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Abstract—Two challenges facing adaptive decision feedback
equalizers (DFEs) in the underwater acoustic channel are those
of the channel changing too rapidly to allow for the stable
adaptation of the number of coefficients required to represent
the equalizer filters and the high computational complexity
of the associated adaptation algorithms. These challenges are
particularly acute for multichannel DFEs where a separate filter
needs to be adapted for each input signal channel.
A multichannel ”frequency domain” DFE is proposed in

which the feedforward filter coefficients are represented in
the frequency domain while the feedback filter coefficients are
represented in the time domain. For fractionally sampled input
signals, the frequency range over which the feedforward filter
coefficients are calculated is limited thus reducing the number
of coefficients that need to be calculated. The resulting DFE is
shown to have both improved demodulation performance and a
reduced complexity when compared to a time domain equalizer.

I. INTRODUCTION
The underwater acoustic communications channel repre-

sents a very challenging environment with a significant delay
spread (often on the order of 50 to 100 symbols) and Doppler
spreads on the order of 10s of Hz. Starting with the work
presented in [1] and [2], adaptive coherent decision feedback
equalizers (DFEs) have proven to be one of the more effective
means of enabling reliable acoustic communications with
coherent modulation in the ocean environment. In order to
accommodate the time variability of the underwater acoustic
channel, the equalizer filter coefficients must be adjusted
based upon the channel impulse response and ambient noise
characteristics in order to maintain effective performance.
The algorithms detailed in the references above are im-

plemented as direct adaptation equalizers, that is the equal-
izer filter coefficients are adjusted directly using algorithms
such as the Recursive Least Squares (RLS) or Least Mean
Squares (LMS) algorithms. In these equalizers, the number of
coefficients that must be adjusted equals the total number of
taps in the feedforward and feedback filters of the equalizers.
As either the number of input channels (number of array
elements or number of beam outputs for equalizers operating

on beamspace data as in [3]) or the fractional sampling rate of
the equalizer is increased, the number of coefficients can grow
significantly. The increase in number of coefficients will have
two negative effects. The first is that the computational com-
plexity of the coefficient adaptation algorithm will increase at a
rate of somewhere between O(N) and O(N2) where N is the
total number of coefficients to be adjusted. The second is that
the ”time window” over which the adaptation algorithm must
average in order to achieve reliable filter coefficient estimation
will increase in a manner that is roughly proportional to N .
Thus, as N increases the rate of channel fluctuations that can
be tracked by the adaptive equalizer is reduced.
The least squares estimation of the optimal equalizer filter

coefficients is most often done directly in the time domain.
That is, the filter tap coefficients are represented by samples in
delay. However, it is equally valid to represent the equalizer fil-
ters in the frequency domain using Fourier coefficients. Here,
a further step is taken to reduce the number of coefficients
used to represent the equalizer. The bandwidth of the sampled,
baseband input signal is roughly limited to ±π/Nfs where
Nfs is the fractional sampling rate in samples/symbol duration.
The approach proposed here is to represent the feedforward
filter using Fourier coefficients over only a reduced frequency
range thus reducing the number of coefficients that need to be
updated in order to adapt the filter. In practice, the input signal
is represented by it’s Fourier coefficients over this restricted
bandwidth which relates the approach to subband adaptive
filtering [4].
Frequency domain equalizers are popular with the motiva-

tion of reducing the computational complexity of the adapta-
tion and subsequent signal filtering algorithms [5]. A common
characteristic of these algorithms is that due to the use of
block based FFTs they operate on blocks of data and estimated
channel impulse response or filter coefficients are updated in
a block fashion. The performance of the algorithms in terms
of channel estimation or signal demodulation accuracy has
been shown to be roughly equivalent to that achieved by
time domain techniques. More recently, frequency techniques
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offering improved performance have been developed. While
these techniques still use a block processing and updating
approach, they achieve their performance improvements using
noise filtering and data interpolation techniques [6] or noise fil-
tering and statistically optimal estimators [7]. However, these
techniques do not explicitly exploit the limited bandwidth
of fractionally spaced input signals to reduce computational
complexity or improve adaptation ability. In contrast, the
limited bandwidth of fractionally sampled signals has been
exploited in the context of blind equalizers to enable op-
eration with second order statistics and improve algorithm
convergence properties [8]. However, these algorithms require
either explicit knowledge of the modulation pulse shape or
estimates of the magnitude of the system frequency response
from secondary estimation algorithms rather than the simple
bandwidth limits required by the approach presented here.
The structure of the paper is as follows. Section II presents

the signal and equalizer models and notation that will be used
and describes the time and frequency domain adaptation of
the equalizer coefficients. Experimental results showing the
performance gain realized by the frequency domain technique
are presented in Section III and conclusions are discussed in
Section IV. The computational details necessary to implement
the proposed DFE are beyond the scope of this paper and not
presented here.

II. DFE EQUATIONS AND ADAPTATION
Throughout this paper, bold faced lower case letters denote

column vectors, bold faced upper case letters denote matri-
ces, regular lower or upper case letters denote scalars, the
superscript H denotes Hermitian, and the hat (̂·) denotes an
estimate of the variable below the hat. With this notation, the
soft decision output of the multichannel DFE is given by

d̂s[n] =
L∑

l=1

f
H
l ul[n] + e

H
dfb[n] (1)

Here L is the number of input signal channels, fl is the
vector of feedforward filter coefficients for the lth input signal
channel, and e is the vector of feedback filter coefficients.
Let Nff denote number of fractionally spaced taps in each
feedforward filter at a fractional sampling rate of Nfs and Nfb

denote the number of symbol spaced taps in the feedback filter.
Then ul[n] is an Nff x 1 vector containing the appropriately
time aligned fractionally sampled input signal from the lth

signal channel and dfb[n] is a column vector containing the
pastNfb symbol decisions from the hard decision device of the
DFE. Stacking the feedforward filter vectors, fl, l = 1, . . . , L,
along with the feedback filter vector, e, into a single column
vector w and similarly stacking the feedforward filter signal
vectors, ul[n], l = 1, . . . , L, and feedback filter signal vector,
dfb[n] into a signal vector v[n], (1) can be rewritten as

d̂s[n] = w
H
v[n]. (2)

Letting d[n] denote the true transmitted symbol at time n, the
time domain, exponentially weighted least squares problem for

adapting the equalizer filter weights is given by

ŵ[n] = argmin
w

n∑

m=0

λ(n−m) | d[m] − w
H
v[m] |2 (3)

where λ is the exponential weight factor between 0 and 1.
Standard algorithms are available for solving this problem [9].
The equalizer filter vector estimated using data up to time n is
then used to make the soft decision for the data at time n+1.
That is

d̂s[n+ 1] = ŵ
H [n]v[n+ 1]. (4)

Consider the representation of the DFE feedforward filter
vectors fl as a weighted sum of Fourier basis vectors. That
is, fl = Fcl where cl is a vector of the coefficients of the
Fourier expansion and F is given by Fi,k = ej

2π

Nff
i k. Here,

j =
√
−1, and i, k ∈ [0, 1, · · · , (Nff − 1)]. To represent the

feedforward filter vectors over only a limited bandwidth, only
selected elements of cl and the corresponding columns of F
are used. Denoting the reduced F matrix as F̃ and the reduced
dimension cl as c̃l, (1) can be rewritten as

d̂s[n] =
L∑

l=1

c̃
H
l F̃

H
ul[n] + e

H
dfb[n] (5)

Let ũl[n] = F̃Hul[n] (i.e. the Discrete Time Fourier Trans-
form of the input signal vector). Stack the weight vectors
c̃l, l = 1, . . . , L, along with the feedback filter vector, e, into a
single column vector w̃ and ũl[n], l = 1, . . . , L, and feedback
filter signal vector, dfb[n] into a signal vector ṽ[n], we can
rewrite (2) and (3) as

d̂s[n] = w̃
H
ṽ[n]. (6)

and

ˆ̃w[n] = argmin
w̃

n∑

m=0

λ(n−m) | d[m] − w̃
H
ṽ[m] |2 . (7)

III. EXP. RESULTS ANALYSIS
Underwater acoustic communications signals (BPSK mod-

ulated, carrier frequency 12.5 kHz, 6510.4 symbols/second)
were transmitted and received in a shallow water communi-
cations channel (200 meters range, 15 meters water depth,
flat bottom) under a variety of weather conditions. The data
presented here was collected during moderately rough con-
ditions. All signals were brought to baseband and low pass
filtered as an initial processing step. The desired baseband
frequency band for frequency domain DFEs in these tests was
approximately -5 khz to 4 kHz.
Figures 1, 2, and 3 show the bit error rates achieved time

and frequency domain equalizers with 2, 3 and 4 input signal
channels respectively. It is clear that the performance improve-
ments realized by the frequency domain DFE when compared
to a time domain DFE increase as either the number of input
channels or the fractional sampling rate are increased. This is
due to the fact that both of these changes result in a greater
number of equalizer coefficients and the coefficient reduction
afforded by the frequency domain DFE results in a more
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significant reduction in the required length of the averaging
window of the LS adaptation algorithm. While the analysis of
fractionally spaced equalizers since their introduction [10] has
concluded that a fractional sampling rate of 2 is ”sufficient”
for most applications, the potential use of Faster-Than-Nyquist
signaling [11] in the underwater acoustic channel motivates
the need for equalizers operating at fractional sampling rates
higher than 2.
Figures 4, 5, and 6 show the magnitude of the frequency

response of one channel of the feedforward filter coefficients
for a 4 channel equalizer. It is clearly seen how the equalizer
filter coefficients for the unconstrained time domain equalizer
blow up. Note that the frequency responses of the uncon-
strained time domain feedforward filter coefficients have large
amplitudes outside of the desired frequency band. In contrast,
the reduced bandwidth equalizers, which achieve lower bit
error rates than the time domain equalizers, are seen to have a
significantly reduced amplitude outside the desired frequency
band.
The figure captions for Figures 1, 2, and 3 list the number

of parameters estimated for each equalizer. Computational
complexity for each algorithm was on the of order the total
number of parameters squared. Thus, the use of the frequency
domain equalizer in the most extreme cases (e.g., 4 channels,
fractional sampling rate = 6) resulted in computational com-
plexity reductions of an order of magnitude.

IV. CONCLUSION
A frequency domain multichannel DFE is proposed and

demonstrated using field data. The algorithm represents the
DFE feedforward filter coefficients as a weighted sum of
Fourier basis vectors and exploits the limited bandwidth of the
baseband transmitted signal that results from using fractionally
spaced baseband received communications signals to reduce
the number of parameters to be estimated. This results in an
equalizer that has fewer parameters to update, a reduction in
computational complexity, and a reduction in the achieved bit
error rates.
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Fig. 2. Uncoded bit error rate achieved by direct adaptation DFEs operating
in a moderately rapidly varying channel with three signal input channels. The
experimental conditions, legend and algorithm assumptions are the same as
detailed in Fig. 1. For the three channel equalizer, the time-domain equalizers
operating at fractional sampling rates of 2, 3 and 6 samples per symbol
duration were represented by 258, 348, and 618 coefficients, respectively.
The corresponding frequency-domain equalizers were each represented by
204 coefficients.

Fig. 3. Uncoded bit error rate achieved by direct adaptation DFEs operating
in a moderately rapidly varying channel with four signal input channels. The
experimental conditions, legend and algorithm assumptions are the same as
detailed in Fig. 1 with the exception of the spacing between array elements
which was 15 cm . For the four channel equalizer, the time-domain equalizers
operating at fractional sampling rates of 2, 3 and 6 samples per symbol
duration were represented by 318, 438, and 798 coefficients, respectively.
The corresponding frequency-domain equalizers were each represented by
246 coefficients.

Fig. 4. Frequency Response Magnitude (in dB) of one channel’s feedforward
filter coefficients in four channel time and frequency domain DFEs operating
at a fractional sampling rate of 2 samples per symbol duration. The experi-
mental conditions, legend and algorithm assumptions are the same as detailed
in Fig. 1. For both the time-domain (dashed line) and frequency-domain (solid
line) equalizers, the frequency response shown is for the equalizer that used
the exponential forgetting factor (λ) that had the lowest corresponding BER
shown in Fig. 3.

Fig. 5. Frequency Response Magnitude (in dB) of one channel’s feedforward
filter coefficients in four channel time and frequency domain DFEs operating
at a fractional sampling rate of 3 samples per symbol duration. The experi-
mental conditions, legend and algorithm assumptions are the same as detailed
in Fig. 1. For both the time-domain (dashed line) and frequency-domain (solid
line) equalizers, the frequency response shown is for the equalizer that used
the exponential forgetting factor (λ) that had the lowest corresponding BER
shown in Fig. 3.

Fig. 6. Frequency Response Magnitude (in dB) of one channel’s feedforward
filter coefficients in four channel time and frequency domain DFEs operating
at a fractional sampling rate of 6 samples per symbol duration. The experi-
mental conditions, legend and algorithm assumptions are the same as detailed
in Fig. 1. For both the time-domain (dashed line) and frequency-domain (solid
line) equalizers, the frequency response shown is for the equalizer that used
the exponential forgetting factor (λ) that had the lowest corresponding BER
shown in Fig. 3.
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