to yield linear representations for some
notoriously non-linear codes. In particular, Forney, Sloane and Trott have shown that the
Nordstrom-Robinson code is the binary image of the octacode which is a linear code over Z4

of length 8 [50]. Later, Hammons et. al. showed that the non-linear binary Kerdock code
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may be constructed as the image of a linear code over Z4 [55]. Further work has shown
that codes over Z4 can be used to develop optimal sets of lines in complex spaces [30].
Subsequent generalizations of this work have led to a quite general framework in which
one can succinctly describe some of the densest known sphere and lattice packings [93].
We provide a brief introduction to linear codes over integer rings in Appendix A and in
the sequel present a representation for these codes that is compatible with our general
framework of component codes from Section 3.3.

In order to develop a large family of bilinear maps we begin by identifying the set of
quadratic maps from Fpm to Zp, then, using the relation between bilinear and quadratic
maps developed in Section 3.4 identify a family of bilinear maps. In this direction, recall
from Section 3.4 that

TrFpm/Zp

(
α · x2

)

is an example of a quadratic map from Fpm′ to Zp. As this was the base of our previous
construction, it is of interest to identify additional maps with this structure in order to
produce higher rate codes. Recall from Section 3.4.1 that the Frobenius automorphism
φ : x → xp, as well all of its powers, are linear over Fpm. Thus for any α ∈ Fpm, if
d = pj + pk, the function

TrFpm/Zp

(
α · xd

)
(3.57)

is a quadratic map [86] from Fpm to Zp as xpj · xpk
is the product of linear functions. It is

again natural to ask whether functions of the form (3.57) are the only quadratic functions
from Fpm to Zp for some d = pj + pk. This is indeed true. However, as

TrFpm/Zp
(x) = TrFpm/Zp

(φ(x)) = TrFpm/Zp
(xp) (3.58)

one must take care when forming a system of maps as to not include functions that led
to redundant codewords. Thus, one must form an equivalence between the functions

{x0, x1, . . . , xpm′−2} which define the same function under the trace map. Under the cor-
respondence (3.58) there will be a corresponding partition of {0, 1, 2, . . . , pm′ − 2}. We call
this partition of {0, 1, 2, . . . , pm′−2} the p-cyclotomic cosets modulo pm′−1. More precisely,
the partition of {0, 1, 2, . . . , pm′ − 2}, say P =

{
P0,P1, . . . ,P|P |−1

}
, are the p-cyclotomic

cosets modulo pm′ − 1 if the following hold:

|P |−1⋃

i=0

Pi = {0, 1, 2, . . . ,m− 2} and Pi

⋂
Pj = ∅ for i 6= j (3.59)

Pi =
{
s · pj m′

(mod m− 1) | 0 ≤ j < ms

}
if s ∈ Pi (3.60)

where in turn ms is the smallest positive integer such that

s · pm′ms ≡ s (mod m− 1).

We identify each coset Pi ∈ P by its smallest element and call this element of Pi the coset
leader. We denote the set of all coset leaders of P as IP. This leads to the following
theorem [81].
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Theorem 3.5.1. Every function f̃(z) from Fpm to Zp can be written uniquely as

f̃(z) =
∑

i∈IP

TrFpms /Zp

(
aiz

i
)

+ am−1z
m−1 (3.61)

where ai ∈ Fpms , am−1 ∈ Zp and IP is the set of coset leaders of the p-cyclotomic partition
of {0, 1, 2, . . . ,m− 2}.

Examining Theorem 3.5.1 one can see that every function from Fpm to Zp is indexed by
elements of the coset leaders of the p-cyclotomic partition modulo m and elements of Fpm′ .
Thus, to systematically design quantizer over finite fields it is sufficient to optimize over
this set and the coefficients of the polynomial to design a quantizer. Moreover, by Theorem
3.5.1 and our previous discussion every quadratic map is a linear combination of functions
of the form TrFpms /Zp

(aiz
s) where s = 1 + pj for some 0 ≤ j < m′ and ai ∈ Fpms . In this

direction, let

Dp (m− 1) =




m′−1⋃

j=0

{pj} ∪
m′−1⋃

j=0

{1 + pj}


 ∩ IP. (3.62)

Then, every quadratic function from Fpm′ to Zp is of the form

f̃Q(z) =
∑

i∈Dp(m−1)

TrFpms /Zp

(
aiz

i
)

+ am−1z
m−1.

While the set Dp (m− 1) yields a good set of function to use to develop quantizers,
as they yield bilinear functions, there is no guarantee that any arbitrarily chosen set of
quadratic functions will yield a set of codewords that are not colinear. Recall in Section
3.3.1 we were able to determine when a code had colinear codewords by examining the
actions of the operator T(λ) and S(β) on codewords which, in turn, relied on the linearity
of the inner product. Thus, if we are to consider a system of multiple functions it is natural
to expect that we need the system of functions to be closed under addition. Hence, we need
a notion of linear independence of a set of functions from Fpm to Zp to achieve this goal.

To begin, recall that we have frequently used the fact that the trace map is a linear
function. Thus, the set of functions

{TrFpms /Zp
(aiz

s)}ms
i=0

are linearly independent if and only if the set {ai}ms
i=0 are linearly independent elements

in Fpms when viewed as a vector space over Zp. Alternatively, from Theorem 3.5.1 the
functions

{TrFpms /Zp
(asz

s)}s∈IP

are linearly independent for any choice of as ∈ Fpms . Thus, one may, for any subset
S ⊂ {0, 1, 2, . . . ,m−1} and collection of linearly independent elements A = {{ai,s}ms−1

i=0 }s∈S ,
form a high rate code by first forming the linear set of functions

F(S) =
〈
TrFpms /Zp

(ai,sz
s)
∣∣ s ∈ S ∩ IP and ai,s ∈ A

〉
.
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Then, for f ∈ F(S), one may construct a code containing the codewords

c(f) =
∑

z̄∈F

ζf(z)ez. (3.63)

It is clear from (3.63) that two codewords c(f1) and c(f2) are colinear if and only if

f1(z) − f2(z) = a ∀ z ∈ F

for some a ∈ Zp. Thus, a set of functions F(S) defines a code with colinear lines if and only
if 0 ∈ S and it is a simple process to develop high rate codes over finite fields as one may
optimize over subsets of {1, 2, . . . ,m − 1}. We note, however, this is construction is a bit
distant from our preceding development. That is, in Section 3.2 our systematic construction
of codes consisted of:

1. I, the vector space (Zp)
m′

2. L, a sub-space of (Zp)
m′

3. Υ1, a subset, (Zpa)m
′
which describes the base quantizer C0

4. Υ2, a subset of (Zp)
m′

which describes the “shifts” of L
(i.e. the coordinate permutations to be applied to C0)

5. the function c(λ, β̄) = ζ
〈λ,β̄〉
pa

In Section 3.4 we further developed this framework to allow one to choose Υ1 to be a subring

of GR (pa,m′) and c(λ, β̄) = ζ
Tr(λ·f(β))
pa . Thus, it is a far more natural setting to consider

extending our codes by considering the addition of polynomials of the form zs rather than
directly applying the definition (3.63) as this construction has no explicit connection to the
underlying group of symmetries defined by the operators T(λ) and S(β). Hence, we rather
consider the codes13

C(Υ1,Υ2; F,T ) =
⋃

S⊂T ⊥∩IP

⋃

λ,Υ1

c(λ, 0; F,S)

where
c(λ, 0; F,S) =

∑

z̄∈F

ζTr(λ·Ps∈S zs).

and in turn where
T ⊥ = {s ∈ [0,m− 1] : m− 1 − s 6∈ T } . (3.64)

Then, in the special case over finite fields we have the important theorem as a direct corollary
to [22]

Theorem 3.5.2. Let T ⊂ [0,m− 1] be given. Then,

S(β) · C(F, {0}; F,T ) = C(F, {0}; F,T )

for every β ∈ F if and only if

s =

m′−1∑

i=0

sip
i ∈ T

13We note that the appearance of the set T ⊥ comes from historical developments in cyclic codes and helps
identify structure in the sequel.
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then
sj > 0 =⇒ s− pj ∈ T .

Note that nowhere in Theorem 3.5.2 is there an explicit requirement that any of the
functions associated to C(F, {0}; F,T ) be quadratic or for that matter bilinear. This is im-
portant as it removes the bilinear constraint explicitly from our development of quantizers.
That is, by construction the code C(F, {0}; F,T ) has an associated set of functions which are
linear in Υ1 and hence invariant to multiplication by T(λ). More precisely, as the codewords
in C(F, {0}; F,T ) are all defined through a linear map, one has that

T(λ) · C(F, {0}; F,T ) = C(F, {0}; F,T ) ∀λ ∈ F.

Further, by appropriately choosing T one can ensure the resulting code is invariant to
multiplication by S(β) through Theorem 3.5.2. Thus, in order to systematically design
sparse and dense codes over finite fields it is sufficient to choose codes C(F, {0}; F,T ) which
satisfy Theorem 3.5.2.

A particularly well known example of codes which satisfy Theorem 3.5.2 are the Reed
Muller codes. In this direction, recall that any integer, say s, has for a prime p, a unique
p-adic expansion

s =
∑

j≥0

sj p
j

where 0 ≤ sj ≤ p− 1. We let the p-weight of any integer s, denoted wtp(s), be the sum of
the coefficients in the p-adic expansion of s. That is,

wtp(s) =
∑

j≥0

sj where s =
∑

j≥0

sj p
j.

Then, the set
TRM(r) =

{
s : wtp(s) < m′(p − 1) − r

}
.

defines the Reed Muller codes and we have the important corollary to Theorem 3.5.2 [43].

Corollary 3.5.3. Let r be given. Then,

S(β) · C(F, {0}; F,TRM(r)) = C(F, {0}; F,TRM(r))

for every β ∈ F.

We note that Corollary 3.5.3 is quite important to our development in the sequel as
it provides a specific construction in the case the underlying ring is a finite field. In the
sequel we provide a similar result over more general rings. That is, we develop the nec-
essary extensions to Theorem 3.5.1 and Theorem 3.5.2 that allow explicit constructions of
codes that may be used in our systematic construction over more general rings. A natural
question is whether the code C(F, {0}; F,TRM(r)), extended using the natural lift from Fpm′

to GR (pa,m′), may be used in our systematic construction over GR (pa,m′). In general
this may not be done. However, in larger rings there is a plurality of codes that do have the
required invariance properties that may be used in our systematic construction. Moreover,
these codes exist at a variety of rates allowing one to design codes which meet specific rate
targets rather than being tied to a specific rate. To begin, we first state the generalization
of Theorem 3.5.1 from [24,25].
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Theorem 3.5.4. Let f be a linear function from Tpa,m to Zpa. Then, f can be uniquely
written as

f(x) =
∑

i∈IP

TrGR(pa,ms)/Zpa

(
aix

i
)

+ am−1x
m−1 (3.65)

where ai ∈ GR(pa,ms) and am−1 ∈ Zpa and P is the p-cyclotomic partition of {0, 1, 2, . . . ,m−
2} modulo m− 1.

Due to the similar structure Theorem 3.5.4 has to Theorem 3.5.1 one may be tempted to
apply Theorem 3.5.2 to again characterize when S(β) acts invairantly on a code. However,
as previously noted, this may not be done in general as while the conditions of Theorem
3.5.2 are necessary to ensure that any code over GR(pa,m′) is invariant to multiplication
by S(β) it is far from sufficient. In particular, as every element of GR(pa,m′) has a p-adic
expansion, one may more generally write any function form Tpa,m to Zpa as

f(x) =
a−1∑

i=0

pifi(x).

Thus, in this context, every function from Tpa,m to Zpa is rather defined by a set of functions
{fi(x)}a−1

i=0 from Tpa,m to pi ·Zpa and one may more generally describe functions from Tpa,m

to Zpa using a subsets of {0, 1, . . . ,m − 1}. In this direction, we say that the subsets
T1,T2, . . . ,Ta are the defining sets of code over Zpa if

{0} ⊆ Ta ⊆ Ta−1 ⊆ · · · ⊆ T1 ⊆ {0, 1, . . . ,m− 1}. (3.66)

We note that the nesting of the sets in (3.66) results in our requirement that the associated
set of functions be linear. Hence, analogous to (3.64), we let

T ⊥
i−1 = {s ∈ [0,m− 1] : m− 1 − s 6∈ Ta−i+1}

where T0 = {0, 1, . . . ,m− 1}. Then, for any Υ1 ⊂ GR(pa,m′) we let

C(Υ1, {0}; F, {T1,T2, . . . ,Ta}) =
⋃

S1⊂T ⊥
1

⋃

S2⊂T ⊥
2

· · ·
⋃

Sa⊂T ⊥
a

⋃

λ,Υ1

c(λ, 0; F, {S}a
i=1)

where
c(λ, 0; F, {S}a

i=1) =
∑

z̄∈F

ζTr(λ·fT (z;{S}a
i=1))

and in turn where

fT (z; {S}a
i=1) =

a∑

i=1

pi−1
∑

s∈Sa−i+1

zs.

Due to the plurality of sets which define the code C(Υ1, {0}; F, {T1,T2, . . . ,Ta}) there is a
corresponding plurality of codes that are invariant to multiplication by S(β). Thus, we
would like to understand how to optimally choose the sets {T1,T2, . . . ,Ta} to ensure that
the corresponding code has as large a symmetry group as possible. In this direction, we
note that the simple permutation described by the “shifts” are not the largest symmetry
group a code may have. In general there may be much larger groups of permutations that
act invairantly on the code. In this direction, let, for m′ = kt, AGLk(p

t) be the set of all
affine linear transformations on the finite field Fpm′ when viewed as a k dimensional vectors
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space over Fpt. More precisely, for any element z̄ ∈ Fpm′ an affine transformation of Fpt,

(Ak, bk) ∈ AGLk(p
t), is such that

(Ak, bk) : Fpm′ → Fpm′

(Ak, bk) : z → Ak · z + bk.

Then, we say that the code C is invariant under the group AGLk(p
t) if AGLk(p

t), acting on
the coordinates of C, fixes the code C. Thus, we let

S(Ak, bk) · ez = eAk·z+bk

and a code C is invariant under the group AGLk(p
t) if

S(Ak, bk) · C = C.

Clearly, with this notation

S(β) = S(I1, β) ∈ AGLk(p
t) ∀ k |m′.

More generally one has AGLk(p
tk) ⊆ AGLℓ(p

tℓ) if k | ℓ |m′. Hence, S(β) ∈ AGLk(p
t) for

any k and our previous results will hold if we can show that a code is invariant to any affine
group of linear transformations AGLk(p

t). In this direction, we have the following theorem
from [3]

Theorem 3.5.5. Let Ta ⊂ Ta−1 ⊂ · · · ⊂ T1 ⊂ [0,m − 1] be given. Then,

S(Ak, bk) · C(Υ1, {0}; F, {T1,T2, . . . ,Ta}) = C(Υ1, {0}; F, {T1,T2, . . . ,Ta})

for all (Ak, bk) ∈ AGLk(p
t), for tk = m′, if and only if the following four properties hold:

(i) If, for d = 1, 2, . . . , a, s ∈ Td, sj > 0, then s− pj ∈ Td

(ii) If, for d = 1, 2, . . . , a, s ∈ Td, sj > 0, then s − pj + pj+tl (mod m − 1) ∈ Td for
l = 0, 1, . . . ,m′ − 1

(iii) If, for d = 2, . . . , a, sj > 0, then s−pj +pj−1 ·
(
ptl1 + ptl2 + · · · + ptlp

)
(mod m−1) ∈

Td for any l1, l2, . . . , lp with 0 ≤ li ≤ m′ − 1

(iv) If, for d = 1, . . . , a, s ∈ Td, sj = sj+1 = · · · = sj+a−1 = 0, sj+a > 0 and d > a > 0,
then s− pj (mod m− 1) ∈ Td−a

where every subscript is taken mod m′.

Examining Theorem 3.5.5 one can see that we now have a system of constraints for our
systematic construction of codes. That is, one now has a precise characterization of “good”
codes to use in the systematic construction (3.12). To systematically choose both sparse and
dense codes one may simply search over nested subsets {T1,T2, . . . ,Ta} of {0, 1, . . . ,m− 1}
and use Theorem 3.5.5 as a certificate as to whether or not the resulting code will led to
large symmetry groups. However, to complete this systematic construction, we must be
able to identify the rate of the associated code. In this direction we have the following
lemma from [24].
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Lemma 3.5.6. Let {T1,T2, . . . ,Ta} be the defining sets of a code over Zpa of length m.
Then,

logp |C(Υ1, {0}; F, {T1,T2, . . . ,Ta})| = a ·m′ −
a∑

i=1

|Ti|.

This result is particularly useful as it yields the last constraint needed to systematically
design good dense and sparse codes. That is, one may always design a good rate r dense
code by solving the discrete optimization problem in Cm:

maximize
a,{T1,T2,...,Ta}

SINRsat (C(Υ1, {0}; F, {T1,T2, . . . ,Ta}))

subject to a ·m′ −
a∑

i=1

|Ti| = r (3.67a)

Ta ⊆ Ta−1 ⊆ · · · ⊆ T1 ⊆ {0, 1, 2, . . . ,m− 1} (3.67b)

{T1,T2, . . . ,Ta} satisfy Theorem 3.5.5 (3.67c)

To design a system of good sparse and dense codes one may optimize over the rate, value
of a and defining sets of each component of the code yielding a much larger optimization
problem. In general one would prefer to dispense with the optimization problem (3.67) as
much as possible and rather consider a subclass of defining sets that will work well. In this
direction, recall that the Reed Muller codes played a key role in the case of finite fields.
Hence, in light of Theorem 3.5.5 one may generalize14 the Reed Muller code by considering
defining sets which use differing values of r for each set Ti [24]. That is, we let

TGRM(r1, r2, . . . , ra) = {TRM(r1),TRM(r2), . . . ,TRM(ra)}

Then, we have the following corollary from [5,46].

Corollary 3.5.7. Let TGRM(r1, r2, . . . , ra) be given. If, for p = 2, i = 2, . . . , a − 1 and
ℓ = 1, . . . , i− 1,

ri−ℓ ≤ 2ℓ−1(m′ − ri),

then

S(A1, b1) · C(Υ1, {0}; F, TGRM(r1, r2, . . . , ra)) = C(Υ1, {0}; F, TGRM(r1, r2, . . . , ra))

for all (A1, b1) ∈ AGL1(p
m′

). Moreover, for any prime p let the following two conditions
hold:

(i) If 0 < ri ≤ (m′ − 1)(p − 1) − 1, then ri+1 > ri + (p− 1)

(ii) If ri = (m′ − 1)(p − 1) then ri+1 = (m′ − 1)(p − 1)

Then,

S(Am′ , bm′) · C(Υ1, {0}; F, TGRM(r1, r2, . . . , ra)) = C(Υ1, {0}; F, TGRM(r1, r2, . . . , ra))

for all (Am′ , bm′) ∈ AGLm′(p).

14We note that this generalization of the Reed Muller codes is over an integer ring and is not the generalized
Reed Muller codes of [45].
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To fully illuminate the usefulness of Corollary 3.5.7 we show how it may be used to
arrive at our systematic construction of quantizers from Example 3.2.6.

Example 3.5.1 Systematic Constructions For C4

In this example we show how one may arrive at the systematic construction of Example
3.2.6 through application of Corollary 3.5.7. We begin by noting that each one of the codes
used in Example 3.2.6 is a “generalized” Reed Muller code. Thus, it is sufficient to show
that there is a choice of r1, r2, . . . , ra for these codes for which Corollary 3.5.7 holds. In this
direction we note that

T0 = TGRM(1, 2, 2, . . . , 2, 2),

T1 = TGRM(0, 1, 2, . . . , 2, 2)

and
T2 = TGRM(0, 2, 2, . . . , 2, 2)

satisfy Corollary 3.5.7 as for i = 1, . . . , a− 1 and ℓ = 1, . . . , i− 1

ri−ℓ ≤ 2 ≤ 2ℓ ≤ 2ℓ−1(m′ − ri).

Moreover, one may show by using the normal basis {ζp, ζp2
, . . . , ζpm′

} the set of functions

⋃

k∈0,1,...,a−1

⋃

s∈T ⊥
a−k+1∩IP

{
Tr

(
ζ

pm′
−1

pms−1
·pi

zs

)}

are linearly independent over Zpa. Hence, for any i ∈ {1, 2, 3}, k ∈ {0, 1, . . . , a − 1} and
s ∈ T ⊥

a−k+1 ∩ IP the vectors

gi,s,k = pk−1 ·
[
Tr

(
ζ

pm′
−1

pms−1
·pi

zs

)]

z∈Tpa,m′

are linearly independent. Furthermore, any vector associated to a function from F(Ti) is a
linear combination of {gi,s,k}. Alternatively, any vector

g(f) = [f(0), f(1), f(ζ), . . . , f(ζm−1)]

associated to a function f ∈ F(Ti) is, for some v ∈ Z3
2k2

,

g(f) = Gi(k) · v

where, after some suitable change of coordinates,

G0(k) =




0 0 1 1
0 1 0 1
0 0 0 2


 , G1(k) =




2 3 3 0
3 2 3 0
0 0 0 4


 ,

G2(2) =




0 2 2 0
2 0 2 0
0 0 0 2


 and for k > 2 G2(k) =




4 6 6 0
6 4 6 0
0 0 0 2


 .

This yields the construction from Example 3.2.6.
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We have provided a systematic construction for both the dense and sparse codes that
may be paired together to form a class of good constituent codes to use in a systematic
construction. However, as we have seen in Section 3.2, this construction is not in general
robust enough to allow one to increase the rate of a code endlessly as there is no mechanism
in place to allow one to more accurately represent the magnitude of each coordinate, but
rather only the phase. Thus, in the sequel we introduce a simple system of linear operators
which not only allow one to more precisely quantize the magnitude of each coordinate, but
also allows one a class of high rate quantizers with low quantization complexity.

� 3.6 Low Complexity Rate Doubling Operations

In the preceding sections we have described the key ingredients to our quantizer construc-
tion. This construction consisted of a union of codes of differing sparsity which are all
invariant to a set of shifts to the coordinate set. To increase the rate of the quantizer one
may take one or many possible unions of such codes. Additionally, to further increase the
rate, one may increase the cardinality of the integer ring underlying the construction of
each of the component codes in the union. However, as we have seen such an approach
constructs codes of higher and higher rates by increasing the precision of the quantizer in
a subspace by increasing the precision of the phase of each coordinate. Thus, in the high
rate limit this scheme will only produce a code in which the phase of each coordinate is
known precisely while the magnitude of each coordinate is known only to finite precision.
Thus, one may expect that for high rate quantization our current construction may not
outperform simple scalar quantization.

For a truly systematic structured construction of channel quantizers one must find a
systematic way to increase precision of the magnitude of every coordinate and not just
the phase. To do this, one may consider taking unions of codes that are simple linear
transformations of a “good” base code, say Cr, in order construct higher rate codebooks
which uses some of the rate to increase the precision of the magnitude of each coordinate.
In this section we introduce a “localization” operation, F(c0 α, γ), which takes any point
on the complex sphere to a neighborhood of the codeword c0 described by α and γ. The
freedom of α and γ allows one to tune this operation to optimize the performance of the
resulting code. One of the greatest benefits to this approach is it allows one to form
multi-resolution codebooks which greatly simplifies the problem of quantization in high
rate codes. In particular, it allows one to use multi-stage quantization algorithms. As we
have stated, multi-user MIMO systems which operate in the high SNR regime must use
large codebooks to ensure that the system performance is not limited. In such cases it is of
interest to develop structured codebooks that enable user terminals to efficiently quantize
their channel vectors. In particular, by appropriately choosing the parameters α and γ one
may ensure that each element of C(ci;α, γ, C) is inside the Voronoi cell of the codeword ci

in the original code. Thus, in this special case one may quantize any channel vector by
first performing quantization using C then, using the same quantization algorithm, perform
quantization inside the local code of the codeword which was the result of the first stage of
decoding. If this may be done we say the codebook is a multi-resolution codebook.

A multi-resolution codebook is of great interest for MIMO broadcast systems as the
quantization is performed at the user terminals. In many cases the user terminals are power
and complexity limited and hence may not have the resources to perform high complexity
quantization needed to obtain high rates. Indeed, this was part of our motivation to develop
structured quantization methods as the complexity of quantization at the user terminals
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using a random vector quantizer, in general, requires exponential complexity in the number
of feedback bits. However, employing a well chosen base code Cr and parameters α and
γ one has the complexity of quantization at the user terminals using a multi-resolution
codebook is two times that of the complexity of quantization using Cr. Hence, irregardless
of the performance of the multi-resolution codes relative to random vector quantization,
there is great practical relevance in a high rate system to employ multi-resolution codes.

In this section we construct a framework in which a codebook which has been well
designed for the Rayleigh model may be successively refined to higher and higher rate
codes which are also good for the Rayleigh model. In this development we call the base
design for the Rayleigh model the root code and the codebook consisting of the union of
transformations of the root code the universal code. It is unreasonable to expect that one
will preserve the structure of the original design. In particular, the image of any (every) set
of orthogonal vectors under a non-unitary transformation will not be orthogonal. However,
in the sequel we develop a simple transformations which extends a large part of the structure
of the root code.

A Geometric Construction of Rate Doubling Operations

In a multi-user MIMO system there is a need to develop high rate, low complexity quan-
tizers. Recall that our motivation behind a system of linear operators is that there is no
mechanism in our systematic construction thus far to more accurately quantize the mag-
nitude of each coordinate of a channel vector. Thus, in the sequel we derive a operator in
which the components of the resulting codewords do not have constant modulus. In partic-
ular, we consider constructing new codes by interpolating between the lines of an existing
constellation using a codebook from our previous framework (3.5). This general approach
to construct universal codes is not new. The authors of [34, 102] have considered similar
localization methods. However, the authors of [34,102] did not consider the question of pre-
serving an underlying structure of a code, nor did they address the problem of constructing
a universal code which in its own right is a good quantizer for the Rayleigh model which
allows for the use of multi-stage quantization algorithms. Hence, in the sequel, we arrive at
a quite different form for the interpolation than was used in [34,102].

In Section 3.1 we presented the 3 bit quantizer of length 4 that is currently an optional
part of the 802.16 standard. In order to decrease the mean square quantization error this
quantizer used a Householder transform to transform an existing constellation. In the sequel
we use a similar approach to develop operators for our universal code. To begin, recall that
Householder transform for two points, say x and y, in Rn is the linear transform A,

A = I − 2
v vT

vT v

where v = x− y. It is easy to see by direct computation that

Ax = y.

The Householder transform is well known for its usefulness in matrix analysis for both its
efficiency and numerical stability. In Cn the Householder transform for two points a and b

takes a slightly different form and can be shown [36] to be, for ‖a‖ = ‖b‖,

X(a,b) = I − 2
z z†

z† a
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were z = a − b. Again, some simple computation shows that

X(a,b)a = b.

Thus, if one wishes to interpolate between two points c1 and c2 the transform

Y(c1, c2;α) =
(√

1 − |α|2 · I + αX(c1, c2)
)

(3.68)

is a linear transform from c1 to c1 + αc2. This transform depends on both c1 and c2

and it is not clear how one could simultaneously localize a code while extending a large
number of symmetries to the entire code. However, as the Householder transform is a
linear transformation and interpolates between two existing codewords it is clear that there
is a structure present that preserves some of the existing structure of the root code.

We prefer a representation for the interpolation that is not dependent on the code word
c2 as the associated transformation should give rise to symmetries for a large subset of the
universal code. Hence, in the sequel we describe a different interpolation that can be defined
in terms of a basis containing c1 and not c2. In this direction, recall that geometrically the
Householder transformation performs a rotation in the plane spanned by c1 and c2 while
leaving the rest of the space fixed. Thus, if B = {b0,b1, . . . ,bm−1} is an ortho-normal basis
for Cm then

Y(b1,b2;α) · bl =





α · b2 −
√

1 − |α|2 · b1 if bl = b1

α · b1 +
√

1 − |α|2 · b2 if bl = b2

bl otherwise

.

However, this only defines a single rotation and does not localized codewords as we desire.
One could attempt to construct a more general interpolation operator by products and
sums of interpolation operators of the form (3.68). However, this leads to complex cross
terms that generally destroy any sense of locality of the resulting interpolations which will
further inhibit the identification of large symmetries of the code. That is, products and
sums of interpolation operators of the form (3.68) do not lead to an easily identifiable root
codeword for the interpolation since (3.68) defines a two dimensional rotation. Hence, we
rather consider one dimensional rotation operations

Ỹ(b1,b2;α) = Y(b1,b2;α) −
(
α · b2 −

√
1 − |α|2 · b1

)
b
†
1 (3.69a)

= I +
(
α · b1 + (

√
1 − |α|2 − 1) · b2

)
b
†
2 (3.69b)

so that,

Ỹ(b1,b2;α) · bl =

{
α · b1 +

√
1 − |α|2 · b2 if bl = b2

bl otherwise

Hence, Ỹ(b1,b2;α) can be viewed as a rotation of the basis vector b2 in the b1 −b2 plane.
We note that this interpolation operation has the added benefit that it is quite simple to
invert Ỹ. Hence, elements of a local code may be efficiently quantized by first inverting
the factor Ỹ(b1,b2;α) and using the quantization algorithm of the root quantizer. More
precisely, using the inversion formula for a small rank adjustment one has [58],

Ỹ(b1,b2;α)−1 = I − 1√
1 − |α|2

(
α · b1 + (

√
1 − |α|2 − 1) · b2

)
b
†
2. (3.70)
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Comparing (3.70) to (3.69) it is easy to see that inverting Ỹ(b1,b2;α) is no more complex
than the original interpolation operation. Indeed, this is expected as this operation is again
just a one dimensional rotation in the b1 − b2 plane. However, Ỹ(b0,b;α) as defined
will only localize one component of every codeword about b0. For efficient quantization we
would like to have the entire root code localized about b0. Hence, we form our interpolation
operation as a product of the one dimensional rotations Ỹ(b0,b;α). In particular, for each
codeword ci ∈ C and an associated basis Bi such that ci ∈ Bi we let, for 0 < α < 1 and
γ ∈ C,

F(b0;α, γ,B) =
(
I + (γ − 1) · b0b

†
0

) ∏

b∈B\b0

Ỹ(b0,b;α) (3.71)

be the local interpolation operation for the root codeword ci with respect to the basis Bi

and for each local interpolation operation we let

C(ci;α, γ,Bi) = {F(ci;α, γ,Bi) · cj | cj ∈ C}

be the code localized about cj . We note that for an arbitrary choice for α and γ we have no
general guarantee that the elements of C(ci;α, γ,Bi) are more correlated with ci than some
other codeword from the root code. However, from (3.71) it is clear that for an appropriate
choice of γ and α the elements of the local code C(ci;α, γ,Bi) can be made to be arbitrarily
correlated with the ci. In particular, for any codeword c ∈ C(ci;α, γ,Bi) one can see by
inspecting (3.71) that for any 0 < α ≤ 1 as |γ| → ∞

|c†iF(ci;α, γ,B)c|
‖F(ci;α, γ,B)c‖ → 1

while for any γ ∈ C

|c†iF(ci;α, γ,B)c|
‖F(ci;α, γ,B)c‖ → 0

as α→ 0. Hence, for some appropriate choice of α and γ we can ensure that every codeword
in the local code C(ci;α, γ,Bi) is more correlated with ci than any other codeword in the
root code and hence the codewords in C(ci;α, γ,Bi) are truly “local” to ci. Further, one
can always ensure by appropriately choosing α and γ that the resulting union of local codes
is a multi-resolution.

Universal Codes From Geometric Operators

As previously noted, our interest in forming the local codes C(ci;α, γ,Bi) is it allows one to
form a much larger code from a root code in which each codeword of the root code has an
associated local code of equal rate. That is, we can view each local code as a subcode of a
“universal” code

CF(α, γ, C) =
⋃

ci∈C
C(ci;α, γ,Bi). (3.72)

This large code is of interest when our existing systematic construction fails to yield a
desired mean square error performance. Moreover, this is the codebook of interest if one
wishes to develop a codebook in which quantization may be performed on the root code then
sub-codebooks corresponding to specific local codes15. Thus, it is of interest to understand

15 Alternatively the “universal” code is the appropriate setting for slow fading channels where users
incrementally feedback a quantized description of their channel.
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how one’s choice of α and γ affect the properties of this code (i.e. the coherence of the code
and when the code is a multi-resolution).

In order to precisely characterize the effects of the parameters α and γ we first examine
the eigen and geometric structure of the operators F(bi;α, γ,B). For this, it is often more
convenient to write F(b0;α, γ,B) as a sum rather than a product. This is the content of
the following lemma.

Lemma 3.6.1. For any complex vector b0 and basis B containing b0,

F(b0;α, γ,B) =
(
γ (1 − α) −

√
1 − α2

)
· b0b

†
0 + (3.73a)

∑

b∈B

(
αγb0 + (

√
1 − α2)b

)
b† (3.73b)

Proof. See Appendix C.2.10. �

Now, to characterize the behavior of F(b0;α, γ,B) on the code C, we note that the
matrix F(b0;α, γ,B) is in general not Hermitian as the term in (3.73b) is not Hermitian
if αγ 6= 0. In fact, it is easy to see that F†F 6= FF† so that F is not even a normal
matrix. Hence, by the spectral theorem for normal matrices [58] the eigenvectors of F are
not orthonormal. Thus, we may only take the weakest form for the eigen-decomposition [58]
for the matrix F. That is, as F is full rank and not normal, there exists a matrix P whose
columns are the eigenvectors of F and a diagonal matrix D, such that

F = PDP−1.

Now let,

ν(α, γ) =
αγ√

1 − α2 − γ
.

Then, we have the following description of the eigenvectors of F(b0;α, γ,B).

Lemma 3.6.2. Let B be an orthonormal basis for Cm. Then, for any 0 < α1 and γ ∈
C such that γ 6=

√
1 − α2, b0 is an eigenvector for F(b0;α, γ,B) with eigenvalue γ and

{b+ν(α, γ)·b0}b∈B\b0
is a basis for the eigenspace of F(b0;α, γ,B) with eigenvalue

√
1 − α2.

Proof. See Appendix C.2.11 �

Examining Lemma 3.6.2 yields some simple intuitions behind the choice of (3.73) as the
local interpolation operation. In particular, examining Lemma 3.6.2 one can see that the
eigenstructure of F(b0;α, γ,B) is aligned with b0 as b0 is an eigenvector of F(b0;α, γ,B)
as well as the linear dependence between the eigenvectors implied by non-normality of the
matrix F(b0;α, γ,B). To more precisely characterize this dependence we now explicitly
compute an orthonormal basis for the eigenspace associated with the eigenvalue

√
1 − α2.

In this direction note that any v ∈ Cm can be written as

v =

m∑

i=0

aibi
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for some ai ∈ C as B is a orthonormal basis for Cm. Moreover, examining Theorem 3.6.2
one can see that any vector v ∈ Cm such that a0 = 0 and

∑m
i=0 ai = 0 is an eigenvector of

F(b0;α, γ,B) with eigenvalue
√

1 − α2 as

v =

m∑

i=i

aibi

= ν(α, γ) ·
(

m∑

i=i

ai

)
· b0 +

m∑

i=i

aibi

=

m∑

i=i

ai (ν(α, γ) · b0 + bi)

if
∑m

i=0 ai = 0. Moreover, this set of vectors form as m−2 dimensional subspace of Cm and
every vector from this subspace is trivially orthogonal to any vector

v̂ = a0 · b0 +

m∑

i=1

bi.

However, by Lemma 3.6.2, the set of vectors {b + ν(α, γ) · b0}b∈B\b0
is a basis for the

eigenspace of F(b0;α, γ,B) with eigenvalue
√

1 − α2. Hence,

v̂ = (m− 1)ν(α, γ) · b0 +

m∑

i=1

bi

is an element of the eigenspace of F(b0;α, γ,B) with eigenvalue
√

1 − α2. Thus, to find an
orthonormal basis for the eigenspace me must identify m − 2 orthogonal vectors of length
m− 1 that sum to zero to use in addition to the already identified eigenvector v̂. However,
this set of m − 2 vectors is quite familiar. It is simply the set of rows (or columns) from
that m − 1 ×m − 1 discrete Fourier transforms (DFT) matrix which sum to zero. In this
direction, let

DFT(m) =
1√
m




1 1 1 · · · 1

1 e
√−1 2π

m
1 e

√−1 2π
m

2 · · · e
√−1 2π

m
(m−1)

1 e
√−1 2π2

m
1 e

√−1 2π2
m

2 · · · e
√−1 2π2

m
(m−1)

...
...

...
. . .

...

1 e
√
−1

2π(m−1)
m

1 e
√
−1

2π(m−1)
m

2 · · · e
√
−1

2π(m−1)
m

(m−1)




(3.74)

be the m×m discrete Fourier transforms (DFT) matrix and let

Bj(B) = Bj =




| · · · |
bi0 · · · bim−1

| · · · |


 and B̃j(B) = B̃j =




| · · · |
bi1 · · · bim−1

| · · · |




where i0 = j and {i0, i1, . . . , im−1} = {0, 1, 2, . . . ,m−1}. Then from the preceding discussion
it is clear that the (m − 1) × (m − 1) submatrix of the DFT for which the rows sum to
zero times B̃j(B) forms an orthonormal basis for an m − 2 dimensional subspace of the
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eigenspace of F(b0;α, γ,B) with eigenvalue
√

1 − α2. Thus, we let

UF(α, γ)† =




1 0 · · · 0 0

ν(α, γ)

DFT(m− 1)
0
...
0



, UF(α, γ)† =




1 0 · · · 0 0

ν(α, γ)

DFT(m− 1)†
ν(α, γ)

...
ν(α, γ)




and let

ΛF(α, γ) =




γ 0 0 · · · 0
0 √

1 − α2 · Im−20
...
0




andDF(α, γ) =




1 0 0 · · · 0
0 1√

ν(α,γ)2+(m−1)
0 · · · 0

0 0

Im−2
0 0
...
0 0




The preceding discussion leads to the following theorem.

Theorem 3.6.3. Let B be an orthonormal basis for Cm. Then, for any b0 ∈ B and any
0 < α < 1 and γ ∈ C such that γ 6=

√
1 − α2. Then,

F(b0;α, γ,B) = B0DF(α, γ)UF(α, γ)ΛF(α, γ) · (B0 · DF(α, γ)UF(α, γ))−1 (3.75a)

= B0DF(α, γ)UF(α, γ)ΛF(α, γ) ·UF(α, γ)DF(α, γ)−1B
†
0 (3.75b)

where B0 = B0(B).

Proof. This theorem has been proven by the preceding discussion. The only things left to
show is the form for the inverse of B0 ·DF(α, γ)UF(α, γ). This is easily seen as (B0)

−1 = B
†
0,

DF(α, γ) is diagonal and the inverse of UF(α, γ) can be verified by direct multiplication. �

Before proceeding we more closely examine Theorem 3.6.3. We note that while (3.75) is a
quite long chain of matrix multiplications each of the terms requires very little computation.
Moreover, due to the specific structure of the DFT matrix it is natural to expect that there
is a more efficient way to apply this transform than through the application of the eigenvalue
decomposition. Let,

FI(α, γ) =




γ 0 0 · · · 0 0

αγ
√

1 − α2 0 · · · 0 0

αγ 0
√

1 − α2 · · · 0 0
...

...
... · · · ...

...

αγ 0 0 · · ·
√

1 − α2 0

αγ 0 0 · · · 0
√

1 − α2




Then we have the following corollary.

Corollary 3.6.4. Let c be any vector in Cm with unit norm and let c0,B be given such
that c0 ∈ B and B is an orthonormal basis for Cm. Then,

F(c0;α, γ,B)c = B0(B) ·FI(α, γ) ·B0(B)†c (3.76a)
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Moreover, if B0(B)† ∈ Sym(C) then

F(c0;α, γ,B) · C = B0(B) · FI(α, γ) · C

Proof. Both parts of this corollary are achieved by direct computation. �

Note that Corollary 3.76 precisely describes what we geometrically expect. That is,
every codeword from the root code gets a gain in the direction of c0 and a uniform scaling
in the space orthogonal to c0. However, this result is far more applicable in the case of
interest when B0(B)† ∈ Sym(C). In particular, if B0(B)† ∈ Sym(C) for any c ∈ C one has

B0(B)
(
(γ −

√
1 − α2 + (m− 1)αγ)e0e

†
0c +

√
1 − α2c

)
∈ CF(α, γ, C).

In the sequel we let

c
(0)
F (c;α, γ) =

(
(γ −

√
1 − α2 + (m− 1)αγ)e0e

†
0c +

√
1 − α2c

)

∥∥∥
(
(γ −

√
1 − α2 + (m− 1)αγ)e0e

†
0c +

√
1 − α2c

)∥∥∥
(3.77)

By examining (3.77) one may see that if B0(B)† ∈ Sym(C), the universal code CF(α, γ, C)
quantizes the magnitude of the first coordinate of a vector in the B0(B) coordinate system
relative to the other non-zero coordinates. Thus, one now has a method to increase the
code rate by varying the magnitude of the coordinates. Moreover, if every basis used in the
construction acts two transitively on the code then these results hold for every basis used
in the construction and one can infer quite a bit about the structure of the universal code
through the structure of the orthogonal bases used in the construction of CF(α, γ, C). This
is the content of the following theorem.

Theorem 3.6.5. Let {Bi}2r

i=0 be the 2r orthogonal bases used in the construction of the
universal code CF(α, γ, C) where Bi is the basis used to construct the local code C(ci;α, γ, C).
If B0(Bi) ∈ Sym(C) for i = 0, 1, . . . , 2r − 1, then

max
ci,cj∈CF(α,γ,C)

ci 6=cj

|c†icj | = max
Bg,Bh

max
cf ,cj∈C

f 6=i and g 6=h

∣∣∣c(0)
F (cf ;α, γ)†B0(Bg)

†B0(Bh)c
(0)
F (ci;α, γ)

∣∣∣

We note that Theorem 3.6.5 may not seem directly applicable to the problem of interest
at first. However, it greatly simplifies the code optimization process if there is a regular
structure to the orthogonal bases used in the construction. In particular, let B be the
collection of unique values B0(Bg)

†B0(Bh) assumes for every (non-unique) pair of orthogonal
bases used in the construction of a universal code. Then, one has

max
ci,cj∈CF(α,γ,C)

ci 6=cj

|c†icj | = max
M∈B

fdist(M ; C, α, γ)

where
fdist(M; C, α, γ) = m̃axcf ,cj∈C

∣∣∣c(0)
F (cf ;α, γ)†Mc

(0)
F (ci;α, γ)

∣∣∣

and in turn where m̃ax, for notation convenience, excludes any solution that results in 1.
Thus, if |B| is small then computation of the coherence may be greatly simplified. This is
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of practical relevance in our design as, by construction, every codeword in our systematic
construction is contained in multiple orthogonal bases. Thus, if the set of orthogonal bases
is chosen from the code the set B will be quite small and the coherence will be easily com-
putable. However, of greater relevance is that Theorem 3.6.5 may be used to characterize
exactly when the resulting universal code is a multi-resolution. That is, when optimal quan-
tization consist of first performing quantization on the root code then on the corresponding
local code. Clearly a universal code is a multi-resolution code if and only if for each local
code C(ci;α, γ, C),

ci = arg max
c∈C

|c†cℓ|

for each cℓ ∈ C(ci;α, γ, C). Alternatively, if the set of orthogonal bases used in the construc-
tion act transitively on the root code C one has that a universal code is a multi-resolution
if and only if

e0 = arg max
c∈C

max
M∈B

c†Mc
(0)
F (ci;α, γ)

for every ci ∈ C. Thus, for a well chosen set of orthogonal bases contained in the root code
one may consider optimizing codes by solving the optimization problem:

min
Cr⊂Cm

min
{Bi}2r−1

i=0

Bi⊂Cr

min
0<α<1,γ∈C

max
M∈B

fdist(M ; Cr, α, γ) (3.78)

where one may add the additional constraint

(c − e0)
†Mc

(0)
F (ci;α, γ) < 0

for all ci, c ∈ Cr if one is interested in a multi-resolution codebook.

When the size of B is small, one may precisely compute the optimal choice of α and
γ for a given code Cr and collection of orthogonal bases by examining the spectrum of
the matrices contained in B. Further, one can use these results to ensure that the code
is a multi-resolution. However, in general one must use a non-linear optimization routine
to solve for good choices of α and γ and when one wants a truly systematic construction
the choice for the defining sets and rates of the dense and sparse codes must be optimized
according to (3.67). We provide these general methods in [119] along with an archive of our
best found codes. The performance of our constructions in C4 may be seen in Figure 3-14.

We note while our systematic construction performs well in terms of SINRsat this sys-
tematic construction does not guarantee that a set of user selected for transmission will
achieve a high rate. That is, as previously noted, quantizers which optimize SINRsat do not
necessarily guarantee that the rates achieved in a system will be optimal. This is due to
the fact that SINRsat by definition assumes that there is a set of nearly orthogonal users
and hence SINRsat by definition does not favor codebooks with many orthogonal bases.
At moderate SNR there may be a considerably smaller gap between the expected SINR
achieved by one of our constructions and RVQ as in general there will be a SINR penalty
due to channel inversion with RVQ. Further, the definition of SINRsat only considers the
quantization error of a single-user. As previously noted, in MIMO systems with many users
the order statistic for the quantization error will lead to a decrease in the performance gap
between a given channel quantizer and the optimal scheme. Moreover, in such systems one
expects by choosing the users that have the best quantization error, the gap between the
achieved average SINR of a system which uses a channel quantizer with many orthogonal
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bases and one without many orthogonal bases to be smaller. In the following section we
show that the is true for systems in which the number of users is only a small multiple of
the size of the transmit array.
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Chapter 4

Multi-User MIMO System Design
with Finite Rate Feedback

Current standards for multi-user MIMO system [1] require that in addition to high data
rates, quality of service (QOS) guarantees must be met as well. These, for example, may
be delay and stability guarantees. As previously noted, this problem is well understood for
tradition wireline networks and more generally for single-antenna system. However, these
methods are not directly applicable in a multi-user MIMO system due to the time varying
nature of the fading channel which introduces random co-channel interference between users
for each fading state. That is, as one in general only has causal knowledge of the time varying
channel due to the CSI feedback at the transmitter, one can not use a simple round-robin or
time division scheme and expect to simultaneously provide high throughput while meeting
QOS guarantees in multi-user MIMO. Moreover, it is unclear how ones limited knowledge of
the channel state influences the broader problem of delivering quality of service guarantees.
In particular, it is unclear if the extra degrees of freedom available in our feedback design
provides any assistance in delivering quality of service guarantees or more generally how
this degree of freedom may be exploited to simplify and/or reduce the complexity of the
associated scheduling algorithms.

In this chapter we do not address which particular scheduling mechanism one should use
to meet a given quality of service requirement. Rather we more generally consider the effects
the order statistic gain, multi-node matching gain and feedback design effect the complexity
of user selection when broader quality of service requirements are of interest. To this end,
we consider the problem of maximal weight matching, where by a set of users is selected for
transmission if the set has the highest weighted achievable rate, is effected by the feedback
design. In the sequel we first identify a low complexity system architecture which may be
used to perform maximum sum rate scheduling. We then extend these results to a more
general quality of service framework which solves the maximal weighted rate scheduling
framework and identify its applicability in meeting QOS guarantees. Then, we provide
our insights on how the order statistic gain, multi-node matching gain and feedback design
effect the complexity of user selection in this framework.

In a multi-user MIMO system the channel aware scheduling problem is of practical
interest as current standards demand that quality of service constraints be met in addition
to throughput guarantees. Due to the nature of the fading channel it may be impractical
and too costly to examine all subsets of users due to computation and power constraints at
the transmitter. In Chapter 3 we developed a feedback framework that maximized an upper
bound on the achievable SINR, SINRsat, which assumed a high SNR limit as well as users
with negligible co-channel interference. However, we left open the question of the ability
of one to schedule users with negligible co-channel interference. Central to this question is
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whether one may first reduce the size of the user pool by selecting users whose channels are
individually at high SNR while still finding a subset of users that are nearly orthogonal.
Such a result would imply that there are extra degrees of freedom in the feedback design
allowing a system designer to reduce the overall system complexity by developing structured
quantizers. In Chapter 1 we encapsulated this question in the trade-off between the order
statistic gain and the multi-node matching gain. That is in Chapter 1 we argued the
trade-off between the order statistic gain and the multi-node matching gain has algorithmic
relevance as it effects the number of subset that must be considered to find a set of users with
low co-channel interference and high SNR. In this chapter we provide a system architecture
and an associated analysis framework with which one may analyze the trade-off between
the channel fading statistics, the order statistic gain, the multi-node matching gain and
the structure of the feedback design. We show that in the case of the Rayleigh model this
architecture is optimal in a very strong sense as the size of the user pool tends to ∞ as well
as provide a simple method of system design when the size of the user pool is small.

To address the effects of the channel fading statistics we begin by weakening our assump-
tions on our channel model. Henceforth, we assume that the user pool may be partitioned
into nc clusters of users

U =

nc−1∐

ℓ=0

U (ℓ).

where each user in i ∈ U (ℓ) has a channel vector with common spatial correlation. More
precisely, for i ∈ U (ℓ),

hi = Σ
1/2
ℓ · h(0)

i

where where the elements of h
(0)
i are i.i.d CN (0, 1/2m). Thus, as discussed in Chapter

2.2, each user has, in general, a non-uniform probability of being quantizers to a codeword.
That is, one has

pi = p(ℓ) =
[
p
(ℓ)
0 , p

(ℓ)
1 , . . . , p

(ℓ)
2r−1

]

where p
(ℓ)
i is the probability that a user from the ℓth cluster is quantized to the ith codeword.

For each cluster the associated the channel correlation will effect the ability of user of each
cluster to meet specified quantization error and channel norm constraints. Thus, for each
cluster, we would like a method to optimize the order statistic gain and the multi-node
matching gain. Thus, in the sequel we present a simple system architecture that aids in
this optimization and relates directly to ones ability to efficiently select users.

� 4.1 A System Architecture to Optimize System Tradeoffs

In this section, we present a simple system architecture for subset selection for use in multi-
user MIMO systems that directly relates to the trade-off between the order statistic gain and
the multi-node matching gain. In particular, we propose a system architecture whereby
nodes first perform a decentralized and distributed subset-selection based on each users
measurement of their own channel. Then, in this system architecture, the users selected
by this decentralized subset-selection feed back a quantized version of their channel to the
transmit base. The transmitter then selects from those users reporting the best subset to
be used in the reconstruction.

In order to evaluate the complexity of user selection one may examine the effects the
distributed subset-selection has on ones ability to optimally select users. For this, we propose
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a simple two stage process for user selection at the transmit base. First, a greedy search is
used to produce a small collection of candidate subsets. Then, an exhaustive search over
this smaller collection is used to determine the final subset to be selected as the active set.
We now describe the system architecture of interest.

In the architecture of interest it is the job of the scheduler to select the set A for trans-
mission. At each interval the scheduler selects the activation set A and message symbols
u and forwards this set and vector to the multiplexer which forms the signal to be multi-
plexed across the array. It is the job of the multiplexer , which was described in Section 2.3
to select the signal vector x for transmission. In each scheduling interval, a subset R of
users from the full population U send a quantized representation of their respective channel
gain vectors to the transmitter over the feedback link. The subset R is determined in a
decentralized manner, i.e., based on an individual evaluation of each channel gain vector.
Specifically, each user j computes the squared norm ‖hj‖2 of its channel gain vector, and the

correlation |h†
jĥj | between the channel gain vector and its quantization ĥj . If these factors

fall within certain prescribed ranges, a user will convey its channel gain to the transmitter.
As we assume that each user cluster U (ℓ) has a distinct spatial correlation structure it is
likely that a single threshold for the user population will have varying effects on each of the
clusters. Thus, we assume a different criterion for feedback from each of the clusters which
corresponds to

R(ℓ)
ρ,σ

∆
=
{
j ∈ U (ℓ) : ρ

(ℓ)
− ≤ ‖h2

j‖ ≤ ρ
(ℓ)
+ and |h̃†

jĥj| ≥ σ(ℓ)
}
, (4.1)

where h̃j = hj/‖hj‖, and where ρ
(ℓ)
+ , ρ

(ℓ)
− , and σ(ℓ) are prescribed parameters of the

protocol1 for the ℓth cluster. We assume throughout that σ(ℓ) is chosen such that σ(ℓ) ≥
µ0(C)

At the transmitter, there are three relevant stages of processing. First, from the set R
of reporting users, a collection T of candidate subsets is formed; this is the pre-selection
phase. The pre-selection phase2 is based on simple pairwise evaluation of the vectors in R.
The particular criterion we consider corresponds to

T (ℓ)
ǫ

∆
=
{
A ⊂ R(ℓ)

ρ,σ : |A|=m and |ĥ†
i ĥj| ≤ ǫ, ∀ i 6= j ∈ R(ℓ)

ρ,σ

}
, (4.2)

where ǫ is another prescribed parameter of the protocol. Next, one of these subsets,
denoted A, is selected from T by the scheduler, and corresponds to the active user set
for the signaling interval. Finally, one message for each of the active users is selected,
and the resulting group of messages is multiplexed across the array for transmission. The
architecture of interest is illustrated in Fig. 4-1. The protocol is identical in each signaling
interval, so we restrict our attention to a single arbitrary one. We now examine how our
system architecture relates to the questions of interest.

As mentioned in Chapter 1 the order statistic gain and the multi-node matching gain are
not compatible in general. That is, if one attempts to select only the users individually at
high SNR it may not be possible to find a subset of users that negligibly interfere with one
another. This particular dependence is embodied in the distribution of the users which feed

1We note in practice ρ
(ℓ)
+ should typically be set to ∞.

2This is the particular embodiment of the pre-selection phase we fix in the sequel. However, in general
the pre-selection phase may be taken to be more general. In particular, it may be taken to be the solution
obtained by multiple runs of a greedy algorithm.

127



CHAPTER 4. MULTI-USER MIMO SYSTEM DESIGN WITH FINITE RATE FEEDBACK

...

P
re-S

electio
n

S
electio

n

M
u
ltip

lex
in

g

A

R
U

Feedback Link

{uj}

R, ĤR
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Figure 4-1. The MIMO system architecture of interest. In each scheduling interval a subset S of the full
user pool U of size n reports quantization ĤR of its channel gains to the transmitter via the feedback link
using a decentralized (individual) criterion. From the set S , the transmitter first forms a collection B of
candidate user sets of size m using a pairwise criterion; this is the pre-selection phase. Next, a set A ∈ B
is chosen at random as the active set, whose messages {uj , j ∈ A} are linearly multiplexed across the array
for transmission.

back,

Rσ,ρ =

nc−1∐

ℓ=0

R(ℓ)
σ,ρ

and in particular in the cardinality of |Rσ,ρ|. In the sequel we let,

Nǫ,ρ = |Rσ,ρ| and N (ℓ)
ǫ,ρ = |R(ℓ)

σ,ρ|

be the random variable counting the number of users that feedback from the entire user
pool and the ℓth cluster respectively. If one too ambitiously prescribes a SNR target by

ones choice of parameters for {R(l)
σ,ρ} one may have a very high probability that |Rσ,ρ| < m

or even worse a reasonable probability that |Rσ,ρ| = 0. Alternatively, by choosing too lax

of feedback thresholds for {R(l)
σ,ρ} one may with high probability have every user from the

feedback pool reporting their channel to the transmitter and hence in the case of finite rate
feedback every quantization index may be reported multiple times. The former of these two
scenarios (too ambitiously prescribing a SNR target) is easy for the transmitter to detect
and correct as one may slowly decrease the feedback threshold for each cluster until the
desired level of feedback is achieved. However, while the latter of these scenarios is easy to
detect the appropriate action of the transmitter is less clear as it is unclear which part of the
system to adapt. That is, in a system with finite rate feedback increasing the SNR target
by a marginal amount may led to a dramatic decrease in the level of feedback spoiling the
multi-node matching gain while increasing the rate of the quantizer may strain the feedback
link and under exploit the order statistic gain. Hence in the following we consider a model
for channel aware scheduling where one can examine the effects of variations in the feedback
thresholds in a more general quality of service framework. Then, in the sequel we analyze
the effects the variations in the feed back parameters effect the diversity of the user selection
problem.
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� 4.2 An Introduction to Channel-Aware Scheduling

In the previous sections we have examined the effects that multi-user diversity has on
the problem of feedback design. However, in a system where the number of users out
numbers the available system resources (the number of transmit elements) there is generally
competition amongst the users for these resources. As such one must generally provide a
scheduling mechanism to ensure some sort of fairness between these demands. In the present
context, delay tolerant data arrives at the transmit array destined for some user terminal.
As the number of users in the system is assumed greater than the number of transmit
elements one must provide a scheduling mechanism which allocates the moments in time
data may be transmitted to each user by the array. More generally, in multi-user MIMO
system the network design problem concerns how to grant competing users access to the
transmit array in order to meet system quality of service objectives.

To provide QOS functionality in a MIMO system, the current IEEE 802.16 Standard [1]
provides five quality-of-service classes, three for real-time data connections and an additional
two classes for delay tolerant data; one class which must be served with a guaranteed
minimum throughput and an additional class with best effort service [1]. Thus, the base
station of such a link must be able to provide support for data applications that have
fundamentally different traffic and quality of service requirements than the real time data
that has strict delay constraints. Hence, in a system where the channel has time varying
fading it is attractive to use channel aware scheduling to improve throughput performance
for the delay tolerant data. In particular, with delay tolerant data, one can opportunistically
use the best channel available to transmit at as high a data rate as possible. As such, one
would expect that the fraction of users with favorable channel conditions to have their
services demands satisfied sooner. However, using such an approach the delay experienced
by the fraction of users with poor channel conditions may be intolerable. Moreover, it
may be impossible to meet minimum service levels for this fraction of users with such an
opportunistic approach. Alternatively, if one uses a pure time division strategy to schedule
users in an attempt to achieve some minimum service guarantee for each user the overall
system throughput will be reduced as the proportion of time slots allocated to users with
poor channel conditions must be increased to meet the minimum service level. Hence, in
a fading channel one must, in general, forgo opportunistic as well as static scheduling if
one wishes to balance minimum service level guarantees and the system throughput. A
particularly attractive scheduling approach for fading channels to provide such guarantees
is the proportionally fair [62, 75] scheduler, or, when only the overall stability, delay and
throughput of the system is of interest, the max-weight scheduler [87, 118, 125] which are
described in the sequel.

� 4.2.1 Scheduling Policies for Multi-User MIMO Systems

In a multi-user MIMO system a channel aware scheduler must not only choose the subset of
active users for transmission but also a power control policy to control the rate allocation
to each of the users from the active subset. For example, in a system for which the power of
a transmitted signal must stay below some limit the scheduler must chose how to allocate
the power amongst messages for each user so that the resulting signal does not violate the
given power constraint. However, optimizing the power control policy will have a negligible
impact on our results and as we are primarily interested in the underlying dependence of
the scheduler on the feedback design we do not optimize the power control policy. Instead,
we assume a naive power control policy which allocates an equal fraction of the available
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transmit power to each user. Thus, in the sequel the rate allocated to a user is only a
function of each users channel gains and the co-channel interference caused by the other
users in the activation set. As such, we denote the rate achieved by user i with an active
set of users A as Ri(A). Further, we assume that the arrival process for each user in the
system, Ai[t] for 0 ≤ i < n, is a stationary and ergodic discrete time process describing the
arrival of fixed size packets. We let Qi[t] for 0 ≤ i < n be the length of the queue for user
i and let Wi[t] for 0 ≤ i < n be the waiting time of the packet at the head of each users
queue. With this identification, we now review some common scheduling policies.

In a system with no QOS guarantees it is often of interest to define the total system
throughput as the relevant QOS metric. Such a metric yields a scheduler which maximize the
system throughput by opportunistically choosing the subset of users that achieve the highest
sum rate at each scheduling interval. That is the maximum sum rate (MSR) scheduler selects
the set of users

A∗ ∈ arg max
A⊂{0,1,2,...,n}

∑

i∈A
Ri(A). (4.3)

as the active set. However, as previously noted to balance minimum service level guarantees
and the system throughput one in general needs to forgo such a opportunistic approach.
With such a constraint the proportionally fair scheduler is often of interest. This scheduler
is currently the default scheduler for the CDMA 1xEV-DO system [32, 62] and is also
considered for High-Speed Downlink Packet Access (HSDPA) enhancement to the third
generation (3G) mobile telephony protocol [26]. The weighted proportionally fair (WPF)
scheduler, chooses the set of users

A∗ ∈ arg max
A⊂{0,1,2,...,n}

∑

i∈A

γi

Ai[t]
· Ri(A) (4.4)

as the active set of users where Ai[t] is the exponentially smoothed average service rate of
user i,

Ai[t+ 1] =

{
(1 − αPF) · Ai[t] + αPF ·Ri(A∗) if i ∈ A∗

(1 − αPF) · Ai[t] otherwise
(4.5)

and in turn where αPF is a given constant such that 0 < αPF < 1. While the WPF
scheduler has been shown to maximize the sum of the logarithms of the long term average
throughput of each user almost surely [132], it also has been shown to be unstable in high
data rate systems [11]. Thus using such a scheduler there is no guarantee that all data will
be transmitted in bounded time. To circumvent this deficiency one may use a maximum
longest delay first (M-MLDF) schedule, which more generally takes the delay and/or queue
state of each user into consideration. In particular, the generalized maximum longest delay
first (GM-MLDF) scheduler chooses

A∗ ∈ arg max
A⊂{0,1,2,...,n}

∑

i∈A
γi · Vi[t] · Ri(A) (4.6)

as the active set of users where Vi[t] is a function of the queue length and delay for user i
at time t. More precisely,

Vi[t] =
(
α

(i)
MW ·Qi[t] + (1 − α

(i)
MW) ·Wi[t]

)βMW

(4.7)
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where in turn 0 ≤ α
(i)
MW ≤ 1 and βMW > 0.

Examining (4.3),(4.4) and (4.6) we can see that the form of the scheduling problem in
the WPF and GM-LWDF framework are not too different. In fact, all can be cast as a
maximal weight matching problem where the time-varying weights are unity for the MSR
policy, the inverse of the smoothed long term average throughput of each user in the WPF
framework and a function of the weighted combination of the delay and queue state of each
user in the GM-LWDF framework. More precisely, let

wj[t] =





1 for the MSR policy

γj · Vi[t] for the GM-LWDF policy

γj/Ai[t] for the WPF policy

(4.8)

Then, the scheduling problem that must be solved using the MSR policy, the GM-LWDF
policy or the WPF policy is the determination of any set of users A∗ such that

A∗ ∈ arg max
A⊂{0,1,2,...,n}

∑

i∈A
wi[t] · Ri(A). (4.9)

Hence, in order to understand the complexity of the channel aware scheduling problem in a
multi-user MIMO system it is sufficient to understand how the channel variations and rates
achievable in the physical layer effect the maximal weight matching problem (4.9).

In a system where the channel state is quantized and a static flat power allocation policy
is used the region of achievable rates becomes discrete3. Moreover, in such a system the
number and distribution of these discrete operating points is directly tied to the structure
of the associated feedback scheme. As previously noted, the feedback scheme is the only
knowledge the transmitter has of the channel state. Thus, the transmitter may only infer
each users channel and the co-channel interference from the descriptions of users channels
given by the feedback scheme. Hence, the transmitter may only allocate rate based on the
discrete set of channel vectors used in the feedback scheme. This is a particularly useful
observation as this implies that every time the channel changes state the set of possible op-
erating points comes from some finite collection. Thus, one may construct efficient discrete
structures and algorithms to aid user selection. In the absence of the co-channel interference
this view point is quite familiar. Indeed, if one did not have to worry about the co-channel
interference this problem would reduce to the problem of scheduling in a switch with time
varying state [12]. In general, the interdependencies caused by the co-channel interference
are strong enough that one requires a slightly more general switching framework to fully
handle the channel aware scheduling problem from this discrete viewpoint. However, al-
most all insights needed in the sequel may be gained by considering this less general system.
Moreover, the necessary generalization obfuscates these insights and thus before proceed-
ing further to this generalization, we first consider modeling the channel aware scheduling
problem by a input-queued cross-bar switch.

� 4.2.2 A Discrete Model for Channel Aware Scheduling

The problem of complexity, throughput maximization and fairness for an input-queued
cross-bar switch has been well studied and a more complete exposition can be found in
[39, 87, 88] among others. For our purposes we only recall the basic definitions we require

3This statement uses our assumption that one excludes time sharing as a possibility in the physical layer.
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Figure 4-2. Two 8 input and 4 output input-queued cross-bar switches. The open circles at left represent
input ports while the open circles at right represent output ports. (a) An edge from an input port to
an output port represents a possible allocation and the bold edges represent a matching. (b) The same
switch this time with the inputs representing users of a wireless system and the edges representing allowable
allocation of physical channels which may or may not interfere with one another.

in the sequel as a more broad framework will be necessary to address quality of service in
the problem of interest. An input-queued cross-bar switch with n inputs and m outputs is
defined [87] to be an undirected graph G = (V,E) with vertex set V and edge set E where

1. The vertex set V = Vi ∪ Vo consists of the disjoint union of a set of n input vertices
Vi and m output vertices Vo

2. The edge set E only consist of edges connecting the vertices in Vi to Vo

A matching in G is a subset M ⊂ E of edges of E such that no two edges in M have vertices
in common. This can be seen in Figure 4-2.

To model the channel aware scheduling problem using the input-queued cross-bar switch
one must find away to map the users and the time varying channel state to the inputs and
edges. The simplest way one may do this is to view each input as a single-user in the
system and attempt to represent the scheduling dependencies arising from the co-channel
interference through the assignment of edges in the graph. At present we assume that this
may be done in such a away that the rate allocated to users in such a switch does not
depend on the other users selected in the matching. As such, one may associate a weight
wi,j to the edge (i, j) ∈ E equal to the reward one gets in the linear objective function
representing the QOS constraint for assigning user i to slot j at the particular scheduling
interval. More precisely, as the rate allocated to user i does not depend on the other users
in the matching but rather the particular choice of output, (4.9) becomes

M∗ ∈ arg max
M matching in G

∑

i∈M

wi,j (4.10)

where
wi,j = wi[t] · 1{(i,j)∈E} (4.11)

and in turn where 1{(i,j)∈E} is one if (i, j) ∈ E and is zero otherwise. We let the weight of a
matching in G be the sum of the weights of the edges in the matching. Thus, the problem
of user selection is equivalent to finding a matching of maximal weight in G.
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In the input queued crossbar switch model for channel aware scheduling the interdepen-
dencies arising from the channel realization were modeled through the edges in a bipartite
graph. However, in a system with multiple transmit elements the problem of rate allocation
depends on the state of the underlying channel realization as well as transmission power
constraints and thus, at any (every) scheduling interval, the dependencies between users
can be arbitrarily complex. As such, the dependencies which may be modeled by an input-
queued cross-bar switch are not, at present, sufficient for our purposes to model scheduling
in the multi-user MIMO channel. However, one may more adequately model the channel
aware scheduling problem by making the role of finite rate feedback more apparent.

Our current model for the channel aware scheduling problem using the input-queued
cross-bar switch (see for example Figure 4-2) implicitly incorporates a users channel real-
ization and hence a users feedback through the edge set in the bipartite graph. As we have
a fundamental interest in the order statistic gain and the multi-node matching gain tradeoff
and the implications this tradeoff has on user selection we need to make the role of feedback
more explicit. One relation between feedback and scheduling that is far too implicit in the
current model is the constraint that users with common quantized channel vectors may not
be scheduled concurrently. That is, in general if two users share a common quantized chan-
nel vector then one may ignore the user with the lowest weight when making a scheduling
decision. In the input-queued cross-bar switch model this relation may be only modeled by
requiring users that have common channel vectors to share common output ports and only
be incident with one output port. This requirement over-constrains other relations which
may be modeled in the switch and as such it is natural to consider a switch for which only
the user of highest weighted is consider for every quantized channel vector as this allows
one to model additional dependencies in rate scheduling inherent in the underlying channel.
In this model, at each scheduling interval, the subset of users represented by the switch
correspond to distinct codewords from the quantization codebook. As the codewords are
the sole influence in the rate interdependencies for a set of users it is more natural to model
the channel aware scheduling problem with finite rate feedback by assuming the quantized
channel vectors are the inputs to the switch rather than individual users. This approach
yields a switching model that is independent of the user population and allows one to un-
derstand the interactions between feedback design, channel statistics and greedy scheduling
approaches.

In a MIMO system with finite rate feedback at each scheduling interval the random
feedback from the users determines the associated achievable rates and hence the configu-
rations of the switch. As an alternate model for the channel aware scheduling problem with
finite rate one may consider an input-queued cross-bar switch where the input ports of the
switch correspond to user feedback rather than the users themselves. Thus, at each schedul-
ing interval the channel fluxuations randomly assign users to an input port based on their
particular channel realization. At present we do not assume a particular model for this joint
distribution as it is a function of both the feedback design as well as the channel statistics,
but rather leave it arbitrary and refer to the joint probability distribution describing user
assignment simply as the user assignment distribution. We further refer to any input as
occupied if there is a user which has been assigned to the input and refer the distribution
of occupied inputs as the input occupancy distribution. As the switch inputs correspond to
codewords in the quantization codebook the edge set in the bipartite graph is independent
of the channel realization and we refer to this deterministic graph as the static switch. Thus,
at each scheduling interval, an arbitrary number of inputs may be occupied which in turn
select an associated subset of edges from the static switch. We say that an edge (i, j) ∈ E in
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Figure 4-3. A depiction of the input-queued cross bar switch in which users are randomly assigned to
switch inputs at each scheduling interval. We do not label the users and simply represent them as filled
squares (seen at left). At each scheduling interval edges are randomly drawn from each user to the switch
input which represents the users feedback at the scheduling interval.

the static switch is active if input i is occupied and thus the distribution of active edges at
each scheduling interval are determined solely by the user assignment distribution and the
structure of the static switch. We further say that an output j is occupied if there is an edge
(i, j) ∈ E such that input i is occupied and refer to the distribution of occupied outputs as
the output occupancy distribution. Hence, there is an intricate connection between the input
occupancy distribution and the output occupancy distribution which is described through
the structure of the static switch. A depiction of this may be seen in Figure 4-3.

It is important to note that the relation between the occupancy distribution at the input
is intimately tied to the occupancy distribution at the output through the structure of the
static switch. Thus, a system designer may use the degrees of freedom in the quantizer
design to not only develop efficient user selection structures but also to craft a static switch
for which the output distribution and hence the scheduled rate is immune to variations of the
input occupancy distribution. Clearly if the user assignment distribution causes sufficiently
many input ports to be occupied with high probability the probability that a matching of
maximal size exists is also trivially high regardless of the quantizer structure. Conversely,
in a system where the number of input ports largely out numbers the number of users one
in general may only have a small number of active edges at each scheduling interval leading
to the possibly of a maximal matching of small size. However, as the system designer is able
to design the feedback scheme, the system designer may structure the quantization scheme
in an effort to ensure that a maximally sized matching may be found when only a fraction of
input ports are occupied. Indeed, one may structure the quantizer in a way to pigeonhole4

the output occupancy distribution by imparting a structure on the quantization codebook
so that only a subset of inputs must be occupied in order to guarantee that every output
port is occupied. For example, examining Figure 4-3, one may see due to the structure of
the switch, it is sufficient for any 7 input ports to be occupied to guarantee a maximally
sized matching exists. Alternatively the switch in Figure 4-2 (b) needs all 8 inputs to be

4 Recall the pigeonhole principle states that if n items are put into m pigeonholes at least one pigeonhole
must contain more than one item if n > m. More generally, if n items are places in to m containers, then
at least one container must hold ⌈n/m⌉ items.
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occupied to guarantee a matching of size 4 to exists as there is a strong dependence on input
3. Further inspecting Figure 4-3 one may see that the switch in Figure 4-3 is guaranteed
to have 3 output ports active if any 5 input ports are occupied and 2 output ports active if
any 3 input ports are occupied. Thus, this pigeonholing structure not only makes a system
more immune to the number of occupied inputs but also variations in the input occupancy
distribution itself as there is an inherent ability to exhibit the same output occupancy
distribution for a large set of possible user assignment distributions. For the switch of
Figure 4-3 one may see that the output occupancy distribution is invariant to any input
occupancy distribution which fixes the probability that input i or input i + 4 is occupied
for i = 0, 1, 2, 3. Thus, the static switch plays a strong role in determining how variations
in the input occupancy distributions effect the output occupancy distribution.

Recall that the tradeoff between the order statistic gain and multi-node matching
gain may be interpreted through a greedy rate scheduler, whereby users meeting an in-
dividual SNR target are first selected then the subset of users with the best co-channel
interference were selected. Thus, in the present context the SNR target may yield a user
assignment distribution that causes the distribution of the number of occupied inputs to be
sufficiently small limiting the schedulers ability to find matching of large weight and/or size.
An output centered analysis has the added benefit of describing how variations in the input
assignment distribution (the order statistic gain) effect the probability of a matching of
maximal size (the multi-node matching gain). Thus, viewing the channel aware scheduling
problem as a switch provides a framework in which one may understand the interplay be-
tween the channel fading statistics, the order statistic gain, the multi-node matching gain as
well as the complexity of user scheduling. From this viewpoint there are two questions of
interest. The first question concerns how variations in user assignment probabilities effect
the occupancy distribution at the input, the second question concerns the relation between
variations in the user assignment probabilities to the occupancy distribution at the output.
We consider these questions further in Sections 4.3 and 4.4. However, the single input-
queue cross bar switch described still does not model enough of the physical dependencies
of the channel. In an attempt to generalize this model one could consider multiple separate
switches, each of which describes a subset of achievable rates, and choose the best matching
from among the results as the scheduling decision. However, the interdependencies that
may be represented through a single input-queue cross bar switch are few leading to a need
to consider a large number of switches to make the optimal scheduling decision in general.
Thus, in the sequel we consider a slight generalization to this model which captures suffi-
ciently many interdependencies of the channel and leads to efficient scheduling framework
that allows one to similarly analyze the tradeoff in the order statistic gain and multi-node
matching gain as well as the complexity of user scheduling.

� 4.2.3 Channel Aware Scheduling as a Generalized Switch

To generalize the input-queued cross-bar switch model to the multi-user MIMO downlink
one must find a way to relate the “switch state” in this model to the random and asyn-
chronously varying state of the channel [12, 118]. In particular, one must introduce the
interdependencies that arise from interference that is introduced by non-orthogonal chan-
nels and additional rate interdependencies that arise from transmission power constraints.
We follow the direction of Stolyar and Andrews et. al. [12,118] and view the problem as a
generalized switch which we describe in the sequel.

In the sequel we refer to any (discrete) time varying collection of service vectors as a
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generalized switch. More precisely, we let

µ = [R0, R1, . . . , Rn−1]

be a service rate vectors if the system can simultaneously allocate a rate R0 to user 0, R1

to user 1 and so on. Then, a generalized switch is simply the time varying collection

K[t] = {µ0[t],µ1[t], . . .}.

Of particular interest is a generalized switch which only assumes one of a finite set of states
M which form a Markov chain. Such a model fits in to the general framework of Stolyar [118]
in which strong statements may be made about throughput and stability optimality. For
each m ∈ M we associate a set of processing modes K(m) = {kA} which describe a service
rate vector for the n users,

µ(kA;m) = [R0(A), R1(A), . . . , Rn−1(A)]

where Ri(A) is the rate allocated to user i in processing mode kA. In this context, the
maxweight scheduling problem (4.9) is equivalent to determining a processing mode, kA,
such that

kA ∈ arg max
i∈K(m)

n∑

j=1

γj · wj[t] · µj(i;m).

In order to reuse some of the results one has from scheduling in an input-queued cross-
bar switch, it is natural seek an identification between the generalized switch and the less
general input-queued cross-bar switch previously described. In this direction, note that
every processing mode of a generalized switch corresponds to a matching in a trivial graph.
Thus every processing mode is a trivial input-queued cross-bar switch. More precisely,
consider an edge-less input-queued cross-bar switch with n inputs and m outputs. Then, by
arbitrarily assigning every user that receives non-zero rate in a processing mode kA ∈ K(m)
to an arbitrary output port in this graph yields a trivial input-queued cross-bar switch that
consist of a single matching. Clearly with this identification the associated edge weights for
the input-queued cross-bar switch are, analogous to (4.11),

ωi,j = wℓ[t] · µℓ(k;m) · 1{(i,j)∈E}

where we note that the edge set may be taken arbitrarily so long as the edge set is a
matching and user ℓ has the largest weight of those users assigned to input i. An example
of this may be seen in Figure 4-4. However, at present this particular identification of a
processing mode with a trivial input-queued cross-bar switch does nothing to simplify the
overall problem of user selection nor does it yield any insights to the tradeoffs between the
order statistic gain and the multi-node matching gain. Examining Figure 4-4 it is natural
to consider possible ways to add additional matching to this trivial input-queued cross-
bar switch to describe other processing modes by cleverly assigning users to output ports.
Indeed, if one may find subsets of processing modes which form an input-queued cross-bar
switch one may employ standard matching algorithms used in an input-queued cross-bar
switch on this subset of processing modes. However, due to the spatial structure of the
channel feedback this may not be done in general. To illustrate this concept we provide the
following example.
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Figure 4-4. A single matching representing a given processing mode k ∈ K(m). Note that the addition of
any additional edge yields a matching which does not correspond to an orthogonal basis.

Example 4.2.1

In this example we show how one may not in general form a single input-queued cross-
bar switch to represent the processing modes which correspond to users with orthogonal
(quantized) channel vectors using the quantizer from Example 3.2.4. In this direction, we
let C0 = {c0, c1, c2, c3, c4, c5, c6, c7} be the quantization codebook where

c0 = [1, 1, 0, 0], c4 = [1,
√
−1, 0, 0],

c1 = [1,−1, 0, 0], c5 = [1,−
√
−1, 0, 0],

c2 = [0, 0, 1, 1], c6 = [0, 0,
√
−1, 1],

c3 = [0, 0,−1, 1], c7 = [0, 0,−
√
−1, 1]

By some simple computation it is easy to see that the 8 codewords above form four ortho-
normal bases for C4 which are

B0 = {c0, c1, c2, c3} B1 = {c4, c5, c6, c7}
B2 = {c0, c1, c6, c7} B3 = {c2, c3, c4, c5}

In an attempt to form an input-queued cross bar switch to represent the processing modes
one may begin by mapping the basis B3 as follows:

1. c4 to output port 0,

2. c5 to output port 1,

3. c2 to output port 2,

4. c3 to output port 3

Now, as one may replace c4 and c5 in B3 with c0 and c1 and similarly as one may replace
c2 and c3 in B3 with c6 and c7 one may attempt to form an input-queued cross bar switch to
simultaneously describe these processing modes by adding these edges to the single matching
in Figure 4-4. The resulting switch may be seen depicted in Figure 4-3. However, examining
Figure 4-3 it is clear that there are matching which do not represent orthogonal bases.
In particular, the matching corresponding to the inputs {c0, c1, c2, c7} does not define an
orthogonal processing mode and thus there is not a consistent way to label edges to represent
the orthonormal bases simultaneously in a input-queued cross bar switch.

For optimal scheduling in a multi-user MIMO system the relations between inputs and
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outputs in an input-queued crossbar switch are too weak to capture the complex geometric
structure required for channel aware scheduling with multiple-antennas. In order to identify
the tradeoffs between the order statistic gain and multi-node matching gain and in order
to identify how one may simplify the channel aware scheduling problem we wish to find a
suitable structure in which one may simultaneously consider subsets of processing modes
in an efficient manner. While the interdependencies between rate allocations that may
be represented by a bi-partite graph are insufficient to represent the interdependencies
required for channel aware scheduling with multiple-antennas a general undirected graph,
in large part, is. That is, if one does not include a set of nodes distinguished as outputs
one may describe many of the dependencies arising from co-channel interference through
the assignments of edges in a general graph G = (V,E). In particular, we let an edge in
G represent a permissible pairing of codewords. In this setting a set of codewords may be
scheduled simultaneously if and only if there is an edge between each codeword in G. Any set
subsets of vertices of G such that every two vertices in the subset are connected by an edge
is called a clique. Thus, to each vertex i ∈ V one may associate a weight wi representing
the reward one gets in the linear objective function representing the QOS constraint by
including the user with feedback associated to vertex i. We further let the weight of a
clique be the sum of the weights of the vertices in the clique. Thus, the solution to the
scheduling problem when restricted to the rate allocations represented by G is equivalent
to finding a maximally weighted clique in G.

It may not be possible for a single graph to describe every possible processing mode for
a given switch state. Indeed, analogous to what we have seen for the input-queued crossbar
switch in Example 4.2.1 it may not be possible to consistently include cliques in a single
graph that reflect valid processing modes. In the present scenario we require that every
vertex in G has some fixed weight that is independent of the choice of the clique containing
it. Thus, one may only include cliques in a graph G for which every vertex may be assigned a
fixed weight. In this direction, we say that a set of processing modes k0, k1, . . . , kℓ ⊂ K(m)
form a generalized switch if there exists a graph G = (V,E) such that every clique in G
corresponds to a subset of users receiving non-zero rate in one of the processing modes
k0, k1, . . . , kℓ ⊂ K(m). For any set of processing modes k0, k1, . . . , kℓ ⊂ K(m) that form a
switch, we denote the associated graph as G

(
{ki}ℓ

i=1

)
and for a given switch state m we

denote the associated set of switches as

S(K(m)) =
{
{ki}ℓ

i=1 | {ki}ℓ
i=1 ⊂ K(m) form a generalized switch

}

We note that for any generalized switch in G ∈ S(K(m)) each vertex must have a fixed
weight and hence a generalized switch G may only contain processing modes for which every
user assigned to given input has a fixed rate. If the rate allocations of a processing mode
vary then one likely needs many generalized switches to represent every possible achievable
rate, thus increasing the complexity of user selection. Thus, it is of interest to develop
efficient multiplexing techniques which enable many processing modes of the system to be
represented through a singe generalized switch. For example, examining Example 4.2.1
one may see that every processing mode corresponding to users with orthogonal quantized
channel vectors may be represented in a single graph using a flat power allocation. This is
depicted in Figure 4-5.

The multi-user MIMO channel aware scheduling problem with finite rate feedback is
equivalent to finding a maximally weighted clique from amongst the collection of graphs in
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Figure 4-5. A depiction of the static generalized switch of Example 4.2.1 as a graph. The codevectors of
Example 4.2.1 are the vertices and an edge is place between any two vertices if the corresponding codevectors
are orthogonal. The vectors of basis B1 are depicted as circles while the vectors of basis B2 are depicted
with a diamond. Any clique in this graph corresponds to a processing mode employing a set of users with
orthogonal quantized channel vectors.
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Figure 4-6. An alternate view of a generalized switch of Stolyar [118] in the case of finite rate feedback.
At each scheduling interval users are randomly assigned to the inputs. Then, a maximal clique finding
algorithm is run on to find the best clique.

S(K(m)). More precisely, the channel aware scheduling problem is equivalent to

S∗ ∈ arg max
G∈S(K(m))

S clique in G

∑

i∈S

wi (4.12)

We note that (4.12) parallels (4.10). However, as there is no notion of an output present
in the generalized switch we do not have an apparent way to relate the input occupancy
distribution to the output occupancy distribution which was key in our development of
the tradeoffs between the structure of the quantizer used for feedback, the order statistic
gain and the multi-node matching gain in the input-queued crossbar switch.

Using a general graph to describe the interdependencies in rate allocations leaves the
notion of an output absent. More precisely, by our definition of a generalized switch as a
graph we have left implicit the fact that each clique describes a set of “output ports” in
this generalized switch. To fully connect to our previous development for the input-queued
cross-bar switch we must add an extra layer to the generalized switch in order to describe
the multi-node matching gain. To do this, one may think of a generalized switch as a three
tired structure where the first tier describes the channel feedback, the second represents the
cliques and the third and final tier represents the cardinality of scheduling decision of the
switch and hence the multi-node matching gain. This may be seen in Figure 4-6. However,
due to the complex structure of this switch it is unclear how one may analyze the order
statistic gain and multi-node matching gain tradeoff due to the large dependency that arises
from intersecting cliques. We do not cover this here and postpone the discussion to Section
4.4. Moreover, it is unclear the effects this more complex structure has on the overall
scheduling complexity especially as one may have to consider more than one switch. We
briefly address the problem of scheduling complexity in the sequel and provide a particular
algorithm for scheduling in Chapter 6.

Our motivation for considering the generalized switch was to develop a scheduling frame-
work that mitigates the

(n
m

)
complexity of examining the rates achieved by every user subset.

Thus, it seems a bit unfortunate that one may have to consider more than one generalized
switch for channel aware scheduling. However, for efficient channel aware scheduling we
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note that one need not consider every graph in S(K(m)) but rather one only needs to
consider the smallest subsets of S(K(m)) which contains every processing mode of K(m)
is as this set is sufficient to make the optimal scheduling decision. More precisely, we say
that a collection of graphs C(m) ⊂ S(K(m)) covers K(m) if

K(m) ⊂
⋃

G∈C(m)

G.

In order to efficiently solve the channel aware scheduling problem it is sufficient to find a
small cover of S(K(m)) for every switch state (or equivalently channel realization). More
precisely, one may rewrite (4.12) as

S∗ ∈ arg max
G∈C(m)

S clique in G

∑
wi (4.13)

However, one typically does not wish to compute this cover for each channel realization as
this process is as difficult as optimal user selection in general. Rather, one would like to
find a minimal cover for a “global” set of processing modes

Kglobal =
⋃

m∈M

K(m)

and use what ever (random) subset of this cover needed to solve the problem. In particular,
as the service rates, and hence the switch state, is governed by the descriptions of the channel
vectors that were fed back in a multi-user MIMO system with finite rate feedback, one may
first minimally decompose a “global” switch state that contains every rate allocation for
the feedback scheme. Then, for each channel realization one may use a subset of this
minimal decomposition of the global switch state to cover the processing modes for the
particular channel realization. More precisely, for any feedback scheme we can consider
decomposing the processing modes into a minimal set of generalized switches offline. Then,
for every channel realization the user assignment process randomly chooses the switches
that must be considered to make the optimal rate allocation. In summary, the channel-
aware scheduling problem in a multi-user MIMO system with finite rate feedback can be
considered as follows:

1. A minimal cover of the global switch state is computed off line

2. Each time the channel changes state users are randomly connected to input ports in
the minimal cover which determine the possible rate allocations for every subset of
users

3. For each switch the maximal (weighted) clique is determined

4. The maximal-maximal (weighted) configuration is chosen from amongst the switches
which identifies the active set of users

We will refer to above as the best random server (BRS) process. A depiction of the BRS
process can be seen in Figure 4-7.

Reexamining the BRS process it is easy to see how on may provide efficient algorithms
for the channel-aware scheduling problem. Indeed, it is easy to see that the channel aware
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Figure 4-7. An alternate view of Stolyar’s generalized switch [118] for channel aware scheduling with finite
rate feedback as a best random server process. At each scheduling interval users are randomly assigned to
inputs of the switch. A maximum weighted clique algorithm is run on each switch independently to find the
best clique. Then, the best switch and it maximal clique are selected.

scheduling problem is no more complex than multiple runs of existing clique finding algo-
rithms on the random number of switches determined by the channel realization. However,
it is unclear how many switches this naive approach will have to consider as the feedback
from the channel realization drives the process determining the state of the generalized
switch. In the worst case the statics of the fading process, and hence the user assignment
distribution, may necessitate examining every switch. However, as the structure of the
feedback scheme governs the possible rate allocations, a system designer may design the
feedback scheme as to minimize the number of switches needed in the BRS model.

The overall complexity of scheduling using the naive approach of the BRS process is a
function of both the fading process as well as the feedback design. Thus, one may by adding
extra structure to the quantization codebook reduce the cardinality of the minimal cover
of the global set of processing modes. However, if a system designer has any knowledge
of the larger structure of the cover of the global switch state then it may be possible to
employ a more intelligent algorithm to further reduce the system complexity. In particular,
there is no guarantee that two switches in a minimal cover have zero intersection. For any
switches that share processing modes or contain multiple similar processing modes it may
be possible to use the intermediate results of a previous clique algorithm on a different
switch or fully exclude a set of switches. For example, given a maximal clique from one
switch it may be possible to use this state as a starting point for a maximal weighted clique
algorithm on a different switch or used to fully exclude all cliques of a switch without search.
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In particular, if the quantizer contains multiple orthogonal bases with common codewords
then one may use a maximal clique on one switch as the starting point of another. Hence,
in a MIMO channel with finite rate feedback the structure of the feedback is intimately tied
to the complexity of optimal user selection and should be considered as a factor in feedback
design. This observation is some what orthogonal to the motivation of feedback schemes
that are presently being designed for the MIMO downlink [82, 90, 91, 105, 137, 144] which,
as previously noted, advocate a feedback design which involves minimizing some increasing
function of the mean square quantization error alone as the relevant design metric. In
particular, the current feedback schemes adopted in the IEEE 802.16 standard [1, 143]
employ such an MSE centric design.

We have identified a discrete model for the problem of channel aware scheduling. In
particular, we have identified the input and output occupancy distributions as the relevant
metric for the performance and complexity in a multi-user MIMO system. Moreover, we
have provided a system architecture that relates directly to this model. As such, it is
of interest to understand the influence ones choice of feedback parameters has on these
distributions as it will influence the overall performance of the system.

� 4.3 Optimization of the Input Occupancy Distribution

In a MIMO system with finite rate feedback it is important that the thresholds on the
SNR target are set appropriately as otherwise one may not fully exploit the mutiuser di-
versity of the system. That is, the SNR target may cause either to few users to feed back,
limiting the schedulers ability to find high weight matching, or too many users to feed back
thus not sufficiently exploiting the order statistic gain. In the sequel we do not consider the
choice of particular feedback parameters to select for each cluster but rather consider the
question of determining exactly how the number of users that feedback from each cluster
influences the systems ability to exploit the multiuser diversity. As the choice of feedback
parameters differs between clusters in general in the sequel we only consider the effects of
the SNR threshold on a single cluster.

We consider a single cluster of k users and denote this cluster as ℓ. We let N
(ℓ)
i (k) be the

random number of users from the cluster ℓ that feedback the codeword ci at the scheduling

interval of interest and let X
(ℓ)
i (k) be the random variable that is 1 if N

(ℓ)
i (k) ≥ 1 and zero

otherwise. More precisely,

X
(ℓ)
i (k) =

{
1 if i ∈ R◦,(ℓ)

σ,ρ

0 otherwise

It is clear that in order to fully exploit the multi-node matching gain one would like the
random variable,

Y(ℓ)(k) =

2r−1∑

i=0

X
(ℓ)
i (k),

which counts the number of distinct quantization indices that are fed back to be large.
However, Y(ℓ)(k) is implicitly a function of the underlying choice of the SNR target and
thus is strongly influenced by ones choice of feedback thresholds. For the scheduler to
exploit the multi-node matching gain to the fullest extent one would like the user assignment
distribution to, with high probability, assign the users to a multitude of inputs. In particular,
one would like Y(ℓ)(k) to be a modest fraction of the nodes that feed back to ensure that
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there is a reasonable probability of a matching of large weight and size. However, as stated,
there is a trade off between the order statistic gain and the multi-node matching gain and
one must balance the effects an increase or decrease of the SNR threshold has on the
distribution of Y(ℓ)(k). Clearly, when the users of a cluster have channel vectors that are
isotropically distributed the expected value of Y(ℓ)(k) should see a modest increase as the
SNR threshold is decreased so long as

E
[
Y(ℓ)(k)

]
≪ min{2r, k}.

However, in a correlated channel N
(n)
i (k) may become concentrated on a subset of codewords

and hence regardless of the variation in the SNR threshold there may be little variation in
E
[
Y(ℓ)(k)

]
even when E

[
Y(ℓ)(k)

]
≪ min{2r, k}. That is, in a highly correlated channel any

increase or decrease in an SNR threshold may not be able to compensate for the underlying
correlation in the channel and one needs to adapt the feedback framework. Thus, it is of
interest to understand when the underlying spatial correlation of the users in the cluster
causes the expected value of Y(n) to halt after a very small number of users from the cluster
feedback.

In order to characterize when an increase in the SNR target has diminishing returns
in the cumulative distribution of the random variable Y(ℓ)(k) we consider a sequential
occupancy problem where by users are continually added to a cluster until the distribution
of Y(ℓ)(k) becomes roughly constant. We assume in this scenario that no SNR target
has been set to study the effects variations in the number users that feedback has on the
random variable Y(ℓ)(k). In particular, we study the evolution of the density of Y(ℓ)(k) as
a function of k. Such an approach lets one understand how changes in the SNR threshold
effects the number of occupied inputs in the generalized switch.We would like to know the
smallest number of users, say k0, such that the addition of more users in the cluster does
not dramatically alter the probability that more than some fixed number, say n0, of inputs
are occupied. That is, one would like to know for what value of k0 is

Pr[Yℓ(k0) ≥ n0] ≈ Pr[Y(ℓ)(k0 + ∆) ≥ n0]

for small values of ∆.

To make this precise, let Vr be the random variable that counts the number of nodes re-
quired to be added to the system until r nodes are quantized to previously used quantization
indices. That is, Vr is a stopping rule with respect to the decision rules

I
(r)
k = 1nP2r−1

i=0 N
(ℓ)
i (k−1)−Y(ℓ)(k−1)<r

o

where 1A is the indicator function of the event A. Intuitively speaking, Vr stops when a
fraction of r/(k − 1) of the users in the cluster have been assigned to previously occupied
inputs. In order to optimize the SNR target we would like to know the largest k can be
such that there is a large probability that a small fraction of user are redundant. That is,
the smallest k such that for a given α

Pr[Vαk ≤ (1 + α)k] ≈ 1.

We note that this definition for the trade-off is particularly useful as it accounts for spatial

correlation in the fading process of the clusters. That is, this definition allows for N
(ℓ)
i (k) to
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become concentrated on a subset of inputs. In such a case Vαk stops with high probability
for very small values of k. Alternatively, Vαk stops for large k with high probability in an
isotropically distributed channel.

Analysis of Vαk for a given user assignment distribution of a cluster indicates when
the SNR threshold should be increased or decreased to allow more or less user to feedback
and when the current quantization scheme needs to be adapted to more fully exploit the
multiuser diversity. In this direction we say that a cluster has a quantization order of nδ(α)
if nδ(α) is the smallest positive integer such that

Pr[Vαnδ
≥ (1 + α)nδ(α)] ≤ δ. (4.14)

Note, that if a cluster has a quantization order of nδ(α) then with high probability there
are no more that nδ(α) occupied inputs in the generalized switch when (1 + 2α)nδ(α)
users feedback. Thus, as there is a negligible probability that feedback from more than
(1 + 2α)nδ(α) users will yield more than nδ(α) occupied inputs one should design the
SNR threshold no make sure that the expected number of user that feedback is not too
much greater than (1 + 2α)nδ(α).

� 4.3.1 The Quantization Order and Input Occupancy Distribution

The quantization order nδ(α) may be used to determine how well a system is exploiting the
order statistic gain and the multi-node matching gain. When the number of users who feed
back their channel measurement becomes too low (relative to nδ(α)) then a system is too
aggressively setting the SNR target for the order statistic gain. When the number of users
feeding back their channel measurement is too great (relative to nδ(α)) indicates that the
system has not exploited the order statistic gain to the fullest. We say that the multi-node
matching gain is saturated if

E [|Rσ,ρ|] ≫ (1 + 2α)nδ(α)

and, if
E [|Rσ,ρ|] ≪ (1 + 2α)nδ(α)

we say that a cluster is order statistic gain centered . If a system is neither multi-node
matching gain saturated nor order statistic gain centered we say the system is balanced. It
should be clear that one prefers a system to be balanced if one hopes to fully exploit the
order statistic gain and multi-node matching gain. However, the quantization order nδ(α)
is a function of the parameters δ and α which should be set by the system designer to reflect
a particular systems bias toward a high order statistic gain or high multi-node matching
gain. In particular, for large values of α the definition of nδ(α) becomes biased toward an
multi-node matching gain saturated system while small values of δ correspond to a order
statistic gain centered design. Thus, the quantization order may be used to reflect a system
designers preference of system balance.

Understanding when a system is order statistic gain centered, multi-node matching
gain saturated or balanced has dramatic effects on the overall system design. In particular,
given that a system designer has targeted a design to have, say nfb, users feedback on
average the quantization order can be used to determine the minimal quantization rate
needed to ensure that the system is balanced. Alternatively, given a particular feedback
bandwidth constraint and a fixed quantizer resolution, i.e. for a fixed r, the quantization
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order can be used to determine an appropriate choice of the feedback parameters ρ
(ℓ)
− , ρ

(ℓ)
+

and σ(ℓ) so that a reasonable fraction of the feed back set R(ℓ)
σ,ρ are useful in the process of

user selection. That is, if a cluster has a quantization order of nδ(α) for an appropriately
chosen δ and α then with high probability no more than (1 + 2α)nδ(α) users are useful at
the transmitter. Thus, if

Pr(|R(ℓ)
σ,ρ| > (1 + 2α)nδ(α)) ≫ 0,

the feedback parameters ρ
(ℓ)
− , ρ

(ℓ)
+ and/or σ can be decreased with out effecting the multi-

node matching gain. A particularly attractive solution is the choice for ρ and σ such that

Pr((1 + 2α)nδ(α) − ∆ ≤ |R(ℓ)
σ,ρ| ≤ (1 + 2α)nδ(α) + ∆) ≈ 1

for some small positive value of ∆ as this ensures that the resulting system is balanced.

Note that if the number of users in a cluster is large, say k, E
[
|R(ℓ)

σ,ρ|
]

= kpσ,ρ and there is

an exponentially small probability that |R(ℓ)
σ,ρ| deviates greatly from E

[
|R(ℓ)

σ,ρ|
]
. Thus, when

the number of users in a system scales a system is balanced when

|R(ℓ)
σ,ρ| = kpσ,ρ ≈ (1 + 2α)nδ(α)

and one must choose

pσ,ρ(k) ∝
(1 + 2α)nδ(α)

k
.

Hence, for a fixed quantization scheme if pσ,ρ(k) = o(1/k) the system is asymptotically or-
der statistic gain centered and if 1/k = o(pσ,ρ(k)) the system is asymptotically multi-node
matching gain saturated. This distinction is important as in a multi-node matching gain sat-
urated system the order statistic gain decouples from the multi-node matching gain trivially
as one has extra degrees of freedom in the choice of the quantization scheme. This is an
important observation as in a system with a fixed feedback bandwidth constraint and mul-
tiple users the order statistic gain decouples from the multi-node matching gain trivially
and the system designer is afforded extra degrees of freedom in the feedback design.

It is of practical relevance to characterize the quantization order as a function of the
quantization rate as well as the user assignment distribution of a cluster as it identifies
several relevant system regimes, some of which require the system to adapt the feedback
scheme to fully exploit the multi-user diversity. However, before proceeding we note that
the random variable Vr is by definition the complimentary waiting time distribution of the
occupancy distribution [33]. That is, as Vr stops when a fraction of r/(k − 1) of the users
in the cluster have been assigned to previously occupied inputs one has

Vr ≤ k if and only if k − Y(k) ≥ r. (4.15)

This identification is important as waiting time distributions of combinatorial processes are
known to exhibit rather sharp phase transitions [65]. That is, if one examines the evolution
of the probability of an event as a function of the number trials it is often the case that the
probability distribution rapidly transitions from 0 to 1 [65]. The most common example of
this phenomenon is the binomial random variable.

In the context of a phase transitions the definition of the quantization becomes a bit more
clear. The quantization order simply defines, for a distribution that transitions continuously
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Figure 4-8. The quantization order, nδ(α), as a function of δ and α for (a) p = punif of length 8, (b)
pi ∝ 1/(i+1) of length 8, (c) p = punif of length 16. The quantization order simply defines, for a distribution
that transitions continuously from 0 to 1, by way of δ, the point on the “step” from 0 to 1 one wishes to
operate while, by way of α how sharp this step should be. One may see that for a code of length 8 the
quantization order rapidly jumps from 0 to 5 when α + δ is approximately greater than 1/2 for a uniform
distribution as seen in (a). Moreover, (a) is strictly larger than a non-uniform distribution as seen in (b).
Further, the same trend occurs for a length 16 code where the quantization order jumps up rapidly for α ≫ 0
and β ≫ 0.

from 0 to 1, by way of δ, the point on the “step” from 0 to 1 one wishes to operate while, by
way of α how sharp this step should be. Thus, it is reasonable to expect that for any choice
of δ and α the quantization order may be quite small for modest sized feedback schemes
and one will find themselves in the regime where the multi-node matching gain is saturated
and the order statistic gain decouples from the multi-node matching gain. This can be seen
in Figure 4-8.

However, to make this precise we must know the distribution of Vr. In this direction,
by way of (4.15), we have the following lemma.

Lemma 4.3.1. Let p(ℓ) be the user assignment distribution for an r-bit quantizer. Then,

Pr[Vn1 ≤ n2 |p(ℓ)] = Pr[Y(ℓ)(n1 + n2) ≤ n2 − n1 |p(ℓ)]

By Lemma 4.3.1 it is sufficient to study the behavior of the distribution of Y(ℓ)(k) in
order to characterize the quantization order. In this direction, recall the distribution of the
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random variable Y(ℓ)(k) is [33]

Pr(Y(ℓ)(k) ≤ y) =

y∑

j=0

(−1)y−j

(
2r − j − 1

y − j

)
S2r,2r−j(p; k) (4.16)

where
Sm1,m2(p; k) =

∑

0≤j1<j2<...<jm1−m2≤m1−1

(pj1 + pj2 + · · · + pjm1−m2
)k.

Note (4.16) is only a function of the distribution p(ℓ) and implicitly the cardinality of C.
Hence, in order to examine the effects the quantizer has on the multi-node matching gain it
is sufficient to examine the effects that the distribution p(ℓ) has on (4.16). In this direction,
recall that a vector p majorizes the vector q = (q1, . . . , qk) if, after possible reordering,

r∑

i=1

pi ≥
r∑

i=1

qi ∀ r = 1, . . . , k,

and
∑k

i=1 pi =
∑k

i=1 qi. If p majorizes the vector q we write p � q. Further, recall that a
function, say f(p), is Schur convex if,

f(p) ≥ f(q) ∀p � q.

We now have the following lemma from [94].

Lemma 4.3.2. The distribution Pr[Y(ℓ) ≤ k ; p] is Schur convex in p for any k ≥ 0.

By Lemma 4.3.2 on can derive upper (resp. lower) bounds on the distribution of Y(ℓ)(k)
so long as one can find distributions pu (resp. pl) that majorizes p (resp. that is majorized
by p) In this direction, let, for any probability vector p of length 2r,

punif =

(
1

2r
,

1

2r
, . . . ,

1

2r

)

︸ ︷︷ ︸
2r times

and
pmin = (pmin, pmin, . . . , pmin︸ ︷︷ ︸

2r−1 times

, 1 − (2r − 1)pmin)

where in turn pmin = min0≤i≤2r−1 pi. Clearly, punif � p � pmin. Thus a uniform user
assignment distribution always provides an lower bound on Pr[Y(ℓ) ≤ k] and thus an upper
bound on (4.14). In particular, by Lemma 4.3.1 and Lemma 4.3.2, one has

Pr[Vαnδ
> (1 + α)nδ(α);p] = 1 − Pr[Y(ℓ)((1 + 2α)nδ(α)) ≤ nδ(α);p] (4.17a)

≤ 1 − Pr[Y(ℓ)((1 + 2α)nδ(α) ≤ nδ(α);punif ] (4.17b)

= Pr[Vαnδ
> (1 + α)nδ(α);punif ] (4.17c)

This yields the more general theorem.

Theorem 4.3.3. The quantization order nδ(α;p) is a Schur concave function of p.

Theorem 4.3.3 is a particularly useful theorem as one may study the problem that the
order statistic gain decouples from the multi-node matching gain by considering a uniform
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distribution for p which greatly simplifies the analysis. In particular, in Section 4.5 we show
that assuming the Rayleigh model for the MIMO channel and hence a uniform distribution
for the user assignment distribution if one uses a quantizer with isometric Voronoi cells, that
the order statistic gain decouples from the multi-node matching gain in the large user limit.
Moreover, this theorem states that when the channel is correlated it is even more likely
that the order statistic gain decouples from the multi-node matching gain provided that the
covariance structure is not sufficiently mismatched causing few users to feed back. If this is
the case one further expects that nδ(α) is sufficiently small so that the system would benefit
greatly from adapting the quantization scheme to more adequately match the covariance
of the channel. In Chapter 5 we develop a systematic framework which provides methods
to match the feedback codebook to the covariance of each cluster of users, approximately
whitening the sampling probabilities. Hence, it will be sufficient to use pmin and punif to
bound the quantization order.

We have exhibited how the channel statistics and the user assignment distribution effect
the input occupancy distribution of the generalized switch, thus answering our first question
of interest. While these insights are sufficient to optimize the order statistic gain and the
multi-node matching gain trade off we still have a question on how the output occupancy
is effected by this statistic. Thus, we next consider this question.

� 4.4 Analysis of the Output Occupancy Distribution

In this section we examine the influence of the input occupancy distribution on the output
occupancy distribution. To ease the exposition in the sequel we assume that scheduler does
not use knowledge of the classification of the users. That we assume that the scheduler does
not explicitly use the classification of the users, but rather only forms the weighted average
over all clusters5, as

p̄i =

nc−1∑

ℓ=0

|U (ℓ)|
n

p̂(ℓ).

In the sequel we simply denote this probability as p.

In the preceding section we showed that with very mild assumptions on the size of the
user pool one may, through examining the quantization order, determine when and if the
order statistic gain decouples from the multi-node matching gain in a given system. A
particularly useful results was that the quantization order is a Scours concave function of
the user assignment distribution and hence correlation in the fading process only decreases
the quantization order. This implies a correlated channel reduces the number of users that
need to feedback for the order statistic gain to decouple from the multi-node matching
gain. However, the knowledge that the order statistic gain decouples from the multi-node
matching gain does not imply that the system achieves a high rate. Rather, it indicates
that the system designer has added degrees of freedom in the quantization design. Indeed,
if the user assignment distribution leads to only a few inputs of the generalized switch to
be occupied at each scheduling interval, while the multi-node matching gain is saturated,
there is a high probability that the scheduler has few candidate sets of users, leading to a
multi-node matching gain and may result in poor system performance. That is, it is possible
that while the multi-node matching gain is saturated the underlying channel correlation has
thrust the system in to a quite unfavorable position. Indeed, as we saw in Section 4.2.3 if

5We note that this distribution has a statistical relevance which we discuss in Section 5.1.
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there is not sufficient structure in the quantizer the system may have an underlying bias
to a particular input that makes the system more susceptible to correlation. However, by
“pigeonholing” the output distribution we showed that one may develop a system that is
invariant to a large number of fading distributions. These observations led to our second and
last question regarding the order statistic gain and the multi-node matching gain trade-off
in the generalized switch. In particular, we are interested in the relation between variations
in the user assignment distribution to the occupancy distribution at the output as a function
of the structure of the switch.

In this section we provide methods for this analysis and identify the relevant aspects of
feedback design that are needed to make the output distribution immune to a wide range
of spatial correlation structures. In particular, we provide a direct relationship between
the output distribution of a single generalized switch and the structure of the switch itself.
Recall from Section 4.2 that, as the service rates, and hence the switch state, is governed
by the descriptions of the channel vectors that were fed back. One may first minimally
decompose a “global” switch state that contains every rate allocation for the feedback and
multiplexing scheme. This decomposition yielded a collection of generalized switches that
may be used to find the subset of users that maximize the scheduling utility function at
each scheduling interval. That is, for every channel realization the user assignment process
randomly chooses the switches that must be considered to make the optimal rate allocation.
Thus, the channel-aware scheduling problem in a multi-user MIMO system with finite rate
feedback can be considered as follows:

1. A minimal cover of the global switch state is computed off line

2. Each time the channel changes state users are randomly connected to input ports in
the minimal cover which determine the possible rate allocations for every subset of
users

3. For each switch the maximal (weighted) clique is determined

4. The maximal-maximal (weighted) configuration is chosen from amongst the switches
which identifies the active set of users

More precisely, from (4.13) one has

S∗ ∈ arg max
G∈C(Kglobal)

S clique in G

∑
wi. (4.18)

Thus, in order to efficiently search for the optimal subset of users and more generally to
understand how the variations in the channel effects the distribution of the rate of the active
set of users one must understand how our model for the input occupancy distribution is
effected by the structure of the generalized switch.

To begin, recall that in Section 4.2.3, we defined a generalized switch to be a graph
with a vertex set that represent the codewords of the quantization scheme and let edges in
the graph represent possible pairings for the scheduling decision. Any clique in the graph
represents a given processing mode and hence a possible rate allocation of the system.
Thus, the processing modes of the systems may be identified with subsets of the codewords
of the quantization scheme and the BRS model provides a map from these subsets to cliques
in one of the graphs used in the cover of the global set of processing modes. This is an
important formality as it is useful in understanding the relationship between the structure
of the generalized switch is effected by variations in the input occupancy distribution. More
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precisely, each level of a generalized switch has an important influence on the stability
of the scheduled rate. In particular, for a given input occupancy distribution (the first
level) the generalized switch first “disperses” the input occupancy distribution by forming
a distribution that describes the occupancy of

(
2r

m

)
subsets of inputs (the second level).

Then, the map from these subsets to cliques defined by the BRS model “collects” the
associated probabilities in to a third occupancy model by taking the union of each subsets
of inputs described by the switch. Thus, if the map from the BRS model takes many
disjoint subsets to a given switch then it is likely that variations in the input occupancy
distribution will have little effect on the output occupancy distribution for this switch.
Conversely, if the map from the BRS model takes few disjoint subsets to a given switch it
is likely that variations in the input occupancy distribution will have a dramatic effect on
the output occupancy distribution for this switch. To see this more concretely we provided
the following probabilistic model for the BRS model.

In order to understand how the user assignment distribution effects the output distri-
bution of each generalized switch in the BRS model we must understand how the user
assignment distribution effects the occupancy distribution of the subsets of codewords and
in turn how this occupancy distribution effects the output of each generalized switch via
the structure of the switch. We illustrate this general relationship in Figure 4-9 as a three
level urn model. In this model the first level contains urns representing the 2r codewords
of the quantization codebook, the second level contains

(2r

m

)
contiguous urns which rep-

resent the possible subsets of the codewords, each with m distinguished cells labeled by
the codewords of the quantization codebook. The final level contains urns representing the
generalized switches in the BRS model. Thus, using this model one may view the channel
aware scheduling problem as:

1. At each scheduling interval every user places a ball in the urn in the first level that is
label by that users quantized channel vector

2. Then, each occupied urn places additional balls in every cell of every urn on the second
level which has it as a label

3. In turn each urn on the second level which has every cell occupied places a ball in the
urn of the third level corresponding to the switch which contains it.

Thus, in Figure 4-9 the top set of arrows represent the aforementioned “dispersion” of the
input occupancy distribution while the bottom set of arrows represent the aforementioned
“collection” of the input occupancy distribution.

It is important to note that if one is only able to observe the occurrence that a urn on the
second level is fully occupied does not enable one to infer the statistics of the contributing
codewords. More precisely, let 1{S} be the indicator random variable which indicates when
the urn corresponding to S is full, i.e.

1{S} =
∏

i∈S
1{i∈Rσ,ρ}.

Then the observation of the frequency that 1{S} = 1 does not enable one to make a reliable
inference on any of the individual probabilities Pr[1{i∈Rσ,ρ} = 1] for i ∈ Rσ,ρ. In particular,
the distribution of 1{S} is a symmetric function of the individual probabilities Pr[1{i∈Rσ,ρ} =
1]. Thus, the distribution of the indicator 1{S} and hence the marginal distribution of any
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Figure 4-9. A view of the statistical dependencies of switch outputs in the BRS model as a three level
urn process. At each scheduling interval every user places a ball in the urn in the first level that is label by
that users quantized channel vector. Each occupied urn in turn places additional balls in every cell of every
urn on the second level which has it as a label. Then, each urn on the second level, which has every cell
occupied, places a ball in the urn of the third level corresponding to the switch which contains it.
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subset of codewords is minimally invariant to permutations in the individual probabilities
for that subset. For example, suppose that |S| = k and consider a k users system. Then,

pS
∆
= Pr [1S = 1 | |Rσ,ρ| = k] = k!

∏

i∈S
pi (4.19)

and one may only infer the product of cell probabilities through a history of observations
of 1{S}. This is an important observation as we are interested in the distribution of the
output occupancy of generalized switch. Thus, if one examines any one clique in a switch
the frequency it is occupied is invariant to permutations of the marginal probabilities of
the events determining it. Thus, one may expect that further combining multiple such
sets together to form a generalized switch is likely to further make the output distribution
invariant to a large number of input occupancy distributions.

If a switch in the BRS model contains a large number cliques then there are a multitude
of ways that one may arrive at a lower bound on the probability that any one of these cliques
are occupied. In the sequel, we examine the effects that the input occupancy distribution
has on the output distribution of a switch. Since, the input occupancy distribution is a
function of the user assignment distribution as well as the number of users that feedback
in the sequel we develop all our bounds conditional on the cardinality |Rσ,ρ|. This allows
us to analyze the system performance, by the total law of probability, as well as yields a
distribution that is useful to the scheduler which has knowledge of the realization of |Rσ,ρ|.
In this direction, it is useful to know the probability that any set of users of size m channel
vectors will yield a maximally sized clique in a switch of interest. That is, the probability

pG = Pr [ A◦ maximal clique in G | |A| = m] Pr [|A◦| = m]

is of interest, where we let A◦ denote the unique quantization indices feedback by the set A.
Assuming that there is a large number of cliques in G , there are a multitude of ways that
one may arrive at a lower bound on the probability that a set of users of size m feedback
yields a clique. In particular, one may trivially lower bound this probability by examining
the probability that the most probable clique is occupied using (4.19) as

pG ≥ max
S maximal clique in G

k!
∏

i∈S
pi.

Slightly more generally, one may consider forming a lower bound by considering the prob-
ability that a disjoint set of cliques are occupied via

pG ≥ Pr

[
c∐

i=0

S | S maximal clique in G
]

=
c∑

i=0

∏

i∈S
pi.

In the most general setting one may arrive at a lower bound by considering the probability
that an arbitrary union of cliques are occupied by a subset of users as

pG ≥ Pr

[
c⋃

i=0

S | S clique in G
]
. (4.20)

In order to to compute (4.20) one may use the principle of inclusion and exclusion. Let
{Si}j∈J be collections of cliques of a given graph G. Then, by the principle of inclusion and
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exclusion one has

Pr


⋃

j∈J

{
1{Si} = 1

}

 =

|J |∑

j=1

(−1)j+1Sj(J) (4.21)

where

Sj(I) =
∑

1≤k1<···<kj≤|I|
{k1...kj}⊂I

Pr

[
j⋂

l=1

{
1{Si} = 1

}
]

is the jth binomial moment of the number of the events occurring in I. However, this sum
is quite complex and one often bounds the union by using the Kwerel lower bounds [79]
which yields the following proposition.

Proposition 4.4.1. Let {Si}j∈J be collections of cliques of a graph and consider the events
{1{Si} = 1}j∈J . Then,

Pr


⋃

j∈J

{
1{Si} = 1

}

 ≥ bl(Si,1(J), Si,2(J), Si,3(J), |J |)

where
bl(s1, s2, s3, n) = max {l1s1 − l2s2 + l3s3, s1 − s2}

and in turn where l1 = hl+2n−2
nhl

, l2 = 2(2hl+n−4)
hl(hl−1)n , l3 = 6

hl(hl−1)n and hl = 2+
⌊
−6s3+2(n−2)s2

−2s2+(n−1)s1

⌋
.

In the case that the probabilities are uniform one need not apply Proposition 4.4.1 as
one may arrive at the exact probability of the union. In particular, conditioned on all users
having distinct feedback the probability that any set is occupied is uniform. Thus,

pG |distinct =
cl(G)(2r

m

)

where
cl(G) = |{S : S clique in G}|

Hence,

pG =
cl(G)(2r

m

)
m∏

i=2

(
1 − i− 1

2r

)
. (4.22)

We now examine how this analysis effects the output occupancy distribution.

� 4.4.1 The Order Statistic Gain/Multi-Node Matching Gain Trade-Off

Due to the large amount of mixing one may conjecture that the output occupancy dis-
tribution again behaves like a multinomial distribution. One may then attempt to model
the output occupancy distribution as such and use observations of the output occupancy
distribution to infer the relevant model parameters 6. However, for efficient user selection
we prefer to consider only the marginal distribution of the output occupancy distribution
for each subset of users as it provides a quite useful form to determine switch occupancy.
Also, this provide a direct explanation of the relationship between the input and output

6This is doe to model the input occupancy distribution in Section 5.1.
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occupancy distributions. In this direction, note that pG is the probability that any subset of
users who feed back may be scheduled together via the switch. Thus, in order to determine
the probability a maximally sized clique exists in a switch one may consider the sum of
indicator functions

NG =
∑

A⊂Rσ,ρ

1{A◦ maximal clique in G} (4.23)

Then, one may bound the distribution of NG as

Pr(NG > 0) =
n∑

j=l

Pr [|Rσ,ρ| = k] Pr [NG > 0 | |Rσ,ρ| = k] (4.24)

By ignoring the obvious plurality of subsets of (4.23) on may arrive at a simple lower
bound on the probability that NG is non-zero by considering an arbitrary partition of Rσ,ρ

in to a disjoint union yielding

Pr [NG > 0 | |Rσ,ρ|] > Pr
[
ÑG > 0

]
(4.25)

where ÑG ∼ Binomial(⌊|Rσ,ρ|/m⌋, pG). Using (4.25) one may arrive at a simple lower bound
by using known methods to compute the cumulative distribution function of a binomial
random variable. However, (4.23) contains exponentially more summands than (4.25) and
hence in certain cases one would expect (4.25) to be quite a poor estimate. To remedy this
we have the following proposition.

Proposition 4.4.2. [64, Thrm. 2.1] Let Pl(U) be the collection of all unordered sets of
size l on n items and let

X =
∑

A∈Pl(U)

1A (4.26)

where {1A} is a family of Bernoulli random variables with Pr [1A = 1] = p, which are
independent if A ∩ B = ∅. Then,

Pr [X = 0] ≤ exp

(
−max

{
2p2

⌊n
l

⌋
,
8p

25

(n
l

)
( n
l−1

)
})

(4.27)

Using Proposition 4.4.2 one can easily bound the output occupancy distribution. Indeed,
if we are given that |Rσ,ρ| = k one may use Proposition 4.4.2 to bound the conditional
probability Pr [NG > 0 | |Rσ,ρ|] and then user the total law of probability to bound the
unconditional distribution. However, we first take a slightly different exponent than the
one in Theorem 4.4.2 to simplify the resulting expressions. Let,

E(p, l)
∆
= max

{
2p2

l
,

8p

25l

}
. (4.28)

Then as a simple consequence of (4.24) we have the following theorem.

Theorem 4.4.3. Let G be a given graph with maximal cliques of size m and let pG be the
probability that an independent and identically distributed selection of m vertices in G yields
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a clique. Then, if n vertices in G are selected independently and identically distributed,

Pr [NG > 0] ≥ Pr [|Rσ,ρ| ≥ m] − min{c1
(
1 − pσ,ρ

(
1 − e−E(pG ,m)

))n
, 1} (4.29)

where c1 = c1(pG ,m) = exp
(
2p2

G
)

if E(pG , l) =
2p2

G

m and c1 = c1(pG ,m) = exp 8pG(m−1)
25m

otherwise.

Proof. See Appendix C.3.1 �

We note that Theorem 4.4.3 exactly characterizes the order statistic gain and multi-node
matching gain trade-off for sufficiently large n. Indeed, examining the right hand side of
(4.29) one may see that the probability that a switch has m outputs occupied is simply the
difference between the cumulative distribution function of a binomial random variable and
a function that tends to 0 as n increases. Thus, as the size of the user pool increases the
function

min{c1
(
1 − pσ,ρ

(
1 − e−E(pG ,m)

))n
, 1} → 0

tends to zero so long as

n · pσ,ρ

(
1 − e−E(pG,m)

)
> 0. (4.30)

We note that (4.30) is implicitly a function of the quantizer rate as well as the channel fading
distribution. That is, the dependence of the channel statistics and quantizer have been com-
pletely characterized through the parameter pG . Thus, particular choices for the quantizer
rate and quantizer structure as well as the fading statistics will lead to different tradeoffs
between the convergence rate and feedback requirements. However, these parameters do
not fundamentally limit the system in terms of the achievable rate asymptotically.

We present a depiction of this behavior in Figures 4-10 – 4-11. In Figure 4-10 we plot
the trade-off between pσ,ρ and pG as predicted by the lower bound of Theorem 4.4.3 for
a n = 8, 12, 16, 24 user system. Note that corresponding bound on the probability of pre-
selection success jumps up quite quickly for pG > 0.4 and pσ,ρ > 0.6 in a 8 user system while
in a 32 user system the jump occurs for pG > 0.2 and pσ,ρ > 0.4. Thus, as the number of
users in the system grow there is a smaller requirement that the system contains a large
number of orthogonal bases. This may be seen similarly in a 8 transmit antenna system.
In Figure 4-11 we plot the trade-off between pσ,ρ and pG as predicted by the lower bound of
Theorem 4.4.3 for a n = 16, 24, 32, 48 user system. The behavior there is similar, however,
relative to the size of the transmit array, the transition from 0 to 1 happens more quickly
in a 8 transmit antenna system.

In the following we show the order statistic gain decouples from the multi-node matching
gain asymptotically in the case of the Rayleigh model and an almost arbitrarily chosen
channel quantization scheme. Thus, as the number of users in a system grows the system
designer has a great degree of freedom in the feedback design. However, this question is more
subtle for small to moderately sized user pools. As we have seen in Section 3.2 codes which
contain many orthogonal bases, in general, have a larger mean squared quantization error.
Hence, by choosing a channel quantizer for which pG is large, and hence contains many
orthogonal bases, to ensure successful pre-selection one may increase the mean squared
quantization error to an intolerable level. Thus, for practical system design one must
balance this trade-off. However, we have yet to thoroughly examine the effects that multi-
user diversity has one SINRsat. In particular, one would like to know how well a quantizer
which contains many orthogonal bases performs in a system with multi-user diversity. We
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Figure 4-10. The trade-off between pσ,ρ and pG predicted by Theorem 4.4.3 for n = 8, 12, 16, 24 with 4
transmit antennas. The smallest number of users is at top and the largest at bottom. Note, even when
using the large deviation bound of Theorem 4.4.2 the plots show a rapid transition from 0 to 1 so long as
pσ,ρ > 0.4.
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Figure 4-11. The trade-off between pσ,ρ and pG predicted by Theorem 4.4.3 for n = 16, 24, 32, 48 with
8 transmit antennas. The smallest number of users is at top and the largest at bottom. Note, even when
using the large deviation bound of Theorem 4.4.2 the plots show a rapid transition from 0 to 1 so long as
pσ,ρ > 0.4.
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consider this question in Section 4.6 and then in Section 4.7 examine how the quantizers
we developed in Chapter 3 perform relative to a derived upper bound. We then, through
an explicit example, illustrate how one may use these results in conjunction with Theorem
4.4.3 to practically design a 4 transmit antenna system. We now address the asymptotic
decoupling of the order statistic gain and multi-node matching gain for the Rayleigh model.

� 4.5 Asymptotic Decoupling with the Rayleigh Assumption

In this section we show that the order statistic gain decouples from the multi-node match-
ing gain asymptotically in the case of the Rayleigh model and an almost arbitrarily cho-
sen channel quantization scheme while simultaneously obtaining the maximal achievable
throughput. In this direction we let R∗(n) be the maximum rate achieved by any protocol
for the Rayleigh model and system model of interest with no constraint on complexity and
processing capabilities. In order to examine when order statistic gain decouples from the
multi-node matching gain we begin by considering a fairly strong notion of optimality of an
architecture.

Definition 1. An architecture S(P,m) is said to be strongly asymptotically optimal (with
respect to average throughput) if there exists a sequence of protocols

P(1),P(2), . . . ∈ S(P,m)

such that the corresponding average throughputs R(1), R(2), . . . of these protocols satisfies

lim
n→∞

[
R∗(n) −R(n)

]
= 0, (4.31)

Note that replacing (4.31) with the condition

lim
n→∞

[
logR∗(n) − logR(n)

]
= 0 (4.32)

corresponds to a much weaker notion of optimality. Preliminary work on asymptotic op-
timality has focused on this weaker rate-ratio convergence7, limiting the practical value of
the associated results. To see this weakness, let us define the signal-to-interference plus
noise ratio SINR(n) of the protocol via

SINR(n)
∆
= 2R(n)/m − 1. (4.33)

Then weak convergence of rates in the sense of (4.32) can be obtained even when the SINR
gap in dB is asymptotically infinite, i.e.,

SINR∗(n)/SINR(n) → ∞.

By contrast, strong convergence of rates in the sense of (4.32) ensures that the SINR gap
in dB is asymptotically zero. In order to be precise, we begin by defining the asymptotic
notation we use in the sequel.

7We note that strong convergence of random beamforming has recently been shown in [129].
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� 4.5.1 Asymptotic Notation

We will use the standard asymptotic notation which may be found in [65,77]. We will say,
for two sequences of real numbers f(n) and g(n), that

f(n) = O(g(n))

if there exists some positive constant C and positive integer n0 such that for all n ≥ n0

|f(n)| ≤ Cg(n). Similarly we will say that

f(n) = Ω(g(n))

if there exists some positive constant C and positive integer n0 such that for all n ≥ n0

|f(n)| ≥ Cg(n). We will say that

f(n) = Θ(g(n))

if f(n) = O(g(n)) and f(n) = Ω(g(n)). Also, we will say that

f(n) = o(g(n))

if for any ǫ > 0 there exists some positive integer n(ǫ) such that for all n ≥ n(ǫ) |f(n)| ≤
ǫg(n). That is, limn→∞ f(n)/g(n) = 0. We now define the metric we will use to examine
how various multiplexing and scheduling algorithms perform in the MIMO downlink when
many users are present.

� 4.5.2 Preliminaries

In the sequel, we show that the simple, low complexity, decentralized protocol architec-
ture of Section 4.1 is strongly asymptotically optimal in the sense of Definition 1 for the
Rayleigh model. More specifically, we show that the average throughput achievable by this
architecture converges in the sense of (4.31) to

R∗
+(n) = m log (1 + SINR∗(n)) + o(1) (4.34)

with

SINR∗(n) =
P log n

m2
, (4.35)

which, as shown in [111], is an asymptotic upper bound on R∗(n), i.e.,

lim
n→∞

[
R∗

+(n) −R∗(n)
]
≥ 0.

The average throughput achievable for a given sequence of protocols in our architecture
can be expressed in the form

R(n) = E [RHA ] , (4.36)

where the expectation is taken over both the channel realizations and the randomization in
the selection of the set A ∈ T , and where RHA denotes the rate achieved for a particular
active set A.

A bound on the rate gap associated with (4.36) can be readily obtained when there exists,
as will be the case in our development, a rate bound R−(n) such that RHA(n) ≥ R−(n) for

160



4.5. ASYMPTOTIC DECOUPLING WITH THE RAYLEIGH ASSUMPTION

all A ∈ T . In particular, in this case, we may write

R(n) ≥ (1 − p∅(n))R−(n), with p∅(n)
∆
= Pr

(M)
fail

(
2

R−(n)

m − 1

)

whence
R∗(n) −R(n) ≤

[
R∗(n) −R−(n)

]
+
[
p∅(n)R−(n)

]
. (4.37)

Thus to show strong asymptotic optimality, it suffices to show that each of the two terms
in brackets in (4.37) approach zero as n → ∞. We note that proving the asymptotic
optimality has a quite high impact on the broader system design. That is, to show that
each of the two terms in brackets in (4.37) approach zero we must show that p∅(n) → 0.
Thus, proving strong asymptotic optimality by this method implies that the throughput
lower bound R−(n) may be met with probability one. As previously mentioned this is of
interest for the broader network design as this implies that as the user population grows a
small subset of switches in the BRS process model may be considered in order to arrive at
an optimal scheduling decision and the overall system behaves as a conventional (wireline)
switch.

We now describe suitable choices for R−(n) for the particular multiplexers of interest.
In the sequel, when there is risk of confusion, we use superscripts II and IC to distinguish
R(n), R−(n), SINR(n), and other quantities for the interference ignoring and cancelling

Consider first the case of interference-ignoring multiplexers. In this case, for a given
active set A and channel realization HA, it is straightforward to verify that the achievable
sum rate satisfies

RII
HA

(n) =
∑

j∈A
log(1 + SINRII

j ) (4.38)

where

SINRII
j =

P‖hj‖2σ2
j

m+ P‖hj‖2‖σc
j‖2

(4.39)

with
σj = ĥ

†
jh̃j, and σc

j = Ĥ
†
A\jh̃j. (4.40)

The case for which there is no quantization corresponds to setting ĥj = h̃j in (4.39) and

(4.40), so that σj = 1 and σc
j = H̃

†
A\jh̃j .

To obtain a lower bound on RII(n), we define the following (deterministic) lower bound
on SINRII

j :

SINRII
−(n)

∆
= min

A,j,H : |T |6=0, A∈T , j∈A
SINRII

j , (4.41)

from which we obtain, via (4.38) and (4.36),

RII(n)

1 − p∅(n)
≥

E
[
RII

HA

]

1 − p∅(n)
≥ m log(1 + SINRII

−(n)) (4.42)

for any A ∈ T . In turn, via (4.33), we obtain

SINRII(n) ≥
(
1 + SINRII

−(n)
)1−p∅(n) − 1. (4.43)

In the absence of quantization there is a corresponding specialization of SINRII
−(n). While
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for the case without quantization a natural bound analogous to (4.41) is immediate, for
the case with quantization it is more convenient to develop an alternative. To this end, we
obtain8 in Appendix C.1.2

SINRIC
j ≥ γj

∆
=

P‖hi‖2
[
|σj |τj −

√
1 − |σj|2λmin

]2
+

Tr(Φ̂
−1
A )τ2

j + P‖hj‖2(1 − |σj|2)λmax

(4.44)

where [x]+ = max{0, x} and where λmin and λmax are, respectively, the minimum and
maximum eigenvalues of Φ̂A\j , and where

τj = λmin − ‖σ̂c
j‖2. (4.45)

Hence, defining

SINRIC
− (n)

∆
= min

A,j,H : |T |6=0, A∈T , j∈A
γj , (4.46)

which is deterministic, we obtain

RIC(n) ≥ (1 − p∅(n))m log
(
1 + SINRIC

− (n)
)

(4.47)

whence, via (4.33),

SINRIC(n) ≥
(
1 + SINRIC

− (n)
)1−p∅(n) − 1. (4.48)

� 4.5.3 Asymptotic Optimality with Perfect Feedback

We now develop the key characteristics of our architecture in the absence of quantization
effects. We first characterize the amount of feedback required by the protocol as a function
of the parameter settings. For this case, we view Nρ = |Rρ| as a measure of the feedback
link capacity requirement. Observe that Nρ is a binomial random variable with mean
E [Nρ] = npρ. Since pρ is the probability that a user feeds back its channel gain vector, we
have, from (4.1), that

pρ = Γ(2m,mρ−) − Γ(2m,mρ+) (4.49)

with Γ(·, ·) denoting the incomplete gamma function. We have the following theorem.

Theorem 4.5.1. Let, for any δ > 0, ρ+(n) = (1 + δ)(log n)/m and ρ−(n) = (log n)/m −
(log α(n))/m where

m log log n ≤ logα(n) = o(log n).

Then
E [Nρ] = 2mα(n)(1 − o(1)) + O(1/n) (4.50)

Proof. See Appendix C.3.2. �

From this theorem we see that the choice of α(n) = em(ρ+(n)−ρ−(n)) effectively controls
the amount of feedback required by the system. We next characterize the probability p∅
that the pre-selection phase of the protocol yields no candidate sets.

8As will become apparent, the appeal of γj as a bound is its simple form as σj → 1.
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Theorem 4.5.2. Let ρ+(n) and ρ−(n) be as in Theorem 4.5.1. Then provided 0 ≤ ε(n) ≤ 1
we have

p∅(n) ≤ e−E[Nρ]β(n)/m, (4.51)

where
log β(n) = 2(m− 1)2 log (ε(n)) (4.52)

Proof. See Appendix C.3.3. �

This theorem characterizes the manner in which successful pre-selection depends on the
interference control parameter ε and the feedback parameter ρ. Finally, we establish that
our architecture is strongly asymptotically throughput optimal.

Theorem 4.5.3. Let ρ+(n) = (log n)/m. For both the interference-ignoring multiplexer
and interference-cancelling multiplexer, let

ρ−(n) = (log n)/m− log log n and ε(n) = 1/(log n)1/(2(m−1)).

Then in both cases the protocol sequence Pε,ρ(n) with average throughputs Rε,ρ(n) and
SINRε,ρ(n) satisfies

R∗(n) −Rε,ρ(n) = O
(

1

log n

)
, (4.53)

SINR∗(n)

SINRε,ρ(n)
− 1 = o(1). (4.54)

Moreover, with this protocol sequence, the feedback link must support, on average,

E [Nρ] = 2m(log n)m(1 + o(1)) + O(1/n) (4.55)

users.

Proof. See Appendix C.3.4. �

We note that this theorem is quite illuminating in terms of the decoupling of the order
statistic gain and the multi-node matching gain. In particular, Theorem 4.5.1, in the
presence of perfect feedback at the transmitter, shows the number of users which feedback
(the order statistic gain) has an exponential effect on the probability that the rate target
can be met while the requirement for inner products between channel vectors has little effect
on this decay so long as it is bounded away from zero. That is, the multi-node matching
gain target for the scheduled rate simply interpolates β(n) between 0 and exp(2(m − 1)2).
Moreover, this result clearly implies that the order statistic gain decouples from the multi-
node matching gain for large n.

Corollary 4.5.4. Assuming the Rayleigh model from user user’s channel fading the order
statistic gain decouples from the multi-node matching gain as n→ ∞ when the transmitter
has perfect knowledge of each user’s channel realization.

From Theorem 4.5.3 we see that the use of a cruder multiplexer does not incur a penalty
in strong throughput optimality. In particular, in both cases the number of users who must
report their channel gains in any scheduling interval is the same sub-linear function. Thus,
one may enforce a strong SNR target in a system that employs an interference ignoring
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multiplexer.We note that this subtlety is further illuminated in the proof in Appendix C.3.4.
There we show the one may lower bound the probability that a set of users meets a prescribed
interference control parameter, ǫ(n), by fixing an arbitrary basis at the transmitter which
is unknown to the receivers. Then, the transmitter may select a set of users which meet the
constraint ǫ(n) by ensuring each user is highly correlated with the chosen basis. We note
that this is a centralized approach to user selection. In the following section we show that
a distributed approach to this problem is equivalent to the problem of user selection with
finite rate feedback. That is, one may rather distribute the basis chosen for selection at
the transmitter to the users. Then, one may have only the users that meet the correlation
constraint the chosen basis used for selection feedback. Thus, with this approach some of
the pre-selection phase is computed in a distributed manner at the user terminals. We now
generalize our optimality results to the case in which the feedback is quantized.

� 4.5.4 Asymptotic Optimality with Finite Rate Feedback

Our previous result for the asymptotic decoupling of the order statistic gain and multi-node
matching gain with perfect channel state information generalizes rather naturally, especially
in light of Theorem 4.4.3 and (4.22). Since the protocol uses r-bit quantization for each
channel gain to be fed back, the total feedback per scheduling interval is rNρ,σ bits, where
Nρ,σ = |Rρ,σ|.

Now Nρ,σ is similarly a binomial random variable with mean E [Nρ,σ] = npρ,σ. Since
pρ,σ is the probability that a user feeds back its channel gain vector, and the channel is
assumed to be isotropic, we have that

pρ,σ = pρpσ (4.56)

where pρ is as defined in (4.49) and

pσ = Pr{|h̃jĥ
†
j | ≥ σ} = 2r(1 − σ2)m−1, (4.57)

with the right-hand equality following from the protocol constraint that σ ≥ µ0(C), with,
as in (2.18), µ0(C) denoting the coherence of the code. Hence, (4.56) and (4.57) imply that
the expected aggregate feedback per scheduling interval is proportional to

E [Nρ,σ] = E [Nρ] 2
r(1 − σ2)m−1. (4.58)

We next characterize the probability p∅ that the pre-selection phase of the protocol
yields no candidate sets, generalizing our result of Theorem 4.5.3 to the case where there is
quantization. In particular, consider a generalized switch in which edges are drawn between
any codevectors for which the magnitude of the inner product is less than ε. One has, by
specializing (4.22),

pG =
kǫ(Cr)(2r

m

)
m∏

i=2

(
1 − i− 1

2r

)

with kε(Cr) denoting the number of codes of size m with coherence at most ε that can be
constructed from expurgations of Cr, i.e.,

kε(Cr) =
∣∣{Clog m ∈ Cr : µ0(Clog m) ≤ ε

}∣∣. (4.59)

Then we have the following theorem.
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Theorem 4.5.5. Let ρ+(n) and ρ−(n) be as in Theorem 4.5.1 and let 0 < σ(n) < 1. Then
for any fixed ε ≥ 0 we have

p∅(n) ≤ e−E[Nρ,σ]pG/m (4.60)

where E [Nρ,σ] = 2rE [Nρ] · (1 − σ(n)2)m−1 where E [Nρ] is as in (4.50).

Proof. See Appendix C.3.3. �

This theorem characterizes the manner in which successful pre-selection depends not
only on the feedback parameters (ρ, σ) and the interference control parameter ε, but also
on the properties of the quantization codebook Cr. Finally, we have that our architecture
is also strongly asymptotically throughput optimal when the feedback is quantized.

Theorem 4.5.6. Let ε(n) ≡ 0, let ρ+(n) = (log n)/m,

ρ−(n) = (log n)/m− (2m− 1)/m · log log n,

and let σ2(n) = 1 − 1/ log2 n. Furthermore, choose a quantization codebook Cr such that it
contains at least one orthonormal basis, i.e., k0(Cr) ≥ 1. Finally, select the interference-
cancelling multiplexer. Then the protocol sequence Pε,ρ,σ(n) with average throughputs Rε,ρ,σ(n)
and SINRε,ρ,σ(n) satisfies

R∗(n) −Rε,ρ,σ = O
(

1

log n

)
, (4.61)

SINR∗(n)

SINRε,ρ,σ(n)
− 1 = o(1) (4.62)

Moreover, with this protocol sequence, the aggregate rate the feedback link must support, on
average, is

E [Nρ,σ] = 2r+1m log n(1 + o(1)) + O(1/n). (4.63)

Proof. See Appendix C.3.4. �

That one can also get such throughput optimality for the case of interference-ignoring
multiplexers follows immediately from the fact that when ε(n) ≡ 0 the interference-cancelling
and interference-ignoring multiplexers are identical. Additionally, in both cases the result
of Theorem 4.63 clearly implies that the order statistic gain decouples from the multi-node
matching gain for large n in a system with quantization.

Corollary 4.5.7. Assuming the Rayleigh model from user user’s channel fading the order
statistic gain decouples from the multi-node matching gain as n→ ∞ when the transmitter
uses a single bases as the quantization codebook.

For any particular choice of multiplexer, we can also compare the feedback requirement
scaling with and without quantization — e.g., (4.55) and (4.63) in the case of an interference-
cancelling multiplexer. As this case reveals, and as is true more generally, we see that
the number of users reporting back their channel gains scales much more slowly when
quantization is used. This is because the common quantization is effectively providing
sufficient coordination to enable some pre-selection to happen at the receiver. Hence, with
finite rate feedback the multi-node matching gain is enhanced in part by the order statistic
gain through this decentralized pre-selection achieved by multiple bases contained in the
quantizer.
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We also emphasize that the parameter choices in Theorem 4.5.6 (and Theorem 4.5.3
earlier) are sufficient but not necessary for throughput optimality. And in particular dif-
ferent parameter choices will lead to different tradeoffs between the convergence rate and
feedback requirement. However, in the case of quantization, it is worth noting that ε(n) → 0
is necessary.

Finally, it is also worth remarking that an implication of the theorem is that a large
codebook (fine quantization) is not required for strong asymptotic throughput optimality
— indeed an orthonormal codebook of size m is sufficient which further implies that as the
number of user in the system grows the system designer is afforded extra degrees of freedom
in the feedback design. However, these results relied heavily on the isotropic distribution
of the users channels. If the users channel correlation a the single basis selected to achieve
Theorem 4.5.6 is mismatched to this correlation then a subset of users may have a reduced
the ability for users to meet an SNR target and thus slow the rates of convergence. If one has
the ability to infer the underlying channel correlation however, this scenario may be easily
remedied by adapting the quantization scheme to match a users fading statics. However,
adapting each users quantization codebook may yield a complex set of codevectors which
make scheduling in the associated generalized switch quite difficult. Hence, in Chapter 5
we present a simple adaptive feedback framework that enables a system to adapt a given
quantization scheme while preserving the underlying structure of the base code by using
the methods of Section 3.6.

However, the interplay between the achieved mean square error and the pre-selection
failure probability is more subtle for small to moderately sized user pools. As we have seen
in Section 3.2 codes which contain many orthogonal bases, in general, have a larger mean
squared quantization error. Hence, by choosing a channel quantizer for which pG is large, and
hence contains many orthogonal bases, to ensure successful pre-selection one may increase
the mean squared quantization error to an intolerable level. Thus, for practical system
design one must balance this trade-off. We consider this final question before examining
the effects channel correlation has on our system architecture.

� 4.6 Quantizer Performance with Many Users

In Section 2.2.1 we showed that, under mild constraints, a feedback scheme which better
represents orthogonal vectors in general has a larger mean square quantization error. Hence,
in a practical system one must balance these two properties in order to meet system design
constraints. Thus, it is of interest to know in what regimes it is better to design a feedback
scheme which better represents orthogonal vectors or has a lower mean square quantization
error. In this direction we note that in a multi-user MIMO system with finite-rate feedback
it is reasonable to expect that either:

1. multiple users will be quantized to every cell and the users with the smallest MSE
can be selected

2. multiple users will be quantized to distinct quantization indices and the user’s whose
MSE is below a given threshold may be used

As such, it is reasonable to expect that the transmit base can choose from among the users
with the best mean squared error. In order to simplify scheduling one can again attempt
to choose the users with the best individual SNR, where here the SNR is dependent on
the channel fading as well as the quantization error, then attempt to find a set of users
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(a) (b)

Figure 4-12. Two possible arrangement of 12 lines in R3. (a), a uniform collection of lines that has a low
mean square error. (b), a structured collection of 12 lines with more bases. In the absence of order statistics
the quantizer in (b) has a higher mean square error.

that negligibly interfere with one another from this reduced set. If such a greedy approach
to selecting users is successful with high probability the feedback design problem is less
influenced by the mean squared quantization error and the system designer has the freedom
to depart from a mean squared error centered feedback design and use this extra degree
of freedom to choose a feedback scheme that is that is more convenient for the broader
system design. In particular, the system designer may choose to use a channel quantizer
from our framework from Section 3.2 to balance the mean squared error of quantizer with
the number of orthogonal bases contained in the code.

To begin to develop the relevant insights needed for a system designer to choose the
appropriate channel quantizer design in a multi-user MIMO system we begin by consid-
ering how the single-user and multi-user quantization problems differ in a time-division
system where by one user is selected for transmission in any scheduling interval under the
assumption of the Rayleigh model. In rich scattering environments, where the channel
gains between each transmit element are modeled as i.i.d complex Gaussian, the channel is
isotropic so that the direction of any channel vector is uniformly distributed on the com-
plex unit m-sphere. Hence, the codebook design problem may be viewed as a sphere vector
quantization problem [137] and one may use a Lloyd like numerical algorithm (see [52] for
details) to construct a codebook that minimizes the mean square error by attempting to
uniformly space the lines9.

In a single-user system the expected MSE error is directly related to the size and shape
of the Voronoi cells. In particular, the MSE of any cell is the second moment of the cell.
Thus, a Voronoi cell with a smaller second moment has a smaller MSE and hence achieves a
higher expected rate. A numerical algorithm that attempts to improve system performance
by uniformly spacing lines, as the Llyod algorithm does, is thus likely to improve system
performance in a single-user system. To see how the shape of the Voronoi cell effects the

9This algorithm starts by initializing with a random (or deterministic) placement of the codevectors.
Then, the Voronoi cell for each codevector is determined creating a partition of Ωm. Next, a new partition
is determined by computing the center of each partition and moving each codevector to the center of its
partition. This process is repeated until the process converges to some local optimum.
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mean square error consider the two codebooks in R3 in Figure 4-12. Note, that the quantizer
on the left has a much smaller second moment than the one on the right as the mass of
Voronoi cells for the quantizer on the left is more evenly distributed about its center.

In a multi-user system much of the gain in MSE that is achieved by a Lloyd like numerical
optimization is achieved by the order statistic gain. That is, when multiple users are
quantized to the same cell it is highly likely that one user’s channel vector is close to
the codeword of the cell (or alternatively far from the boundary of the cell). Indeed, in
the multi-user MIMO channel with finite-rate feedback one can select users with the best
channel correlation in each Voronoi cell. Hence, the MSE performance of a user selected for
transmission may be given by an order statistic of the MSE over all users quantized to a
cell and not the second moment of that cell. We have shown that in the large user limit the
mean squared quantization error tends to 0 with only logm bits of feedback per user [124].
Thus, in the multi-user scenario the MSE error is less closely tied to the particular size
and shape of the Voronoi cells of the quantizer and the overall performance of the system
is less closely related to the second moment of the Voronoi cells of the quantizer. This
observation is important as when the number of users in the system grows the system
designer is afforded an additional degrees of freedom in the feedback design. That is, as the
users selected from each cell are likely to have channel vectors that lie in a spherical cap
which is strictly contained inside the Voronoi region of each codeword the system designer
has the freedom to perturb any arrangement of lines to one that is more convenient for the
broader system design. In particular, any irregular quantizer that is designed by a Lloyd
like numerical algorithm to optimize the MSE (or the expected rate) of the system can be
rearranged to meet broader system design objectives with negligible effect on the MSE (or
the expected rate) of the system.

To see that any set of lines designed by a Lloyd like numerical algorithm can be moved
to a more regular structure we provide a simple example which is depicted in Figure 4-13.
Note that the collection of lines on the left hand side of Figure 4-13 has a smaller second
moment relative to that of the right hand side of Figure 4-13 as Voronoi regions that are
more symmetric about canter have lower second moments. However, examining Figure 4-13
(b) one may see that the quantizer depicted still has a significant mass around the center.
In a system with many users it is likely that every user selected for transmission has a
channel vector which lies strictly inside a spherical cap contained in the Voronoi region
with high probability. Thus, the quantizers in in Figure 4-13 (a) and (b) should achieve
approximately the same expected quantization error on average. However, the achieved
rates in a multi-user system are not only a function of the quantization error, but also the
interference between users. Thus, the rates achieved by the two quantization schemes may
continue to differ if one can not ensure that co-channel interference is not approximately
equal in the two systems as the structure of the two system of lines may led to a difference
in the interference a user sees on average.

In a system with multiple users a natural metric on the performance of a quantizer is
the order statistic on SINRsat. More precisely, for an n user system we let

σ(0) ≤ σ(1) ≤ · · · ≤ σ(n−1)
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(a) (b)

Figure 4-13. The two arrangement of 12 lines in R3 from Figure 3-1 where spherical caps of equal half
angles are depicted around the codewords. In a system with many users the probability that the quantization
error of the user with the smallest quantization in each cell falls in the spherical cap is approximately equal.

be the ordered magnitude of the correlation of each user’s channel vector with its quantized
channel vector. Then, we let for any code Cr,

SINRsat(Cr;n, ℓ) = EH

[
1

ℓ

n−1∑

i=n−ℓ

σ2
(i)

1 − σ2
(i)

]

be the expected value of SINRsat for the best ℓ users in a pool of size n.

The expected order statistics of a general distribution has been well studied. In particu-
lar, given a sequence of n identically distributed positive random variables (not necessarily
independent), X0,X1, . . . ,Xn−1 with common mean µ and variance ς one has [23]

E

[
1

ℓ

n−1∑

i=n−ℓ

X(i)

]
≤ µ+ ς

√
n− ℓ

ℓ
. (4.64)

One can show that this bound is in fact tight, i.e. there exists a probability distribution
for which the inequality in (4.64) may be replaced with equality, and does not vary greatly
with the assumption of independence. This bound on the order statistic is quite useful in
understanding the behavior one should expect from the order statistic for SINRsat. Exam-
ining (4.64) one may see that by only using a small faction of the user population for the
order statistic, i.e. ℓ = m where m≪ n, SINRsat(Cr;n, ℓ) will grow at a rate no greater than√
n times the variance. Thus, one may use (4.64) to arrive at an upper bound on the rate

of growth of any quantization scheme using Lemma 2.4.2 and an upper bound on the rate
of growth of RVQ using Lemma 2.4.1. However, this bound, while yielding the appropriate
behavior of the order statistic, is far too optimistic in the exponent of n in the scaling. That
is, in the sequel we show that using the upper bound on the quantizer performance one has

10 log10 SINRUB
sat (n, ℓ) ≈ 3

m− 1
· (r + log2 n) + C(ℓ,m)
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Figure 4-14. The upper bound SINR
(UB)
sat (n, ℓ) in a 32 user system for various values of ℓ as well as the

upper bound on SINRUB
sat (32, ℓ), (B.6a). Note that the for a large number of bits there is an approximately

equal slope for each curve with a fixed offset due to the number of users selected as predicted by (B.6a).

for some constant C(ℓ,m) which does not depend on n or r. Thus, in a multi-user system
doubling the size of the user pool has roughly the same effect of adding a bit of feedback
using the optimal quantization scheme.

We plot the approximation of the upper bound SINRUB
sat (n, ℓ) in Figures 4-14 and 4-15

along with its exact value. Examining Figures 4-14 and 4-15 one can see that the behavior
of the approximation of the upper bound is accurate for high rates. In particular, the curves
are approximately linear for rates greater than 10 bits. However, examining Figures 4-14
and 4-15 one can see that the approximation of the upper bound for SINRsat is even more
accurate when examining the effects of a growing user population. That is, one may see in
Figure 4-14 that while the curves themselves are not linear the gaps between the curves are.
This is depicted in Figure 4-15. Note that the approximation parallels the upper bound and
there is an approximately constant gap between the groups of curves. This is an important
observation for any multi-user MIMO system which aims to operate at or above a fixed
SINR in the high SNR regime. In particular, each time the number of users in the system
doubles the system designer may decrease the feedback rate per user by a bit and expect
to achieved the fixed SINR target. We develop our upper bound on SINRsat with order
statistics in Appendix B.2 and we conclude this chapter by presenting the performance of
the quantizers we have developed in C4 for a 32, 16 and 8 user system and show how this
may aid in one’s choice of quantizer in a system of interest.
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Figure 4-15. The upper bound SINR
(UB)
sat (n, 4) in a n user system for various values of r as well as the

upper bound on SINRUB
sat (n, 4), (B.6a). Note that the growth in the SNR is linear in log2 m with slope

3/(m − 1) = 1 as predicted by (B.6a). The linear growth in r predicted by (B.6a) may also be observed
through the difference of every pair of curves (lines).
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� 4.7 Practical System Design for Developed Quantizers

In this section we present the performance of the quantizers that we have developed in a
system which uses the order statistic on the quantization error of each user to determine a
candidate subset of users for scheduling in a system with 4 transmit antennas. We consider
a 32, 16 and 8 user system. We label each code using the table in Table 4.1. Then we show
how one may use these figures to design practical systems.

Figure 4-16 illustrates the performance in a 32 user system when no order statistic is
used. This is the performance a system with any number of users will obtain. As previously
seen our quantizers do quite well for 3 to 12 bits and are at most −0.81 dB from the optimal
channel quantizer. We again note that codes with many orthogonal bases perform worse, in
terms of the achieved value of SINRsat, than codes with fewer orthogonal bases. However,
one may see in Figures 4-16 – 4-19 the gap becomes smaller when the order statistics
are considered. A useful example is the code CASC(3, 0) labeled as (9, 0). Note that this
code contains 1097 orthogonal bases. When no order statistics are used this code performs
approximately 1.6 dB worse than the optimal scheme. While this performance is still within
the range of applicability, one may be compelled to use alternate schemes due to this large
gap. However, this gap is cut in half when only the 4 users with the best quantization
error are selected as seen in Figure 4-19. The evolution of the performance of this code
may be seen in Figures 4-16 – 4-19. As the competing scheme only has 26 orthogonal bases
it is wise, if scheduling and multiplexing complexity are of great concern, to use the code
CASC(3, 0) to increase the probability there is an orthogonal set. This trade-off may also be
seen in the 10 bit code CASC(4, 2) which contains 2289 orthogonal bases and is labeled by
(10, 1) as well as by the 11 code CASC(4, 0) which contains 14577 orthogonal bases and is
labeled by (11, 0).

The gains seen in a 32 user system are depicted in Figures 4-16 – 4-19 may also be
seen to a lesser extent in 16 and 8 users systems. In particular, the code CASC(3, 0) has a
gap that is approximately 0.95 dB in a 16 user system in which the 4 users with the best
quantization error are selected and a gap that is approximately 1.2 dB in a 8 user system in
which the 4 users with the best quantization error are selected. This may be seen in Figure
4-21 and Figure 4-22 respectively.

To intelligently design a 4 transmit antenna system one may use Figure 4-10 in con-
junction with Figures 4-16 – 4-22 to determine an appropriate quantizer for a problem of
interest. In particular in a 32 user system one may determine a value for pσ,ρ such that
8 users on average feedback. Then, given this value of pσ,ρ and prescribed probability of
pre-selection success one may determine the number of orthogonal bases required to be
contained in the quantizer using Figure 4-10. Finally, one may then turn to Figure 4-18 to
select a quantizer which contains the required number of orthogonal bases and ensure that
it has a tolerable mean squared quantization error. If this is not the case, one can reduce the
prescribed probability of pre-selection success, determine the number of orthogonal bases
required to be contained in the quantizer and then again turn to Figure 4-18 to select a
quantizer which contains the require number of orthogonal bases and ensure that it has
a tolerable mean squared quantization error. This may be repeated iteratively until one
achieves a desired balance. We note that is may be done similarly for a 8 transmit antenna
system using Figure 4-11. However, we do not provide 8 dimensional quantizer performance
in this thesis. Plots for the performance of such codes may be found at [119].
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Index ⊥-Bases Construction Reference
(r,⊥-Bases)

(3,4) 4 C(2,4)
Z

(3; [[0, 1]]) (3.6)
(3,Z1) 0 Hochwald 3-bit [56]
(3,Z2) 0 WiMax 3-bit [1, 143]

(4,8) 8 C(2,4)
Z

(3; [[0, 1]]) ∪ C(2,4)
Z

(3; [[1, 0]]) (3.6)
(4,4) 4 MUB(4)/CT (2, [0, 0], 0) [61,76]/(3.54)
(4,12) 12 CT (2, [1, 0], 0) (3.54)
(5,26) 26 C∗

ASC(2, 2) Example 3.2.6

(5,36) 36 C(2,4)
Z

(3; [[0, 0], [0, 1]]) ∪ C(2,4)
Z

(3; [[1, 0]]) ∪ CT (2, [0, 0], 0) (3.6),(3.54)
(5,32) 32 CT (2, [0, 0], 0) ∪ CT (2, [0, 0], 2) (3.54)

(5,12) 12 C(2,4)
sparse(2) (3.7)

(6,105) 105 CASC(2, 0) [13]/Example 3.2.6
(6,16) 16 CT (3, [1, 0], 0) (3.54)

(6,4) 4 CF(0.6777, 0.5305 + 0.7425 · i, C(2,4)
Z

(3; [[0, 1]])) (3.11)
(6,Z3) 0 Hochwald 6-bit [56]

(6,48) 48 C(2,4)
sparse(3) (3.7)

(6,Z5) 0 WiMax 6-bit [1, 143]
(7,233) 233 CASC(3, 2) Example 3.2.6

(7,112) 112 C(2,4)
Z

(4; [[0, 1]]) ∪ C(2,4)
Z

(4; [[1, 0]]) ∪ CT (3, [0, 0], 0) (3.6),(3.54)
(7,128) 128 CT (3, [0, 0], 0) ∪ CT (3, [0, 0], 2) (3.54)

(7,192) 192 C(2,4)
sparse(4) (3.7)

(8,393) 393 CASC(3, 1) Example 3.2.6
(8,4) 4 CF(0.2303, 0.6817 + 1.9577 · i, CT (2, [0, 0], 0)) (3.11)

(8,768) 768 C(2,4)
sparse(5) (3.7)

(9,1097) 1097 CASC(3, 0) Example 3.2.6
(9,26) 26 CF(0.0100, 0, CASC(2, 2)) (3.11)

(10,2289) 2289 CASC(4, 1) Example 3.2.6
(10,1521) 1521 CASC(4, 2) Example 3.2.6
(10,26) 26 CF(0.5872, 0.4628 + 0.6790 · i, CASC(2, 2)) (3.11)

(11,14577) 14577 CASC(4, 0) Example 3.2.6
(12,105) 105 CF(0.3639, 1.9529, CASC(2, 1)) (3.11)

Table 4.1. A list of quantizers in C4 developed with our channel quantization framework. The first column
is used to index the simulated performance of each code in Figure Figures 4-16 – 4-22. The second column
contains the number of orthonormal bases for C4 contained in the code and the last column contains a
reference to the construction.
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� 4.7.1 Performance of Developed Quantizers in 32 User Systems
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Figure 4-16. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 32 user system. We note that as all users are considered the achieved performance is
independent of the number of users in the system. The value taken by the upper bound is labeled at 0 for
each rate. Each point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average
SINRsat for the best 32 users is computed. Hence, for this example there is no exploitation of the order
statistic. Note that the code corresponding to (9, 0) has approximately a 1.6 dB loss compared to the upper
bound.
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Figure 4-17. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 32 user system where only the 16 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 16 users is computed. Note that the code corresponding to (9, 0) now has approximately a 1.1 dB loss
compared to the upper bound.
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Figure 4-18. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 32 user system where only the 8 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 8 users is computed. Note that the code corresponding to (9, 0) now has approximately a 0.9 dB loss
compared to the upper bound.
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Figure 4-19. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 32 user system where only the 4 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 4 users is computed. Note that the code corresponding to (9, 0) now has approximately a 0.8 dB loss
compared to the upper bound.
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� 4.7.2 Performance of Developed Quantizers in 16 User Systems
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Figure 4-20. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 16 user system where only the 8 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 8 users is computed. Note that the code corresponding to (9, 0) now has approximately a 1.15 dB loss
compared to the upper bound.
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Figure 4-21. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 16 user system where only the 4 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 4 users is computed. Note that the code corresponding to (9, 0) now has approximately a 0.95 dB loss
compared to the upper bound.
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� 4.7.3 Performance of Developed Quantizers in 8 User Systems
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Figure 4-22. The performance of existing and developed quantizers in C4 relative to the upper bound
SINRUB

sat (n, ℓ) in a 8 user system where only the 4 users which achieve the highest value of SINRsat at each
scheduling interval are considered. The value taken by the upper bound is labeled at 0 for each rate. Each
point corresponds to a specific quantizer as labeled in Table 4.1. For each point the average SINRsat for the
best 4 users is computed. Note that the code corresponding to (9, 0) now has approximately a 1.15 dB loss
compared to the upper bound.
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Chapter 5

Multi-User MIMO Systems Design
with Non-Rayleigh Fading

Original analysis of MIMO wireless systems have shown the potential for increasing wireless
system capacity with out the price of power or bandwidth [126] by exploiting the spatial de-
grees of freedom available multiple transmit and receive elements. It is well understood that
the capacity of a wireless communication channel scales linearly with the number of spatial
degrees of freedom. These results stem from the path diversity afforded by the MIMO
channel previously described under the assumption all transmit and receive pairs are inde-
pendent and identically distributed. However, the characteristics of MIMO wireless systems
rely heavily on the underlying wireless channel and correlations between the transmit and
receive elements can be shown to be a limiting factor in MIMO systems [35, 112]. Thus,
understanding the correlation and more generally the expected power coupled between the
transmit and receive elements should play an import role in modeling the multi-user MIMO
channel [133,134].

In the pioneering work of Teletar [126] and Foshini and Gans [51] it was shown that
under the assumptions of the Rayleigh model the capacity of the MIMO channel scales
approximately linearly in the minimum of the number of transmit and receive elements.
Hence, under the assumptions of the Rayleigh model the capacity of the MIMO channel
may grow unbounded if one may simultaneously increase the number of transmit and receive
elements. However, in general there are physical limitations on the length and/or area of an
antenna array. As such, one would expect that packing more and more antennas into a fixed
area will make the fading process between the transmit and receive pairs correlated thus
limiting the capacity growth. It has been shown that the physical constraints of antenna
arrays and the underlying propagation environment put deterministic limits to the spatial
degrees of freedom [99]. In particular, constraints on the areas of the transmit array and
receive array led to deterministic limits on the spatial degrees of freedom [99]. As such it is
natural to wonder what, if any, limits are put on the multi-user MIMO system as the number
of user grows above the number of transmit elements in light of these limitations on the
spatial degrees of freedom. Moreover, in an environment with a finite number of scatterers
it is likely that as the user population grows there is some subset of users that will be
positioned such that the scattering characteristics of the propagation paths for each user’s
signal are similar. Hence, it is not unreasonable to expect that the propagation environment
may have limited degrees of freedom which has a significant influence the structure of the
joint fading process in a multi-user MIMO system. Thus, in the sequel we examine explicit
ways to characterize these effects.
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� 5.0.4 Physical Modeling and Measurements of MIMO Channels

If one has knowledge of the geometric structure of the propagation environment one may
aim to reproduce the actual signal propagation for that environment. That is, one may
deterministically compute the multipath components including amplitude and delay for
each transmitted signal. More precisely, one may store the geometric and electromagnetic
characteristics of the site and simulate the corresponding propagation process. However,
the results are only relevant for the specific site measured and in general one must repeat
this process many times to get an accurate model for channel. In urban environments one of
the most appropriate methods to physically model the channel, taking the actual physical
propagation environment in to account, is ray tracing. As one expects many multipath
components to dominate the characteristics of the fading process in such an environment,
one may consider a set of “rays” emanating from the transmit antennas and arriving at
the receiver. Each ray models the radio wave interaction with scatterers in the propagation
path. To determine the rays to use in the ray tracing model one constructs the so-called
visibility tree to represent the particular propagation environment. This visibility tree is
computed by recursively adding nodes to the visibility tree corresponding to line of sight
paths between objects. More precisely, the ray tracing algorithm may be described as
follows: One begins by adding the transmitter as the root of the tree, every scatterer that
has line of sight path with the transmitter is added as a leaf. For each one of these leafs every
scatterer with line of sight path to a leaf is added and this process is repeated until a desired
number of layers has been reached or the receiver is contained as a leaf. Each branch that
contains the receiver as a leaf is then selected as a ray. The ray tracing algorithm has the
nice property that once the visibility tree has been built it is a simple process to determine
the statistics of the fading process by backtracking from each leaf to the root incorporating
an appropriate physical rule at each step to determine the amplitude and delay of the path.
We note that repeating this process for each user may produces visibility tress with common
branches. If this is the case, and the branches significantly contribute to the fading, then
two such users may have a quite similar fading process. Any two users who have similar
fading process in the sequel we say have clustered fading or form a cluster. We note that this
definition does not imply a spatial relation between the users nor correlated channels. This
model rather simply describes a similarity in signal propagation and hence have similarly
spatially correlated fading, i.e. two users i and j form a cluster if and only if

Khi
≈ Khj

.

Geometry based models, such as ray-tracing, are determined by the particular scatterer
location and hence only succeed at modeling a specific site. In order to form a more
applicable model one may rather consider randomly placed scatterers and then model the
statistics of the resulting fading. While these physical models provided valuable insights
into how the physical environment effects the signal propagation and hence how one should
model the channel, they do little to help with our analysis as they do not fully describe
the channel impulse response (2.9) or provide an analytic model for the distribution of the
fading. Recall from (2.2) the fading coefficient for a single-antenna system in a narrowband
flat fading channel could be derived by the system transfer function for the single transmit
and receive pair. In a multi-user MIMO channel one must specify nm such transfer functions
to characterize the system fully (analytically). However, in the presence of a finite number
of scatterers and/or clustered users it is unclear what relationships the physical structure of
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the propagation environment has on the nm transfer functions that characterize the system.
In order to make realistic assumptions about the choice of model and associated parameters
we first review some preliminary results on the role that the structure of the propagation
environment has on the multi-user MIMO channel.

The full structure of the fading characteristics of the multi-user MIMO channel are only
beginning to emerge through empirical measurements [8, 19, 37, 42, 71, 72] which point to
a channel model for which the users channel are spatially correlated. In particular, [71]
examined a MIMO system with 4 transmit elements and 4 user where the users are in an
indoor environment, outdoor environment near the transmit base or an outdoor environment
far from the transmit base. These measurements showed that the receive end covariance

RRX = E
[
HH†

]

is roughly diagonal while the transmit covariance

RTX = E
[
H†H

]

can take on one of many forms depending on the location of users. In particular, [71]
showed that the transmit covariance of the users was approximately uniform and dense for
users that were near the transmit base, non-uniform and dense for indoor users and sparse
for users far from the base. Further, these measurement campaigns as well as the analysis
of some simple scattering models for multi-user MIMO channels [139] have shown that the
assumption that each transmit and receive pair follow i.i.d Rayleigh fading is more often
than not an exception rather than the norm. As such, it is unreasonable to assume in
general that multi-user MIMO channel follows the Rayleigh model, but rather one should
assume a more general model for which the Rayleigh model is a particular case. Thus, in
a multi-user MIMO system one expects heterogeneity in user fading not only in magnitude
but also direction if a large geographic region is to be served. In particular, in a multi-user
MIMO system users may form clusters. Thus, any model for a multi-user MIMO system
should have degrees of freedom to model the structure as well as rank of the covariance
matrix.

From the above discussion it is clear that the realistic models for the multi-user MIMO
channel should have some way to account for geometry of the propagation environment.
Moreover, the parameters of such a model should have some way to map physical channel
measurements and other physical prior information in a way as to accurately predict the
relevant figures of merits. In the sequel we show these degrees of freedom play an important
role in the performance of a multi-user MIMO system. As such we seek an analytic model
that will allow one, with some underlying knowledge of the scattering environment, to
accurately (and tractably) model the channel. As direct knowledge of the location of scatters
will not be useful in our analysis and will be cumbersome to use at the transmit base we
rather select a more analytical approach to multi-antenna channel modeling as to ignore
the physical properties of the scattering objects focusing rather on directly modeling the
correlation of the fading coefficients between the transmit and receive pairs. Moreover,
as we have previously shown the order statistic gain and multi-node matching gain are of
fundamental importance. Thus, in the sequel we develop our choice for the channel model
of a multi-user MIMO system. Then in the sequel, we provide a discussion which parallels
this develop to select a discrete model for the user assignment distribution.
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� 5.0.5 Analytic Models for the MIMO Channel

Physical models and measurements have shown that the multi-user MIMO channel should
be assumed to have spatially correlated users. Thus, it is our goal to develop an analytic
model for the multi-user MIMO channel. However, the model must be chosen in a way that
enables one to model the relevant aspects of the problem of interest in as simple a way as
possible to enable simple analysis and estimation of the channel. The original analysis of
multiple-antenna systems assumed tractable and practically motivated models in order for
system designers to determine the fundamental limits of such systems. The simplest such
analytic model for the m × n MIMO channel is the Rayleigh model which describes the
fading process as

H[k] = G[k]

where G[k] is an m×n random matrix with elements distributed as i.i.d zero-mean complex
Gaussian variable with variance 1/2m. Such a model assumes a rich scattering environment
that is uncorrelated. However, as previously noted, there is sufficient evidence that the link
pairs in a MIMO channel are spatially correlated [8, 19,37,42,71,72] and as such one more
generally wishes to introduce parameters into the channel model to capture the correlation
of the links. In the most general such parametrization one must prescribe the correlation
of each of the nm transmit and link pairs resulting in n2m2 free parameters. That is, the
most general parametrization must describe the nm× nm full channel covariance matrix,

RH = EH

[
vect(H)vect(H)†

]
(5.1)

This approach involves many free parameters and several models have been proposed that
imposes particular structures on the MIMO covariance matrix to reduce the number of free
parameters. As we are interested in the system capacity we seek a model which sufficiently
captures enough of the physical structure of the multi-user MIMO channel to predict system
performance, while the parametrization is of low enough dimension to allow for simple and
direct mappings from channel measurements and other prior information about the channel
to be incorporated with low complexity. In the sequel we examine a few simple extensions
of the Rayleigh model. As such, throughout this section we let G[k] be an m× n random
matrix with elements distributed as i.i.d zero-mean complex Gaussian variable with variance
1/2m.

In order to reduce the number of free parameters one has in describing the channel
covariance one may rather consider the correlation at both link ends. That is, instead of
considering the full channel correlation matrix (5.1) one may rather consider the m × m
and n× n matrices

RTX = EH

[
H†H

]
= UTXΛTXU

†
TX

and
RRX = EH

[
HH†

]
= URXΛRXU

†
RX.

Any model that uses these matrices directly has m2 + n2 degrees of freedom as opposed
to the n2m2 free parameters of the full covariance matrix. One of the most useful models
for our purposes which uses this decomposition is the Weichselberger model. While the
Weichselberger model is not specifically developed for the multi-user MIMO channel it
is particularly appealing for our use as it succinctly characterizes the spatial degrees of
freedom in the MIMO channel. In particular, it captures the expected energy that is
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transferred between the modes of the transmitter and receive elements. More precisely, the
Weichselberger model for the MIMO channel [134] is

H = U
†
RX

(
Ω̃⊙ G

)
U

†
TX

where Ω̃ is the element wise square root of the n ×m coupling matrix Ω which describes
the expected energy coupled between the transmit and receive eigenmodes. The matrix Ω

is easily obtained from measurements of the MIMO channel [8,134] via the relationship

Ωi,j = EH

[∣∣∣u†
RX,iHu∗

TX,j

∣∣∣
2
]

where uRX,i and uTX,j are the eigenvectors of the receive side and transmit side covariances
respectively. As the Weichselberger model uses both the eigenmodes of the transmit and
receive covariance as well as the coupling matrix the full model has n(n−1)+m(m−1)+nm
real parameters. This general model is of particular interest as there are nm model param-
eters that coarsely captures the spatial structure of the MIMO channel. In particular, the
structure of the coupling matrix determines whether the underlying propagation environ-
ment has rich scattering as in the Rayleigh model (by taking Ωi,j = 1) or reflects a more
sparse environment where Ωi,j = 0 for a large number of i and j pairs. In the sequel we say
a channel is a sparse multi-path channel if Ωi,j = 0 for a large number of i and j pairs and
say a channel is a dense multipath channel otherwise. This distinction is important as this
will determine how one may exploit the gains inherent in MIMO systems. Most importantly
the spatial structure of the coupling matrix will largely influence the design of the channel
quantization. Indeed, if the propagation environment is a sparse multipath channel then one
should restrict the channel quantization to the subspace(s) in which most of the transmit
energy propagates. However, there have been many other approaches presented in literature
to model correlation in the MIMO channel. We present on such a model in the sequel as
it will further motivate our model for the multi-user MIMO channel as well as our choice
of model for the user assignment distribution. We have previously mentioned the Rayleigh
model has been beneficial in modeling the MIMO channel assuming i.i.d fading. However,
the Kronecker model has become the one of the most popular and commonly used analytical
models for a correlated MIMO channel [8]. We briefly discuss the Kronecker model with a
particular emphasis on its deficiencies in modeling the multi-user MIMO channel.

The Kronecker model factorizes the channel correlation matrix into a product of the
marginal covariance matrices of the link-ends, RTX and RRX. In particular, the Kronecker
model for the MIMO channel selects

H = R
1/2
RXGR

1/2
TX. (5.2)

It is clear from the definition that this model requires the specification of RTX and RRX

directly and as such this model has the aforementioned n2+m2 degrees of freedom. However,
in an attempt to simply model the correlation the Kronecker makes an implicit assumption
that the joint DOA-DOD spectrum is separable which has a large effect on the capacity
[134]. Moreover, rewriting (5.2) using the eigenvalue decompositions of RTX and RRX one
equivalently has

H[k] = URXΛ
1/2
RXG[k]Λ

1/2
TXU

†
TX = URX

(
λRXλ

†
TX ⊙ G

)
U

†
TX (5.3)
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where λRX and λTX are the vectors of eigenvalues for the receive and transmit covariances
respectively. Thus, the Kronecker model also makes an implicit assumption on the prop-
agation environment. Indeed, from (5.3) the Kronecker model implicitly assumes that the
energy coupled between the eigenmodes of the transmitter and the receiver is rank one. In
a single-user system this may provide and adequate model for the MIMO system in some
cases. However, in a multi-user system an assumption of a rank one coupling matrix is
too restrictive as the propagation paths associated to different eigenmodes made fade quite
differently for different users. In particular, consider a single coordinated MIMO system
where one link end is spatially rich while the other end is rank deficient (i.e. environments
where there may be physical obstructions that reduce the rank of the covariance at one
link end while the other link end has many local scatterers). In the Kronecker model this
scenario is modeled through a rank deficient covariance at one of the link ends and hence
the rank one coupling matrix may null the correct modes of the system. However, consider
a more general case in which the transmit array is spatially rich while a geographically dis-
tributed, uncoordinated receive array is amongst a collection of physical obstructions that
null certain pairings of transmit and receive modes. Such a scenario will be poorly captured
by the Kronecker model as it is rank once. However, there are sufficient degrees of freedom
in the Weichselberger model to capture this scenario. Thus, in order to model the MIMO
channel accurately in terms of both the correlation as well as the capacity one must use a
more general model, such as the Weichselberger model, to accurately model the possible
energy couplings between transmit and receive modes of the system.

The particular structure of the coupling matrix in the Weichselberger model determines
whether the underlying propagation environment is a sparse or dense multipath channel
which strongly influences the quantizer design. This is important as this will determine
how one may exploit the gains inherent in MIMO systems. Most importantly the spatial
structure of the coupling matrix will largely influence the design of the channel quantization.
In Chapter 3 we developed a method to exploit knowledge of the spatial structure of the
fading. Indeed, using our systematic construction one may select only sparse codes to
quantize a sparse multi-path channels or use the construction as described to quantize
dense multipath channels. However, as we have stated previously one in general does not
have prior knowledge of the spatial correlation of the fading process for each user in the
system for every deployment site. In order to effectively design a feedback scheme we must
infer this structure and develop a quantization scheme that may adapt to this knowledge.

� 5.1 Modeling the User Assignment Distribution

Current MIMO systems must be developed in a way as to be robust to a variety of radio
environments to be easily (and quickly) deployed on a large scale. To do such a system
designer may design a system under some minimum number of assumptions (for example
number of users, user mobility etc.) while leaving free a few degrees of freedom in the design
which may be set independently at each deployment site. An even more desirable approach
is to design a system that may infer these parameters through some set of minimal training
data as this removes much of the complexity of system deployment as well as provides the
system with the ability to adapt to possible future changes in the radio environment. The
simplest approach to provided this functionality is to design a feedback link for users of the
system to report the current state of their radio channel to the transmitter. However, if the
radio propagation environment is unknown one may not be able to simultaneously design a
feedback scheme that has a tolerable quantization error for a variety of fading environments
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for a given feedback rate. If this is the case then one may rather design a feedback scheme
that is good for a large class of fading distribution and provide a mechanism with which a
system may adapt the feedback scheme in environments where this scheme performs poorly.
To illustrate how this may be done we first consider a simple example for a single-antenna
system then generalize it to a MIMO channel.

In a single-antenna system, one is generally only interested in the received signal power
as this describes the instantaneous capacity of the channel (2.4). Hence, in a single-antenna
systems one typically only models the magnitude of the fading. Common models for the
magnitude of the fading are

• The Rayleigh model, which assumes non-line of sight signal propagation where by the
fading coefficients h[k] is modeled as a complex Gaussian random variable

• The Rician model, where the received signal contains a significant line of sight com-
ponent

We note that both of these models reflect an underlying assumption on the location and
distribution of the scatterers. Both assume a large number of scatterers while the Rician
model assume a scatterer is not present in the line of sight while the Rayleigh model does.
If the transmitter has perfect knowledge of |hi[k]|2 for each user over a sufficiently long
length of time it is a relatively simple process to determine which model to use based on
this series of observations. To see this, recall that the Rician distribution is for x ≥ 0

Rician(x,A, σ) =
x2

σ2
exp

(
−x

2 +A2

2σ2

)
I0

(
Ax

σ2

)

where I0(x) is the modified zeroth order Bessel function of the first kind (see [10] for the
exact expression for this function). Furthermore, recall that the Rayleigh model is simply
a Rician distribution for which A = 0. Hence for the transmitter to make an inference on
the underlying propagation environment for any user in the system (i.e. whether the user
has line of sight or non-line of sight) it is sufficient to test whether A = 0 or A > 0 based
on a series of observations of hi[k]. Hence for each user one may define a hidden random
variable

Zi =

{
0 if user i channel follows Rayleigh model

1 if user i channel follows Rician model

and form a maximum likelihood estimate for each Zi in an attempt to determine whether
user i has line of sight. One can show that the ML estimate for Zi after perfectly observing
the k-th fading coefficient is [114]

Ẑi =

{
0 if 1

k

∑k−1
i=0 |h[k]|2 ≤ 2σ2

1 otherwise

Thus, in practice if the transmitter is informed of the fading state of each user it can infer
relevant aspects of each users propagation environment (in this case line of sight) to help
optimize scheduling decisions.

It is important for any feedback design to account for the underlying fading process
and/or be able to adapt to estimates of the fading process. For example, if one uses
finite rate feedback to convey the channel state in a single-user system the optimal scalar
quantization scheme depends heavily on the value of A in the Rician model. Thus, if
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estimates of the fading process are not taken into account a feedback design may have to
use a scheme of much higher rate than needed or an intolerable distortion in the channel
representation may be incurred. We address how one may design intelligent feedback scheme
which may adapt to fluxuations in the Chapter 3 after first considering the relevant figures
of merit for single-user systems and sufficiently generalizing the present discussion to the
multi-user MIMO system.

In Section 4.2 we asked the question whether a single generalized switch could be con-
structed which, with high probability, solves global scheduling problem as this indicates
when the multi-user MIMO system behaves like a wire-line system. In the sequel we pro-
vide this generalized definition. However, as seen in the single-antenna broadcast system
the figures of merit (for both the outage probability as well as the ergodic capacity) rely
heavily on the distribution of the fading process and hence one must accurately model the
fading process for the results to be meaningful. In a single-antenna system the effects of user
dynamics and the geometry of the propagation environment are well understood [100,128].
Indeed, we have previously described two models for the single-antenna system that stem
from different assumption on the line of sight. In the MIMO channel there are far more
effects that must be modeled which not only effects the system throughput but also the
feedback design. In particular, one must model the effects of the array geometry, electro-
magnetic coupling of the transmit elements as well as the co-channel interference between
the different users.

In the preceding example for a single-antenna system we showed that one may make
a coarse estimate of the underlying propagation environment through observations of each
users fading state. In the sequel we describe how one may do similarly in the multi-antenna
case. That is, in the sequel we examine how one may, through observations of the feedback
process, form an estimate of the coupling matrix Ω. However, we do not do this directly.
As we have shown in Section 2.2.1 one may first estimate the assignment distribution for
each user, p̂i, and then use this distribution to form an estimate of each users channel
covariance and hence of Ω. This approach is of interest as it may be used more broadly
throughout the system to influence scheduling decisions and adapt the feedback scheme. In
particular, by first estimating the user assignment distribution one can aid in the search for
a maximal matching in the BRS model by identifying the switches that are most likely to
contain the clique of maximum weight. This approach is a far more attractive approach than
estimating Ω directly as it is quite cumbersome in general to compute the user assignment
distribution from knowledge of Ω as exact computation of the user assignment distribution
requires the evaluation of multidimensional integrals. Thus, in the sequel we develop an
appropriate model for the user assignment distribution. However, to estimate the user
assignment distribution one must first find an appropriate class of discrete distributions to
model this process.

Any model for the user assignment distribution in the multi-user MIMO channel should
be strongly tied to the underlying distribution of the multi-antenna channel. Indeed, from
Section 2.2.1 we have shown that the probability that any user is quantized to a specified
codeword is simply the integral over the Voronoi cell of the codeword where the measure
used in the integration is tied to the channel covariance. If the Weichselberger model has
degenerated to the Rayleigh model then, given that the codebook is symmetric, it is easy to
see that it is equally likely that a user is quantized to every codeword. This result stems from
the fact that the Rayleigh model assumption corresponds to an assumption that each user’s
channel vector is isotropically distributed and hence uniformly distributed over the unit
sphere. If the Voronoi cells for each user are isomorphic then the associated integrals (2.16)
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are equivalent yielding a uniform distribution. That is, assuming the Rayleigh model and a
symmetric quantizer, the probability that any (every) user is quantized to a given codeword
index, say cj , is

Pr (Q(hi) = cj | Rayleigh model ) =
1

2r
. (5.4)

As we have previously discussed many measurements for MIMO channels [8,19,37,42,71,72]
have shown that the Rayleigh model is not a good model for the multi-user MIMO channel
and hence it is unreasonable to assume the uniform distribution (5.4) is a good model for
the user assignment distribution. That is, measurements have shown these channels to have
an underlying correlation structure that is not captured by the i.i.d white process described
by the Rayleigh model. Thus, one minimally expects the user assignment distribution to
depend on the codeword index j. Rather, if one assumes every users signal follows a similar
propagation path (i.e. assuming an appropriately rotated Kronecker model for the channel)
the probability that any (every) user is quantized to a given codeword index, say ci, is, for
some set of positive real numbers {pi,0, pi,1, . . . , pi,2r−1} such that

∑p2r−1

j=0 pi,j = 1,

Pr (Q(hi) = cj | Kronecker model ) = pi,j. (5.5)

Thus, the underlying assumption on the channel model and in particular the coupling
matrix Ω strongly influences the associated sampling distribution. As the Weichselberger
model generalizes the Rayleigh model and the Kronecker model one must find the appro-
priate generalization of (5.4) and (5.5) to accurately model the MIMO channel feedback
process.

In Section 5.0.5 the Weichselberger model was chosen as the model for the fading process
as it has been shown to effectively model the instantaneous mutual information between the
transmit array and a cooperative receive array well. The important aspect of this model
was that it modeled the MIMO channel using both the eigenmodes of the transmit and
receive correlation as well as the expected energy coupling between the transmit and receive
modes. It is easy to see that the rows of Ω roughly correspond to the associated sampling
probabilities in (5.4). Indeed, as we have seen in (5.4) and (5.5) a rank 1 coupling matrix
with an appropriately rotated codebook leads to i.i.d statistics for each users feedback.
As the Weichselberger model generalizes both the Rayleigh model (by taking Ωi,j = 1)
as well as the Kronecker model (by taking a rank 1 coupling matrix Ω) in the sequel
we seek a model for the user assignment distribution that can minimally be reduced to
both of the i.i.d models in (5.4) and (5.5) while describing the more general covariance
structure associated to the Weichselberger model as well. In particular, as the coupling
matrix Ω may have arbitrary rank and an arbitrary number of distinct rows one must
select a discrete distribution which can model clustering effects for the users with similar
propagation characteristics. We begin by consider how one may form a discrete model for
a single-user then turn to the question of multiple clusters.

� 5.1.1 Models for The User Assignment Distribution for a Single User

When developing a model of a process one must understand the figure of merits of interest
as to not make unnecessary or unneeded assumptions that may influence the results. Our
motivation for choosing the Weichselberger model for the fading process stemmed from our
desire to model the capacity of the system so that one may analyze the achievable rates
in the system, which in turn came from the problem of channel aware scheduling. Our
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main interest in developing a model for the user assignment distribution is to enable us
to understand the trade-off between the order statistic gain and the multi-node matching
gain and the complexity of user scheduling as well as identifying when covariance of the
fading process of a cluster of users warrants adapting the feedback scheme. We note that
the interdependencies of users channels have been captured through the generalized switch
and the BRS model. Thus, in our model of the user assignment distribution for a single-user
it is sufficient for us to model only the relations between the a single-user’s channel fading
and the quantization codebook. In particular, a motivating factor behind our development
of a generalized switching framework was that assuming a flat power allocation the set
of rates which may be allocated at each scheduling interval is completely determined by
the feedback received at each scheduling interval. Thus, we have a particular interest in
frequency each user is assigned to a given input as this may be used to derive the full
input occupancy distribution for the user pool which in turn directly relates to the output
occupancy distribution through the structure of the switch yielding the require insights in
to the system tradeoffs. In this direction we let

Xi,j =

{
1 if input j is occupied by user i

0 otherwise

and call the joint distribution of {Xi,j} the input occupancy distribution of user i. It is
sufficient for one to only model the input occupancy distribution if one only has interest
in the system tradeoffs and scheduling complexity. However, we also are interested in the
design of a system that has the ability to adapt to a variety of environments as current
MIMO system are deployed in a wide range of environments. Thus, in general one does
not know or is not able to sufficiently model the distribution of Xi,j in advance for each
deployment site. In order to make a strong inference on the input occupancy distribution
one generally must keep a count of the number of times each codeword has been reported.
That is, to infer the distribution of the input occupancy distribution one has additional
interest in the joint distribution of the random variables

Ni,j[k1, nk] = |{hi[k] : Q(hi[k]) = cj for k ∈ [k1 − nk, k1 − 1]}| ,

which we call the user assignment distribution of length nk. We note that the user as-
signment distribution of length nk records a history of a user’s feedback over a window of
length nk and thus may be used to estimate the distribution of {Ni,j [k1, nk]}2r−1

j=0 accurately
given that nk is sufficiently large and given that we have a sufficiently parametrized prior
distribution for {Ni,j [k1, nk]}2r−1

j=0 . In the sequel we develop the relevant models for the user

assignment distribution {Ni,j[k1, nk]}2r−1
j=0 for the previously considered channel models. To

motivate our chosen model for the user assignment distribution we provide a discussion
which parallels our development of our channel model by providing a model for the user
assignment distribution corresponding to the Rayleigh model, the Kronecker model and the
Weichselberger model.

We begin with the simplest discrete model for {Ni,j[k1, nk]}2r−1
j=0 which follows from

the assumption of a user channel having a correlated Gaussian channel. We note this
assumption is valid for the Rayleigh model, the Kronecker model or the Weichselberger
model. That is, assume at present that one may prescribe some set of positive real numbers
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{pi,0, pi,1, . . . , pi,2r−1} such that
∑p2r−1

j=0 pi,j = 1 and

Pr [Q(hi[k]) = cj ] = pi,j. (5.6)

Further, assume that distribution of Q(hi[k]) and Q(hi[k
′]) for k′ 6= k are independent

and identically distributed (as described by (5.6)) from block to block. As each of the
quantized channel vectors are independent the joint distribution of the random variables
{Ni,j[k1, nk]}2r−1

j=0 have a joint distribution equal to the multinomial distribution of index
nk with cell probabilities (pi,0, pi,1, . . . , pi,2r−1) [69]. More precisely,

{Ni,j[k1, nk]}2r−1
j=0 ∼ Multinomial(pi,0, pi,1, . . . , pi,2r−1;nk)

where

Pr
[
{Ni,j [k1, nk] = nj}2r−1

j=0

]
= n!

2r−1∏

i=0

pi

ni!
(5.7)

and n =
∑2r−1

i=0 ni = n and ni ≥ 0. In practice one is not given the particular covariance of
each user’s channel a priori and hence to use such a model one must first fit the parameters
of the Multinomial distribution to match, as closely as possible, the true distribution of
a user’s assignment distribution. This may be done by a simple training process at each
site the system is deployed and more generally it may be done contiguously to estimate
and track the correlation structure of each cluster which may vary due to user or scatterer
dynamics.

In practice one must, for each site the system is deployed and subsequently each time the
user and scatterer dynamics subsequently change the system state, estimate the cell proba-
bilities (pi,0, pi,1, . . . , pi,2r−1). In the absence of any prior assumptions on the distribution of
the cell probabilities the maximum likelihood (ML) estimate is simply the relative frequency
of the codeword occurrence [69]. That is, the ML estimate of the probability any (every)
user is quantized to the i-th codeword based on the observation of {Ni,j[k1, nk]}2r−1

j=0 } is,
absent any prior for pi,j,

p̂
(NP)
i,j [k1] =

Ni,j[k1, nk]

nk
. (5.8)

However, if users channels are not i.i.d over time (5.8) can be shown to be quite poor. Thus,
if our assumption that Q(hi[k]) is independent of Q(hi[k

′]) for k′ 6= k is too strong we must
generalize the Multinomial distribution to account for these dependencies. However, the
simplicity of the Multinomial distribution (5.7) and the related simple form of the ML
estimate for its parameters make it desirable to find a simple augmentation to the ML
estimate (5.8) to account for the short comings of the Multinomial model rather than
generalize the Multinomial distribution itself. An efficient way to do this is to introduce
a parametrized family of a prior distributions on the cell probabilities and chose the best
prior for the data using some simple training data or observations of the process to bias
the estimates of (pi,0, pi,1, . . . , pi,2r−1) to better match the data. That is, one may assume
that the cell probabilities themselves are random with some underlying joint distribution
and choose the parameters of the prior distribution of the cell probabilities in a way as to
capture the dependencies of the process determining {Ni,j[k1, nk]}2r−1

j=0 }.
The introduction of a prior distribution on the cell probabilities may at first seem a bit

abstract. However, there is a large physical motivation behind this choice. Note that the
introduction of prior distribution for the cell probabilities (pi,0, pi,1, . . . , pi,2r−1) reflects a
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relevant and valid prior assumption on the values the cell probabilities should take. Assuming
that the Voronoi diagrams of the quantizer are isomorphic the only source of variability in
the cell probabilities is from the channel covariance. Thus, a choice for a prior distribution
for the cell probabilities reflects a prior assumption on the channel covariance and hence
from our development of the Weichselberger model a prior assumption on the coupling
matrix Ω and the physical propagation environment. Thus, adding a prior distribution on
the cell probabilities with free parameters that must be inferred through observations of the
user feedback not only enables a system designer to more fully model the user assignment
distribution, but when used in practice allows the system to learn some coarse information
of the propagation environment at a particular deployment site. Such a model incorporated
into a MIMO system when paired with an inference engine to estimate the free parameters
allows a system to learn and adapt to a wide range of deployment sites given that the class
of priors chosen to provide this flexibility adequately captures the relevant physical aspects
of the system.

To accurately model the user assignment distribution one must be sure to choose a prior
that encapsulates the relevant aspects of the fading distribution. As we have selected the
Weichselberger model as the relevant prior on the fading distribution we must be sure that
we choose a prior on the cell probabilities that reflects this assumption. In the sequel we seek
to find a valid prior for a single cluster of users, i.e. a set of users whose signal undergoes a
similar propagation path and hence have similar spatial correlation. For such a propagation
environment one minimally expects the cell probabilities associated to codevectors that
represent the dominate scatters at the specific deployment site to be positively correlated.
Thus, we seek to find a prior with such positively correlated cell probabilities.

As a first attempt to find a valid prior on the cell probabilities, we examine the Dirichlet
distribution which is often chosen as a prior for the Multinomial distribution [27,38] as it is a
conjugate prior to the Multinomial distribution [69]. More precisely, the 2r − 1 dimensional
Dirichlet distribution with parameters θ = (θ0, θ1, . . . , θ2r−1) has the density function, for
pi ≥ 0 and

∑2r−1
i=0 pi = 1,

Dirichlet(p0, p1, . . . , p2r−1;θ) =
Γ (θsum)∏2r−1
j=0 Γ(θj)

2r−1∏

i=0

pθi−1
i

where θsum =
∑2r−1

j=0 θj and θi > 0. With some simple computation it can be shown
that [69]

E [pi] =
θi

θsum
(5.9)

and

Var(pi) =
θi · (θsum − θi)

θ2
sum · (θsum + 1)

= E [pi]
1 − E [pi]

1 + θsum
. (5.10)

Moreover, the posterior distribution for (pi,0, pi,1, . . . , pi,2r−1) given Ni[k1, nk] is

fpi |Ni
(pi |Ni[k1, nk];θi) = Dirichlet(pi,0, pi,1, . . . , pi,2r−1;θ + Ni[k1, nk]) (5.11)

as the Dirichlet distribution is a conjugate prior to the multinomial distribution. Com-
bining (5.9) and (5.11) the corresponding Bayesian estimate of pi,j based on the Dirichlet

192



5.1. MODELING THE USER ASSIGNMENT DISTRIBUTION

distribution as prior is a biased frequency count

p̂
(B)
i,j [k1] =

θi,j + Ni,j[k1, nk]

θi,sum +
∑2r−1

k=0 Ni,j[k1, nk]
. (5.12)

As (5.12) is quite similar to (5.8) it is natural to question how the additional degrees of
freedom obtained by adding a Dirichlet prior distribution on the cell probabilities effects
ones ability to model the user assignment distribution. Examining (5.9) and (5.10) one
can see that all but one degree of freedom one has in the choice of θi is used to fix the
expected values of the cell probabilities while the remaining single degree of freedom is used
to uniformly scale the variance of the cell probabilities. In particular, one may think of the
parameter θi as a hidden bias one may add to the frequency counts Ni[k1, nk] in order to
temper the variability in the estimate given in (5.8). However it should be noted, that for
a fixed θi, as n → ∞ the Bayesian estimate of pi,j based on assigning a Dirichlet prior to
the cell probabilities converges to (5.8) and hence for large sample sizes the effects of the
Dirichlet prior are irrelevant. Moreover, the Dirichlet prior makes a far more restrictive
assumption on the covariance of the cell probabilities than one at first realizes and may
desire. In fact, it is simple to see that

Cov(pi,k, pi,j) = − θi,k · θi,j

θ2
i,sum · (θi,sum + 1)

(5.13)

and hence a Dirichlet prior assumes that the cell probabilities are negatively correlated
(one may similarly show that Corr(pi,k, pi,j) < 0). As noted, in a MIMO system codewords
which correspond to dominate scatterers should correspond to positively correlated cell
probabilities. Thus, one must generalize this prior to remove this deficiency if one in general
expects positive correlation as we do for multi-user MIMO.

In order to generalize the Dirichlet prior one must introduce additional degrees of free-
dom which when appropriately chosen yield the Dirichlet prior while offering significant
enough freedom to model a more general covariance structure. This will allow one to better
fit the user assignment distribution that arises from the assumption of the Weichselberger
model as well as fits the more degenerate case of the Rayleigh model and Kronecker model.
As such, we again seek a distribution which is a conjugate prior to the multinomial dis-
tribution. A simple way to do this was discussed by Connor and Mosimann in [38]. In
particular, Connor and Mosimann noted that

Si,j
∆
=

pi,j

1 −∑j−1
k=0 pi,k

for j = 1, . . . , 2r − 2, Si,0 = pi,0 and Si,2r−1 = 1 are independent random variables that are
marginally distributed as a univariate beta distribution. More precisely,

Si,j ∼ Beta(θ
(a)
i,j , θ

(b)
i,j ) =

Γ(θ
(a)
i,j + θ

(b)
i,j )

Γ(θ
(a)
i,j )Γ(θ

(b)
i,j )

z
θ
(a)
i,j

i,j (1 − zi,j)
θ
(b)
i,j

where θ
(b)
i,j−1 = θ

(a)
i,j + θ

(b)
i,j for j = 1, . . . , 2r − 2 and θ

(b)
i,2r−1 = θ

(a)
i,2r−1 and further where Si,j

is independent of Si,k for k 6= j. In order to develop a more general covariance structure
Connor and Mosimann [38] suggested to allow the distribution of Si,j to follow a more
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general univariate beta distribution where θ
(a)
i,j > 0 and θ

(b)
i,j > 0 and have no predetermined

relationship. The resulting generalized prior is, by solving for pi,j in terms of the Si,j [38],

GDirichlet(p0, p1, . . . , p2r−1;θ
(a),θ(b))

=

(
2r−2∏

k=0

Γ(θ
(a)
i + θ

(b)
i )

Γ(θ
(a)
i )Γ(θ

(b)
i )

)
p

θ
(b)
2r−2

−1

2r−1 ·
2r−2∏

i=0

p
θ
(a)
i −1

i




2r−1∑

j=i

pj




θ
(b)
i−1−(θ

(a)
i +θ

(b)
i )

.

As this distribution is, in large part, similar to the Dirichlet distribution one can show that
it is again conjugate prior to the Multinomial distribution [38]. Thus, along similar lines to
our previous development for the Dirichlet distribution, it can be shown that [38]

E [pi,j] =
θ
(a)
i,j

θ
(a)
i,j + θ

(b)
i,j

j−1∏

k=0

θ
(b)
i,k

θ
(a)
i,k + θ

(b)
i,k

and

Cov(pk, pj) = E [pj ]

(
θ
(a)
k

θ
(a)
k + θ

(b)
k + 1

k−1∏

ℓ=0

θ
(b)
ℓ + 1

θ
(a)
ℓ + θ

(b)
ℓ + 1

− E [pk]

)
. (5.14)

It is important to note that from (5.14) the extra degrees of freedom incorporated into
the prior allows us a much more general covariance structure for the cell probabilities. In
particular, one now has the freedom to set the covariance of the cell probabilities to be
positive. Moreover these new degrees of freedom have been incorporated while the result-
ing distribution remains conjugate prior to the multinomial distribution allowing efficient
estimation of the cell probabilities and hence the channel covariance. As the GDirichlet
distribution is a conjugate prior for the multinomial distribution the posterior distribution
for the cell probabilities given Ni[k1, nk], is given by [27]

fpi |Ni
(pi |Ni[k1, nk];θ

(a)
i ,θ

(b)
i ) = GDirichlet(pi,0, pi,1, . . . , pi,2r−1;θ

(a)
i + Ni[k1, nk], θ̃i

(b)
)

where
θ̃
(b)
i,j = θ

(b)
i,j + ϑ

(b)
i,j

and in turn where

ϑ
(b)
i,j =

2r−1∑

k=j+1

Ni,k[k1, nk].

It is again quite simple to find the Bayesian estimate for the cell probabilities based on the
observation of Ni[k1, nk] as the GDirichlet distribution is conjugate prior to the multinomial
distribution. In particular,

p̂
(G)
i,j =

θ
(a)
i,j + Ni,j[k1, nk]

θ
(a)
i,j + θ

(b)
i,j + ϑ

(b)
i,j + Ni,j[k1, nk]

j−1∏

k=0

θ
(b)
i,k + Ni,k[k1, nk]

θ
(a)
i,k + θ

(b)
i,k + ϑ

(b)
i,k + Ni,k[k1, nk]

(5.15)

=
θ
(b)
i,j−1 + Ni,j−1[k1, nk]

θ
(a)
i,j−1 + Ni,j−1[k1, nk]

p̂
(G)
i,j−1. (5.16)

Note that the additional degree of freedom of the GDirichlet distribution prior yields a
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Bayesian estimate for the cell probabilities with much more structure. If again we interpret

the parameters θ
(a)
i,j and θ

(b)
i,j as a statistical bias one may see that there are far more ways

that ones may bias ones estimate of the cell probabilities through the choice of θ
(a)
i,j and θ

(b)
i,j .

In particular, as one may now model the cell probabilities with positive correlation, one

may bias p̂
(G)
i,j based on the frequency counts of the occurrence of other codewords that are

indicative of the dominate scatterers at a particular site, yielding a far more effective way to
model the effects of the propagation environment on the feedback. We use the GDirichlet
prior to model users in the sequel and hence make frequent use out the estimate (5.15).
Thus, we let

ˆ̺(n, j;θ(a),θ(b)) =
θ
(a)
j + nj

θ
(a)
j + θ

(b)
j + ϑ

(b)
j + nj

j−1∏

k=0

θ
(b)
k + nk

θ
(a)
k + θ

(b)
k + ϑ

(b)
k + nk

(5.17)

be the Bayesian estimate for the cell probabilities based on the observation n assuming a
GDirichlet distribution as a prior on the cell probabilities. However, the GDirichlet prior
is only sufficient to model users that have similar propagation environments. As current
MIMO system aim to cover large geographic regions one should expect subsets of users to
have very different propagation environments and hence need to be modeled by different
GDirichlet priors. Hence, we now examine how one may infer the number of such clusters
as well as the relevant parameters of the associated GDirichlet prior.

� 5.1.2 The User Assignment Distribution for the Weichselberger model

In the preceding section we have argued that the GDirichlet distribution is the appropriate
choice of a prior distribution for the cell probabilities of the multinomial distribution as it
allows for accurate modeling of the propagation environment by incorporating the effects

of dominate scatterers along different propagation paths, by ones choice of θ
(a)
i and θ

(b)
i ,

while enabling efficient estimation of the cell probabilities. The cell probabilities may then
in turn be used to estimate a slow, time varying covariance structure by using the estimate
of the cell probabilities (5.15) to estimate the empirical covariance of a user channel. For
our assumed model of the MIMO channel, the Weichselberger model, it is possible that
users do not have a uniform channel correlation, but rather there may be many clusters of
users. Indeed, if there are multiple distinct rows in the coupling matrix Ω users may undergo
dramatically different fading. This may be due, to among other effects, spatial separation of
the user leading to the larger scale effects of the propagation environment amongst users to
be very different. In particular, due to the large geographic regions current MIMO devices
aim to serve the statistics of signals received by users may vary greatly as the may follow
quite different propagation paths. Thus, in a multi-user MIMO system it is unlikely that
a single GDirichlet distribution will be sufficient to act as a prior to accurately model the
feedback from every user and the feedback process for a multi-user MIMO system should
be assumed to be over-dispersed.

A frequent method used to model over-dispersion in data is to form a finite mixture of
distributions [18, 89]. Before proceeding to describe the general model of interest and to
further motivate our final choice we begin by describing a simple probabilistic model for
multi-user MIMO systems with user clustering. Suppose, prior to a system deployment,
one is able to accurately model and/or measure the characteristics of the propagation envi-
ronment. Further, suppose that this model is able to identify nc not necessarily contiguous
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geographic regions in the area of coverage for which a number of dominate scatters lead the
users in the region to have roughly similar signal propagation paths. For example, there may
be users who are indoor or outdoor and near and far from the transmit base. For each of
these regions suppose we are able to assign a GDirichlet with an appropriate prior to model
the feedback from each of these regions. That is, suppose for each region i = 0, . . . , nc − 1
we model the feedback from, say k, users in the region via a random variable Ci where is
a compound multinomial random variable

Ci ∼ Multinomial(pi; k)
∧

pi

GDirichlet(pi,0, pi,1, . . . , pi,2r−1;θ
(a)
i ,θ

(b)
i ), (5.18)

That is,
Ci |pi ∼ Multinomial(pi; k)

and pi is marginally distributed as GDirichlet(pi,0, pi,1, . . . , pi,2r−1;θ
(a)
i ,θ

(b)
i ). Now suppose

that the system is deployed and users enter the system randomly amongst the identified
nc geographic regions, each user selecting a region i.i.d with some predetermined set of
probabilities {πj} for j = 0, . . . , nc − 1. Further, suppose the location of each user is not
revealed to the transmitter. Then the transmitter may model the state of users i with the
“hidden” random variables

Zi,j =

{
1 if user i in region j

0 otherwise

for i = 0, 1, . . . , n− 1 and j = 0, . . . , nc − 1. Using this model the transmitter may form an
estimate of each of the Zi,j if one wishes to identify the spatial prior of each user. To do this,
the transmitter may use the record of the feedback process for each user, Ni[k1, nk], and
use this empirical data to infer to which of the nc regions each user belongs. It is important
to recall that Ni[k1, nk] is distributed as a multinomial random variable conditioned on the
knowledge of the realization of the cell probabilities pi. However, absent knowledge of the
realization of the cell probabilities one may only assume that Ni[k1, nk] follows the more
general compound multinomial distribution. Given that our prior modeling is correct, user i
can be grouped into one of the nc classes and hence Ni[k1, nk] should be distributed similar
to Cj for some j. That is, one may alternately write the hidden random variables as

Zi,j =

{
1 if Ni[k1, nk] ∼ Cj

0 otherwise

for i = 0, 1, . . . , n and j = 0, . . . , nc−1. Given a sufficiently long observation of Ni[k1, nk] it
is a simple problem to determine a good estimate for each Zi,j given the distribution of Ci.
That is, given the site modeling is accurate one may form a maximum likelihood estimate
for Zi,j by computing

j∗i = arg max
j=0,...,nc−1

fCj(Ni[k1, nk];θ
(a)
j ,θ

(b)
j )

and taking

Ẑi,j =

{
1 if j = j∗i
0 otherwise
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where fCj(n;θ
(a)
j ,θ

(b)
j ) is the density of the compound multinomial distribution [27]

fCj(n;θ
(a)
j ,θ

(b)
j ) =

Γ
(
1 +

∑2r−1
k=0 ni

)

∏2r−1
k=0 Γ (ni)

2r−1∏

k=0

Γ
(
θ

(a)
j,k

)
Γ
(
θ

(b)
j,k

)

Γ
(
θ

(a)
j,k + θ

(b)
j,k

)

×
2r−1∏

k=0

Γ
(
θ

(a)
j,k + nk

)
Γ
(
θ

(b)
j,k +

∑2r−1
ℓ=k+1 nℓ

)

Γ
(
θ

(a)
j,k + θ

(b)
j,k +

∑2r−1
ℓ=k nℓ

) .

Thus, with this estimate the transmitter may partition the user pool U into nc different
classes which we denote by U (ℓ). That is,

U =

nc−1∐

ℓ=0

U (ℓ)

where i ∈ U (ℓ) if and only if Ẑi,ℓ = 1. We note that given two users are in the same class
does not imply that the two users assignment distribution follow the same multinomial
distribution and hence does not imply that the two users have the same channel covariance.
That is, if i1, i2 ∈ U (ℓ) then, in general,

Ni1[k1, nk] |pi1 6∼ Ni2 [k1, nk] |pi2 .

Thus, in general one may not assume that all users that have been assigned to a class follow
a single multinomial distribution and one must independently model each users assignment
distribution with a different multinomial distribution to accurately model the feedback.

It seems a bit unfortunate to have to model each users distribution with a distinct
distribution. However, we note that a heterogeneous user population is beneficial to the
multi-user scheduling problem. That is, if the statistics of each users channels are suffi-
ciently different then it is less likely that users will be assigned to the same input in the
generalized switch and hence increases the transmitters ability to find sets with a small
level of co-channel interference. This is important to note as the practical motivation be-
hind modeling the user assignment distribution stems for the desire to detect and correct an
underlying channel correlation that is detrimental to the system performance. Thus, there
is little need to model heterogeneity in each class of users so long as one can find a sufficient
homogeneous model for each class that allows one to identify underlying channel correla-
tion that is detrimental to the system performance. If a homogeneous model is sufficient
this allows for a dramatic state reduction at the transmitter and simplifies the process of
detecting channel correlation that is detrimental to the system performance. However, for
a system of have this capability one must first have an accurate model of each deployment
site of interest. As one may not have the time and/or resources to form such an accurate
model of every deployment site it is of interest to develop a way to infer not only the val-
ues of the hidden random variables to classify users, but it is also of interest to develop a
method to infer the parameters of the prior distribution of each class as well as the number
of classes. While this seems like a tall task there are many ways in which one may solve
this problem. We describe one possible solution in the sequel by employing an expectation-
maximization EM algorithm after first describing our full model for the user assignment
distribution assuming the underlying channel fading follows the Weichselberger model.
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The model for user clustering described in the preceding discussion may be described
more generally as a finite mixture model for the user assignment distribution [89]. In general,
a finite mixture model for a random vector decomposes the density of a random vector, say
m, in to a weighted sum of a finite number of component densities. That is, a finite mixture
model for m with g component densities models the density of m as

f(m) =

g−1∑

i=0

πifi(m) (5.19)

where f(m) is the density of m, fi(m) are the component densities of the mixture and
0 ≤ πi ≤ 1 are the weights which sum to 1. A simple way to generate a random variable
distributed as (5.19), which parallels our preceding discussion, is by considering a categorical
random variable Z which takes on values from a finite set of categories {0, 1, . . . , g−1} with
probability π0, π1, . . . , πg−1 respectively. One may interpret Z as a random variable which
labels the component density the random variable m follows. More precisely, one may
consider the joint distribution of m and Z as

f(m, Z) =

g−1∑

i=0

1{Z=i} · fi(m).

Thus, assuming that the conditional density of m given Z follows

f(m |Z = i) = fi(m).

the total law of probability yields that the unconditional density of m is simply the mix-
ture (5.19). It is easy to see that this interpretation of the mixture model is exactly the
scenario described for the multi-user MIMO channel. That is, in our preceding discussion
each user was selected from one of nc possible geographic regions and given the random
variable {Zi,j}nc−1

j=0 the assignment distribution of user i was conditional distributed a com-
pound multinomial distribution. More precisely, in the preceding discussion one has g = nc,
m = Ni2[k1, nk], Z =

∑nc−1
j=0 j · Zi,j and each one of the component densities is simply the

compound multinomial distribution. Hence, in the sequel we assume the user assignment
distribution may be modeled as a generalized mixture of compound multinomial distribu-
tions. In this direction we let

Θ =
(
θ

(a)
0 ,θ

(a)
1 , . . . ,θ

(a)
nc−1,θ

(b)
0 ,θ

(b)
1 , . . . ,θ

(b)
nc−1

)

and
π = (π0, π1, . . . , πnc−1).

Then, we model the assignment distribution of each user as

Pr [Ni2[k1, nk] = n ; Θ,π] =

nc−1∑

j=0

πj · fCj(n;θ
(a)
j ,θ

(b)
j ) (5.20)

where fCj(n;θ
(a)
j ,θ

(b)
j ) are the compound multinomial component distributions and in turn

where 0 < πi < 1 and satisfy
∑nc−1

j=0 πj = 1. We refer to (5.20) as a mixed multinomial
generalized Dirichlet distribution (MMGDD). Using a finite mixture model for the multi-
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user MIMO system one may, given the distribution of the component mixtures, find the
ML estimate for the hidden random variables to identify the appropriate prior on each
user’s assignment distribution. Then one may use the identified prior to estimate the cell
probabilities for the multinomial distribution modeling each users assignment distribution.
However, as previously noted, it is of interest to model each class with a single multinomial
distribution as this allows the system to more easily identify when there is an underlying
channel correlation for a class that is detrimental to system performance. That is, if a class
of users forms a cluster of users then one may need to adapt the feedback scheme for this
cluster (class) of users. However, to have this capability one must first have an accurate
estimate of the parameters that describe the fading distribution of each class.

To specify the MMGDD distribution one must specify the number of clusters of users nc,
the mixing proportions πi as well as the parameters for each of the compound multinomial
random variables Ci. These parameters give system designers many degrees of freedom
to model the feedback process and indirectly the coupling matrix Ω. In particular, πi

may be considered as the proportion of users who on average classified to belong to class i

and similarly the parameters θ
(a)
i and θ

(b)
i roughly describe a bias to particular covariance

matrices determined by the propagation environment of class i. Thus, so long as the user
dynamics do not change rapidly one may use many realization of the feedback process

Ni,j[k, n1] to estimate π, θ
(a)
i and θ

(b)
i and use shorter histories of the feedback process

Ni,j[k, n2] in order to identify the spatial correlation of each user in each class via the
Bayesian estimate (5.15). One many attempt to approximate these parameters using the
aforementioned relationship to the geometry of the propagation environment, by direct
measurements or other physical modeling techniques. However, it is important to note that
all of these model parameters including the hidden variables can be determined through an
expectation-maximization (EM) algorithm [27] described in the sequel.

� 5.2 The EM Algorithm and Homogeneous Class Modeling

The EM algorithm is a general method of finding the maximum-likelihood estimate of the
parameters of an underlying distribution from a given data set when the data is incomplete
or has missing values. In the current context the transmitter must estimate the parameters
of the GDirichlet prior for the cell probabilities given its observation of the user feedback
process and absent knowledge on which class each user belongs to and more generally absent
how many classes are needed to model the system. There are several methods one can use
in conjunction with the EM algorithm to estimate the number of classes [27, 89] and in
the sequel we assume that the number of classes is known and do not develop the joint
estimation of the number of classes and the parameters of the mixture models. Ignoring
the problem of estimating the hidden random variables Zi,j, one may attempt to compute
the ML estimate of Θ using the incomplete set of data {Ni,j[k, n1]}n−1

i=0 ,

(Θ̂, π̂) = arg max
(Θ,π)

L(Θ,π, {Ni,j [k, n1]}n−1
i=0 )
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where L(Θ,π,Ni,j [k, n1]
n−1
i=0 ) is the log likelihood function,

L(Θ,π, {Ni,j [k, n1]}n−1
i=0 ) = log

(
n−1∏

i=0

Pr[Ni,j[k, n1] ; Θ,π]

)
(5.21)

=

n−1∑

i=0

log




nc−1∑

j=0

πj · fCj(Ni,j[k, n1];θ
(a)
j ,θ

(b)
j )


 . (5.22)

However, the direct ML solution is in general quite difficult to solve directly and as we have
a more general interest in estimating the hidden random variables Zi,j one may consider
the likelihood function of the complete data set for each user

Ψi = (Ni,j[k, n1], Zi,0, Zi,1, . . . , Zi,nc−1)

which includes the hidden random variables. More precisely, the log likelihood of the com-
plete data is [89]

logLc(Θ,π, {Ψi}n−1
i=0 ) =

nc−1∑

j=0

n∑

i=0

Zi,j ·
(
log (πj) + log

(
fj(Ni,j[k, n1];θ

(a)
j ,θ

(b)
j )
))

. (5.23)

In order to approximate a solution to the ML parameter estimation problem one may make a
series of guesses at the values of the hidden random variables Zi,j and the use the likelihood
function of the complete data in order to approximate the ML parameter estimate for Θ

and π. To do this we first compute the joint distribution of the complete data. As we have
shown in the case of the finite mixture model (5.19) one may derive the joint distribution
of the complete data by assuming the hidden data labels the distribution which describes
the random variable of interest. That is,

Pr [Ψi = ψ;Θ,π] =

nc−1∑

j=0

Zi,j · fj(ψ;θ
(a)
j ,θ

(b)
j ).

One may then use the total law of probability to find the marginal distribution of Ni,j[k, n1].
However, as the hidden data are indicator functions is easy to see that the expected distri-
bution is exactly this marginal distribution for Ni,j[k, n1], (5.20). That is,

Pr [Ni,j[k, n1] = n;Θ,π] = EZi,j

[
nc−1∑

k=0

Zi,j · fk(n;θ
(a)
k ,θ

(b)
k )

]
. (5.24)

However, this approach has a shortcoming if one wishes to estimate the parameters of Θ and
π as well as the hidden random variables Zi,j using the likelihood function of the complete
data set. That is, if one is interested in the ML estimate of Θ and π given {Ni,j[k, n1]}n−1

i=0

one may along the lines of (5.24) compute the likelihood function for the complete data,
then, as the Zi,j are random and unobserved, consider the expected likelihood in order to
approximate the ML estimate of Θ and π given {Ni,j [k, n1]}n−1

i=0 . Examining (5.23) one may
see that if one, in an attempt to remove the randomness in (5.23), computes the expected
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value with respect to Zi,j given Ni,j[k, n1] then one must specify Θ and π. That is,

E [Zi,j |Ni,j [k, n1] ;Θ,π] = Pr [Zi,j = 1 |Ni,j [k, n1] ;Θ,π]

and from Bayes’ law one has that the conditional distribution of Zi,j given Ni,j[k, n1] is

Pr [Zi,j = 1 |Ni,j [k, n1] ;Θ,π] =
πj · fj(Ni,j[k, n1];θ

(a)
j ,θ

(b)
j )

∑nc−1
k=0 πk · fk(Ni,j[k, n1];θ

(a)
k ,θ

(b)
k )

Thus, to compute the conditional expectation of Zi,j given Ni,j[k, n1] one must have Θ

and π at hand. In turn in order to compute an approximate ML estimate of Θ and π one
needs the expected value of the log likelihood of the complete data which is a function of the
conditional expectation of Zi,j given Ni,j[k, n1]. Thus, one seems to be in quite a precarious
position. However, the EM algorithm exploits this circular structure to iteratively refine
the estimates of both the hidden random variables as well as the estimates for Θ and π. In
this direction, let

Q(Θ,π, Θ̂[t], π̂[t]) =

n−1∑

i=0

nc−1∑

j=0

Ẑi,j[t] log
(
Pr[Ni,j[k, n1] ; Θ̂[t], π̂[t]]

)

be the conditional expectation of the complete data likelihood assuming Θ̂[t] and π̂[t] as
the current estimate of parameters Θ and π. The EM algorithm produces a sequence of
estimates for the free parameters Θ̂[t] and π̂[t] by alternating between two steps. The first
step computes the expected value of the complete-data log-likelihood with respect to the
hidden random variable Zi,j by way of computing the conditional expectation of Zi,j. Then
the second step computes an updated set of parameter estimates based on the expected
value of the complete-data log-likelihood. That is, the EM algorithm alternates between
the following two steps until the estimates converge:

1. E-step: Compute estimates of the hidden variables Zi,j as:

Ẑi,j[t] =
π̂j [t] · fj(Ni,j[k, n1]; θ̂

(a)
j [t], θ̂

(b)
j [t])

∑nc−1
k=0 π̂k[t]fk(Ni,j[k, n1]; θ̂

(a)
k [t], θ̂

(b)
k [t])

2. M-step Update the parameter estimates as

(Θ̂[t+ 1], π̂[t+ 1]) = arg max
(Θ,π)

Q(Θ,π, Θ̂[t], π̂[t])

The EM algorithm may be used to find an approximation to the ML parameter estimate for
Θ̂ and well as π̂. However, as the EM algorithm is an iterative algorithm there may be issues
with the rate of convergence and other numerical issues. In this thesis we do not consider
these issues and rather assume that they may be adequately addressed (using deterministic
annealing for example) so that the resulting estimates of Θ and π are accurate.

Using the EM algorithm one may accurately estimate the parameters of the GDirichlet
prior distribution on the cell probabilities of each user. Thus, one may incorporate aspects
of the propagation environment in ones estimate of the user assignment distribution by
inferring the appropriate parameters of the GDirichlet through training and observations
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of the users feedback. Most importantly, due to the structure of the GDirichlet and the
fact that it is conjugate prior to the Multinomial distribution there are efficient methods to
estimate the cell probabilities which in turn may be used to estimate a slow, time varying
covariance structure of each user. More precisely, using the EM algorithm one may form
an estimate of parameters of the prior distribution that reflect the dominate scatterers
of each class using a long training sequence (or after a long observation of the feedback
process). Then, one may use this prior to estimate the cell probabilities for each user based
on shorter histories of feedback to form an estimate of each user’s cell probabilities. More
precisely, given the EM algorithm’s estimate of Θ̂ one may estimate the cell probabilities of
the multinomial distribution modeling the user assignment distribution from (5.15), using
any appropriately chosen window of the feedback process, as

p̂
(G)
i,j =

θ̂
(a)
i,j + Ni,j[k1, nk]

θ̂
(a)
i,j + θ̂

(b)
i,j + ϑ

(b)
i,j + Ni,j[k1, nk]

j−1∏

k=0

θ̂
(b)
i,k + Ni,k[k1, nk]

θ̂
(a)
i,k + θ̂

(b)
i,k + ϑ

(b)
i,k + Ni,k[k1, nk]

(5.25)

where θ̂
(a)
i and θ̂

(b)
i are the parameter estimates for the prior distribution of the cell proba-

bilities for the class for which user i belongs.

As previously noted a single-user being mismatched to a given feedback scheme is not the
phenomenon that one wishes to model in the multi-user MIMO system. That is, our figure of
merit and our ultimate question of interest is the effects of the input occupancy distribution
has on the output occupancy distribution for the entire user pool as this describes the
distribution in achievable rates. Thus, if a user in the system has a high degree of spatial
correlation the broader system is not effected unless a subset of users in the system exhibit
the same spatial correlation. Hence, we are interested rather in constructing a model for user
feedback from each class of users that may identify when there is a large subset of users
in the user pool which share the same spatial correlation. Note that the EM algorithm
has already done much of required work in this direction. That is, the EM algorithm has
classified the users the share a similar compound multinomial distribution and hence are
more likely to have similar spatial correlation. However, the fact that a users feedback
follows a similar compound multinomial distribution neither guarantees nor excludes the
possibility that the realized multinomial distributions of each user are the same. That is,
there is no guarantee that the feedback from each class is homogeneous.

To detect when a class of users is homogeneous one may compute the likelihood that
this is the case. More precisely, let

N(ℓ)[k1, nk] =
∑

i∈U(ℓ)

Ni,j[k1, nk]

be the cumulative history of the feedback for a class of users. Then, the likelihood that this
cumulative history for the class follows a single multinomial distribution is

λℓ = fℓ(N
(ℓ)[k, n1];θ

(a)
ℓ ,θ

(b)
ℓ ).

In order to determine if a class of users is homogeneous one may check that λℓ is greater than
a prescribed threshold, say h0. That is, if λℓ ≥ h0 we say that the ℓth class of users form a
cluster and model the feedback from this class via a common multinomial distribution with
cell probabilities

p̂
(ℓ)
j = ˆ̺(N(ℓ)[k, n1], j;θ

(a)
ℓ ,θ

(b)
ℓ ). (5.26)
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If the users channel are not homogeneous then there is not a single multinomial distribution
distribution that simultaneously models each users well. However, as previously noted users
in a class that each exhibit significantly different fading is not of significant importance to
model as the heterogeneity of the users will not degrade system performance significantly
as it affords more selection diversity in the system. More precisely, users with significantly
different fading are less likely to be assigned to the same input thus yielding more scheduling
options for the transmitter. As our feedback model has been motivated by the problem of
detecting when the system performance has been significantly degraded by the channel
correlation in the sequel we model any heterogeneous class with a homogeneous model by
averaging the cell probabilities for the class. That is, if λℓ < h0 then we let

p̂
(ℓ)
j =

1

|U (ℓ)|
∑

i∈U(ℓ)

ˆ̺(Ni[k, n1], j;θ
(a)
ℓ ,θ

(b)
ℓ ). (5.27)

Using the methods of Chapter 4 one can determine exactly how the homogenized as-
signment distributions are effecting system performance. In particular, by computing the
quantization order for the estimated distribution one can determine if the multi-user di-
versity is being reduced by the channel covariance and identify if the system would benefit
from adapting the quantization scheme. An important feature of using the EM algorithm
estimate the parameters of the prior distribution used to model the cell probabilities of the
Multinomial distribution is it allows one to efficiently estimate the spatial covariance of the
fading of each user. More precisely, recall in Section 2.2.1 we showed that given an estimate
of the cell probabilities one may estimate the covariance of a user’s channel through the
empirical covariance. Thus, using (5.25) in conjunction with (2.17) one has

K̂hi
=

2r−1∑

j=0

p̂
(G)
i,j cjc

†
j . (5.28)

Most importantly, using (5.28) one can estimate the principal eigenmode and eigenvalue
for the spatial covariance of each user indicating when a user’s covariance is “sufficiently
mismatched” to the current feedback scheme to warrant adaptation as well as indicating
the principal direction the new feedback scheme should be biased toward. We now turn to
the problem of designing a framework for feedback design with an emphasis on how one
may use the estimates of the covariance to intelligently adapt the feedback design.

� 5.3 Robustness of the Systematic Construction for Multi-User Systems

It is now well understood that the MIMO channel is more often then not correlated which
can have dramatic effects on system performance as the rates achieved by users in the sys-
tem may sharply decline. Moreover, in a multi-user MIMO system the users in the system
may have distinct channel correlation leading to a need to adapt to several distinct corre-
lation matrices. It is well understood principle from vector quantization theory [52] that a
quantizer should be designed to match the statistics of the channel that are relevant to the
problem of interest as closely as possible [83, 105, 137]. In order to maximize throughput
under the assumption of the Rayleigh model this means choosing codewords that are uni-
formly distributed over the sphere. However, if the underlying propagation environment is
correlated, which we have shown in Section 5 is often the case, then the Rayleigh model is
not an accurate model of channel. Indeed this was the underlying assumptions that led us
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to consider the more general Weichselberger model for the MIMO channel in Section 5.0.5.
If the channel correlation Khi

is not approximately the identity, i.e. the Weichselberger
model has not degenerated to the Rayleigh model, then there is reason to suspect that the
uniform quantizer should not be close to optimal. We are interested in the expected rate
and as such the first and second order statistics of the channel are of interest. We note
that the ability for a quantizer to approximate the first order statistics can be addressed
by adjusting the rate of a scalar quantizer designed for the Rayleigh model, i.e. if there is
no prior on the channel means (or rather that the channel means are isotropic) one may
consider this again as a vector quantization problem. However, if the channel correlation
matrix Khi

for each user is not the identity matrix then extra care must be taken to ensure
that the (empirical) second order moment of the quantizer

K(C)
∆
=

1

|C|
∑

c∈C
cic

†
i

approximately matches the correlation of the underlying channel, Khi
. More precisely, the

relevant design principle is to design the quantizer such that

K(C) ≈ 1

m
Khi

From a vector quantization perspective such a quantizer first whitens the source and then
performs quantization on this whitened source. Thus, if C = {c0, c1, . . . , c|C|} has been
designed for the Rayleigh model then

A · C =

{
Ac0

‖Ac0‖
,
Ac1

‖Ac1‖
, . . . ,

Ac|C|
‖Ac|C|‖

}
(5.29)

is well matched to a channel with correlation matrix Khi
= AA† as [83,137]

K (A · C) =
1

|C|
∑

c∈C
Acic

†
iA

† = A

(
1

m
I

)
A† =

1

m
Khi

Conversely, if a codebook C̃ can be factored as

C̃ =
{
c̃0, c̃1, . . . , c̃|C|

}
(5.30)

=

{
Ac0

‖Ac0‖
,
Ac1

‖Ac1‖
, . . . ,

Ac|C|
‖Ac|C|‖

}
(5.31)

where C = {c0, c1, . . . , c|C|} has been designed for the Rayleigh model, i.e. K (C) = 1
mI,

then we say that A is a factor of the code. Note if A is a factor of the code C̃ and a matrix B
is such that AA† = BB† then it is not necessarily true that B is a factor of C̃. In particular,
if B = A · U then B is a factor of C̃ if and only if

C̃ =

{
A · Uc0

‖A · Uc0‖
,
A · Uc1

‖A · Uc1‖
, . . . ,

A · Uc|C|
‖A · Uc|C|‖

}
.

Thus, B is a factor of C̃ if U is a factor of C, i.e. if U ∈ Sym(C). We note that this distinction
on its own is not necessarily helpful in developing an adaptive feedback framework. That
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is, if one is only concerned with adapting the quantization codebook to match a single
channel covariance, say Kh, then so long as there is some factor of the codebook, say A,
such that AA† ≈ Kh, then one would not expect the performance of the system to differ
compared to another system which has AU as a factor for some unitary transformation
U . However, providing robustness to a plurality of covariance is of great concern in a
multi-user MIMO system as the users are expected to have heterogeneous fading. Thus,
as we would like the overall system design to be robust to a large class of covariance
structures as well as unbiased to any particular transmit direction it is natural to require
that the system behaves the same for similar covariance matrices. That is, one would like
a system that has been designed for a covariance matrix K to have the same performance
as one that has been designed for U †KU , i.e. any system achieves approximately the same
performance for any correlation matrices with the same singular values. Thus, if one is
given a particular correlation spectrum of interest, say Λ, one may consider forming a large
“universal” codebook consisting of all codewords

⋃

U∈W
U †ΛU · C (5.32)

for some appropriately chosen set of unitary transforms W. However, in order to for the
universal code of (5.32) to have a many of subcodes that are matched to a plurality of similar
covariance matrices one in general must take W to be quite large yielding a codebook which
may overly encumber the scheduler by creating too large a search space to examine to find
the maximally weighted clique. Thus, it is natural to consider if there is a more effective
way to construct such a universal codebook.

In Section 5.1 we argued that in a multi-user MIMO system if each users channel vectors
have negligibly correlated fading then the resulting system performance does not sufficiently
deteriorate from the rates achieved assuming the Rayleigh model. More precisely, if the users
channel vectors have distinct spatial correlation then the heterogeneity likely causes the
number of occupied inputs in a generalized switch to increase yielding sufficiently diversity
to exploit the multi-node matching gain. However, the system or individual users may see a
substantial decrease in performance if the channel correlation of any user(s) is too great. In
particular, if the dominate mode of a user’s channel covariance is dramatically larger than
the other modes of the channel covariance then one expects that the user is likely to be
assigned to a small set of inputs at each scheduling interval or unable to meet the required
feedback thresholds. Geometrically, this corresponds to the direction of a user’s channel
vector falling on to a small region of the complex unit m-sphere at each scheduling interval.
Thus, in an attempt to adapt the feedback scheme to better match the channel covariance
one may consider redistributing the points of the original codebook on this small region
to reduce the mean squared quantization error as well as increase the diversity of channel
vectors that the users feed back. We call this process localization of the codewords. Note
this is exactly the same perspective we took in Section 3.6 to construct high rate quantizers
and hence use the same operators developed there to enable covariance adaptation. In a
system which localizes codewords the covariance matrices that are of interest are those with
one dominant mode. Thus, we next examine how our systematic quantization framework
may be used to adapt the feedback scheme to match users channel covariance which has be
inferred through the EM algorithm and the history of past feedback.
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� 5.3.1 Covariance Structure of Local Codes

In order to develop efficient channel quantization methods for increase the quantization rate
we developed geometric operations which had one dominate mode. However, this led to a
linear transform that was not normal. Thus, we must take some care in developing the
associated results for the covariance matrices that are matched with this scheme. Recall
that if F is a factor of a code C̃ then C̃ is matched with the channel covariance,

KF = FF†

If F were Hermitian the eigenvectors of F are the eigenvectors KF and a similar assertion on
the eigenvalues would follow. However, as previously noted, in general F(b0;α, γ,B) is not
normal and hence is neither Hermitian nor unitary. In order to understand to eigenstructure
of the covariance matrices that are matched with these factors we must proceed cautiously
as the developed eigenvalues and eignevectors of F(b0;α, γ,B) will not generally correspond
to the eigenvalues and eignevectors of KF.

Recall that in order to find the eigenvalues and eigenvectors of F we first examined
the behavior of F on a basis. This again proves useful and with some simple, yet tedious
arithmetic, one can by applying (3.73) find that

KFbl =





γ
(
1 + α2 · (m− 1)

)
b0 + α

√
1 − α2

∑

b∈B\b0

b if bl = b0 (5.33a)

(1 − α2)bl + α
√

1 − α2b0 if bl 6= b0 (5.33b)

As an immediate consequence of (5.33a) one can see that if an eigenvector of KF is correlated
with b0 for 0 < α < 1 then every element of B is correlated with this eigenvector. More
precisely, consider an arbitrary vector in v ∈ Cm where

v = a0b0 +
∑

bi∈B\b0

aibi

for some a0, a1, . . . , am−1 as B is a basis for Cm. Then by (5.33a),

KFv =

(
a0 · γ

(
1 + α2 · (m− 1)

)
+ α

√
1 − α2

m∑

i=1

ai

)
b0 (5.34a)

+
∑

bi∈B\b0

(
a0 · α

√
1 − α2 + ai · (1 − α2)

)
bi (5.34b)

Hence, if v†b0 6= 0 then b
†
iKFv 6= 0 if a0/ai 6= −α−1

√
1 − α2. As KF is non-singular there

is a least one eigenvector of KF that is a linear combination of all of the basis vectors.
However, as there is an m − 1 dimension eigenspace orthogonal to b0 one should expect
there is at least an m−2 dimensional invariant subspace of KF orthogonal to b0. Examining
the case where a0 = 0 and

∑m
i=1 ai = 0 then

KFv =
∑

bi∈B\b0

ai · (1 − α2)bi

= (1 − α2)v.
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That is, if v is chosen such that a0 = 0 and
∑m

i=1 ai = 0 then v is an eigenvector for KF

with eigenvalue 1−α2. We note as there is a m−2 dimensional subspace of Cm with a0 = 0
for which the ai have zero sum, KF must have a m− 2 dimensional eigenspace associated
with the eigenvalue 1 − α2. Thus, in order to understand the eigenvalue decomposition for
KF we must find an orthonormal basis for this space. More precisely, we must find a set
of m− 2 orthogonal vectors each of which sums to zero. In this direction we let DFT∗(m)
be the m × (m − 1) submatrix of the DFT matrix for which the rows sum to zero. More
precisely we let,

DFT∗(m) =
1√
m




1 e
√−1 2π

m
1 e

√−1 2π
m

2 · · · e
√−1 2π

m
(m−1)

1 e
√−1 2π2

m
1 e

√−1 2π2
m

2 · · · e
√−1 2π2

m
(m−1)

...
...

...
. . .

...

1 e
√
−1

2π(m−1)
m

1 e
√
−1

2π(m−1)
m

2 · · · e
√
−1

2π(m−1)
m

(m−1)




Then, from the preceding discussion it is clear that

B̃0(B)DFT∗(m)†

is a basis for the eigenspace of KF associated with the eigenvalue 1−α2. Thus, we are left
to find the eigenvectors for the subspace of Cm that is complimentary to this eigenspace.
In particular we are left to find the eigenvectors for the two dimensional subspace of Cm for
which a0 6= 0 and ai = aj for all i, j 6= 0. That is, we must find the two values for ν such
that

ν · b0 +
∑

b∈B\b0

b

is an eigenvector of KF. In this direction, let

ν+(α, γ) =
−1 + α2 + |γ|2

(
1 + α2 · (m− 1)

)

2αγ
√

1 − α2

+

√
(−1 + |γ|2 + α2 · (1 + |γ|2 · (m− 1)))2 + 4α2|γ|2 · (1 − α2)(m− 1)

4α2|γ|2 · (1 − α2)
,

ν−(α, γ) =
−1 + α2 + |γ|2

(
1 + α2 · (m− 1)

)

2αγ
√

1 − α2

−
√

(−1 + |γ|2 + α2 · (1 + |γ|2 · (m− 1)))2 + 4α2|γ|2 · (1 − α2)(m− 1)

4α2|γ|2 · (1 − α2)

=
m− 1

ν+(α, γ)

and
σ±(α, γ) = ν±(α, γ) · αγ

√
1 − α2 + 1 − α2.

Then we have the following theorem.

Theorem 5.3.1. The eigenvalues of KF are σ+(α, γ), σ−(α, γ) and (1 − α2) with mul-
tiplicity m − 2. Further, ν+(α, γ) · b0 +

∑
b∈B\b0

b and ν−(α, γ) · b0 +
∑

b∈B\b0
b are

the eigenvectors associated with the eigenvalues σ+(α, γ) and σ−(α, γ) respectively and
B̃0(B)DFT∗(m− 1)† is an orthonormal basis for the m − 2 dimensional eigenspace as-
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sociated to the eigenvalue 1 − α2.

Proof. This proof is a direct consequence of the preceding discussion and simple arithmetic
by computing

KF


ν · b0 +

∑

b∈B\b0

b


 = ν · b0 +

∑

b∈B\b0

b

using (5.3.1) and solving the resulting quadratic. �

As an immediate corollary to Theorem 5.3.1 we can deduce the eigenvalue decomposition
of KF. As was seen in the eigenvalue decomposition of the quantizer factor F, the eigenvalue
decomposition of KF has a conical covariance structure which is rotated by the basis used
in the definition. In this direction, let

UK(α, γ)† =




ν+(α,γ)√
ν+(α,γ)2+(m−1)

1√
ν+(α,γ)2+(m−1)

· · · 1√
ν+(α,γ)2+(m−1)

ν−(α,γ)√
ν−(α,γ)2+(m−1)

1√
ν−(α,γ)2+(m−1)

· · · 1√
ν−(α,γ)2+(m−1)

0

DFT∗(m − 1)
0
...
0




and

ΣK(α, γ) =




σ+(α, γ) 0 0 · · · 0
0 σ−(α, γ) 0 · · · 0
0 0

(1 − α
2)Im−2

0 0
...
0 0




Then we have the following corollary to Theorem 5.3.1 regarding the structure of KF.

Corollary 5.3.2. Let cj be and arbitrary complex vector and let B be a orthonormal basis
for Cm containing cj . Then, for any γ ∈ C, 0 < α < 1, such that γ 6=

√
1 − α2,

F(cj ;α, γ,B)F(cj ;α, γ,B)† = Bj(B)UK(α, γ)ΣK(α, γ)UK(α, γ)†Bj(B)†

While Corollary 5.3.2 is illuminating in terms of the structure of the covariance of the
factor it is still unclear whether Corollary 5.3.2 is in fact the eigenvalue decomposition of
KF. In particular, it is unclear if the matrix UK(α, γ) is unitary so that the diagonal
elements of ΣK(α, γ) are the eigenvalues of KF. This is in fact so which we state in the
following theorem.

Theorem 5.3.3. Let cj be and arbitrary complex vector and let B be a orthonormal ba-
sis for Cm containing cj . Then, for any γ ∈ C, 0 < α < 1, such that γ 6=

√
1 − α2.

Then, the matrix UK(α, γ) is unitary and the eigenvectors of F(cj ;α, γ,B)F(cj ;α, γ,B)†

are the columns of Bj(B)UK(α, γ) and the diagonal elements of ΣK(α, γ) are the associated
eigenvalues.
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Proof. We note that the rows of DFT∗(m− 1) have zero sum by definition and it is clear
that first two columns of UK(α, γ) are orthogonal to the last m−2 columns as these vectors
are constant over the last m− 1 coordinates. As DFT∗(m− 1) is a sub matrix of the m− 1
dimensional DFT matrix the last m − 2 columns of UK(α, γ) are orthogonal. Thus, it is
left to show that first two columns of UK(α, γ). To see this note that,

ν+(α, γ)ν−(α, γ) = 1 −m

and hence the first two columns of UK(α, γ) are orthogonal. �

Examining Theorem 5.3.3 and the preceding discussion one can see that the universal
code has an eigen space of dimension m − 2 with eigenvalue and, in general, two one
dimensional eigenspaces of dimension 1 with eigenvalues ν+(α, γ) and ν−(α, γ). It is clear
from the definition that ν+(α, γ) ≥ ν−(α, γ) and hence the dominate mode of the covariance
matrix is in the direction

ν+(α, γ)b0 +
∑

b∈B\b0

b.

Thus, given an estimate of a cluster covariance one may choose values for α and γ to
construct a factor that is matched to a channel covariance that is estimated through the
EM algorithm. However, this result has more practical relevance in a high rate system.
That is, to construct a high rate code we used factors to double the code rate. More
precisely, given a rate r code Cr, we formed a rate 2 · r code CF(α, γ, Cr) by forming unions
of local codes and optimizing over the choice of α and γ. Thus, if one use the universal
code CF(α, γ, Cr), then one will have a rate 2 · r code that is matched to a white channel as
well as 2r rate r codes that are matched to covariance matrices that have

ν+(α, γ)ci +
∑

b∈Bi\ci

b (5.35)

for each ci ∈ Cr as principal directions where Bi is the basis used in the construction of the
local code C(ci;α, γ, Cr). Moreover, as we have have shown in Section 4.4, only cluster’s
of users that have a channel correlation that is highly mismatched with code substantially
degrades system performance. From this perspective, one can see that a user with a very
highly correlated channel, i.e. user with a channel vector with a dominate principal direction,
will achieve approximately the same quantization error as as a user with a white channel
vector in a code with half the rate. Thus, the systematic construction allows one to not
only double the code rate, but also provides a robustness to channel correlations that are
detrimental to system performance in the process. However, while this construction will
ensure that the quantization error is low and the multi-user diversity is exploited it does
not guarantee in any way orthogonality. Indeed, if users have channel vectors that undergo
a fading with a common spatial correlation then it is unlikely these users will ever be
orthogonal and one will have to select users that have non-zero co-channel interference.
Thus, in such cases one would expect to benefit from intelligent multiplexing.

� 5.3.2 Efficient Multiplexing in the Universal Code

Our preceding discussion has indicated that in the multi-user MIMO downlink it is of
interest to design codebooks that contain many orthogonal bases as such an approach helps
mitigate interference as well as simplifies the problem of multiplexing. Hence, it is natural
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to ask whether extending the root codebook by adding local code is a way to produce
new orthogonal sets. In this direction, we will say that two local codes C(ci;α, γ,Bi) and
C(cj ;α, γ,Bi) are orthogonal if ci is orthogonal to cj . Then, we have the following import
theorem concerning the orthogonality properties of the code CF(α, γ, {Bi}).

Theorem 5.3.4. Let C0 be given and let CF(α, γ, {Bi}) be the universal code associated with
C0 for some choice of α, γ and collection of bases {Bi}. If, ci, cj , c1, c2 ∈ C0 are such that

c
†
icj = 0

c
†
1cj = 0 and c

†
ic2 = 0 and c

†
1c2 = 0 (5.36)

then
c
†
1F(ci;α, γ,Bi)

†F(cj ;α, γ,Bj)c2 = 0.

That is, if C(ci;α, γ,Bi) and C(cj ;α, γ,Bi) are orthogonal local codes then F(ci;α, γ,Bi)c1

and F(cj ;α, γ,Bj)c2 are orthogonal if (5.36) is satisfied.

Proof. This may be proved by direct application of Lemma 3.6.1. In particular, every
codeword in a local code is of the form a0ci +a1c1. As (5.36) describes the 3 inner products
arising from inner product of two vectors of this form, the resulting inner product is zero. �

Closely examining Theorem 5.3.4, one can see that in general there is no guarantee that
this method will produce new orthogonal bases and hence likely that one may benefit from
more intelligent multiplexing methods. This, however, is not unexpected as the code factors
were designed to combat channel correlation and not produce orthogonal sets that are full
rank. However, we note that if one is not interested in full rank transmission (i.e. selecting
sets of user of size m) or such a transmission is not possible/optimal due to the channel
correlation or power constraints, then by examining Theorem 5.3.4 one can see that it is
possible that the universal code introduces new orthogonal sets of small size that are not
included in the root code. More importantly, from Theorem 5.3.4 it is possible that there
are subsets of codevectors of the universal code that are orthonormal bases for subspaces of
Cm for which there is no orthonormal basis in the root code C0. Moreover, the number of
such sets in the universal code is governed by the orthogonality relations of the root code.
Thus, while not introducing new bases, the universal code does introduce new orthogonal
configurations of lower rank which span a subspace which is not spanned by any subset of
vectors of the root code.

As our adaptive framework does not introduce new orthogonal bases in a multi-user
MIMO system it may not be able to find a size m subset of users that have orthogonal
quantized channel vectors. If this is the case one may attempt to find a smaller set of
user that do have orthogonal quantized channel vectors. However, if a smaller orthogonal
configuration can not be found, or one wishes to use sets of users for transmission, one may
need to multiplexing a non-orthogonal configuration for the universal code.

In the sequel we consider how one in the present framework may efficiently multiplex non-
orthogonal configurations from the universal code. In particular, we consider multiplexing
configurations from the universal code for which

1. all vectors are elements of a single local code

2. all vectors are elements of distinct non-orthogonal local codes

3. all vectors are elements of distinct orthogonal local codes

210



5.3. ROBUSTNESS OF THE SYSTEMATIC CONSTRUCTION FOR MULTI-USER SYSTEMS

We note each one of these cases correspond to different system regimes. The first, corre-
sponds to a system in which all users in the system have highly correlated channel vectors
and hence are highly correlated with a single root codeword. The second multiplexing
regime corresponds to a system in which the users channels are largely independent, how-
ever the overall system performance is not dominated by the multi-user diversity gain and
hence we can not find nearly orthogonal terminals from subsets of orthogonal local codes.
The third multiplexing regime correspond to a system in which the system performance is
dominated by the multi-user diversity gain so that the configuration chosen for transmission
are nearly orthogonal and lay in orthogonal local codes.

To begin, we consider the case of multiplexing when all vectors are elements of a single
local code. In such a case it is desirable to first remove this correlation, then multiplex the
resulting configuration from the root code. We note that the product structure of the factor
F(b0;α, γ,B) makes this approach quite easy to achieve. In fact, from (3.71) it is easy to
see that the inverse of F(b0;α, γ,B) has a similar form to that in (3.71). That is,

F(b0;α, γ,B)−1 =


 ∏

b∈B\b0

Ỹ−1(b0,b;α)



(
I− (γ − 1)

γ
· b0b

†
0

)
(5.37)

where Ỹ(b1,b2;α)−1 was given in (3.70). Thus, if one wishes to multiplex a set of vectors
which are all elements of a single local code one may first invert the factor F(b0;α, γ,B)
via (5.37), then apply an existing linear multiplexing strategy to the resulting configuration
from the root code. More precisely, if

Φ̂A = C† ·F(b0;α, γ,B)†

for some b0 ∈ C, basis B and set of codewords from C, represented in matrix form as C

then

Φ̂A ·
(
F(b0;α, γ,B)†

)−1
WIC (C) = I

Thus, the interference canceling multiplexer is not too much more complex in this regime
then it was prior to adaptation as it only require the product of a few simple rotations.

When the codewords lay in distinct local codes it is clear that we do not wish to invert
the local factors as we know a priori that these vectors are somewhat (depending on the
choice of α and γ) dispersed as they lay in separate local codes. That is, as the codewords
lay in different local codes it is more natural to consider a multiplexer which first performs a
small perturbation to align all the codewords with their root, then apply an existing linear
multiplexing strategy to the resulting configuration from the root code.

Recall from Corollary 3.76 precisely describes what we geometrically expect. That is,
every codeword from the root code gets a gain in the direction of c0 and a uniform scaling
in the space orthogonal to c0. More precisely, from Corollary 3.76 we can see that the inner
product of every vector of the local code C(F(c0;α, γ,B), c0) with c0 can be written, by
examining (3.76), as

c
†
0F(c0;α, γ,B)c = γ(1 − α) · c†0c + αγ ·

∑

b∈B
b†c. (5.38)

In the sequel we let

̟(c, c0;α, γ,B) = c
†
0Fc −

√
1 − α2 · c†0c.
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Thus, every element of a local code is of the form

√
1 − α2c +̟(c, c0;α, γ,B)c0

‖Fc‖

This is a particularly useful form as it allows for quite simple multiplexing of elements from
arbitrary local codes. In the sequel we let (ci, cj ,Bk) denote the element of the universal
code

F(ci;α, γ,Bk)cj .

Then, given a set of say m codewords from the universal code {(ciℓ , cjℓ
,Bkℓ

)}m−1
ℓ=0 which are

the quantized channel vectors for some set of users A we have

Φ̂A = D1 ·C1 + D2 ·C2 (5.39)

where

D1 = diag

[{
̟(ciℓ , cjℓ

;Bkℓ
)

‖F(ciℓ ;α, γ,Bkℓ
)cjℓ

‖

}]

and

D2 = diag

[{ √
1 − α2

‖F(ciℓ ;α, γ,Bkℓ
)cjℓ

‖

}]

where in turn

C1 =




− c
†
i0

−
...

...
...

− c
†
im−1

−


 and C2 =




− c
†
j0

−
...

...
...

− c
†
jm−1

−


 (5.40)

It is simple to see that if either C1 is unitary or C2 is unitary then

Φ̂A = Dj

(
D−1

j Di + Cj · C†
i

)
Ci.

where i ∈ {1, 2} is the index of the unitary matrix and j ∈ {1, 2} \ {i} is the remaining
index. Hence, in the case either C1 is unitary or C2 is unitary then

WIC(Φ̂A) = C
†
i

(
D−1

j Di + Cj ·C†
i

)−1
D−1

j (5.41)

where the same convention with i and j is used. We note that (5.41) is far more efficient
to compute in practice than it may first appear. In particular, let

Π = diag

[
{̟(ciℓ , cjℓ

;Bkℓ
)√

1 − α2
}
]

(5.42)

Then, (5.41) becomes

WIC(Φ̂A) = C
†
i

(
Π2(j− 3

2
) + Cj ·C†

i

)−1
D−1

j .

Thus, the inverse in (5.41) may be indexed by (j,Π,Cj · C†
i ). In the root codes developed

in the sequel there will be very few distinct Gram matrices Cj · C†
i . Hence, so long as the
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distinct number of matrices Π may assume is not too large then (5.41) may be computed
by table look-up. However, if this is not the case then inverting

(
Π2(j− 3

2
) + Cj · C†

i

)−1

is not much harder than the MMSE beamformer presented in Section 2.3 which has been
implemented in many wireless systems. We do not develop the particular set of matrices Π

may assume.
As we are interested in developing root quantizers it is likely that a set selected from

the universal code will have either Ci or Cj unitary. If this is not the case then one may
always compute the standard for for the pseudo inverse,

WIC(Φ̂A) = WIC (D1C1 + D2C2)

We do not develop specific insights for this inversion.
In the preceding section we have shown our geometric quantizer factors have quite nice

multiplexing properties due to the eigenstructure of the factors. Thus, in correlated channels
one has efficient methods to precancel known interference. However, as we have shown, in
a multi-user system it is of equal importance to be able to efficiently identify and select
users that have low co-channel interference. However, in a complexity constrained system
one may not have the time and/or resources to do optimal selection. Thus, it is of great
importance to develop efficient scheduling algorithms that, with high probability, choose
the optimal set.
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Chapter 6

Algorithms for Scheduling in
Multi-User MIMO Systems

In the preceding Chapters we have developed an adaptive quantization scheme as well as
a framework to develop quantizers with low mean squared quantization error and many
orthogonal bases. In particular, in Chapter 3 we found a simple, geometrically motivated,
linear transform that may be used to construct high rate quantizers as well as quantizers
matched to many users channel covariance. We showed that this quantizer preserves much
of the underlying structure to aid in search. Further, in Chapter 3.3 we developed the
symmetry group of a quantizer and studied an abstract notion of complexity and flexibility
of a basis. However, at present we have not addressed exactly how one may solve the
maximal weighted clique problem for a chosen quantizer or more generally how one may
address the broader question of how to schedule users from the universal codebook. In this
chapter we consider exactly how this may be done.

Recall that our underlying motivation for examining the order statistic gain and multi-
node matching gain trade off was that it allowed us the ability to realize the multi-user
diversity gains inherent in a multi-user system. This was done by employing simple thresh-
olds on each users individual SNR to limit the search to a smaller pool. We showed that
so long as the SNR threshold was not set too aggressively one may ensure that a set of
users can be found in this restricted pool that obtains a sum rate which is close to optimal
with high probability. However, in a practical system finding the set of users from this
reduce pool that achieve the maximum sum rate may still not be feasible due to complexity
constraints. Thus, it is of interest to develop scheduling algorithms that choose a set of
users who achieve a rate close to that of the optimal set with as few operations as possible.
It has been recognized that further restricting ones search to sets of users for which there
are guarantees on the channel norms and the magnitudes of pairwise inner products can
provide close to optimal performance [111, 120–124, 131, 140–142]. Such an approach aims
to find a set of users that are nearly orthogonal so that the penalty in rate incurred using
a sub-optimal multiplexing scheme will be negligible for the selected set. In Chapter 4 we
showed that this approach is optimal in the large user limit, but also that this may be done
successfully even when the user population is a small multiple of the number of the number
of antennas. This was done by examining when the order statistic gain decouples from the
multi-node matching gain as this implies that greedily selecting the users with best SNR
targets first then the subset of users are chosen with the best co-channel interference does
not incur a penalty in throughput asymptotically. Depending on the SNR threshold one
may still have too many subsets of users to consider for full search to be feasible. To combat
this complexity one may employ a code book that contains many orthogonal bases. Then,
using the feedback threshold σ one has the added benefit that some of the search complex-
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ity may be offset through a decentralized self selection where by users only report back if
there channel vectors are near one of a plurality of subspace described by the quantization
scheme. If one uses this approach it is reasonable to suspect that more often than not there
is a subset of users which have orthogonal channel vectors and once again a search using
pairwise inner products can provide close to optimal performance.

In Section 4.2 we presented a model for channel aware scheduling which modeled the
dependencies of users feedback through a general graph. A large motivation for this archi-
tecture, and the subsequent analysis and quantization design, is if one can develop large
switches with many possible processing modes, modeled by cliques, one could use efficient
existing algorithms on the plurality of switches to arrive at the optimum scheduling deci-
sion for a given channel and queue state. Here we develop the necessary tools for efficient
user selection to find the optimal set using our model of channel aware scheduling through
a generalized switch. While finding the optimal solution to the channel aware schedul-
ing problem is theoretically simple, as one may simply enumerate all subsets of users and
evaluate each one with respect to the quality-of-service (QOS) objective function, from a
practical perspective such a search may not be possible as complete enumeration of all sub-
sets grows exponentially with the size of the user pool. In particular, in a MIMO system
with 4 transmit elements and 8 users there are 70 subsets of size 4 and 162 subsets of users
in all. Thus, as the time available to make a scheduling decision in a communication system
can be quite small, one must find efficient ways to search among the subsets of users to
find the optimal or approximate solution to the channel aware scheduling problem which
is not enumerative. Moreover, entirely greedy algorithms may arrive at a local optimum
which has a much lower weighted rate compared to that of the global optimum. Hence, in
practice, a natural choice is a hybrid of these two methods. That is, a greedy search which
has some knowledge of the combinatorial structure of the problem that allows the search
algorithm to backtrack or restart is of interest.

� 6.1 Fast Maximal Clique Algorithms

For optimal scheduling in a multi-user MIMO system we have chosen cliques in a general
graph to represent the inputs and outputs of a generalized switch. This model was chosen as
it sufficiently captures the complex geometric structure required for channel aware schedul-
ing with multiple-antennas. We showed the interdependencies between rate allocations that
may be represented by a bi-partite graph are insufficient to represent the interdependencies
required for channel aware scheduling with multiple-antennas. However, we have shown
that a plurality of general undirected graphs are. As a general graph does not include a
set of distinguished outputs one may model the dependencies arising from co-channel in-
terference through the assignments of edges in a general graph and use a clique in a graph
to model a possible processing mode. Recall, we let an edge in G represent a permissible
pairing of codewords. In this setting a set of codewords may be scheduled simultaneously if
and only if there is an edge between each codeword in G. To each vertex i ∈ V we associate
a weight wi representing the reward one gets in the linear objective function representing
the QOS constraint by including the user with feedback associated to vertex i. We further
let the weight of a clique be the sum of the weights of the vertices in the clique. Thus, the
solution to the scheduling problem when restricted to the rate allocations represented by G
is equivalent to finding a maximally weighted clique in G.

It is well understood that finding a maximally weighted clique in a general graph is
NP-complete and this problem is counted among Karp’s 21 NP-complete problems [73].
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That is the problem of finding the maximum clique is intractable and hard to approximate
as listing all maximal cliques of a given graph may require exponential time as graphs may
contain exponentially many maximal cliques. As we have developed our generalized switch
to contain many orthogonal bases it is unclear if this approach has driven us in to a problem
that requires exponential time to solve through enumerative algorithms. Unfortunately this
is the case in general. While the graphs associated to our quantization scheme may have
exponentially many maximal cliques the graph it self is quite structured which allows one
to determine an approximation, and often the exact, maximally weighted clique rapidly.

Before proceeding we first recall some basic definitions from graph theory. We have
an interest in finding the maximally weighted clique in a graph and the size of the largest
clique in G is of interest. We denote this quantity as

ω(G) = max
S clique in G

|S|

and say that ω(G) is the clique number of G. A related figure of merit of a graph is it’s
(vertex) colorability. We say that a vertex coloring of a graph G = (V,E) is a labeling of
the vertex set V with “colors” such that such that no two adjacent vertices share the same
color. More formally, a graph is k-colorable if there exists a map , say fC, from the vertex
set V to the color set {0, 1, . . . , k− 1} × V where fC(vi) = (fc(vi), vi) and fc(vi) 6= fc(vj) if
(i, j) ∈ E. The chromatic number of a graph G is the smallest coloring which we denote as
χ(G). It is clear that the chromatic number is always greater than the clique number as one
needs at least ω(G) many colors to color the maximal clique. As the chromatic number is
an upper bound on the clique number, it is natural to suspect that the chromatic number
plays a large role in methods to bound the size of the largest clique. In particular, if the
clique number of every induced subgraph of a graph equals the chromatic number of the
induced subgraph we say the graph is perfect.

The general problem of finding a maximum weighted clique in a graph is NP-complete.
However, there is a large classes of graphs for which the maximum weighted clique may be
solved exactly in polynomial time. A well known class of graphs for which the maximum
weighted clique may be solved exactly in polynomial time is, not surprisingly, the class of
perfect graphs. In the sequel we develop some of this theory surrounding perfect graphs in
order to motivate a heuristic approach to efficiently solving the channel aware scheduling
problem. In particular, when the clique number equals that chromatic number there are very
efficient algorithms to solve the maximum weighted clique problem [17, 20,53].

Grötschel, Lovász and Schrijver have shown that if a graph is perfect then the maximum
weighted clique problem may be solved in polynomial time [53]. We note that perfect graphs
require a very special structure that may not be met in general. However, if the clique
number equals the chromatic number one may expect that there are efficient algorithms to
solve the maximum clique problem which more often then not only require polynomial time
to find the maximal clique due to the similarity with perfect graphs. That is, if a graph is
not perfect then one may attempt to find alternate solutions to the maximal clique problem
using either an approximation or exact algorithm using the insights one has from a perfect
graph.

In general one may formulate the maximal clique problem as an integer programing
problem1. In particular, for a given graph with k vertices, G = (V,E), and a given set

1This, should not be surprising as our formulation of the channel aware scheduling problem is an integer
programing problem.
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of vertex weights {wi}i∈E one may consider the integer linear program based on the edge
constraints [97]

maximize
x

n−1∑

i=0

wi · xi

subject to xi + xj ≤ 1 ∀ (i, j) ∈ E (6.1a)

xi ∈ {0, 1}, i = 0, 1 . . . , k − 1 (6.1b)

With this formulation one may write down a simple linear relation of (6.1) by replacing
the 0, 1 constraint in (6.1b) with a positivity constraint xi ≥ 0 for i = 0, 1 . . . , k − 1. More
precisely, one may consider the relaxed program

maximize
x

n−1∑

i=0

wi · xi

subject to xi + xj ≤ 1 ∀ (i, j) ∈ E (6.2a)

xi ≥ 0, i = 0, 1 . . . , k − 1 (6.2b)

The relaxation (6.2), in most cases, results in few variables having the true optimum values
leading to a large gap between the optimal values of (6.1) and the solution to the relaxed
problem [97]. In fact, it has been shown that the inequalities (6.2a) and (6.2b) are only
sufficient to solve (6.1) if the graph G is bipartite. Thus, to find more exact solutions one
must consider a way to better formulate the problem so that a linear relaxation is successful.
To do this one may first find a collection of subsets of vertices for which a constraint stronger
than (6.1a) may be written so that the relaxation to the resulting program does not deviate
from the optimal solution to the integer program. In this direction we say a set of vertices
V is an independent (stable) set if no two vertices of V are adjacent. More precisely, V is
an independent set if

(i, j) 6∈ E ∀ i, j ∈ V.
It is clear that a clique does not contain a pair of vertices from an independent set. Thus,
suppose that an oracle has given us a list of every maximal clique in a graph, say S. Then,
one may alternatively write (6.1) via the independent set formulation [97]

maximize
x

n−1∑

i=0

wi · xi

subject to
∑

i∈V
xi ≤ 1 ∀V ∈ S (6.3a)

xi ∈ {0, 1}, i = 0, 1 . . . , k − 1 (6.3b)

The integer program (6.3) clearly reflects the hardness of solving this problem. That is, the
list of every maximal clique in a graph S may be exponential leading to an exponential set
of constraints in (6.3a). One may again consider a relaxation of (6.3a) by changing (6.3b)
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to a weaker positivity constraint. More precisely, one may consider the relaxed program

maximize
x

n−1∑

i=0

wi · xi

subject to
∑

i∈V
xi ≤ 1 ∀V ∈ S (6.4a)

xi ≥ 0, i = 0, 1 . . . , k − 1 (6.4b)

However, the relaxation (6.4) is, once again, only exact on a specific class of graphs. This,
is one of the main results of [53,54]

Proposition 6.1.1. A graph G is perfect if and only if the solution to (6.4) has an integral
solution for any set of weights {wi} ∈ Rn. Moreover, if G is perfect then (6.3) can be solved
in polynomial time.

As we noted previously, perfect graphs have very efficient methods to solve the maximally
weighted clique problem. However, in general the static set of switches developed in the
BRS model for our architecture will not be perfect, especially in the case of the universal
code. Thus, one must develop enumerative methods if one wishes to solve the maximally
weighted clique problem, and hence the channel aware scheduling problem, exactly.

The need to enumerate a large set of cliques in a graph is at the core of difficulty of
solving the maximally weighted clique problem. Indeed, as we have seen in (6.3) one may
have to enumerate an exponential number of subgraphs, as in (6.3a), to solve the problem in
general. While it may take exponential time to definitively solve (6.3) the optimal solution
may, in some cases, be found much faster by excluding large subset of cliques. That is, to
find the maximally weighted clique one may “intelligently” enumerate the cliques of a graph,
by not exploring portions of the graph that can be shown to not include that maximally
weighted clique. The most well known and common approach to this is the use of a branch
and bound algorithm that finds good lower and upper bounds on portions of the graph and
breaks the solution of the exact problem into smaller subproblems [97].

There has been considerable historical development of solutions to the max clique prob-
lem. We do not overview all of these results here but rather refer the reader to [97]. In the
sequel, we develop the most efficient exact algorithms for solving the maximum-weighted
clique problem using branch and bound algorithms. We note that the weighted and un-
weighted cases do not differ greatly and hence in the sequel only develop the unweighted
algorithm leaving the extension for the weighted case for the final algorithm.

To date the most efficient clique finding algorithms are extensions of the branch and
bound algorithm of Carraghan and Pardalos [31]. An important feature of the algorithm of
Carraghan and Pardalos, and a key to it efficiency, is it requires one to specify an order of
the vertices of the graph and considers searching for the maximal clique by enumerating the
cliques containing a given vertex with respect to this order. This is useful if one can ascertain
some properties of the graph to assist in how to find cliques rapidly. For any sequence of
vertices of a graph G with k vertices let τ be a given permutation of {0, 1, 2, . . . , k − 1}.
Then, the algorithm of Carraghan and Pardalos produces a sequence of cliques by finding the
largest clique in G which contains vτ(0), then the largest clique in G \{vτ(0)} containing vτ(1)

and so on. The crucial observation of Carraghan and Pardalos, which leads to the efficiency
of their algorithm, was that one may stop the ith iteration early if the current largest
clique found for G is bigger than one that may be formed on G \ {vτ(0), vτ(1), . . . , vτ(i−1)}.
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In particular, Carraghan and Pardalos noted that one may apply this observation to not
only the number of iterations but also to the search amongst the cliques containing a given
vertex. An important notion in this development is the distance between two vertices in a
graph. The distance between two vertices in a graph is the number of edges in a shortest
path connecting them. Carraghan and Pardalos’s algorithm recursively searches for cliques
by searching for cliques which only includes vertices up to distance d. That is, at depth d
on the ith iteration Carraghan and Pardalos’s algorithm has found a clique of size d from
the vertices V \ {vτ(0), vτ(1), . . . , vτ(i−1)}. Hence, if the size of the maximal clique is larger
than d+(k− i) one need not recurse further. It should be clear that the vertex order is key
to this approach. In particular, if one list vertices that are only contained in small cliques
first one may have to enumerate every clique in the graph. Alternatively, if one provides a
vertex which list the maximal clique first the algorithm will halt far sooner.

Branch and bound algorithms are highly sensitive to the order specified for the vertices.
To see this we examine the graph associated to the orthogonal processing modes of the
quantizer from Example 3.3.3 which we illustrate in Figure 6-1. The quantizer from Example
3.3.3 may be described by the disjoint union of 4 bases, say B0,B1,B2,B3. To see how
sensitive the algorithm is to the vertex order suppose that one considers a vertex order
which takes elements from each basis in order assuming this will locate one of the “most
flexible” solutions sooner. More precisely, suppose

vτ(i) ∈ B⌊i/4⌋. (6.5)

Then, the algorithm of Carraghan and Pardalos will enumerate one size 4 clique almost
immediately. Then this algorithm will proceed to enumerate many of the size 3 cliques
and almost all of the size 2 cliques. This is due to the fact that the algorithm does not
use any of the past search history to infer that no larger cliques exist larger than size 4.
Clearly this particular ordering is not the optimal ordering as one spends a good bit of each
iteration of the algorithm searching on a small region of the graph. An example of the first
four iterations of this algorithm may be seen in Figure 6-1. With a vertex ordering (6.5)
the algorithm of Carraghan and Pardalos first examines the cliques seen in Figure 6-1 (b).
Once the search over this first basis completes the elements of this basis are deleted and
the search continues over elements of another basis. However, as seen in Figure 6-1 (c)
after four iterations of the search none of the bases which intersect B3 have had any vertex
pruned.

In order to explore more regions of a graph early in the search the vertex order (6.5) is
a poor choice. Indeed, the algorithm spends most of its time searching a local part of the
graph. However, if one properly chooses a vertex sequence which take an element of each
basis in turn will do much better. That is, by appropriately choosing

vτ(i) ∈ Bi (mod 4). (6.6)

may allow one to exclude more large cliques earlier in the algorithm, leading to earlier
termination. In particular, one may first find a coloring of the graph of interest and then
take each color class in order as the elements of a color class form an independent set and
hence should disperse the search through the graph. A coloring of the graph from Example
3.3.3 may be seen in Figure 6-2 (a). The result of pruning the depicted color class may be
seen in Figure 6-2 (b). Note that with this ordering every clique of size 4 has been removed
and the resulting graph is much more sparse. However, we note that the results from Figure
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c((3, 0), (0, 0))

c((1, 2), (0, 0))
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c((3, 3), (0, 0))

c((1, 1), (0, 0))

c((1, 3), (0, 0))

(b) (c)

Figure 6-1. An illustration of the importance of the input vertex order for the algorithm of Carraghan and
Pardalos. We assume that the bases are ordered from left to right as depicted in (a). That is, at far left
is B0, then B1 is middle left and so on. (b) the maximal cliques found in the first iteration (c) the cliques
unaffected by the pruning of the first 4 iterations.
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Figure 6-2. An illustration of the results of a vertex ordering which excludes every maximally sized clique
after 4 iterations. The ordering is taken from a coloring of the graph G. (a) A depiction of the first 4 vertices
used in to exclude every clique of size 4 after 4 iterations of the algorithm of Carraghan and Pardalos. (b)
The maximal cliques effected by removing the elements of the first color class.

6-2 are not true in general. That is, given a coloring a graph, even if it is minimal, removing
a color class does not guarantee that size of the maximal clique decreases. Indeed, if the
graph is not perfect then there is some sequence of color classes that when deleted does not
reduce the size of the maximal clique in the graph. Examining the ordering used in Figure
6-2 one may see that there exists a 4 coloring of the graph. As this graph is 4 colorable
and the largest clique is of size 4 the graph has chromatic number 4. As the chromatic
number is an upper bound on the clique number one may, in this special case, guarantee
a reduction in the cardinality of the largest clique by removing this color class. This has
practical relevance in our system as we know the size of the maximal clique in the graph
which represents orthogonal processing modes. This graph will always have clique number
at most m due to the underlying geometry of the problem. Thus, if one can find an m-
coloring of the graph it is easy to determine the existence of a clique of size m by exploiting
the structure of the color classes. As we show in the sequel one may find an m-coloring
of the graph for the quantizers of interest and hence (6.6) is a natural ordering on the set
of vertices. However, as in general our graphs are not perfect, nor will there always be a
maximal clique in the graph, there is no guarantee that removing a color class necessarily
decreases the size of the maximal clique in the resulting graph if this clique is not of size
4. Hence, in general the algorithm of Carraghan and Pardalos would continue to search
amongst the graph until a single independent set of size 4 remains, the last color used in
the ordering. It is natural to ask if there is a modification to this algorithm that will detect
the absence of a clique larger than size 4.

In order to determine a different heuristic to use find maximal cliques which halts before
the algorithm of Carraghan and Pardalos one may consider running this algorithm back-
wards in an attempt to bound the size of cliques that would have been discovered and/or
pruned by that algorithm had it been run forward. This approach has the added benefit
that it starts from the smallest possible graph, a single vertex, and builds up to the full
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graph, likely stopping before ever reaching this full graph and allows one to record history
of the size of cliques in a subgraph. To begin in this direction, consider a graph G with k
vertices let τ be a given permutation of {0, 1, 2, . . . , k − 1}. Then, Österg̊ard [95, 96] has
proposed keeping a table, say c(i), which keeps track of the size of the largest clique in the
subgraph G \ {vτ(0), vτ(1), . . . , vτ(i−1)}. With this approach, c(i) = c(i + 1) + 1 if and only
if there is a clique of size c(i+ 1) + 1 containing vi−1. We note that this approach enables
a new pruning strategy based on the prediction of the results one would have had running
the algorithm forward. In particular, one may again recurse to find cliques of maximal size
up to a given distance, as was done in the algorithm of Carraghan and Pardalos. However,
in Österg̊ard’s algorithm one may now use the history c(i) to prune the search. In fact, it
is easy to see that if vertex vτ(i) is at a distance d one need not progress if d + c(i) is less

than the largest clique found. As the algorithm of Österg̊ard is similar to the algorithm of
Carraghan and Pardalos, with the ability to better prune the search, one should similarly
expected using a coloring to order the vertices would again be fruitful. However, examin-
ing the graph from Example 3.3.3 in Figure 6-1 one can see that in graphs for which the
chromatic index equals the clique number the algorithm of Österg̊ard must wait until the
addition of the last color class before beginning able to find a maximally sized clique. Thus,
we must find a way to better exploit the structure of our graph if one hopes to efficiently
solve the maximum weighted clique problem as it relates to channel aware scheduling. To
do this we return the structure of the orthogonal bases that we found in Section 3.3.1.

� 6.2 Complexity of Systematic Quantization Framework

Recall in Chapter 3.3 we identified the form that any orthgonal basis must take in our
architecture through our definition of the twisted hamming weith. Further, in Section
3.4 showed that more generally one can define quantizers that have fewer orthgonality
relationships be defining a restricted twisted hamming weight. In the sequel we identify
how one may search for orthogonal sets in a code designed using Corollary 3.3.12 using the
insights from Theorem 3.3.10. This view point will be particularly useful in the development
of flexible search algorithms that can adapt to enable the system designer to meet quality of
service constraints while simultaneously opportunistically use the maximum rate afforded
by the time varying channel. In this direction we note that every codeword in the system
of interest, say, c(λj ,β;L, pa) can be described by the vector (λ̂j, λ̄j,β) ∈ Υ̂1 × (pa−1 ·
Ld

a) × Lc. In the sequel, we will ignore the parameter β as the effects this parameter has
on orthogonality is trivial by condition (i) of Theorem 3.3.10. Thus, in the sequel we will
instead study how ones choice of Υ1 effects the resulting orthogonality properties. It should
be clear from Theorem 3.3.10 one may determine if the set of vectors

{c(λi,β;L, pa)}ℓ
i=0 (6.7)

is self orthogonal by examining set of pairs of vectors

{
(λ̂i, λ̄i)

}ℓ

i=0
(6.8)

223



CHAPTER 6. ALGORITHMS FOR SCHEDULING IN MULTI-USER MIMO SYSTEMS

where λi = λ̂i + λ̄i. Thus, for every such set we may associate two arrays

Λ̂
(
{λ̂i}ℓ

i=0

)
=




λ̂0,0 λ̂0,1 . . . λ̂0,m′−2 λ̂0,m′−1

λ̂1,0 λ̂1,1 . . . λ̂1,m′−2 λ̂1,m′−1
...

...
. . .

...
...

λ̂ℓ,0 λ̂ℓ,1 . . . λ̂ℓ,m′−2 λ̂ℓ,m′−1




and

Λ
(
{λ̂i}ℓ

i=0

)
=




λ̄0,0 λ̄0,1 . . . λ̄0,m′−2 λ̄0,m′−1

λ̄1,0 λ̄1,1 . . . λ̄1,m′−2 λ̄1,m′−1
...

...
. . .

...
...

λ̄ℓ,0 λ̄ℓ,1 . . . λ̄ℓ,m′−2 λ̄ℓ,m′−1




From Theorem 3.3.10 it is clear that if a set of vectors is self orthogonal it is necessary
that we can find a column for which every pair of rows has a common element in Λ̂ element
while the corresponding entries in Λ differ. It should be clear that in general one must
examine each pair of entries in Λ̂ and Λ in order to check if the associated set of vectors in
self orthogonal. In particular, a self orthogonal set may have an associated Λ̂ with ⌈ℓ/p⌉
distinct elements in each column or a self orthogonal set may have an associated Λ̂ for
which each column only has one distinct entry. These two cases play an important role in
the discussion. As such, we denote the self orthogonal set which has an associated Λ̂ with
⌈ℓ/p⌉ distinct elements in each column as Oc the set which only has one distinct row as Of .
More concretely, if Λ̂ is such that λ̂i,j = λ̂i+1,j then for an appropriate choice of Λ the pair

Λ̂ and Λ correspond to an orthogonal set. Moreover, any orthogonal set in which each pair
of codewords satisfy condition (ii) in Theorem 3.3.10 have a Λ̂ for which there is only one
distinct element in each column. Thus, Of is self orthogonal set that meets condition (ii)
in Theorem 3.3.10 while Oc is a set with distinct rows meeting condition (iii) in Theorem
3.3.10. Thus, the frequency and number of distinct elements in the columns of Λ̂ which
define a self orthogonal set can be quite diverse.

Note that the preceding examples all define orthogonal sets for appropriate choices of Λ
while having quite dissimilar structure. Thus, it is natural to wonder how these sets differ.
In the sequel we will show that while both of the sets Of and Oc are self orthogonal, the
set Of is more flexible (by a measure we define in the sequel) to modification to a different
orthogonal set than Oc. In order to make this concept more precise we must first identify
a notion of a type for Λ̂. For any vector v ∈ (Zp)

m′
we will let the type of the vector v be

the partition of the coordinates of v for which v has a constant value and denote this as
typetwt(v). That is, the type of v ∈ (Zp)

m′
, is the partition of {0, 1, . . . ,m′ − 2,m′ − 1},

say typetwt(v) = {P0,P1, . . . ,Pr}, such that

{0, 1, . . . ,m′ − 2,m′ − 1} =

r∐

i=0

Pi

and
vi = vj ∀i, j ∈ Pk and k = 0, 1, . . . , r.

For any matrix Λ̂ ∈ (Zp)
ℓ×m′

we let the type of the matrix be the vector of column types
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and denote this as typetwt(Λ̂). That is,

typetwt(Λ̂) =
[
typetwt(Λ̂[:, 0]), typetwt(Λ̂[:, 1]), . . . , typetwt(Λ̂[:,m′ − 1])

]
.

It should be clear that the typetwt(Λ̂) encapsulates the combinatorial structure of Λ̂ needed
to test for orthogonality. More precisely, for Λ̂ to correspond to an orthogonal set it is
necessary for there exists a subset of columns, say J ′, such that

∀ i 6= j ∈ {0, 1, . . . , ℓ}, {i, j} ⊂ Pk (6.9a)

where Pk ∈ typetwt(Λ̂[:, c]) (6.9b)

and c ∈ J ′. (6.9c)

That is in general to check if the matrix Λ̂ corresponds to an orthogonal set we must at least
check that the union of the column types contains all pairs of row indices. However, we note
that the constraint imposed on the relationship between the λ̄i make this far from sufficient.
In particular, as it is required for λ̄i to differ pairwise in the coordinates which satisfy (6.9)
and the λ̄i are isomorphic to vectors over (Zp)

m′
it is clear that the partitions with parts

bigger than p lead to an overly opportunistic constraint. Hence, to identify orthogonal sets
we need to check for the existence of a subset of columns, say J , such that

∀ i 6= j ∈ {0, 1, . . . , ℓ}, {i, j} ⊂ Nk,c ⊂ Pk (6.10a)

where Pk ∈ typetwt(Λ̂[:, c]) (6.10b)

and |Nk,c| < p (6.10c)

and c ∈ J . (6.10d)

In order to test for orthogonality one would like to dispense with the complexity of the
search over rows as much as possible. That is, we would like to identify the types for which
verifying (6.10) is as trivial as possible. In this direction we let comptwt(Λ̂) denote the
smallest number of columns which need to be examined to verify (6.10). More precisely, if

J(Λ̂) = {J : (6.10) is true for Λ̂ }

then
comptwt(Λ̂) = min

J∈J(bΛ)
|J |. (6.11)

The quantity comptwt(Λ̂) is a very coarse measure of the difficulty one has testing if Λ̂
corresponds to an orthogonal set. In particular, if some oracle has given us J then one
would only have to examine the submatrix Λ̂[:,J ] in order to verify (6.10) to check to
see if the set was orthogonal. However, in practice one is not given this set so the true
number of columns that must be search may greatly exceed this number. However, in
the sequel we show comptwt(Λ̂) plays a very important role in determining the number of
orthogonal configurations as well as the flexibility of a matrix Λ̂ to either be extended to a
larger orthogonal configuration or modified to a new orthogonal configuration of the same
size by replacing a row. More precisely, one may view comptwt(Λ̂) as a coarse measure
of the size and number of the sets Nk,c in (6.10a). That is, if comptwt(Λ̂) is small then
by examining (6.10) it is likely that the Nk,c found to satisfy (6.10) are large and few in

number. To illustrate this relation, note that in the case that every row of comptwt(Λ̂) is
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identical (i.e. the set of associated vectors satisfy condition (i) of Theorem 3.3.10) then one
may, in order to verify (6.10), greedily take the sets Nk,c based on the p-adic representation
of the row index. More precisely, let

i = i0 + p · i1 + · · · + pm′−1 · im′−1

be the p-adic representation of i and let

ℵk,c(ℓ) = {i : 0 ≤ i < ℓ and i− pc · ic = k} (6.12)

Then, if
Nk,c = ℵk,c(ℓ) (6.13)

it is simple to see that {i, j} ∈ Nk,c for i 6= j if and only if ic = jc. Hence, the conditions of
(6.10) are satisfied and one has

comptwt(Λ̂) = ⌈lgp(ℓ)⌉.

We note, however, that if the original set of vectors had distinct rows while having common
indices on a set of size ⌈lgp(ℓ)⌉ we could use the same set of Nk,c to arrive at the result.

That is, if comptwt(Λ̂) < m′ then there may be additional Λ̂′ ∈ (Zp)
ℓ×m′

such that

Λ̂′[:,J ] = Λ̂[:,J ]

where |J | = comptwt(Λ̂) and is a valid subset of column indices for (6.10). In particular, it is

clear that there are pa·ℓ·(m′−comptwt(
bΛ)) such Λ̂′ ∈ (Zp)

ℓ×m′
. Thus, if comptwt(Λ̂) < m′ there

are many possible ways to naively adapt an orthogonal set by replacing a row with another
one that is constant on J if comptwt(Λ̂) < m′. However, from the preceding example it is
clear that this is not the only way one may adapt Λ̂. In particular, so long as we can find a
subset of column indices such that under a suitable permutation of columns and rows the
set of Nk,c from (6.13) are valid in (6.10) the resulting set is orthogonal. Thus, while it may
not be possible to replace a row by only examining a specific subset of columns it may be
possible to replace a row using a different subset of indices. In particular, in the current
example where every row of Λ̂ is equal, one may search over every subset of columns of size
ℓ to find a subset of indices to use to verify (6.10). Thus, we let

flextwt(Λ̂; t) =

∣∣{(τ, σ) : such that (6.10) is true for {Nτ(k),σ(c) = ℵk,c(t) }}
∣∣

min(ℓ!, t!)
(6.14)

be the number of row and column permutations for which the set of standard configurations
ℵk,c(t) can be used to verify (6.10). We note that the term min(ℓ!, t!) in the denominator
of (6.14) comes from the structure of ℵk,c(t). That is, for every τ , ℵk,σ(c)(t) = ℵτσ(k),c(t)
where

τσ(i) = pσ(0) · i0 + pσ(1) · i1 + · · · + pσ(m′−1) · im′−1

is the equivalent permutation on the row indices. Hence the numerator of (6.14) over counts
min(ℓ!, t!) times too many permutations. We note our definition of flexibility excludes
configurations that requires more than t columns to be examined to verify (6.10). That is,
if flextwt(Λ̂; t) = 0 it does not necessarily imply that one can not find a row in Λ̂ that can
be replaced by another vector in (Zp)

m′
to yield an new orthogonal set. It simply implies
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that it can not be done using fewer than t + 1 columns. This illustrates that there is a
fundamental relationship between flextwt(Λ̂; t) and comptwt(Λ̂). To make this more precise
we have the following theorem.

Theorem 6.2.1. For any matrix Λ̂ ∈ (Zp)
ℓ×m′

comptwt(Λ̂) = min{t : flextwt(Λ̂; t) > 0}

Proof. This proof is clear from the definitions. In particular, from (6.11) one has that the
complexity of Λ̂ is the smallest subset of columns of Λ̂ need to verify that Λ̂ defines a self
orthogonal set for a chosen Λ. Further, by (6.14) one has flextwt(Λ̂; t) = 0 for any non-
orthogonal set. Thus, flextwt(Λ̂; t) > 0 on the for every t such that a subset of columns of Λ̂
of cardinality t may be used to verify that Λ̂ defines a self orthogonal set. This yields the
result. �

We note that this observation has great consequence on the development of algorithms
that we develop in the sequel. That is, the most flexible configurations are lowest complexity.
Thus, if one greedily tries to find a basis of the form Of then one will not likely end up in a
position that can not be adapted if a set of the form Of can not be found. More precisely, to
proceed in a manner that is the most flexible as possible (i.e. to keep flextwt(Λ̂;m′) as large
as possible at each stage of the search) one would like to keep Λ̂ constant on as large a set
of column indices as possible as it trivially admits the largest number of column and row
permutations that can be used to satisfy (6.10). That is, a basis in which Λ̂ is constant on
every row is the most flexible basis, i.e. such a basis has flextwt(Λ̂;m) = m′!. However, we
note that it is not necessary for a basis to have such large flexibility. In fact it is easy to see
that Oc has flextwt(Λ̂;m) = 1. Thus, it is natural to wonder how two such bases differ. In
the sequel we will show that while Of has the lowest complexity the number of bases with
this form are fewer in number than those with lower complexity. This observation yields
additional insights in to how one might develop algorithms to find a basis. In particular,
if one greedily tries to find a basis of the form Of and one is not successful then there are
many other bases in the neighborhood of all basis of the form Of for which one may turn
the search algorithm to.

In the preceding discussion we neglected mention of Λ by inserting the constraint we
have on its choice in (6.10). That is, given any Λ̂ such that flextwt(Λ̂;m) > 0 we have shown
that there is some choice for Λ such that the set corresponding to the pair is orthogonal.
However, something that is far less clear is that the number of possible Λ that may be
paired with a given Λ̂ that yield distinct configurations varies inversely to flextwt(Λ̂;m). In
this direction let

Λ0 = [ ij ]m
′−1

i,j=0

where again we let ij be the coefficient in the p-adic expansion of i,i.e. i = i0 + p · i1 + · · ·+
pm′−1 · im′−1. Them we have the following lemma.

Lemma 6.2.2. If (Λ̂,Λ) determine an orthonormal basis in Cm then Λ is a row permutation
of Λ0.

Proof. This follows directly from the definition of the twisted Hamming weight. That is, as
there are only m = pm′

distinct elements λ̄ may assume one must use each such element to
define Λ. �
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We let
Λ0(τ) = [ τ(i)j ]m

′−1
i,j=0 (6.15)

denote the row permutation of Λ0. Now, if (τ, σ) is a pair of row and column permutations
such that (6.10) can be verified for

{
Nτ(k),σ(c) = ℵk,c(t)

}

then the vectors corresponding to Λ̂ and Λ0(τσ) yield a basis where τσ corresponds to the
effective row permutation caused by the pair of row and column permutations (τ, σ) being
applied to Λ̂. Thus, if flextwt(Λ̂;m) = m! then any (every) choice of permutation for Λ0

will yield a basis while any Λ̂ such that flextwt(Λ̂;m) = 1 only one permutation will yield
a basis. Thus, we must find an alternate way to understand the number of Λ that may be
paired with Λ̂. Note that while row and column permutations of Λ in general may not be
used to find new pairings for Λ̂ permutations to the values of the matrix will. That is, let
σp be any permutation of {0, 1, 2, . . . , p− 1} and let

τσp(i) = σp(i0) + p · σp(i1) + pm′−1 · σp(im−1)

be the corresponding row permutations. Then if, Λ̂ and Λ0(τ) correspond to a basis for
Cm then so will Λ0(τ ◦ τσp). However, it is clear that this will only yield a unique basis if

there are enough distinct rows in Λ̂. That is, if Λ̂ has any non-distinct rows then there are
some row permutations counted by flextwt(Λ̂;m′) for which the corresponding Λ0(τ) do not
define unique bases. Then we have the following lemma.

Theorem 6.2.3. Let Λ̂ ∈ (Zp)
pm′×m′

and suppose there exists some permutation τ such

that Λ̂ + Λ0(τ) forms a basis. Let {τi,p} be the set of permutations of {0, 1, 2, . . . , p − 1}
which acts on the elements of Λ0(τj) which yield a distinct ordering of the rows of Λ̂. Then,

Λj = Λ̂ + Λ0(τj,p)

are distinct up to row permutations. Moreover, each set of complex vectors

{c(Λj [i, :],β;L, pa)}m
i=0

defines a unique basis for Cm.

Proof. This theorem is a direct consequence of the discussion preceding it. �

In the preceding discussion we have mainly focused on the existence of orthogonal sets
as well as how one may enumerate them with an emphasis of search and scheduling. In
particular we have shown that any Λ̂ which only has one distinct row was shown to be the
most flexible. Thus, from an algorithmic perspective it is natural to consider the bases that
may be derived from such a basis by interchanging only p rows. Then, in turn, the bases
which may be derived from this derived basis in a similar manner and so forth, constructing
a tree where at the root one has the configuration that is the easiest to adapt and all
configurations that may be derived are children. More precisely for each λ̂0 ∈ (Zpa−1)m

′
we
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may consider a tree in which

Λ̂ =




λ̂0,0 λ̂0,1 . . . λ̂0,m′−2 λ̂0,m′−1

λ̂0,0 λ̂0,1 . . . λ̂0,m′−2 λ̂0,m′−1
...

...
. . .

...
...

λ̂0,0 λ̂0,1 . . . λ̂0,m′−2 λ̂0,m′−1




labels the root and each node on the ith level is labeled by a matrix Λ̂ containing pm′−i

copies of λ̂0 which satisfies (6.10). Further, we say that a node at level i + 1, labeled by
Λ̂i+1, is a child of a node at i, labeled by Λ̂i, if the set of distinct rows of Λ̂i are contained
in the set of distinct rows of Λ̂i+1. While this yields an efficient method and structure to
enumerate every basis, taking a slightly more intuitive approach yields a more effective way
to search. Consider building up a basis for a set of given vectors in a search to find the
maximally weighted basis. In this direction, recall that every basis formed by a code derived
over a cross product of the integers is of the form

Λ̂ + Λ0(τj)

where Λ0(τj) was defined in (6.15). If one attempts to construct a basis one may consider

a process whereby one first selects a codeword c0 = (λ̂, λ̄) and one temporarily forms a
basis by choosing Λ̂ to have each row equal to λ̂. Then, in order to keep track of the
selected codeword one may label one position in Λ0(τj) corresponding to c0 and mark the
remaining m− 1 positions with don’t cares. Then, one may sequentially add in additional
codevectors making sure that the at each stage the constraints (6.10) are met by ensuring
there is a vacant row in Λ0(τj) for which one may meet an appropriate constraint on λ̄.
More importantly, an entry on Λ0(τj) that is labeled with don’t cares tells one exactly which
constraints must be examined to ensure that the twisted hamming weight is positive. This
development may sound quite familiar. Indeed, as we have seen every maximal clique (and
hence in the present context basis) in a graph must have a unique color. As each basis must
have a distinct λ̄ to form a basis it should be clear that the set of distinct λ̄ color the graph
that describes orthogonality relationships. This is the content of the following theorem.

Theorem 6.2.4. Let p be a prime and suppose that m′, a ∈ Z, m′ > 0 and a > 0. Then,
consider a graph G with vertex set C(Υ1, {0}; Fpm′ ) and edge set

(c(λ, 0; Fpm′ , pa), c(λ′, 0; Fpm′ , pa)) ∈ E

if and only if c(λ, 0; Fpm′ , pa)†c(λ′, 0; Fpm′ , pa) = 0. Then, assigning c(λ, 0; Fpm′ , pa) the

color λ̄ is a pm′
-coloring of G.

We note that Theorem 6.2.4 is quite important in terms of user selection algorithms. In
fact, finding a minimal coloring in general is an NP-complete problem and often secondary
heuristics must be employed to find approximate coloring to use to find a maximal clique.
Thus, one obtains a reduction in the complexity of finding a maximal clique by using the
deterministic coloring of Theorem 6.2.4. However, Theorem 6.2.4, as stated, only describes
a coloring for the root code. As we have argued a multi-user MIMO system in general is
correlated. Hence, one more often than not must consider scheduling users from local codes.
In Chapter 3 we argued that this problem is not much more complex than scheduling the
root code. However, as the graph for such a code is much more complex it is natural to
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suspect that the coloring of Theorem 6.2.4 is not directly applicable to coloring the universal
code. However, in Section 3.6 we showed through Theorem 5.3.4 that the universal code
did not introduce any new maximal cliques. In fact, we saw that in general one must show
three inner products are 0 to determine if a pair of codewords from the universal code were
orthogonal. As one of these inner products were between the associated root code one may
extend a coloring of the root code to the universal code by coloring each element of a local
code with the color of its root. This is the content of the following theorem.

Theorem 6.2.5. Let p be a prime and suppose that m′, a ∈ Z, m′ > 0 and a > 0. Consider
a root code C(Υ1, {0}; Fpm′ ) and let CF(α, γ, {Bi}) be the universal code associated with
C(Υ1, {0}; Fpm′ ) for some chosen design basis. Now, consider a graph G with vertex set
C(Υ1, {0}; Fpm′ ) with an edge between any two orthogonal vectors in CF(α, γ, {Bi}). Then,
assign to each member of a local code in the universal code the color of its root. This yields
a pm′

-coloring of G.

Proof. This follows simply from the fact that for two elements of the CF(α, γ, {Bi}) to be
orthogonal the corresponding roots must be orthogonal by Theorem 5.3.4. Hence, two
elements of the CF(α, γ, {Bi}) are adjacent if the corresponding roots are adjacent which
implies each root has a distinct color. �

From Theorem 6.2.4 and Theorem 6.2.5 one may easily obtain colorings for the graphs
associated with orthogonal processing modes and hence improve the performance of any
branch and bound algorithm we have considered. However, we still have not exploited the
fact that we have a graph in which the chromatic number equals the clique number. As we
are in a quite special case one may suspect that there is a way to exploit the situation and
indeed there is. Note that in Österg̊ard’s algorithm one provided bounds on the size of any
graph contained in a subgraph by using cardinality of the underlying set. However, as we
know that the colorings of the graph relates directly to the size of the maximal clique one
may consider using the number of colors in a subgraph as a better indication of the size of
a possible clique. That is, even if a subgraph has a large number of vertices if there are few
colors in the subgraph then proceeding to search on such a subgraph will not dramatically
increase the size of the clique. Moreover, for the problem of channel aware scheduling,
one is interested in finding the maximally weighted clique. As the weight of a clique is
the sum of the included vertices, one may easily extend the described search algorithm by
using the sum of the largest weighted vertices from each color class on the subgraph as an
upper bound on reward one receives by considering a subgraph. More precisely, let Gd be
any subgraph of a given graph G. Then, we let deg(Gd) be the number of color class that
exists on Gd and let Deg(Gd) be the sum of the maximum weight for each color class that is
contained in Gd. Then as done previously one may keep a table of degrees of every subgraph
consider by a branch a bound algorithm.

It may seem that computing the number of color class that exist on a graph and the
corresponding maximal weight for each color class that is contained in Gd increases the
complexity of the search. However, we note that we already have an efficient structure in
place to compute just these quantities. In particular, our codebook and our “trees” play
just this role. More precisely, employing a code from Section 3.3.1 that is a disjoint union,
one may use each one of these bases for table lookup of degree or weighted degree. One
just needs to form a tree with each one of these bases as root and join every child that
represents the same basis. Using Λ to index the colors one only needs to inspect which
entries in the root are active and their associated weights to determine deg(Gd) or Deg(Gd).
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More precisely, to determine deg(Gd) or Deg(Gd) one may just examine the elements of the
disjoint union which exist on the subgraph.

The maximum weighted clique problem may be solved quite efficiently on the graphs as-
sociated to the quantizers of interest. In particular, for the graphs associated to orthogonal
processing modes of the quantizers in Section 3.3.1 have chromatic indices that equal the
clique number. Thus, one may use efficient algorithms, such as Österg̊ard’s algorithm, with
an appropriate coloring to solve the maximally weighted clique problem and the channel
aware scheduling problem. Most importantly this may be done with or without the assump-
tion of the Rayleigh model or heterogeneous fading amongst the users in the system. More
precisely one may use the geometric factors we developed in Section 5.3 and still preserve
chromatic number of the much larger graph. Thus, the codes developed in Chapter 3.3
to contain many orthogonal bases may be paired with our adaptive covariance methods of
Chapter 5 to yield a framework for robust and efficient scheduling in the multi-user MIMO
channel.
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Chapter 7

Conclusions and Future Work

In this thesis we have identified the problem of feedback design as a central issue in both
increasing throughput and reducing the complexity in a multi-user MIMO system. To show
this we developed a systematic channel quantization framework which treats the issues of
mean squared quantization error and scheduling complexity in a common framework. This
allows a system designer to optimize the trade-off between throughput and the complexity
of user selection. An added benefit of this framework is that it enabled us to analyze the
stability of a system to variety of channel models.

In Section 2.3 we examined the results of [67] which showed that high rate systems with
few users and finite rate feedback must use large codebooks to ensure that the system per-
formance is not limited. In such cases it is of interest to develop structured codebooks that
enable user terminals to efficiently quantize their channel vectors. A central contribution
of this thesis was the development of a systematic construction of channel quantizers in
Chapter 3. This construction allowed one to trade-off the achieved mean squared quantiza-
tion error and the number of orthogonal bases contained in the quantizer. As a particular
figure of merit we chose a high SNR approximation to the SINR of set of users, SINRsat. To
yield codes with large values of SINRsat our systematic construction of channel quantizers
consisted of three main structural components; a family of low-rate codes which contain
many orthogonal bases, a systematic method to construct intermediate rate codes through
unions of low-rate codes and a rate doubling operation which may be used to construct high
rate codes with low complexity quantization algorithms. With an appropriate choice of pa-
rameters one may use our framework to construct a high rate channel quantizer for which
multi-stage quantization is optimal. This may be done by first quantizing a channel vector
to a base code of half the rate. Then, using the same quantization algorithm, by performing
second quantization on a transformation of the channel vector where the transformation is
determined by the first stage of quantization. Such a codebook is of great interest for MIMO
broadcast systems as the quantization is performed at the user terminals. In many cases
the user terminals are power and complexity limited and hence may not have the resources
to perform high complexity quantization needed to obtain high rates.

However, SINRsat is a high SNR approximation of the achieved SINR of a system that
uses a particular quantization scheme and not a measure of the achieved SINR for a given
SNR. A multi-user system may not be optimized using this criterion alone. In a multi-user
system one must develop intelligent scheduling algorithms to exploit the multi-user diversity
by selecting users with low co-channel interference. Thus, in Chapter 4 we presented a simple
model and associated base station architecture in which the system designer may study the
trade-off between the order statistic gain and the multi-node matching gain.

With the model and system architecture of Chapter 4 one may further analyze how
the order statistic gain and the multi-node matching gain trade-off is affected by variations
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in the structure of the feedback design. A benefit of this approach is that it allows one
to examine the effects that variations in the channel model have on the performance of a
system using our quantization framework and system architecture. As such, we identified
the relevant statistical models for the fading process in multi-user MIMO systems as well
as presented a discrete model for user feedback in Chapter 5. This model allowed a base
station to estimate the covariance matrix of each user and identify the users with poor
fading conditions. For users that have been estimated to have poor channel conditions we
showed that one may use the systematic feedback framework from Chapter 3 to adapt the
channel feedback to better match the covariance structure of these users channels. Thus,
our systematic feedback framework has broad practical relevance as it provides a common
framework in which one may simultaneously develop good structured high rate quantizers,
develop low complexity scheduling frameworks as well as provides a systematic framework
in which a system may adapt to unknown channel correlation.

An additional benefit of the model and system architecture of Chapter 4 is it allows one
to examine the complexity of user selection. That is, the model and system architecture
of Chapter 4 allowed us the ability to realize the multi-user diversity gains inherent in a
multi-user system by employing simple thresholds on each user’s individual SNR to limit
the search to a smaller pool. Depending on the SNR threshold, however, one may still have
too many subsets of users to consider for full search to be feasible. Thus, in Chapter 6, we
presented efficient algorithms for user selection that exploit the structure of our systematic
feedback. This allows one to greedily search for users with low co-channel interference. Thus,
the codes developed in Chapter 3.3 may be paired with the adaptive methods of Chapter
5 an used in conjuction with our system architecture of Chapter 4 to yield a framework for
robust and efficient scheduling in the multi-user MIMO channel. To summarize, the major
contributions of this thesis are:

1. Identifying the problem of feedback design as an integral part of the joint design
of efficient channel aware schedulers as well as robust low complexity multiplexing
schemes (Chapter 1)

2. Providing a systematic feedback framework in which the system designer may trade-
off between the order statistic gain and the multi-node matching gain to meet certain
system objectives (Chapter 3)

3. Providing a simple base station architecture to understand to trade-off between the
order statistic gain, the multi-node matching gain and system complexity (Chapter
4)

4. Identifying an appropriate discrete model for user feedback and identifying an as-
sociated expectation-maximization algorithm to estimate this distribution under un-
known channel conditions and identify clusters of users with similar channel correla-
tion (Chapter 5)

5. Providing a systematic method to adapt our feedback framework so that the resulting
design remains stable as the statistics of the underlying channel change (Chapter 5)

6. Providing a new class of algorithms for user selection that exploit the structure of our
feedback framework to solve the user scheduling problem (Chapter 6)

234



7.1. MIMO SYSTEM DESIGN

Future Work

The results contained in this thesis have a broad scope, much of which was kept implicit
in the discussion. As the quantizers developed in this thesis have good mean squared
error performance they are of interest in there own right in broader contexts of coding
and approximation theory. These applications are discussed in Section 7.2. Additionally,
the framework to construct and analyze the sparse and dense codes in our systematic
construction use results from quantum coding theory and may be of additional interest
in that context. However, there are many additional question for practical system design
which we have left open. We next overview extensions to our work for MIMO system design.
Then we provide possible extensions in these broader areas.

� 7.1 MIMO System Design

We consider two areas of practical MIMO system design for which our results are of use.

� 7.1.1 Effects on Service Rate Variance

In Chapter 3 and Chapter 6 we argued that the symmetry group of the quantizer reduces the
mean squared quantization error as well as reduces the complexity of user selection. These
arguments were based on the fact that a large symmetry group implies that there is a large
number of unitary matrices which fix the code. Thus, from a quantization perspective, the
code is well matched to an isotropic source and the resulting mean squared quantization
error is low. However, as the rates achieved by a group of users is also invariant to unitary
transformations this implies that there are a small number of large generalized switches that
may be formed to represent the set of achievable rates. Moreover, in a system with many
users (a small multiple of the size of the transmit array) we showed that the probability
that a maximally size clique may be found in any one of these switches is quite high. Thus,
from a quality of service standpoint one may, with high probability, guarantee that there is
a set that achieves a desired level of service. It is of broader interest to understand how the
reduction in the variance in the services rates provided by a quantizer with large symmetry
groups has on the ability for a system to provide quality of service. In particular, it is unclear
whether the proportionally fair algorithm can or should be augmented to meet additional
quality of service constraints. More broadly, it is of interest to consider how the reduction
in the variance of the service rates enables one to provide a secondary quality of service
guarantee for a system while simultaneously achieving a delay guarantee. Many of these
answers appear to be able to addressed inside the framework of Stolyar [118]. However, a
result that is much easier to address is how quality of service is effected by variations in the
channel model.

� 7.1.2 Channel Modeling and Stability

In this thesis we developed several models for the MIMO channel. In particular, we be-
gan by assuming the Rayleigh model and proceeded to develop a systematic quantization
framework with this assumption. We then analyzed the system performance and showed
that the resulting system performance is not greatly effected by mild spatial correlation
assumptions and proceed to develop a model in which one could estimate the underlying
channel covariance. We further exhibited how high rate codes have an natural immunity to
correlation and how one may adapt low rate quantizers using our high rate framework to

235



CHAPTER 7. CONCLUSIONS AND FUTURE WORK

improve system performance. However, we did not make any mention of temporal correla-
tion of channel vectors. In particular, in many practical systems there may be a slow (or
fast) varying channel mean or some Markov structure to the underlying fading process. If
one is only interested in the quality of service we note that the framework of Stolyar [118]
is sufficient to address a generalized switch for which the switch state follows a finite irre-
ducible Markov chain. As the switch state is completely determined by the realization of the
channel state in a system with finite rate feedback, the question of stability and throughput
for a MIMO channel with a Markov structure may addressed without modification. How-
ever, these results will be improved if one can estimate and predict the state of the fading
process and use our adaptive framework to match the feedback scheme to the fading state
of the channel.

As we have illustrated in Chapter 4 in a multi-user MIMO system one is not interested
in tracking and estimating when a user experience a minimal degree of channel correlation,
but rather when the spatial covariance of a user’s channel vectors has a principal component
which is much larger than the remaining modes. If this is the case the adaptive method we
have presented may be applied to combat the possible degradation to the system perfor-
mance. Thus, it is of interest to understand the ability of one to track this phenomenon,
especially with user mobility, and whether, for practical channels, it is reasonable to as-
sume that one may form accurate estimates of the channel. What should be noted is there
is already a natural robustness to temporal correlation embedded in our existing channel
estimation framework. Indeed, as we modeled the prior distribution on the channel us-
ing a generalized Dirichlet distribution there are free parameters for which one may make
some inference on the underlying propagation environment. Implicitly this prior was chosen
as it has been shown empirically [27] to model “temporal” correlation in 2D-images and
more general non-independent samples in time. Thus, it is of interest to classify the fading
environments for which the present architecture fails to produce valid estimates.

� 7.2 Coding and Approximation Theory

Our construction of channel quantizers as well as our system framework also make progress
in other directions. We briefly describe these areas and other problems that may be ad-
dressed with our channel quantization and MIMO system framework.

� 7.2.1 Code Analysis

We note that our systematic construction of quantizer produces a large family of codes,
some of which outperform existing constructions. A natural question is: How good are the
codes that have been developed in our framework in terms of the quantization error? In this
thesis we resorted to simulation to answer this question. However, as our constructed codes
are quite structured and it is natural question to ask how one may analyze these codes.
An exact method exists to analyze random vector quantization as well as the upper bound.
One would like a similar expression, minimally an approximation, for a general quantizers
in our framework in small dimensions. In particular, one would like to be able to derive
the performance of the order statistics for the quantization error for channel quantizers
constructed with our systematic framework.

Given the ability to analyze the performance of a quantizer in our framework with order
statistics it is natural to consider a further upper bound on the performance when one
places a constraint one the number of bases contained in the code. That is, our current
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upper bound does not have a constraint on the number of orthogonal bases contained in the
code. We briefly discussed the effects of this constraint in the absence of order statistics,
but the result is quite loose. We note that one may use the results of [44] and [57] to arrive
at a bound on the number of vectors orthogonal with any codeword when the number of
distinct inner products between every pair of codewords in a code is small. With these
results one can provided a simple upper bound on the distribution of the inner products of
codewords for a code with a fixed number orthogonal vectors. However, bootstrapping this
result to a result on the number of orthogonal bases contained in the code using general
results from graph theory produce results that are overly optimistic [136]. Thus, it is of
interest to develop an upper bound on the quantization error given a constraint that there
are a fixed number of orthogonal bases contained in the code.
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Appendix A

Linear Codes over Rings

Recall that a ring R = (R,⊕,⊗) is a non-empty set R together with two binary operations
⊕ and ⊗ such that (R,⊕) is a commutative group and multiplication is both associative
and right and left distributive. For example, the set of integers, Z, is a ring as well as Zℓ

(the integers modulo some composite number ℓ). As is standard in algebraic coding theory,
one can view codewords of length m with symbols taken from the ring R as polynomials of
degree m with coefficients from R. In this direction, let R[X] be the polynomial ring over
the ring R. That is, R[X] is the set of all finite sums of the form a0+a1X+a2X

2+. . .+akX
k

where ai ∈ R. Analogous to the case of polynomial rings over finite fields we will say that
a function f ∈ R[X] is monic if f = a0 + a1X + a2X

2 + . . . + 1 · · ·Xk. Moreover, we will
say that the polynomial f ∈ R[X] is:
(a) a unit if there exists an element h ∈ R[X] such that f · h = 1,
(b) regular if f is not a zero divisor and
(c) irreducible if f is not a unit and when ever f = g · h then either g or h is a unit.

It is natural to wonder whether knowledge of the characteristics of a polynomial over a ring
in anyway correspond to a equivalent polynomial over a finite field. In this direction, let
R = Zpℓ and let µ be the homomorphism from Zpℓ to Zp that reduces any element of R
modulo p. We now recall the following lemma from [85].

Lemma A.0.1. Let f ∈ R[X] be given. Then,
(a) if f is irreducible, then µf is irreducible
(b) if µf is irreducible, then f is irreducible
(c) if f is a zero divisor, the µf = 0.

This lemma is particularly useful in the context of cyclic codes. Recall that a cyclic code
defined over a finite field is isomorphic to an ideal in Fq[X]/(Xn − 1) that is generated by
a single polynomial g(x). That is, a cyclic code C = 〈g(x)〉 for some generator polynomial
g(x). It is natural to ask if a cyclic code defined over a finite fields of characteristic p,
for some prime p, has a corresponding code over the ring Zpℓ. That is, given a generator
polynomial for a code over Zp is it possible to “lift” the generator polynomial up to a
generator polynomial over Zpℓ. This question was answered in [29] and is described by the
following lemma [85].

Lemma A.0.2. Let f ∈ R[X] and suppose

µf = ḡ1 · ḡ2 · · · ḡk.

where the ḡi are pairwise co-prime. Then, there exists g1, g2 . . . gk that are pairwise co-prime
such that

f = g1 · g2 · · · gk
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and ḡi = µgi.

Hence, for any classical code defined over a finite field Zp, one may use Lemma A.0.2
to construct a similar code over Zpℓ. This yields a simple way to find linear codes over the
rings Zpℓ and systematically construct nested codes. However, the analysis of these codes
require additional machinery. In particular, the Mattson-Solomon polynomials (i.e. the
Discrete Fourier Transforms) [130] for cyclic codes over rings do not reside in a polynomial
ring over a finite field as was the case for cyclic codes over finite fields [103]. That is, the
Mattson-Solomon polynomial is an element of a polynomial ring defined over an extension
of the base ring, which is not in general a finite field (unless of course the base ring is a
finite field). In this direction we briefly review the necessary results for extensions of finite
rings.

We begin by briefly reviewing the theory of extensions of finite fields and then apply
these ideas to extensions of finite rings. Suppose K and F are fields and K ⊂ F . That
is, K is a subfield of F . Then, we say that F is an extension of K. The field F can be
thought of as a vector space over K and we denote the dimension of this vector space as
[F : K]. We are particularly concerned with the Galois structure of finite extensions as it
will be useful in characterizing the structure of associated quantization codebooks. That
is, we are interested in the set of all automorphism of F that leave K fixed. We denote
this set of automorphism of F as Gal(F,K). In particular, we are interested in the Galois
structure of finite separable extensions of finite rings. That is, if Kr ⊂ Fr are rings then
we say that Fr is an extension of the ring Kr and that Fr is a separable extension if and
only if Fr is isomorphic to the quotient Kr[X]/(f) for some monic irreducible polynomial
f ∈ Kr[X]. As was in the case of finite fields one can show that there is only one unique
(up to isomorphism) separable extension of a finite ring of a given degree. In this direction,
let GR(pℓ, r) be the degree r Galois extension of the ring Zpℓ . The reader should note that,

GR(p, r) = GF(pr) = Fpr

and GR(pℓ, 1) = Zpℓ . Due to Lemma A.0.1 it is natural to wonder if the Galois structure of
a finite separable ring extension is at all related to the Galois structure of a finite separable
field extension. We now have the following relation from [85].

Lemma A.0.3. Let GR(pℓ, r) be the degree r Galois extension of the ring Zpℓ. Then,

Gal(GR(pℓ, r),Zpℓ) is cyclic, isomorphic to Gal(Fpr ,Fp) and generated by a power map on

a primitive element of GR(pℓ, r). That is, if ζ ∈ GR(pℓ, r) is primitive and σ(ζ) = ζp, then,
〈σ〉 = Gal(GR(pℓ, r),Zpℓ).

We caution the reader that the generator of the Galois group in Lemma A.0.3 does not
in general act as a power map on every element of GR(pℓ, r) as GR(pℓ, r) is not cyclically
generated. More precisely, for any element u ∈ GR(pℓ, r) let ζ be a primitive element of
GR(pℓ, r). Then,

u =

ℓ−1∑

i=0

ui p
i

where ui ∈ Tζ = {0, 1, ζ, ζ2, . . . , ζpr−2}. We let φ (u) be the map suggested by Lemma A.0.3.
That is, the automorphism that acts on primitive elements as a power map. Thus, since
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φ (u) is homomorphism,

φ (u) =
ℓ−1∑

i=0

up
i p

i. (A.1)

The automorphism φ (u) is the Frobenius automorphism and is a cyclic generator for the
Galois group Gal(GR(pℓ, r),Zpℓ). Further, for a separable extension R1 ⊂ R2 one defines
the trace map as

TrR2/R1
(α) =

[R2 :R1]−1∑

i=0

φi (α) (A.2)

where Gal(R2,R1) = 〈φ〉. This is a surjective homomorphism from R2 to R1. We now
consider how one may generalize the idea of a linear code over a finite field to one over a
ring.

Recall that a linear code of length m over a finite field Fq is a subspace of the vector
space Fm

q . A similar concept will hold in the case of codes over a ring, say R. In this
direction recall [60] that a (left) R module is an additive abelian group A together with a
map from R×A→ A (for which the image of (r, a) is denoted ra) such that for all r, s ∈ R
and a, b ∈ A one has [60]:
(i) r(a+ b) = ra+ rb
(ii) (r + s)a = ra+ sa
(iii) r(sa) = (rs)a
If R has an identity element 1R, then
(iv) 1Ra = a for all a ∈ A

Let V be a left1 R module. Any R-submodule is called a code. In particular, Rn is a
R-module and a code of Rn is any sub-module of Rn. One should note that in the cases of
interest one may think of a code over a ring in exactly the same way as one would a code
over a finite field. In particular we have the following theorem from Huffman [29,59].

Lemma A.0.4. A non-zero linear code L over GR(pℓ, r), for finite ℓ, has a generator
matrix, which after a suitable permutation of the coordinated has the form,

G =




Ik0 A0,1 A0,2 · · · A0,ℓ−1 A0,ℓ

0 pIk1 pA1,2 · · · pA1,ℓ−1 pA1,ℓ

0 0 p2Ik2 · · · p2A2,ℓ−1 p2A2,ℓ
...

...
...

. . .
...

...
0 0 0 · · · pℓ−1Ikℓ−1

pℓ−1Aℓ−1,ℓ




(A.3)

where Ai,j has elements from GR(pℓ, r). That is, L consists of all codewords of the form

[g0 g1 . . . gℓ−1]G

where each vector gi is a vector of length ki with components in GR(pℓ, r).

If a code L has a generator of the form (A.3) then we say that the code has type
(k0, k1, . . . , kℓ−1). Moreover, it is easy to see via a simple counting argument that a code L

1We note that in general this definition in terms of non-commutative rings that are either finite or infinite.
This is not needed here, but will be necessary in the proofs. For a complete introduction to this theory we
refer the reader to [93]
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of the form (A.3) has prα many codewords, where

α =

ℓ−1∑

i=0

(ℓ− i)ki.

Moreover, if a code L is of the form (A.3) it is easy to compute the form of the dual of L.
More precisely, let L be of type (k0, k1, . . . , kℓ−1). Then we define the dual of L to be

L⊥ = {α ∈ Rm : 〈α,β〉 ∀β ∈ L}

where 〈α,β〉 is the standard inner product. That is,

〈α,β〉 =

m∑

i=1

αiβi.

It is again easy to see via a simple counting argument that L⊥ is of type (kℓ, kℓ−1, . . . , k1)
where

kℓ = m−
ℓ−1∑

i=0

ki.

Now, we return to to problem of interest. That is, we now consider developing complex
codebooks that are the images of linear codes.

� A.1 Systematic Unitary Space-Time Constructions

Consider the Zℓ-submodule generated by the element u = (u0, u1, . . . , um−1), which we
denote Lu. That is,

Lu = {k · u : k ∈ Zℓ} .

This yields an associated code complex codebook C(d)
u ⊂ Cm of cardinality ℓ. This class

of codes can be thought of as a subset of m columns of the ℓ × ℓ DFT matrix [56, 138].
These code books are known to achieve the Welch bound in very special cases. To be more
precise recall that a set of integers u is a (ℓ,m, λ) is a perfect difference set in Zℓ if the
set {ui − uj (mod ℓ) : j 6= i} contains exactly λ copies of every integer in {1, 2, . . . , ℓ − 1}.
Clearly the parameters of a perfect difference set are not independent. In this direction, let

λ∆(m, ℓ) =
m(m− 1)

ℓ− 1
.

Then, if u is a (ℓ,m, λ) perfect difference set λ = λ∆(m, ℓ). We have the following theorem
from [138].

Theorem A.1.1. The codebook Lu is maximum Welch bound achieving if and only if u is
a (ℓ,m, λ∆(ℓ,m)) difference set.

Thus, the code C(d)
u achieves the Welch bound and is linear. However, in general the

construction of perfect difference sets is very difficult. In particular, if λ 6= λ∆(m, ℓ) then
a (ℓ,m, λ) difference set trivially does not exist. Hence, one must select u such that it is
not a perfect difference set. Thus, in order to determine the stability in general, one must
characterize the distinct difference sets of size K for the code Lu. We now turn to a less
trivial construction that will serve as the base for our most general construction.

242



� A.2 Generalized Reed-Muller Construction

Recall a ν-variate Boolean function is a function f from Z2ν to Z2. The simplest Boolean
functions are the monomial functions

xi0
0 x

i1
1 · · · xiν−1

ν−1 for i ∈ Z2ν

where i =
∑ν−1

j=0 ij2
j is the 2-adic expansion of i. The degree of a Boolean monomial

function is the number of variables that have an exponent of 1. For example, x1x3x5 is of
degree 3.

It is well known that every Boolean function can be written in algebraic normal form
as the sum of monomial functions. That is, if f is a ν-variate Boolean function then,

f(x0, x1, . . . , xν−1) =
∑

i∈Z2ν

xi0
0 x

i1
1 · · · xiν−1

ν−1 .

Moreover, to each ν-variate Boolean function f we may associate a sequence f of length 2ν

by listing the values taken by f over Z2ν in lexicographic order. This identification yields the
rth order binary Reed-Muller Code RM (r, ν). That is, the rth order binary Reed-Muller
Code RM(r, ν) is the subspace of Z2ν spanned by the sequences associated to monomial
functions of degree at most r. Clearly, this is a length 2ν code and the dimension of this
code is

dim (RM(r, ν)) =
r∑

i=0

(
ν

r

)
.

Using the generalization of [41], define a generalized ν-variate Boolean function as a
function f from Z2ν to Z2h for h ≥ 1. As before, one may associate a sequence f of length
2ν by listing the values taken by f over Z2ν in lexicographic order. Let the generalized2 rth
order Reed-Muller Code RM2h(r, ν) be the subspace of Z2ν spanned in Z2ν

2h by the sequences
associated to monomial functions of degree at most r. Note, that while the sequences from
RM2h(r, ν) are sequences in Z2h and not Z2 the generator matrix for RM 2h(r, ν) and
RM(r, ν) are the same.

Let the rth order code L(r,ν)
h be the span of of the linear code RM(r − 1, ν) and twice

the monomials of degree r over Z2h . Clearly this is a code of length 2ν and has cardinality

∣∣∣L(r,ν)
h

∣∣∣ = 2h dim(RM(r−1,ν)) · 2(h−1)(ν
r).

As before, we will consider the associated complex sequences and let C(r,ν)
h ⊂ C2ν

be the
associated set of complex sequences. We note that there are intimate connections between
Reed-Muller codes (or more generally combinatorial designs) and the construction of perfect

difference sets [15]. Hence, it reasonable to expect that the code L(r,ν)
h has many sets with

the same differences.

We note that the code L(r,ν)
h is related to some of the best known non-linear binary codes.

That is, for h = 2 (i.e. for codes over Z4) these linear codes are in fact related to Kerdock
and Preperata Codes via the Gray map [41,55]. Note, that Kerdock and Preperata codes,
while being non-linear over the binary field, have a large amount of structure. That is, the

2That these generalized Reed-Muller codes are not those of Delsarte et al. [45] as they come from a
sequence in the integer ring Z2h and not a field.
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codes automorphism group contains a large set of permutations. In particular the Kerdock
and Preperata Codes are invariant under affine permutation [3] (a notion we make more
precise in the following section). Note that any permutation of the coordinate positions
that fixes the code extends trivially to a unitary transformation for the associated complex
quantization codebook. That is, the set of differences is not the only equivalence for sets of
codewords. Hence, in the following section we consider quantizers that are images of affine
invariant codes.

� A.3 Affine-Invariant Constructions

In “classical” algebraic coding theory it was desirable to develop linear block codes with
large automorphism group to aid in decoding. In particular, cyclic codes with large groups
of permutations of the coordinate positions that leave the code fixed was of particular
interest [84]. It can be shown that such codes reduce the complexity of encoders and
decoders [127]. In a seminal work, Kasami, Lin and Peterson [74] characterized the necessary
and sufficient conditions for a linear code over a finite field to be invariant under a large
group permutations (the group of affine permutations). These results have been extended
by Berger and Charpin [21,22] in a quite general way, which aids in the construction of codes
with large permutation groups. It is this approach we take in the sequel. In particular,
the generality of the results in [21, 22] have made the extensions to more general integer
rings [4] and the broader class of Galois Rings [24, 46] amenable. We now develop the
necessary results on affine invariant cyclic codes. We assume in the following that the base
ring used in the construction of the code is a Galois ring GR(pℓ, r) for some finite ℓ, r and
prime p.

We begin by reviewing the relevant concepts from cyclic codes that we require in the
sequel. We refer the reader to [14, 15, 29] for a complete introduction. Recall that a cyclic
code of length m over a ring R is an ideal in the modular algebra Rm = R[X]/(Xm − 1).
That is, if L is a cyclic code of length m then for any α ∈ L the map

(α0, α1, . . . , αm−1) → α0 + α1X + · · · + αm−1X
m−1

is an isomorphism between Rm and Rm which identifies the cyclic code R with an ideal
in Rm. Recall that in the case that R is a field, every cyclic code could be identified with
a generator polynomial g(x) which generates the ideal in Rm corresponding to the cyclic
code. In the more general setting, a similar statement can be made [29].

Lemma A.3.1. Every ideal of Rm is of the form

(f0, pf1, p
2f2, . . . , p

ℓ−1fℓ−1)

where the fi are monic irreducible divisors of Xm − 1 in R[X] and fℓ−1 | fℓ−2 | · · · | f0.

Thus, by Lemma A.3.1 every cyclic code can be characterized by the functions f0, f1, . . . , fℓ−1.
Moreover, as the fi are monic irreducible divisors of Xm − 1 every cyclic code can be char-
acterized by the roots of f0, f1, . . . , fℓ−1. In this direction, let r′ be a multiple of r such that
the field Fpr′ contains a primitive mth root of unity, say ζ. Then, as the fi are divisors of
Xm − 1,

fi =
∏

j∈Ti−1

(X − ζj)

244



for some set Ti−1 ⊂ {0, 1, . . . ,m−1}. We will call the collection {T1, T2, . . . , Tℓ} the defining
set of the cyclic code corresponding to (f0, pf1, p

2f2, . . . , p
ℓ−1fℓ−1). Note, since fi−1 | fi, one

has Ti−1 ⊂ Ti. We now review a standard representation of cyclic codes before discussing
how defining sets can be used to characterize affine invariant cyclic codes.

Recall codewords of a cyclic code of length m can, via the Mattson-Solomon transform,
be thought of as a listing of values taken on by a given function evaluated at every element
of a finite field. More precisely, let c(X) be a codeword of L. Then, the Mattson-Solomon
polynomial of c(X) is

C(Z) =
m−1∑

i=0

ĉ(m− i)Zi

where ĉ(i) = c(ζi) where ζ is a primitive mth root of unity. Then, using Fourier inversion
[24,103] one has

ck =
1

m
C(ζk).

That is, one can think of indexing the coordinate positions of codewords by elements of the
finite field Fpm. Thus, any permutation that fixes the code can be described via permutations
of the field elements that index the code. This is exactly the group algebra approach used
by [21,22,74]. Recall, for m = kt, the group AGLk(p

t) acts on the field Fpm via affine linear
transformations viewing the field Fpm as a k dimensional vectors space over Fpt. We say
that a code L is invariant under the group AGLk(p

t) if AGLk(p
t), acting on the coordinates

of L, fixes the code L. More generally, we will say that such a code is affine invariant.
Defining sets are particularly useful in determining when a cyclic code is affine invariant.

Indeed, this is exactly the result of [21,22] which, in its generality, can be extended to codes
over integer rings and more generally Galois rings. At present, we do not provide necessary
and sufficient conditions for a cyclic code with defining sets {T1, T2, . . . , Tℓ} to be affine
invariant, but rather refer the reader to [3,21,22,24,46]. However, we note that if a code L
is invariant under the action of AGLk(p

t) then so is any set of codewords. More precisely,
let, for any element σ ∈ AGLk(p

t), Pσ be the matrix representation of the permutation σ.
Then, for any α1,α2, . . . ,αk ∈ L,




− α1 −
− α2 −
...

. . .
...

− αk −


 · Pσ =




− α′
1 −

− α′
2 −

...
. . .

...
− α′

k −




for some α′
1,α

′
2, . . . ,α

′
k ∈ L. Hence, the sets {α1,α2, . . . ,αk} and {α′

1,α
′
2, . . . ,α

′
k} are

equivalent for any regular reconstruction algorithm. We note that for any L that is invariant
under AGLk(p

t) there are at most |L|/|AGLk(p
t)| distinct error values. Hence, it reasonable

to expect that such a code will be quite stable to unmodled correlation in the measurement
model as previously discussed. Moreover, as decoding and encoding of such codes is quite
efficient it is reasonable to expect that the subset selection problem can also be solved
efficiently. It is this question to which we now turn.
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Appendix B

Bounds on SINRsat

� B.1 Bounds on SINRsat without Order Statistics

It is well known that one may use the arguments of Shannon [109] to provide an upper bound
on the mean square error of any quantization scheme. In particular, one can show [67,144]
that the distribution of the quantization error for every quantizer is upper bounded by

FUB(x; r,m)
∆
=

{
0 if x > 1 − 2−r/(m−1)

2−r · (1 − x)m−1 o.w.
. (B.1)

More precisely, let X be a random variable distributed according to FUB(x). Then, for any
rate r quantizer in Cm, say Cr, one has

Pr
[
‖h̃i −Q(h̃i)‖ > 2 · x

]
≤ 1 − FUB(x; r,m).

Thus, X stochastically dominates the quantization error for any quantization scheme.

The distribution FUB(x; r,m) has a quite intuitive explanation that can be derived

from [67,109]. In particular, as |h†
icj | is an increasing function of the angle between hi and

cj the best shape a Voronoi region of codeword may take for a fixed volume is perfectly
symmetric about the codeword. In particular, the mean squared quantization error incurred
when a channel vector is quantized to a given codeword may be improved by shaping the
Voronoi region to have the smallest second moment as possible by taking portions of the
Voronoi region that lay the furthest from center of the Voronoi cell and moving them closer
to center. Thus, for a rate r quantizer, the best possible scenario is to have 2r Voronoi cells
that are perfectly symmetric of equal volume which cover the surface of the complex m-
sphere. As the channel vectors are assumed to be isotropic, such a Voronoi region contains
all the points on the complex unit m-sphere such that

(1 − |u†c|)m−1 ≤ 2r.

Such a rate r code has 2r congruent Voronoi regions,

Vub
i (r) =

{
u : |u†ci| ≥ 1 − 2−r/(m−1)

}
.

Using this argument leads to (B.1). This is consistent with our previous example, Example
3-1. In particular, reexamining Figure 3-1 one can see that by reshaping the Voronoi regions
of the quantizer depicted in Figure 3-1 (b), and hence necessarily moving the centers, one
may arrive at the quantizer depicted in Figure 3-1 (a) which has a smaller second moment.
As |u†ci|/(1−|u†ci|) is an increasing function in the inner product |u†ci| one may use (B.1)
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to additionally upper bound SINRsat. The Lemma 2.4.2 follows directly from computation
of the integral ∫

x

1 − x
dFUB(x) and

∫
x2

(1 − x)2
dFUB(x).

� B.2 Bounds on SINRsat with Order Statistics

In the sequel, we let SINRUB
sat (n, ℓ) be the expected SINRsat for the ℓ best users in a n

user system using a code distributed as in (B.1). As (B.1) stochastically dominates the
distribution of the quantization error for any quantization scheme, it also stochastically
dominates the order statistics [40]. More precisely, for any two random variables X and Y
if

Pr [X > x] ≥ Pr [Y > y]

then the distribution of the order statistics of any sequence of n i.i.d samples satisfies

Pr
[
X(ℓ) > x

]
≥ Pr

[
Y(ℓ) > y

]
.

In order to derive exact expressions for SINRUB
sat (n, ℓ) recall that the expected value for the

k-th order statistics for a sample of n i.i.d random variables with a sample space (0, 1) and
distribution function F (x) is [40]

µ(k) = k

(
n

k

)∫ 1

0
x [F (x)]k−1 [1 − F (x)]n−k f(x)dx. (B.2)

Integrating above for the special case of (B.1) one has the following lemma.

Lemma B.2.1. Consider a quantizer in which the distribution of the quantization error
for each cell follows (B.1). Then,

E

[
σ(k)

1 − σ(k)

]
= −1 + 2

r
m−1 ·

Γ
(

m−2
m−1 + n− k

)

Γ(1 + n− k)

Γ(1 + n)

Γ
(

m−2
m−1 + n

)

Further, for any rate r code,

SINRsat(Cr;n, ℓ) ≤
1

ℓ

n−1∑

i=n−ℓ

−1 + 2
r

m−1 ·
Γ
(

m−2
m−1 + n− i

)

Γ(1 + n− i)

Γ(1 + n)

Γ
(

m−2
m−1 + n

) (B.3)

We let,

µUB
(k) = −1 + 2

r
m−1 ·

Γ
(

m−2
m−1 + n− k

)

Γ(1 + n− k)

Γ(1 + n)

Γ
(

m−2
m−1 + n

) (B.4)

be the upper bound on the expected value of the order statistic of the n− k-th best user in
a n user system and let

SINRUB
sat (n, ℓ) =

1

ℓ

n−1∑

i=n−ℓ

µUB
(i) . (B.5)
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To provide an upper bound on SINRUB
sat (n, ℓ) that reveals the effects of increasing the number

of users as well as the number of feedback bits we first require the following definition. Recall
that the digamma function, ψ(x), is defined to be the rate of the exponential growth of the
Gamma function, i.e.

ψ(x) =
d

dx
ln Γ(x).

We now have the following theorem.

Theorem B.2.2. Consider any rate r quantization scheme. Then, for any integers n > 0
and 0 < ℓ ≤ n,

SINRsat(n, ℓ) ≤ SINRUB
sat (n, ℓ)

Further,

SINRUB
sat (n, ℓ) ≤ 2

r
m−1

ℓ

Γ (1 + n)

Γ
(
n+ m−2

m−1

)
(

Γ

(
m− 2

m− 1

)
+

n−1∑

i=n−ℓ+1

(n− i)
−1

m−1

)
(B.6a)

≤ 2
r

m−1 exp

(
ψ(1 + n)

m− 1

)(
1

ℓ
Γ

(
m− 2

m− 1

)
+
ℓ− 1

ℓ

)
(B.6b)

Proof. First follows from stochastic domination order statistics (B.2). The following se-
quence of bounds follows from applying both Kershaw’s upper and lower bounds on the
ratio of Gamma functions [101] for n ∈ Z+ and 0 < s < 1,

exp ((s− 1)ψ(1 + n)) ≤ Γ(n+ 1)

Γ(n + s)
≤ ns−1

�

Examining Theorem B.2.2 reveals quite a lot about the limits in SINRUB
sat (n, ℓ) in terms

of both the quantizer rate as well as the number of users. In particular, the growth in dB is
linear in the quantizer rate with slope independent of the number of users as well as linear
in ψ(1 + n) where the slope is independent of the quantizer rate r. Using the asymptotic
expansion for the digamma function one further has

ψ(1 + x) ∼ lnx+
1

2x
+O

(
1

2x

)
.

Hence, for large user populations

10 log10 SINRsat(n, ℓ) ≤
10 · log10 2

m− 1
· r +

10 · log10 e

m− 1
· ln(n)(1 + o(1))

+ 10 · log10

(
1 +

1

ℓ
Γ

(
m− 2

m− 1

))

Thus,

10 log10 SINRUB
sat (n, ℓ) ≈ 3

m− 1
· r +

3

m− 1
· log2 n+ C(ℓ,m)

for some constant C(ℓ,m) which does not depend on n or r. Thus, in a multi-user system
doubling the size of the user pool has roughly the same effect of adding a bit of feedback
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using the optimal quantization scheme. We note that this still does not address the last
question we have concerning the achieved SINR of a system. In particular, the definition
of SINRsat assumes that there is a set of nearly orthogonal users.
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Appendix C

Proofs

� C.1 Proofs for Chapter 2

� C.1.1 Proof of Equation (2.36)

ci(A) =

∣∣∣σi − σi,AR−1
A\iµ

†
i,A

∣∣∣

1 − µi,AR−1
A\iµ

†
i,A

=

∣∣∣σi − hiWi,A †R−1
A\iµ

†
i,A

∣∣∣

1 − µi,AR−1
A\iµ

†
i,A

=

∣∣∣σi − (σiwi + h⊥
i )W†

i,AR−1
A\iµ

†
i,A

∣∣∣
1 − µi,AR−1

A\iµ
†
i,A

=

∣∣∣∣∣∣
σi −

h⊥
i W

†
i,AR−1

A\iµ
†
i,A

1 − µi,AR−1
A\iµ

†
i,A

∣∣∣∣∣∣

where h⊥
i is the component of hi that is orthogonal to wi. Continuing, we have

ci(A) ≥ |σi| −

∣∣∣∣∣∣

h⊥
i W

†
i,AR−1

A\iµ
†
i,A

1 − µi,AR−1
A\iµ

†
i,A

∣∣∣∣∣∣

≥ |σi| −

∣∣∣∣∣∣

√
‖hi‖2 − |σi|2‖W†

i,AR−1
A\iµ

†
i,A‖

1 − µi,AR−1
A\iµ

†
i,A

∣∣∣∣∣∣

≥ |σi| −
√

‖hi‖2 − |σi|2‖
1 − µi,AR−1

A\iµ
†
i,A

Thus, since ci(A) ≥ 0 we have

ci(A) ≥


|σi| −

√
‖hi‖2 − |σi|2‖

1 − µi,AR−1
A\iµ

†
i,A




+
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� C.1.2 Proof of Quantized Channel Rates

Note that under the covvariance constraint E
[
Tr(xx†)

]
≤ P we have

E
[
Q(HA)+uu† (Q(HA)+

)†]
= E

[
Tr
(
R−1

A
)]

Thus, taking Pi = P/Tr
(
R−1

A
)

yields a valid power allocation. Now, since the channel is
modeled using the standard input/output model (2.8), we have

y = H
†
AQ(HA)

(
Q(HA)†Q(HA)

)−1
uA + n (C.1)

With out loss of generality consider the signal recieved by user 1. Then, using the invserse
of a partitioned matrix [58],

h
†
1x = h

†
1Q(HA)

(
Q(HA)†Q(HA)

)−1
uA (C.2)

=
[
h
†
1Q(h1) σ1,A

] [ 1 µ1,A
µ†1,A RA\1

]−1

uA (C.3)

=
[
h
†
1Q(h1) σ1,A

]



(
1 − µ1,AR−1

A\1µ
†
1,A

)−1
µ1,A

(
µ†1,Aµ1,A − RA\1

)−1

(
µ†1,Aµ1,A − RA\1

)−1
µ†1,A

(
RA\1 − µ†1,Aµ1,A

)−1


uA(C.4)

Now, using the formula for the inverse of a matrix with a small rank adjustment [58], we
have

(
µ†1,Aµ1,A −RA\1

)−1
µ†1,A = −R−1

A\1µ
†
1,A −

R−1
A\1µ

†
1,Aµ1,AR−1

A\1µ
†
1,A

1 − µ1,AR−1
A\1µ

†
1,A

= −
R−1

A\1µ
†
1,A

1 − µ1,AR−1
A\1µ

†
1,A

Thus, we may write

h
†
1x =


 h

†
1Q(hi)

1 − µi,AR−1
A\1µ

†
i,A

+ σi,A


−

R−1
A\1µ

†
1,A

1 − µ1,AR−1
A\1µ

†
1,A




u1

+
(
σi,A − h

†
1Q(hi)µi,A

)(
RA\1 − µ†i,Aµi,A

)−1
uA\1

=


h

†
1Q(hi) − σi,AR−1

A\1µ
†
i,A

1 − µi,AR−1
A\1µ

†
i,A


u1 +

(
σi,A − h

†
1Q(hi)µi,A

)(
RA\1 − µ†i,Aµi,A

)−1
uA\1

which yields the result.
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� C.2 Proofs for Chapter 3

� C.2.1 Proof of Lemma 3.3.1

Note that the sum in the right hand side of (3.13) is clearly a linear function of both λ and
β. Thus, it is left to show that the lifting of β̄ to β is a linear function of β̄. This result
will follow from our more general discusion in Section 3.4.

� C.2.2 Proof of Lemma 3.3.5

To begin, note that the two codwords c(λ, β̄;L, pa) and c(λ′, β̄′
;L, pa) only have the same

support if β̄+L and β̄
′
+L define the same coset of L. Thus, if β̄− β̄′ 6∈ L the codewords

c(λ, β̄;L, pa) and c(λ′, β̄′
;L, pa) do not have the same support and hence can not be colinear.

Thus, we now suppose that β̄ − β̄′ ∈ L, i.e.the codewords c(λ, β̄;L, pa) and c(λ′, β̄′
;L, pa)

have the same support. To show the if part of the lemma note that if 〈λ− λ′, γ̄〉 = k and
β̄ − β̄′ ∈ L

c(λ, β̄;L, pa) =
∑

γ∈L

ζ〈λ,γ̄〉
p eγ̄+β̄ (C.5a)

=
∑

γ∈L

ζ〈λ
′,γ̄〉

p ζ〈λ−λ
′,γ̄〉

p eγ̄+β̄ (C.5b)

= ζk
p

∑

γ∈L

ζ〈λ
′,γ̄〉

p e
γ̄+(β̄−β̄′

)+β̄
′ (C.5c)

= ζk
p

∑

γ̃∈L

ζ〈λ
′,˜̄γ−(β̄−β̄′

)〉
p e˜̄γ+β̄

′ (C.5d)

= ζk−〈λ′,(β̄−β̄′
)〉

p

∑

γ̃∈L

ζ〈λ
′,˜̄γ〉

p e˜̄γ+β̄
′ (C.5e)

= ζk−〈λ′,(β̄−β̄′
)〉

p c(λ′, β̄′
;L, pa) (C.5f)

For the only if part of the lemma note that if β̄ − β̄′ ∈ L then

ζ−〈λ′,(β̄−β̄′
)〉

p c(λ′, β̄′
;L, pa) =

∑

γ∈L

ζ〈λ
′,γ̄〉

p e
γ̄+(β̄−β̄′

)+β̄
′ (C.6a)

=
∑

γ∈L

ζ〈λ
′,γ̄〉

p eγ̄+β̄ (C.6b)

Note that (C.6b) is only a complex multiple of (C.5a) if 〈λ−λ′, γ̄〉 is constant for all γ ∈ L.
However, as L is a sub-space of (Zp)

m′
, we have 0 ∈ L and k = 0.

� C.2.3 Proof of Lemma 3.3.9

This is a direction result of elementary character theory [63] or equivalently Fourier Analysis
on groups [92].

� C.2.4 Proof of Theorem 3.3.10

We note that the sufficiency of the conditions of the theorem follow immediately from the
discussions preceding it. That is, if the twisted hamming weight is greater than zero than
one may marginalize over a coordinate and produce a zero sum. To see that this is necessary
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suppose that there is an element λ such that twtH(λ) = 0 and ΓC(λ; {0}, L) = 0. Then,
for some j

p−1∑

xij
=0

ζ
(âj+pa−1·āj)·xj

pa




p−1∑

xi0
=0

p−1∑

xi1
=0

· · ·
p−1∑

xij−1
=0

p−1∑

xij+1
=0

· · ·
p−1∑

xid−1
=0

ζ
〈ã,x̃〉
pa ex+β̄


 = 0

where
p−1∑

xij
=0

ζ
(âj+pa−1·āj)·xj

pa 6= 0

as twtH(λ) = 0. Hence,

p−1∑

xi0
=0

p−1∑

xi1
=0

· · ·
p−1∑

xij−1
=0

p−1∑

xij+1
=0

· · ·
p−1∑

xid−1
=0

ζ
〈ã,x̃〉
pa ex+β̄ = 0.

Thus, as twtH(λ) = 0, for some j′ we can marginalize out one coordinate where the multi-
variate sum is 0 while the outer sum is non-zero. Thus, proceeding recursively one has

p−1∑

xid−1
=0

ζ
〈aj0

,xj0
〉

pa ex+β̄ = 0.

However, this sum is zero if and only if xj0 = pa−1x′ for some x′ 6= 0 which implies
twtH(λ) > 0 which is a contradiction.

� C.2.5 Proof of Corollary 3.3.12

The fact that Υ1 is closed under addition modulo pa follows directly from the fact that
Υ̂1 is closed under addition modulo pa−1 and pa−1 · Ld

1 contains every element of the form
pa ·λ. In particular, consider two general elements of Υ̂1 +pa−1 ·Ld

1, say λ1 = λ̂1 +pa−1 · λ̄1

and λ2 = λ̂2 + pa−1 · λ̄2. Then, either p · (λ̂1 + λ̂2) = 0 and λ̂1 + λ̂2 ∈ pa−1 · Ld
1 thus

λ1 + λ2 ∈ pa−1 · Ld
1. Otherwise, λ̂1 + λ̂2 ∈ Υ̂1, as Υ̂1 is closed under addition modulo pa−1

and λ1 + λ2 ∈ Υ̂1 + pa−1 · Ld
1.

� C.2.6 Proof of Theorem 3.3.13

The proof of this statement is a simple consequence of the discussions preceding it. Note,
by Theorem 3.3.10 every basis must have a collection of codewords which satisfy conditions
(i), (ii) or (iii). We note that as multiplication by Tλ yields an orthogonal set then so
will R(λ,β) as this operation preserves the twisted hamming weight for the elements with
support on β + L. Thus, the vectors supported on β + L will remain orthogonal using
condition (iii). Moreover, as R(λ,β) leaves the elements with support which does not
intersect β + L fixed this set will remain orthogonal. Thus, we are left to check that the
elements with non-intersecting supports are orthogonal. However, this is trivial and the
image of any orthogonal basis contained in the code is again orthogonal. To see that this
image again is contained in the code we note that R(λ,β) acts linearly on the set of λ which
define the code and hence, by the linearity of Υ1 is again in Υ1 and hence an element of
the code. We note that the image of multiplication by Sγ̄ is trivially again in the code as
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L is linear. Hence, every such product is again in the code and

〈
S(γ̄) · R

(
λβ̄; β̄

)
| R

(
λβ̄; β̄

)
∈ RL(Υ̂1) and γ̄ ∈ Lc

〉

acts transitively on the code C(Υ1, L
c;L) as well as the collection or orthogonal bases

contained in C(Υ1, L
c;L).

� C.2.7 Proof of Lemma 3.4.10

With out loss of generality aussume that r ∈ pe−i−1GR
(
pi+1,m′) \ pe−iGR

(
pi,m′) as

pe−iGR
(
pi,m′) ⊂ pe−i−1GR

(
pi+1,m′) and ΓC(r; p, i) > 0 for all pe−iGR

(
pi,m′) by as-

sumption. Thus,
r = pe−i−1 · ζ + pe−i · r0 (C.7)

for some ζ ∈ Tpe,m′ and r0 ∈ pe−iGR
(
pi,m′). Suppose, in order to arrive at a contridiction,

the there is some r ∈ pe−i−1GR
(
pi+1,m′)\pe−iGR

(
pi,m′) such that ΓC(r; p, i) = 0. Then,

there exists some basis for pe−i−1GR
(
pi+1,m′) over Zpe , say B, such that

{Tr (r · si)}ri∈B

is a (coset) of a subgroup of Zpe by elementary character theory [63]. That is, the elements
of the vector

v = [Tr (r · s0) ,Tr (r · s2) , . . . ,Tr (r · sm−1)]

form a (coset of a) subgroup of Zpe. However, from (C.7) r = pe−i−1 · ζ+pe−i · r0 and hence

v = pe−i−1 · [r0, r1, . . . , rm−1] + pe−i · [r̄0, r̄1, . . . , r̄m−1]

where ri ∈ pe−i−1Zpe and r̄i ∈ pe−iZpe . However, if the elements of v form a (coset of a)
subgroup of Zpe then so must p · v. Morover,

p · v = [Tr (r̄ · s0) ,Tr (r̄ · s2) , . . . ,Tr (r̄ · sm−1)]

for some r̄ ∈ pe−iGR
(
pi,m′). Namely,

r̄ =
m−1∑

j=0

(
pe−irj + pe−i+1r̄j

)
tj

where t0, t1, . . . , tm−1 is a trace dual basis to B, i.e.

Tr (sj · ti) = δ(i − j)

where δ(x) = 1 if and only if x = 0. However, r̄ ∈ pe−iGR
(
pi,m′) and ΓC(r̄; p, i) = 0, a

contradiction. Hemce,
ΓC(r; p, i) > 0

for all r ∈ pe−i−1GR
(
pi+1,m′).

� C.2.8 Proof of Theorem 3.4.13

The proof of the first part of the theorem is trivial from the definition of ϑi(ζ
j). The fact

that ϑi(ζ
j) ≡ ζ̄i (mod p) follows simply from recalling that reduction modulo p defines
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a homomorphism between GR (pa,m′) and Zpa. As µ ◦ ϑi(Tpa,m′) = Fpa, ϑi(ζ
j) must be

injective. In fact, ϑi(ζ
j) is an injective map from Tpa,m′ into the unit group of GR (pa,m′)

(see [85] for further details on the unit group of Galois Rings). In particular, from [85] one
has for p = 2 and a ≤ 2 or p > 2 for any free basis {bi} of GR (pa,m′),

GR∗ (pa,m′) =

{
ζℓ ·

m−1∏

i=0

(1 + pbi)
ni | ℓ ∈ {0, 1, . . . , pm′−1}ni ∈ {0, 1, . . . , pa−1}

}
.

Now,

ϑI(x) = x
i∏

j=1

(
1 + pa−1ζpj

Tr
(
xζpj

))

= x
i∏

j=1

(
1 + pζpj

)pa−2Tr
“
xζpj

”

As x runs over Tpa,m′ , pa−2Tr
(
xζpj

)
∈
{
0, pa−2, 2 · pa−2, (p − 1) · pa−2

}
equally many times

for each class as Tpa,m′ is congruent to Fpm′ modulo p. Now, define addition via ⊕|ϑ, as

ϑI(x) + ϑI(y) = ϑI(µ−1(µ(x+ y))).

With this law, −x = µ−1(−µ(x)) and is unique. To see this defines a group law note

(i) ϑI(x) ⊕ |ϑ 0 = ϑI(x)

(ii) ϑI(x) ⊕ |ϑ µ−1(−x) = 0

(iii) ϑI(x) ⊕ |ϑ ϑI(y) = ϑI(y) ⊕ |ϑ ϑI(x)

(iv) µ−1(µ(x+ y)) ∈ Tpa,m′ and the image of ϑI(·) is closed

and lastly note

(ϑI(x) ⊕ |ϑ ϑI(y)) + ϑI(z) = ϑI(µ−1(µ(x+ y))) + ϑI(z)

= ϑI(µ(µ−1(µ(x+ y)) + z)

= ϑI(µ(x+ y) + µ(z))

= ϑI(µ(x) + µ(y + z))

= ϑI(µ(µ−1(µ(z + y)) + x)

= ϑI(µ−1(µ(z + y))) + ϑI(x)

= (ϑI(z) ⊕ |ϑ ϑI(y)) + ϑI(x)

As this defines a group law on the image of Tpa,m′ , we extend this map linearly on GR (pa,m′)
via the p-adic expansion of every element. That is, we let

r ⊕ s =

a−1∑

i=0

pi · (ri ⊕ |ϑ si)
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where ri, si ∈ Tpa,m′ and

r =
a−1∑

i=0

piri and s =
a−1∑

i=0

pisi

is the p-adic expansion of r and s.

� C.2.9 Proof of Theorem 3.4.14

Tr (y · ϑI(x)) =

m′−1∑

i=0

Tr
(
xζpi

)
Tr
(
y · ϑI(x)/x · ζpi

⊥

)
(C.8a)

=

m′−1∑

i=0

xi · Tr


y · ζpi

⊥ ·
∏

j∈I

(
1 + pa−1ζpj

xj

)

 (C.8b)

=
m′−1∑

i=0

xi · Tr


y · ζpi

⊥ ·


1 + pa−1

∑

j∈I
ζpj · xj




 (C.8c)

=

m′−1∑

i=0

xiTr


(ŷ + ȳ) · ζpi

⊥ ·


1 + pa−1

∑

j∈I
ζpj · xj




 (C.8d)

=

m′−1∑

i=0

xiTr
(
ŷ · ζpi

⊥

)
(C.8e)

+pa−1
m′−1∑

i=0

xiTr


ya−1 · ζpi

⊥ + y0

∑

j∈I
ζpi

⊥ ζ
pj · xj


 (C.8f)

where we have let xi = Tr
(
xζpi

)
be the expansion of x in terms of the normal basis while

we let y be expanded through the p-adic representation. That is, suppose

y =

a−1∑

i=0

pi · yi.

Then,

ŷ =
a−2∑

i=0

pi · yi

and ȳ = pa−1ya−1 so that y = ŷ + ȳ. We note that (C.8d) and (C.8f) is now quite familiar.
That is, by expanding y in terms of the dual basis one has in (C.8d) the inner product
between a vector determining the coordinate set and ↓Ld

a. However, we are in an unfortunate
position in (C.8f). That is (C.8f) has a large mixture of variables. However, we note that if
y0 ∈ 0, 1 then (C.8f) becomes

Tr


ya−1 · ζpi

⊥ + y0

∑

j∈I
ζpi

⊥ ζ
pj · xj


 = Tr

(
ya−1 · ζpi

⊥

)
+
∑

j∈I
δ(i− j)xj
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Hence, if y0 ∈ 0, 1

Tr (y · ϑI(x)) =
m′−1∑

i=0

xiTr
(
ŷ · ζpi

⊥

)
+ pa−1

m′−1∑

i=0

xi

(
Tr
(
ya−1 · ζpi

⊥

)
+ 1{i∈I} · xi

)
(C.9)

Thus, the map ϑI(x) allows us to marginalize once again provided µy ∈ {0, 1}.

� C.2.10 Proof of Lemma 3.6.1

We note that this is easily computed by examining the action of F(b0;α, γ,B) on the basis
B. First, note that

γ · b0 = F(b0;α, γ,B) · b0.

Further, for b ∈ B \ b0,

αγb0 +
√

1 − α2b = F(b0;α, γ,B) · b.

Hence, as B is an orthonormal basis we have the result.

� C.2.11 Proof of Lemma 3.6.2

This can be by direct computation. First, note that image of B has a non-zero inner product
with b0. Further,

γ · b0 = F(b0;α, γ,B) · b0.

so b0 is an eigenvector of F(b0;α, γ,B). Now, consider the vector b + ν · b0. Then,

νγ · b0 + αγb0 +
√

1 − α2b = F(b0;α, γ,B) · (b + ν · b0) .

Hence, for b + ν · b0 to be an eigenvector one must have

νγ + αγ√
1 − α2

= ν

which yields the result.
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� C.3 Proofs for Chapter 4

� C.3.1 Proof of Theorem 4.4.3

Note by conditioning on the number of users that fall in the spherical shell defined by ρ−

and ρ+ we have,

Pr(NG >> 0) =

n∑

j=l

Pr (Nǫ,ρ = j) Pr (Xl > 0|Nǫ,ρ = j)

>

n∑

j=l

(
n

j

)
pj

s(1 − pσ,ρ)
n−j

(
1 − c1e

−jE(pG,l)
)

= Pr (Nǫ,ρ ≥ l) − c1

n∑

j=l

(
n

j

)(
pσ,ρe

−E(pG ,l)
)j

(1 − pσ,ρ)
n−j

> Pr (Nρ ≥ l) − c1

(
pσ,ρe

−E(pG,l) + (1 − pσ,ρ)
)n

.

� C.3.2 Proof of Theorem 4.5.1

We now prove the rate at which one can hope to scale channel norms and asymptotically
have a non-zero probability. In this direction note that from Alzer’s bound [9] we have for
m > 1 (

1 − e−slx
)m ≤ γ̃sf(m,x) ≤

(
1 − e−x

)m

where sl
∆
= Γ(1 +m)−1/m and

γ̃sf(m,x) =
1

Γ(1 +m)

∫ x

0
tm−1e−tdt

So,

pρ ≥
(
1 − e−slρ+

)2m −
(
1 − e−ρ−

)2m

=
2m∑

j=0

(
2m

j

)
(−1)j+1

(
ejρ− − ejslρ+

)

Now, we note that in order for the bound to be non-zero we must have ρ− < slρ+ so that
the probability is non-zero. However, implicit in the proof of the bound given in [9] if we
replace the constant sl in the lower bound by any number s ∈ (sl, 1) then there exists a x∗

such that (
1 − e−sx

)m ≤ γ̃sf(m,x)

for all x ∈ [x∗,∞). So, asymptotically we can replace the constant sl by 1− ǫ for any ǫ such
that 1 > ǫ > 0.
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Now, taking s < 1 and mρ+(n) = c log n and mρ−(n) = log n− α̃(n) yields

pρ ≥
2m∑

j=0

(
2m

j

)
(−1)j+1

(
e−j log n+j·α̃(n) − e−jcs log n

)

≥
2m∑

j=0

(
2m

j

)
(−1)j+1e−j log n

(
ej·α̃(n) − e−j(cs−1) log n

)

=

2m∑

j=0

(
2m

j

)
(−1)j+1n−j

(
ej·α̃(n) − n−j(cs−1)

)

(C.10)

Thus, for cs ≥ 1 as n→ ∞ then

2m(eα̃(n) − 1) ≤ npρ ≤ 2meα̃(n)

where the lower bound corresponds to cs = 1 and the upper bound corresponds to cs = ∞.
Thus, if ρ+(n) = (1+δ)(log n)/m and ρ−(n) = (log n)/m−(log α(n))/m wherem log log n ≤
log α(n) = o(log n) then

E [Nǫ,ρ] = npρ = 2mα(n)(1 − o(1)) + O(1/n)

From the above derivation (interchanging the role of s in the upper and lower bound )
it should be clear that if log(n) = o(ρ−(n)), then

lim
n→∞

npρ → 0

� C.3.3 Proof of Theorem 4.5.2 and Theorem 4.5.5

Similar to the proof of Theorem 4.5.1 we can use a Chernoff bound to bound the probability
that Nǫ,ρ > l. Thus, (4.29) becomes

1 − Pr(NG = 0) ≥ 1 − exp

(
−(npσ,ρ −m)2

npσ,ρ

)
−
(
1 + −pσ,ρ

(
1 − e(−E(pG ,m))

))n

So, bounding (1 − x)n by exp(−x) we have

Pr(NG = 0) ≤ Θ(n−2m) + exp
(
−E [Nǫ,ρ]

(
1 − e(−E(pG ,m))

))
(C.11)

= O
(
n−2mγ

)

where γ = 1 − e−E(pG,m).

Thus, we are left to determine pG for an inner product constraint ǫ(n). Let, δ(ǫ(n),m)
be the probability that any two users fail to meet the inner product constraint ǫ(n). That
is,

δ(ǫ(n),m) = Pr
[
|h†

ihj | > ǫ(n)
]
.

Then, one may, by using the chain rule, write the probability that a set of m users meets
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the inner porduct constriant ǫ(n) as

m−1∏

i=1

(1 − i · δ(ǫ(n),m))

and hence bound the probability that a set of m users meets the constriant ǫ(n) as

pG > (1 − (m− 1) · δ(ǫ(n),m))m−1 .

However, with this representation one may not take ǫ(n) → 0 with pG bounded away from
zero. Hence, alternaitvely one may fix a basis and ensure that users are sufficently close to
the basis. In particular, for the inner product constrain ǫ(n) is to hold one must have

|b†
ihi|2 ≥ 1 +

√
1 − ǫ(n)2

2
≥ 1 − ǫ(n)2.

Now, let users 0 channel direction determine the first element of a basis, b0 and then
consider any orthonomal basis {b0,b1, . . . ,bm−1}. Then,

pG >
m−1∏

i=1

Pr
[
|b†

ihi|2 > 1 − ǫ(n)2
]

=

m−1∏

i=1

ǫ(n)2(m−1) = ǫ(n)2(m−1)2

where the last line uses the distribution on inner products (2.43). This completes the proof.

� C.3.4 Proof of Theorem 4.5.3 and Theorem 4.5.6

This is a simple consequence of Theorem 4.5.1, Theorem 4.5.2 and Theorem 4.5.5. In par-
ticular the expected number of users that feedback can be computed directly from Theorem
4.5.1. In the case there is no quantization from Theorem 4.5.2 one may see that the resulting
bound on p∅(n) = o(1/log log n) and hence p∅(n)Rǫ,ρ(n) → 0. Thus, it is left to show the
difference R∗(n) − Rǫ,ρ(n) = O(1/ log n). We leave this until after our proof of the results
using quantization.

In the case where there is quantization, from Theorem 4.5.5 one may see that the
resulting bound on p∅(n) = o(1/log log n) and hence p∅(n)Rǫ,ρ,σ(n) → 0. Thus, it is left to
show the difference R∗(n) − Rǫ,ρ,σ(n) = O(1/ log n). To see this we note that the SINR of
each user may be bounded as

SINRIC
j ≥ γj

∆
=

P‖hi‖2
[
|σj |τj −

√
1 − |σj|2λmin

]2
+

Tr(Φ̂
−1
A )τ2

j + P‖hj‖2(1 − |σj|2)λmax

from (4.44). Thus, if
‖hj‖2 · (1 − |σj(n)|2) = g(n)
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for some g(n) → 0 and σj(n) → 1 one has for sufficiently large n

SINRIC
j ≥

P‖hi‖2τ2
j (1 − o(1))

Tr(Φ̂
−1
A )τ2

j + g(n)
.

which in the special case Φ̂A = Im one has for sufficiently large n,

SINRIC
j ≥ P‖hi‖2/m(1 − o(1))

1 + g(n)

≥ SINR∗(n)(1 − o(1))

1 + g(n)

Thus,
SINR∗(n)

SINRIC
j

≤ 1 + g(n)

(1 − o(1))
.

Now, as g(n) → 0 and SINR∗(n) → ∞ we have

SINR∗(n)

SINRIC
j

≤ (1 + o(1)) · (1 + g(n)).

By direct computation it is easy to see that

ρ−(n)(1 − σ(n)2) =
1

log n
+ o(1)

and thus

R∗(n) −Rǫ,ρ,σ(n) = log

(
1 + SINR∗(n)

1 + SINRIC
j (n)

)

≤ log

(
1 + SINR∗(n)

SINRIC
j (n)

)

≤ log

(
1

SINRIC
j (n)

+
SINR∗(n)

SINRIC
j (n)

)

≤ 1

SINRIC
j (n)

+
SINR∗(n)

SINRIC
j (n)

− 1

= 1/ log n+ o(1)

Hence, R∗(n) −Rǫ,ρ,σ(n) = O(1/ log n).

We note that the in the case that there is no quantization is equivalent to the case where
quantization is used and

1 − σ(n)2 = ǫ2(n).

As ρ−(n)(1 − σ(n)2) = 1
log n +o(1) again in this case of the interference-ignoring multiplexer

one has R∗(n)−Rǫ,ρ,σ(n) = O(1/ log n). To see that this is also the case in the interference-

262



canceling multiplexer note

Tr(Φ̂
−1
A ) ≤ m · 1

λmin(Φ̂A)

≤ m · 1

1 − (m− 1)ǫ(n)2

Hence,

SINRIC ≥ Pρ−(n)
1 − (m− 1)ǫ(n)2

m

and again R∗(n) −Rǫ,ρ,σ(n) = O(1/ log n).
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