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ABSTRACT

Brain machine interfaces work by mapping the relevant neu-
ral activity to the intended movement known as ‘decoding’.
Here, we develop a recursive Bayesian decoder for goal-
directed movements from neural observations, which exploits
the optimal feedback control model of the sensorimotor sys-
tem to build better prior state-space models. These controlled
state models depend on the movement duration that is not
known a priori. We thus consider a discretization of the
task duration and develop a decoder consisting of a bank of
parallel point-process filters, each combining the neural ob-
servation with the controlled state model of a discretization
point. The final reconstruction is made by optimally com-
bining these filter estimates. Using very coarse discretization
and hence only a few parallel branches, our decoder reduces
the root mean square (RMS) error in trajectory reconstruction
in reaches made by a rhesus monkey by approximately 40%.

Index Terms— Brain machine interfaces, recursive
Bayesian filters, neural signal processing, optimal control

1. INTRODUCTION

Information about an intended movement is encoded in the
brain in the form of ensemble neural spiking activity modeled
well by point processes [1]. It has been shown that motor
cortical neural signals can be used to individually decode both
the kinematics of a movement and its higher level information
such as intended target. Consequently, one can improve the
decoding accuracy of movement kinematics by exploiting this
information about its goal.

One approach to decoding a movement trajectory is based
on recursive Bayesian estimation; see, e.g., [2,3]. A recursive
Bayesian decoder consists of two probabilistic models: the
prior model on the time sequence of kinematic states, and the
observation model relating the neural signal to these states.
Examples are point-process filters [4] and Kalman filters [3].

We consider the problem of decoding a goal-directed
movement of unknown duration and develop a recursive
Bayesian decoder that takes advantage of the known goal
information to reduce the mean-square error (MSE) in tra-
jectory reconstruction. There are two major components to

This work was supported in part by NIH under Grant Nos. DP1-
0D003646-01 and R01-EB006385 and by a grant from Microsoft Research.

our decoder. The first component aims at building better
prior state-space models for the kinematics by exploiting an
optimal feedback control model of the sensorimotor system
shown to explain many of the observed phenomena [5, 6]. 1

The optimal feedback-controlled state-space model (as
well as alternative goal-directed state-space models in [2, 8])
depends on the movement duration that is not known a priori
to the external observer of the neural signal. Hence the sec-
ond component of our algorithm addresses this uncertainty
in goal-directed movements in contrast to other work that
assume this timing is known [2, 8]. We address this by ex-
ploiting a parallel bank of point-process filters that calculate
not only causal estimates of the state at each time based on
the neural observations, but also the likelihood of the arrival
time based on these observations. 2 Since these filters run in
parallel, the time to generate the overall estimate is on the or-
der of the run time of a single filter. We test our algorithm on
real goal-directed movements performed by a rhesus monkey
by simulating the neural activity.

2. PROBLEM STATEMENT AND NOTATION

We denote the sequence of kinematic states by x0, · · · , xt and
the neural point process observations of the ensemble of C

neurons by N1, · · · ,Nt where Nt = (N1
t , · · · , NC

t ) is the
binary spike events of the C neurons at time t. The point-
process observation model is given by [1]

p(Nt|x1:t,Ht) =
∏
c

(λc(t|xt,H
c
t)Δ)

N
c
t e−λc(t|xt,Hc

t)Δ (1)

where Hc
t = N

c
1:t−1, Ht = N1:t−1 = H1:C

t , Δ is the time in-
crement and λc(t|xt,H

c
t) is the modeled conditional intensity

function of the cth neuron at time t (as will be discussed in
Section 7). We have assumed that the observations from the
C neurons are conditionally independent.

The goal of the decoder is to causally calculate the state
posterior density, i.e., p(xt|N1:t) based on the observations.

1This is in contrast to most work that place a random-walk prior state
model on the kinematics. Alternative state-space models for goal-directed
movements condition the random-walk model on being at the target at a
known arrival time [2], or fit a time-invariant state model to empirical reaches
to the target [7], or use a feedforward controlled state-space model [8] not
taking into account the sensory feedback.

2Our approach can also be applied to the state models of [2,8] to general-
ize them and relax their assumption of known movement duration.
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3. OPTIMAL FEEDBACK-CONTROLLED
STATE-SPACE MODEL

To derive the prior state-space model on x1:t in a goal-directed
movement we exploit the optimal feedback control view of
the sensorimotor system [5,6]. We assume that the kinematic
state is generated according to the linear dynamical system

xt+1 = Axt + But + wt, (2)

where ut is the control input at time t, wt is the zero-mean
white Gaussian state noise with covariance matrix W, and A

and B are parameters of the sensorimotor system. Here we
assume that the sensory feedback yt is noiseless and yt = xt.
Note that setting B = 0 reduces the model to the random-
walk model. One now needs to pick a cost function that will
then be minimized by finding the optimal values of ut. The
cost function in a given task should quantify its goal. For the
above linear Gaussian dynamics, if we pick the cost function
as a quadratic function of the state and control variables, i.e.,

J =

T∑
t=1

(x′tQtxt + u′tRut) , (3)

where T is the movement duration, Qt is positive semidefi-
nite and R is positive definite, then the optimal control rule,
ut, is simply a linear feedback of the state at that time [9], i.e.,

ut = −Lt(T )xt, (4)

where Lt can be found recursively and offline. This is the lin-
ear quadratic Gaussian (LQG) solution. Note that Qt and R

should be appropriately designed for an application of interest
(see Section 6) and Lt(T ) is time-varying and a function of
the arrival time T . This reduces the state-space model in (2)
to the optimal closed-loop controlled state-space model

xt+1 = (A − BLt)xt + wt, (5)

which can now be used as the prior on the kinematic states as
opposed to a random-walk state model. Note that the closed-
loop controlled dynamics matrix is now time-varying. We
first derive our decoder for this general controlled state model
and later specialize it to a reaching movement.

4. ESTIMATING THE FEEDBACK-CONTROLLED
SYSTEM WITH KNOWN DURATION FROM

NEURAL OBSERVATIONS

To derive the recursive Bayesian decoder, we now combine
the state-space model in (5) with the point process observation
model in (1) to recursively find the posterior density. For now,
we assume that the arrival time and hence Lt(T ) are known.
We can write the posterior density as

p(xt|N1:t, T ) =
p(Nt|xt,N1:t−1) p(xt|N1:t−1, T )

p(Nt|N1:t−1, T )
(6)

The first term in the numerator comes from the observation
model in (1) and the second term is the one-step predic-
tion density. Note we used the fact p(Nt|xt,N1:t−1, T ) =
p(Nt|xt,N1:t−1). We denote the partition function by

g(Nt|T ) = p(Nt|N1:t−1, T ) (7)

since we will exploit it later for the case of unknown arrival
time. To get the recursion for the posterior density, we write
the prediction density as

p(xt|N1:t−1,T )=

∫
p(xt|xt−1,T )p(xt−1|N1:t−1,T )dxt−1 (8)

using the conditional independence, p(xt|xt−1,N1:t−1, T ) =
p(xt|xt−1, T ), which comes from the optimal feedback-
controlled state-space model in (5). Now the second term in-
side the integral is just the posterior density from the previous
time step, hence substituting (8) into (6) generates the recur-
sion. The exact expression in (6) is in general complicated.
Hence here we make a Gaussian approximation to the pos-
terior density similar to [4]. Making this approximation and
since the state-space model in (5) is also Gaussian, the pre-
diction density in (8) will be Gaussian. Let’s denote the min-
imum MSE (MMSE) estimator, i.e., E(xt|N1:t, T ) by xt|t,T

and its covariance matrix by Wt|t,T . Similarly we denote
the one step prediction mean by xt|t−1,T = E(xt|N1:t−1, T )
and its covariance matrix by Wt|t−1,T . The recursions for
the MMSE estimator with this Gaussian approximation have
been derived in [4]. The difference here is that our state-
space model is a controlled one. The recursions of this
point-process filter in our case become

xt|t−1,T = (A− BLt(T )) xt−1|t−1,T (9)

Wt|t−1,T =(A−BLt(T ))Wt−1|t−1,T (A−BLt(T ))′+W

(10)

W−1
t|t,T = W−1

t|t−1,T
+

C∑
c=1

[(
∂ log λc

∂xt

)′(
∂ log λc

∂xt

)
λcΔ

−(Nc
t − λcΔ)

∂2 log λc

∂xt∂x′t

]
xt|t−1,T

(11)

xt|t,T = xt|t−1,T

+ Wt|t,T

C∑
c=1

[(
∂ log λc

∂xt

)′
(Nc

t− λcΔ)

]
xt|t−1,T

(12)

This gives us the feedback-controlled point-process filter (FC-
PPF). Since B = 0 in (2) corresponds to the random-walk
model, (9)-(12) with B = 0 recover the random-walk point-
process filter (RW-PPF).

5. ESTIMATING THE FEEDBACK-CONTROLLED
SYSTEM WITH UNKNOWN DURATION FROM

NEURAL OBSERVATIONS

The arrival time of the controlled system is not known to the
external observer only observing the neural signal. We are
hence interested in the unconditional posterior density,
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p(xt|N1:t) =

J∑
j=1

p(xt|N1:t, Tj)p(Tj|N1:t) (13)

where we discretize the arrival time T to J possibilities and
consequently place a prior model on it given by pT (Tj), j =
1, · · · , J . This prior model (including its support) can be se-
lected based on empirical durations observed in a given task.
We need the weights

p(Tj |N1:t) =
p(N1:t|Tj)pT (Tj)

p(N1:t)
(14)

where p(N1:t) is independent of Tj and hence treated as a
constant and p(N1:t|Tj) represents the likelihood of the ob-
served neural data under a state-space model with the arrival
time of Tj . Hence it is the partition function for the posterior
p(x1:t|N1:t, Tj) and its exact computation requires an inte-
gration, which is computationally prohibitive. However, us-
ing the Gaussian approximation to the posterior, we can find
this without integration as follows. Using the chain rule we
have

p(N1:t|Tj) =
t∏

i=1

P (Ni|N1:i−1, Tj) =
t∏

i=1

g(Ni|Tj) (15)

where g(Ni|Tj) is defined in (7) and is the ith step partition
function in the recursive filter. Now exploiting the Gaussian
approximation of the posterior and hence the prediction den-
sities in (6), they are completely characterized by their means
and covariances given in (9)-(12) for a given Tj . We can
hence explicitly evaluate (6) at xi|i,Tj

to get

g(Ni|Tj) =

√
|Wi|i,Tj

|

|Wi|i−1,Tj
|
p(Ni|xi|i,Tj

,N1:i−1)×

exp

[
−

1

2
(xi|i,Tj

−xi|i−1,Tj
)′W−1

i|i−1,Tj
(xi|i,Tj

−xi|i−1,Tj
)

]
(16)

for i = 1, · · · , Tj and j = 1, · · · , J where all the quanti-
ties are known. Combining (13)-(16) gives the posterior. The
MMSE estimate in the case of unknown arrival time is then
given by xt|t = E(xt|N1:t) =

∑
j p(Tj |N1:t)xt|t,Tj

where
the summation is over all j for which Tj > t. The result-
ing recursive filter is shown in Fig. 1. We call this filter the
feedback-controlled parallel PPF (FC-P-PPF): it consists of
J parallel point-process filters, each not only calculating the
MMSE estimate of xt assuming a duration of Tj , but also
the corresponding likelihood p(N1:t|Tj). This approach can
also be viewed as mixture modeling, a common framework in
statistical inference for density estimation. This framework
has also been used in [7] to combine empirically fitted state
models to different targets.

6. STATE-SPACE MODEL FOR THE REACHING
MOVEMENT

Having derived the decoder for a general controlled state-
space model, we can specialize to different tasks by using

p(T1|N1:t)

p(T2|N1:t)

p(TJ |N1:t)

xt|t,T1

xt|t,T2

xt|t,TJ

N1:t xt|t

PPF,T1

PPF,T2

PPF,TJ

Fig. 1. Optimal feedback-controlled parallel point-process filter.

the suitable musculoskeletal state model and appropriate cost
functions. For a reaching movement, the cost function should
enforce end-point positional accuracy, stopping condition,
and energetic efficiency. Denoting the desired final posi-
tion by x

∗ and taking the state to be xt =
[
xt vt at

]′
where the components represent position, velocity and force
respectively, similar to [6] we take this cost function to be

J = wx(xT − x
∗)2 + wvv2

T + waa
2
T + wr

T∑
t=1

u
2
t (17)

The first 3 weights in the cost function are chosen to equally
penalize these terms on average and the last weight to fit the
biomechanical data. We adapt the first order lowpass muscle-
like system in [6] for the dynamical system in (2),⎡
⎣xt+1

vt+1

at+1

⎤
⎦=

⎡
⎣1 Δ 0
0 1 − bΔ

m
Δ
m

0 0 1 − Δ
τ

⎤
⎦
⎡
⎣xt

vt

at

⎤
⎦+

⎡
⎣ 0

0
Δ
τ

⎤
⎦ut +

⎡
⎣ 0

0
wt

⎤
⎦ (18)

where the parameters b, τ, and m come from biomechanics
given in [6] and the state noise is only non-zero in the force
dimension. . The feedback matrices Lt(Tj) can now be easily
found for all j from the recursive solution of LQG by either
augmenting the state to include x

∗ or using a non-zero set
point version of LQG.

7. RESULTS

Here we demonstrate the performance of our algorithm for
both known and unknown arrival times and compare it with
RW-PPF. Our data consisted of reaching trajectories per-
formed by a rhesus monkey. The only parameter of (18) fitted
to data was the state noise covariance W, which represents
the variability in reaching to the same goal over different tri-
als. 3 We simulated the point-process neural signal of C = 20
neurons for a given trajectory using the time-rescaling the-
orem and taking the cosine tuning model of the conditional
intensity function for a two-dimensional movement [1],

3We fitted two noise variances to the two-dimensional empirical trajecto-
ries for both random-walk and feedback-controlled state models: one parallel
to the target direction and one perpendicular to it. Doing so in the case of the
random-walk model gives it a substantial advantage as in general a random-
walk model does not exploit the target information and hence should use the
same noise variance in both directions. Hence the improvements shown here
are only lower bounds on the true improvement one would get by using the
target information and hence FC-P-PPF and FC-PPF over RW-PPF with no
target information.
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Table 1. RMS error (cm) in decoded trajectory of 55 real reaching
movements.

Known T Unknown T

RW-PPF FC-PPF ratio RW-PPF FC-P-PPF ratio
1.3225 0.8849 0.67 1.7106 1.0374 0.60

λc
t = eα0+α1|vt| cos(θt−θc

p) = eα0+αc
yvy(t)+αc

xvx(t)

where θc
p is the preferred angle of the cth neuron sampled

randomly from [−π, π], θt is the movement angle at t, and
vy(t) and vx(t) are the velocities in the y and x directions.
Here, α0 and α1 are chosen to have a background firing rate
of 5 Hz and maximum firing rate of 30 Hz for each neuron.

We used 55 trajectories of different durations in the range
of 150-400 ms from the real reaching movements and simu-
lated 100 realizations (trials) of the point-process neural sig-
nal for each of them. Hence the window of uncertainty for the
arrival time is 150-400 ms.

Fig. 2 shows one of these 55 trajectories and 15 sample
decoded trajectories for both known and unknown durations.
We can see that even for a known duration, the FC-PPF per-
forms better than RW-PPF since it places a better prior on the
state. With an unknown duration, the FC-P-PPF with only 4
parallel components, does better than RW-PPF for two rea-
sons: 1. It places a better controlled prior on the states. 2. It
combines the estimates of the parallel filters, each designed
for a different arrival time, with time-varying optimal weights
that are updated purely based on the neural observation. Fig. 3
shows these optimal weights in FC-P-PPF and the decoded
vy(t). Here the true arrival time is at 300 ms and as we can
see the corresponding calculated weight dominates up to 300
ms after which of course the only component left in the esti-
mate is the 400 ms branch of the filter. Also, comparing the
decoded vy for FC-P-PPF and RW-PPF we can see that FC-
P-PPF correctly brings the estimated velocity close to zero at
the end of movement as opposed to RW-PPF. Note that the
arrival time is discretized very coarsely and only 4 parallel
branches are used.

Table 1 shows the RMS error in the decoded trajectory
over the 55 real reaching movements. For known arrival time,
FC-PPF reduces the RMS error by almost 33% and for un-
known arrival time, FC-P-PPF reduces it by almost 40%.
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