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Secure Transmission With Multiple Antennas—Part I1:
The MIMOME Wiretap Channel
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Abstract—The capacity of the Gaussian wiretap channel model is
analyzed when there are multiple antennas at the sender, intended
receiver and eavesdropper. The associated channel matrices are
fixed and known to all the terminals. A computable characteriza-
tion of the secrecy capacity is established as the saddle point solu-
tion to a minimax problem. The converse is based on a Sato-type
argument used in other broadcast settings, and the coding theorem
is based on Gaussian wiretap codebooks.

At high signal-to-noise ratio (SNR), the secrecy capacity is
shown to be attained by simultaneously diagonalizing the channel
matrices via the generalized singular value decomposition, and
independently coding across the resulting parallel channels. The
associated capacity is expressed in terms of the corresponding gen-
eralized singular values. It is shown that a semi-blind “masked”
multi-input multi-output (MIMO) transmission strategy that
sends information along directions in which there is gain to the
intended receiver, and synthetic noise along directions in which
there is not, can be arbitrarily far from capacity in this regime.

Necessary and sufficient conditions for the secrecy capacity to
be zero are provided, which simplify in the limit of many antennas
when the entries of the channel matrices are independent and iden-
tically distributed. The resulting scaling laws establish that to pre-
vent secure communication, the eavesdropper needs three times as
many antennas as the sender and intended receiver have jointly,
and that the optimum division of antennas between sender and in-
tended receiver is in the ratio of 2:1.

Index Terms—Broadcast channel, cryptography, MIMO wiretap
channel, multiple antennas, secrecy capacity.

1. INTRODUCTION

ULTIPLE antennas are a valuable resource in wireless
M communication. Over the last several years, there has
been extensive activity in exploring the design, analysis, and
implementation of wireless systems with multiple antennas, em-
phasizing their role in improving robustness and throughput. In
this work, we develop aspects of the emerging role of multiple
antennas in providing communication security at the physical
layer.
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The wiretap channel [1] is an information-theoretic model
for physical-layer security. In the model, there are three ter-
minals—a sender, an intended receiver, and an eavesdropper.
The goal is to exploit the structure of the underlying broad-
cast channel to transmit a message reliably to the intended
receiver, while leaking asymptotically no information to the
eavesdropper. A single-letter characterization of the secrecy
capacity when the underlying broadcast channel is discrete and
memoryless is developed in [2]. An explicit solution for the
scalar Gaussian case is obtained in [3], where the optimality of
Gaussian codebooks is established.

In this paper, we consider the case where there are multiple
antennas at each of the three terminals, referring to it as the
multi-input, multi-output, multi-eavesdropper (MIMOME)
channel. In our model, the channel matrices are fixed and
known to all three terminals. While the eavesdropper’s channel
being known to both the sender and the receiver in the problem
formulation is a strong assumption, we remark in advance that
the solution provides ultimate limits on secure transmission
with multiple antennas, and thus serves as a starting point
for other formulations. Further discussion of the modeling
assumptions is provided in the companion paper [4] and the
compound extension has been recently treated in [5].

The problem of evaluating the secrecy capacity of channels
with multiple antennas has attracted increasing attention in re-
cent years. As a starting point, for Gaussian models in which
the channel matrices of intended receiver and eavesdropper are
square and diagonal, the results in [6]-[9], which consider se-
cure transmission over fading channels, can be applied. In par-
ticular, for this special case of independent parallel Gaussian
subchannels, it follows that using independent Gaussian wiretap
codebooks across the subchannels achieves capacity.

More generally, the MIMOME channel is a nondegraded
broadcast channel to which the Csiszar-Ko6rner capacity ex-
pression [2] applies in principle. However, computing the
capacity directly from [2] appears difficult, as observed in, e.g.,
[10]-[13].

To the best of our knowledge, the first computable upper
bound for the secrecy capacity of the Gaussian multi-antenna
wiretap channel appears in [4], [14], which is used to establish
the secrecy capacity in the special (MISOME) case that the in-
tended receiver has a single antenna. This approach involves re-
vealing the output of the eavesdropper’s channel to the legiti-
mate receiver to create a fictitious degraded broadcast channel,
and results in a minimax expression for the upper bound, anal-
ogous to the technique of Sato [15] used to upper bound the
sum-capacity of the multi-antenna broadcast channel; see, e.g.,
[16].

In [4], [14], this minimax upper bound is used to obtain a
closed-form expression for the secrecy capacity in the MISOME
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case. In addition, a number of insights are developed into the be-
havior of the secrecy capacity. In the high signal-to-noise ratio
(SNR) regime, the simple masked beamforming scheme devel-
oped in [11] is shown to be near optimal. Also, the scaling be-
havior of the secrecy capacity in the limit of many antennas is
studied.

We note that this upper bounding approach has been inde-
pendently conceived by Ulukus et al. [17] and further applied
to the case of two transmit antennas, two receive antennas, and
a single eavesdropper antenna [18]. Subsequently, this minimax
upper bound was shown to be tight for the MIMOME case in
[19] and, independently, [20] (see also [21]). Both treatments
start from the minimax upper bound of [4] and work with the
optimality conditions to establish that the saddle value is achiev-
able with the standard Gaussian wiretap code construction [2].

In some of the most recent work, [22] provides an alterna-
tive derivation of the MIMOME secrecy capacity using an ap-
proach based on channel-enhancement techniques introduced
in [23]. The two approaches shed complementary insights into
the problem. The minimax upper bounding approach in [19],
[20] provides a computable characterization for the capacity
expression and identifies a hidden convexity in optimizing the
Csiszar—Korner expression with Gaussian inputs, whereas the
channel enhancement approach does not. On the other hand the
latter approach establishes the capacity given any covariance
constraint on the input distribution, not just the sum-power con-
straint to which the minimax upper bounding approach has been
limited. Yet another proof of the secrecy capacity appears in
[37].

Finally, the diversity-multiplexing tradeoff of the multi-an-
tenna wiretap channel has been recently studied in [24].

An outline of the paper is as follows. Section II summarizes
some notational conventions for the paper. Section III describes
the basic channel and system model, as well as a canonical
decomposition of the channel in terms of its generalized sin-
gular values, which is used in some of the asymptotic anal-
ysis. Section IV summarizes the main results of the paper, and
Sections V=VII provide the corresponding analysis. In partic-
ular, Section V develops the minimax characterization of the
secrecy capacity, Section VI develops the high SNR analysis
in terms of the generalized singular values, and Section VII de-
velops the conditions under which the secrecy capacity is zero in
the limit of many antennas. Finally, Section VIII contains some
concluding remarks.

II. NOTATION

In terms of fonts, bold upper and lower case characters are
used for matrices and vectors, respectively. Random variables
are distinguished from their realizations by the use of san-serif
fonts for the former and regular serifed fonts for the latter. Sets
are denoted using caligraphic fonts. We generally reserve the
symbols [(-) for mutual information, and h(-) for differential
entropy, and all logarithms are base-2 unless otherwise indi-
cated. In addition, CA/(0,K) denotes a circularly-symmetrix
complex-valued Gaussian random vector with covariance
matrix K.
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The set of all n-dimensional complex-valued vectors is de-
noted by C"”, and the set of m x n-dimensional matrices is de-
noted using C™*™. In addition, I denotes the identity matrix and
0 denotes the zero matrix. When the dimensions of these ma-
trices is not clear from context, we will explicily indicate their
size via subscripts; e.g., 0,, x ., denotes an n X m zero matrix, 0,,
denotes a vector of zeros of length n, and I,, denotes an 1 X n
identity matrix. We further use the notation [-];.; for j > i to
denote the subvector of its vector argument corresponding to
indices 7,4+ 1, ..., j. Likewise, [-];.; k. denotes the submatrix
formed from rows ¢ through j and columns & through [ of its
matrix argument.

Matrix transposition is denoted using the superscript T, the
Hermitian (i.e., conjugate) transpose of a matrix is denoted
using the sugerscript f, the Moore—Penrose pseudo-inverse is
denoted by +, and the projection matrix onto the null space is
denoted by *.In addition, Null (-), rank (+), and o' ax () denote
the null space, rank, and largest singular value, respectively,
of their matrix arguments. Moreover, we say a matrix has full
column-rank if its rank is equal to the number of columns, and
the notation A > 0 means that A is positive definite, with
A > 0 likewise denoting positive semidefiniteness.

In other notation, dim(-) denotes the dimension of its sub-
space argument, span (-) denotes the subspace spanned by the
collection of vectors that are its argument, 1 denotes the or-
thogonal complement of a subspace. Moreover, || - || denotes
the usual Euclidean norm of a vector argument, tr (-) and det(-)
denote the trace and determinant of a matrix, respectively, and
diag (-) denotes a diagonal matrix whose diagonal elements are
given by its argument.

Finally, we use =" and -5 to denote almost-sure equality
and convergence, respectively, and additionally use standard
order notation. Specifically, O(e) and o(e) denote terms such
that O(e)/e < oo and o(€)/e — 0, respectively, in the associ-
ated limit, so that, e.g., o(1) represents a vanishing term.

III. CHANNELAND SYSTEM MODEL

Using n¢, n,, and n, to denote the number of antennas at
the sender, intended receiver, and eavesdropper, respectively, the
received signals at the intended receiver and eavesdropper in the
channel model of interest are, respectively

y,(t) = Hx(t) + z,(¢)

Yo(t) = Hex(t) + zo(t) ’ t=1,2,....,n (1)

where x(¢) is the transmitted signal, where H, € C™*™ and
H. € C™*™ are complex channel gain matrices, and where
z,(t) and z.(t) are each independent and identically distributed
(i.i.d.) noises whose samples are CA(0,I) random variables.
The channel matrices are constant (over the transmission
interval) and known to all the three terminals. Moreover, the
channel input satisfies the power constraint

Ol

A rate R is achievable if there exists a sequence of length n
codes such that both the error probability at the intended receiver
and I(w;y?)/n approach zero as n — oco. The secrecy capacity
is the supremum of all achievable rates.

E <P
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A. Channel Decomposition

For some of our analysis, it will be convenient to exploit the
generalized singular value decomposition (GSVD) [25], [26] of
the channel (1). To develop this decomposition, we first define
the subspaces

S, = Null (H,)* N Null (H.) (2a)
St.e =Null (H,)* N Null (H,)* (2b)
S. =Null (H,) N Null (H,)* (2¢)
S, =Null (H,) N Null (H,) (2d)

corresponding to classes of inputs that have nonzero gain to,
respectively, the intended receiver only, both intended receiver
and eavesdropper, the eavesdropper only, and neither. Letting

k £ rank (H) (3)

with
“4)

it follows that dim(S,,) = n — k. Moreover, we use the notation

p = dim(S;) and s = dim(S, ) 5)
from which it follows that dim(S,) = k — p — s.
Using this notation, our channel decomposition is as follows.

Definition 1: The GSVD of (H,, H,) takes the form

H =0X [Q"
H. =03 [Q"

(6a)
(6b)

Ok (ny—k) | o/
ka(nt—k)]‘l’z
where ¥, € C™*™, W, € C"<*" and Wy € C"*" are

unitary, where 2 € C*** is lower triangular and nonsingular,
and where

p—s s p
ne—p—s 0 0 O
Y= s 0 D, 0 (72)
p 0 0 I
k—p—s s p
k—p—s I 0 0
Y. = s 0 D. 0 (7b)
netp—k 0 0 O
are diagonal with
D, = diag (r1,...,7s), D.=diag(e1,...,es) (8)

the diagonal entries of which are real and strictly positive. The
associated generalized singular values are

C))

For convenience, we choose the (otherwise arbitrary) in-
dexing so that 01 < 09 < --- < 0.
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IV. SUMMARY OF MAIN RESULTS
In this section we summarize the main results in this paper.
The analysis is provided in Sections V-VII.
A. MIMOME Secrecy Capacity

A characterization of the secrecy capacity of the MIMOME
channel is as follows.

Theorem 1: The secrecy capacity of the MIMOME wiretap
channel (1) is

OB e, K Re) (0
where
Ry (Kp,Ks) = I(xy,ly.) (11)
with x ~ CN(0,Kp) and
Kp£{Kp:Kp>0, tr(Kp)<P}  (12)
and where
z2 {Z} ~CN(0,Kg) (13)
with!
ICq,é{Kq,:Kq,:HI:'{ I(I’qu,go}. (14)

Furthermore, the minimax Eroblgm of (10) is convex-concave
with saddle point solution (K p, K ), via which the secrecy ca-
pacity can be expressed in the form

_ , K pHI
C = R_(Rp) 2 log I HLKpH,) ()
det(I + H.K pHY)
Finally, C' = 0 if and only if
H, = 6H, (16)
where
6= 0(Kp) O(Kp) £ 8(Kp,Ka) a7
with
O(Kp,Ks) £ (H,KpH! + ®)(I+ HKpH!)™" (18)

denoting the coefficient in the linear minimum mean-square
error (MMSE) estimate of y, from y,,

Several remarks are worthwhile. First, our result can be
related to the Csiszdr-Korner characterization of the secrecy
capacity for a nondegraded discrete memoryless broadcast
channel p,,_, |, in the form [2]

— I(usye)

C = max I(u;y,) (19)

PusPx|u

I'The constraint Ke > 0 is equivalently expressed as the requirement that
Omax(®) < 1, as we will exploit.
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where v is an auxiliary random variable (over some alphabet
with bounded cardinality) that satisfies the Markov constraint
u < x < (¥, Ye). As [2] remarks, the secrecy capacity (19) can
be extended to incorporate continuous-valued inputs of the type
of interest in the present paper. With such an extension, The-
orem 1, and in particular (15), can be interpreted as (indirectly)
establishing a suitable Gaussian wiretap code for achieving ca-
pacity.? Specifically, via the chain rule,

Iy, ly.) = [I(xy,) — I(xy.)] + I(xy.ly,)

where the last term on the right-hand side is zero when ® = ®,
and thus we have the following immediate corollary.

Corollary 1: The secrecy capacity of the MIMOME wiretap
channel is achieved by a wiretap coding scheme in which u ~
CN(0,Kp) with Kp = Kp, andx = u.

From this perspective, our result can also be interpreted as a
convex reformulation of the nonconvex optimization (19). In-
deed, even after knowing that both an optimizing u is Gaussian
and x = u is sufficient—which itself is nontrivial—determining
the optimal covariance via

det(I + HLK pH)
® det(I+ H.KpH))

Kpe arg max lo 20)

KpeKp

with Kp as defined in (12), is a nonconvex problem.? And
even if one verifies that K p satisfies the Karush—-Kuhn—Tucker
(KKT) conditions associated with (20), these necessary condi-
tions only establish local optimality, i.e., that K p is a stationary
point of the associated objective function. By contrast, (10)
establishes that the (global) solution to (20) is obtained as
the solution to a convex problem, as well as establishing the
optimality of a Gaussian input distribution.

Second, additional insights are obtained from the structure of
the saddle point solution (Kp,Kg). In particular, using @ to
denote the optimal cross-covariance, i.e., [cf. (14)]

Ks =K L, &

3= ‘I’_[QT Inj 2D

we establish in the course of our development of Theorem 1 the
following key property.

Property 1: The saddle point solution (K p, Kg) to the MI-
MOME wiretap channel capacity (10) satisfies

®'H,S = H.S, V full column-rank S s.t. SS = Kp (22)

provided H, # ©H,, (i.e., provided C' # 0).
It follows from (22) that the effective channel to the eaves-
dropper is a degraded version of that to the intended receiver.

2Each candidate (U, X) in (19) corresponds to a particular coding scheme
based on binning, which we generically refer as a “wiretap code,” which
achieves rate I(U; y,) — I(U; V).

3Note that in the high-SNR regime, (20) reduces to

det(H,KH})

max log ————==,
det(H.KHI)

KEK oo

which is the well-studied multiple-discriminant function in multivariate statis-
tics; see, e.g., [27].
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Indeed, the intended receiver can simulate the eavesdropper
channel by adding noise. Specifically, it generates

Y. =o'y, +w,

where the added noise w ~ CA/(0,1 — ®'®) is independent
of y,, so, using (1), (22), and the notation x = Sx’ with X' ~
CN(0,1), we have

y:‘ = éTHrSX/ + éTZr +w = Hegxl + Z; = Hex + Z;

where z, ~ CN (0, I). In essence, the optimal signal design for
transmission is such that no information is transmitted along any
direction where the eavesdropper observes a stronger signal than
the legitimate receiver. A key consequence is that a genie-aided
system in which y, is provided to the receiver, which would oth-
erwise provide only an upper bound on capacity in general, does
not increase the capacity of the channel in this case, a feature
that is ultimately central to our analysis.

Finally, the condition (16) corresponding to when the secrecy
capacity is zero has a natural physical interpretation. In partic-
ular, under this condition, the effective channel to the intended
receiver is a degraded version of that to the eavesdropper. In-
deed, the eavesdropper can simulate the intended receiver by
adding noise. Specifically, it generates

y, = Oy, +w,

where the added noise w ~ CA/(0,T — @@T) is independent of
Y., 80, using (1) we have

y.=O0H.x+ 06z, +w=Hx+7Z,
where z, ~ CN(0,1) since

©=9% if H,=6H, (23)

which follows from (17) with (18).

B. Secrecy Capacity in the High-SNR Regime

In the high-SNR limit (i.e., P — 00), the secrecy capacity
(10) is naturally described in terms of the GSVD of the channel
(1) as defined in (6). The GSVD simultaneously diagonalizes
the H, and H,, yielding an equivalent parallel channel model
for the problem. As such, a capacity-approaching scheme in
the high-SNR regime involves using for transmission (with a
wiretap code) only those subchannels for which the gain to the
intended receiver is larger, and the following convenient expres-
sion for the capacity (10) results.

Theorem 2: Leto; < 03 < --- < 04 be the generalized sin-
gular values of (H,, H,). Then as P — oo, the secrecy capacity
of the MIMOME wiretap channel (1) takes the asymptotic form

C(P)=Co(P)+ Y logo} —o(1)

Jioj>1

(24)

where

log det (1 + %HngHI), rank (He) < ne,

0, rank (He) = ng,
(25)

OO(P):{
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with p and s as given in (5), and with H? denoting the projection
matrix onto Null (H,).

Note that a simple and intuitive transmission scheme for
the MIMOME channel would involve simultaneously and
isotropically transmitting information in Null (H, )+, where
there is gain to the intended receiver, and (synthetic) noise
in Null (H,), which does not affect the intended receiver but
does reduce the quality of the eavesdroppers received signal.#
This “masked” multi-input, multi-output (MIMO) transmission
scheme is the natural generalization of the masked beam-
forming proposed in [11] for the MISOME wiretap channel.
For the MISOME channel, such an approach is near optimal,
as shown in [4]. However, we now show that such a masked
multi-input multi-output (MIMO) scheme can be quite far from
optimal on the MIMOME channel.

For convenience, we restrict our attention to the case in which
ny < ny < n, and H, and H, are full rank—i.e., rank (H,) =
n, and rank (H,) = ny—and thus k = ny, p = 0, and s = n,
in the GSVD.

The masked MIMO scheme is naturally viewed as a wiretap
coding scheme in which a particular (rather than optimal) choice
for (x, u) is imposed in (19). In particular, first we choose u to
correspond to (information-bearing) codewords in a randomly
generated codebook, i.e.,

u= (b17"'7bnr) (26{:1)
where the elements are generated in an i.i.d. manner according

to CN (0, P;) with

(1>

P

P
—. (26b)
Tt

Additionally, we let b, _41,...,b, be randomly generated
(synthetic) noise, i.e., independent CA (0, P;) random vari-

ables.
Next, we choose the transmission x according to

Ny
X = E b]'Vj
i=1

where the vectors vy, ...,

(26c)

are chosen as follows. Let

Vi,

H, = UAV! (7)
be the compact singular value decomposition (SVD) of H,.
Since rank (H,) = n,, this means that U is n, X n, and uni-
tary, A is n, X n, and diagonal with positive diagonal elements,
and V. is ny X n, with orthogonal columns. Then we choose
Vi,...,Vp, in (26¢) as the columns of V, i.e.,

Vr - [Vl Vo V’I’Lr ] )
and (freely) choose
Vn é [Vnr+1 Vi, ] (28)

a basis for the null space of H,, so that [V, 'V, ] is unitary.

4Note that the scheme is semi-blind: the transmitter does not need to know
H. to construct the required subspaces, but does need to know H. in order to
choose the communication rate.
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As we will establish, substituting these parameters in the ar-
gument of (19) yields the achievable rate

Rsx(P) = log det [(PtI + A7) (HL (I + PtH];He)‘lHI)]
(29)
which in the high-SNR regime reduces to

: —1 - o2
Jim Rex(P) = logdet (H.(H!H,)'H!) = Z; log o’
J:

(30)
where the second equality comes from expanding H, and H,
via (6), with o1, 09, . . . denoting the generalized singular values
(9). Comparing (30) and (24), we see that the asymptotic gap to
capacity is

lim [C(P) - RSN(P)] = Z log %»

P—oo .
jio;<1

which, evidently, can be arbitrarily large when there are small
singular values.

In concluding this section, we emphasize that only in
the high-SNR regime do the generalized singular values of
(H,,H,) completely characterize the capacity-achieving and
masked MIMO coding schemes.

C. MIMOME Channel Scaling Laws

By using sufficiently many antennas, the eavesdropper can
drive to secrecy capacity to zero. In such a regime, the eaves-
dropper would be able to decode a nonvanishing fraction of any
sent message—even when the sender and receiver fully exploit
knowledge of H. In general, this threshold depends on the num-
bers of antennas at the transmitter and intended receiver, as well
as on the particular channels to intended receiver and eaves-
dropper. One characterization of this threshold is given by (16)
in Theorem 1. An equivalent characterization that is more useful
in the development of scaling laws, is as follows.

Claim 1: The secrecy capacity of the MIMOME channel is
zero if and only if

H,v||
Omax(Hr, He) & sup IFLvl] 31)
(o He) = S o]

where 0.y (H;, He) denotes the channel’s largest generalized
singular value.

‘When the coefficients of the channels are drawn at random,
and the numbers of antennas are large, the threshold becomes in-
dependent of the channel realization. The following result char-
acterizes this scaling behavior.

Corollary 2: Suppose that H, and H, have i.i.d. CN(0,1)
entries that are fixed for the entire period of transmission, and
known to all the terminals. Then when n,, n.,ny — oo such
that -y 20, /ne and (3 2, /ne are fixed constants, the secrecy
capacity satisfies C(H,, H.) === 0 if and only if

1

0<pB< 3 and v < (1—+/28)2. (32)

Fig. 1 depicts the zero-capacity region (32). In this plot, the
solid curve describes the relative number of antennas an eaves-
dropper needs to prevent secure communication, as a function
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0.5

n/n
1 e

C>0 1

C=0
0.05F 1

No. Transmitter Antennas 8

o o1 02 03 04 05 06 07 08 09 1
No. Receiver Antennas y = nr/ n,

Fig. 1. The efficient frontier of secure communication region as a function of
the number of antennas at the transmitter and intended receiver (relative to the
number at the eavesdropper), in the limit of many antennas. The capacity is zero
for any point below the curve, i.e., whenever the eavesdropper has sufficiently
many antennas.

of the antenna resources available at the transmitter and in-
tended receiver. The related scaling law developed for the MI-
SOME case [4] corresponds to the vertical intercept of this plot:
C =250 when f < 1/2, i.e., when the eavesdropper has at
least twice the number of antennas as the sender. Note, too,
that the single transmit antenna (SIMOME) case corresponds to
the horizontal intercept; in this case we see that C' ==~ 0 when
v < 1, i.e., when the eavesdropper has more antennas than the
intended receiver.

We can further use such scaling analysis to determine the best
asymptotic allocation of a (large) fixed number of antennas T’
between transmitter and intended receiver in the presence of an
an eavesdropper. In particular, the optimum allocation is

. 21

()= agmin (@)= (5.5) GO

{By0<p<1/2,

0<y<(1-1/28) }

as is easily verified. Thus, the allocation that best thwarts the
eavesdropper is n,/ny = 1/2, which requires the eavesdropper
to use 37" antennas to prevent secure communication.

It is worth remarking that the objective function in (33) is
rather insensitive to deviations from the optimal antenna alloca-
tion, as Fig. 2 demonstrates. If fact, even if we were to allocate
equal numbers of antennas to the sender and the receiver, the
eavesdropper would still need (3/2 + /2)T ~ 2.9142T an-
tennas to drive the secrecy capacity to zero.

V. MIMOME SECRECY CAPACITY ANALYSIS

In this section we prove Theorem 1 . Our proof involves two
main parts. We first recognize the right-hand side of (10) as an
upper bound on the secrecy capacity, then exploit properties of
the saddle point solution to establish

Ry(Kp,Ks) = R_(Kp) (34)

where R_(Kp) is the lower bound (achievable rate) given in
(15).
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35 T T T

0.5 - . . v : 3 z 4

No. Eavesdropper Antennas ne/ (nr+nt )

0 i i i i
0 0.5 1 15 2 25

Receive—to—Transmit Antenna Ratio nr/ n,

Fig. 2. The minimum (relative) number of eavesdropper antennas required to
drive the secrecy capacity to zero, as a function of the antenna allocation be-
tween transmitter and intended receiver, in the limit of many antennas.

Saddle Point: (Kp,Ks)

Kp € argmax R4 (Kp,Kas)
Xp

K<I> € argminR GZP,K¢) y
Ke

Kp € argmax h(y: — Oye)
Xp

o

&'H,S = H.S = R{(Kp,Ks) = R_(Kp)

Fig.3. Key steps in the proof of Theorem 1. First, the existence of a saddle point
(Kp, K@) is established, then the KKT conditions associated with the minimax
expressions are used to simplify the saddle value to show that it matches the
lower bound.

We begin by stating our upper bound, which is a trivial gen-
eralization of that established in [4].

Lemma 1 ([4]): An upper bound on the secrecy capacity of
the MIMOME channel (1) is given by

P) < Kp,Kg) = i ,
C(P) < R+ (Kp,Ka) Elenli., Iilg’)c([) R+(KP,K<I>)3
(35)

where

Ri(Kp,Ks) = I(x;y,ly.) (36)

with x ~ CN(0,Kp), and z ~ CN(0,Kg), and the domain
sets p and Kg are defined via (12) and (14) respectively.

It remains to establish that this upper bound expression sat-
isfies (34), which we do in the remainder of this section. We
divide the proof into several steps, as depicted in Fig. 3.

Furthermore, we remark in advance that the analysis
throughout is slightly simpler when Kg > 0. Accordingly, in
the following sections we focus on this nonsingular case and
defer analysis for the singular case to appendices as it arises
in our development. The key to analysis of the singular case
is replacing the observations y, with reduced but equivalent
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observations. In particular, we will make use of the following
claim, a proof of which is provided in Appendix I.

Claim 2: Let the singular value decomposition of ® be ex-
pressed the form

T
& =[U, UQ][(I] g] [X}} max(A) < 1. (37)
2

Then if px is such that I(x;y,|y,) < oo, we have

I(x;y:lye) = I(x¥.lye) (38)
where
y, = Uly, = Hx + 2 (39)
with
H,2U/H, and z 2 Ulz. (40)

Symmetrically, if px is such that 7(x;y,|y,) < oo, we have

I yely:) = 1(x¥ely:) (41)
where
Vo 2 Viy, = Hox + 7. (42)
with
H.2VIH. and z 2 Viz. (43)

Finally, for any px we have that I(x;y, |y,) = oo if and only if
TKpTT #£0 (44)
where K p is the covariance associated with px, and where
T2 UiH, - VIH.. (45)
Note that when (38) holds, the equivalent model holds and
® 2 Ejzzl| =Ul® (46)
is the equivalent noise cross-covariance.
A. Existence of a Saddle Point Solution

We first show that the minimax upper bound is a convex-con-
cave problem with a (finite) saddle point solution.

Lemma 2: The upper bound (35) has a saddle point solution,
i.e., there exists (Kp, Kg) € Kp x Kg such that

R-I—(KPv Kq)) < R+ (KP7 K@) < R-I- (KP7 K<I>) 47

holds for each (Kp,Kg) € Kp x Kg. Moreover, the saddle
value is finite, i.e.

Ry (Kp,Kg) < 0. (48)

Proof: Since the constraint sets p and Kg are convex and
compact, from a special case of Sion’s minimax theorem [28] it
suffices to show that

R, (Kp,-)is convex on Kg for each Kp € Kp (P1)
R, (-, Kg) is concave on Kp for each K¢ € Kg. (P2)
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To first establish (P1), we begin by writing

I(x;y.ly.) = I(x ¥, ¥e) — I(X:ye) (49)

and observe that the second term in (49) is fixed for each Kg €
K. Thus it suffices to show that with x ~ CA/(0, Kp), the first
term in (49) is convex in Kg. This is established in, e.g., [29,
Lemma II-3, p. 3076].

We next establish (P2). With slight abuse of notation, we
define Ry (px,Kse) = I(x;y,ly,) with x ~ px and z ~
CN(0,Kg). By contrast, our original notation R1(Q,Ks)
corresponds to the special case of R.i(px,Ks) in which
px = CN(0,Q). Let p§ = CN(0,Qu), px = CN(0,Qy),
% = Opk + (1 — 0)p%, and Q¥ = (1 — 0)Qq + #Q;, for some
¢ € [0, 1]. Then the required concavity follows from

R+(Q07 Kq’) = R+(CN(0 Q0)7 K‘P)

> R-I— (p)e(v KQ)

> (1 - )Ry (px, Ka) + 0 R (px, Ka)

=(1-0)R4(Qo,Ks)+0R(Q1,Ks) (51)
where (50) follows from the fact that a Gaussian distribution
maximizes R, (p%, Ka) among all distributions with a given
covariance, which we discuss below, and where (51) follows
from the fact that I(x;y,|y.) is concave in px for each fixed
Py_y.|x; see, e.g., [8, App. 1I.

Verifying (50) is straightforward when Kg is nonsingular,

ie., ||®|]2 < 1. Specifically, with
AKp,Ksg)
— (® + H,KpH!)(I+ H.KpH!)" (@' + H.KpHY)
(52)
denoting the error covariance associated with the linear MMSE

estimate ©(Kp,Kg)y, of y, from y,, a simple generalization
of [4, Lemma 2] yields

I(X; YI‘|YO): h’(Yr|Yc) - h(Zr|Zo)
=h(y,y.) — log det me(I — ®®")
<logdet A(K p, Kg)—log det(I—®®") (54)
where the last inequality is satisfied with equality if
px = CN(0,Kp). When Kg is singular, (53)—~(54) is not
well-defined, so some straightforward modifications to the

approach are required; these we detail in Appendix II.
Finally, to verify (48), it suffices to note that

(50)

(53)

Ri(Kp.Kg) < Ry (Kp.I) < I(x:y,.y,) < 00

where the second inequality follows from the chain rule
I(xy.ly.) = I(xy.,y,) — I(x;y,), and where the last in-
equality follows from the fact that cov (z) = 1. |

B. Property of the Saddle Point

To simplify evaluation of the associated saddle value, we now
develop the Property 1. For notational convenience, we define
A via [cf. (52)]

A2 A(Kp), A(Kp)2AKp Ka). (55)
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The required property is obtained by combining the following
two lemmas.

Lemma 3: A saddle point solution (K p, Kg ) to (35) satisfies

(H, - 6H.)Kp(®'H, - H.)' = 0. (56)
Lemma 4: A saddle point solution (K p, Ka) to (35) is such
that

(H, — ©H,)S has a full column-rank (57)

provided H, # ©H,, where S is a full column-rank matrix
such that SST = Kp.

In particular, combining (56) and (57) we immediately obtain
(22), since for a full column-rank matrix M, Ma = 0 if and
only if a = 0.

In the remainder of the section, we prove the two lemmas.

Proof of Lemma 3: Here we consider the simpler case when

Ks > 0; the extension of the proof to the case when Ko is
singular is provided in Appendix III.

We begin by noting that the second inequality in (47) implies

Kg € argmin R, (Kp,Ks). (58)
KscEKs
The Lagrangian associated with the minimization (58) is
[@.(K@, T) = R+ (Kp./ Kq>) + tr (TK{)) 59)
where the dual variable
™ T, 0 (60)
Ne 0 ‘r2

is a block diagonal matrix corresponding to the constraint that
the noise covariance K must have identity matrices on its di-
agonal. The associated KKT conditions yield

VioLa(Ka 1)y, .
= Vio Rt (Kp, Ka)|g, g, +T=0. (61)
Substituting
VK{»RJr(KP? K@) |K¢,=I_{q,
=Vk, [logdet(Ke+HKpH')—log det(Ka)] |K¢ Ko
~ (K + HKpHT)! — K ! (62)
with (4) into (61) and simplifying, we obtain,
HKpH' = K3 T(Kg + HKpHT). (63)

To complete the proof requires a straightforward manipula-
tion of (63) to obtain (56). Specifically, substituting for K from
(21) and H from (4) into (63), and carrying out the associated
block matrix multiplication yields

H,KpH! =T, (1+HKpH) + 8Y,(®" + H.KpH])
(64)

H,KpH! =7(® + H,KpH!) + T»(I + H.KpHY)
(65)
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H.KpH =8'7, 1+ HKpH)) + T2(®' + H.KpH])
(66)
H.KpH! = ‘i’TTl(‘i’ +H,KpH)) + To(I+ H.KpH]).
(67)
Eliminating Y from (64) and (66), we obtain
(®'H, - HOKpH! = (8'® — 1)T,(®' + H.KpH) (68)
and eliminating Y'; from (65) and (67), we obtain
(®'H, - H)RpH! = (8'® - 1)T,(I + H.KpH!). (69)
Finally, eliminating Y from (68) and (69), we obtain
(@'H, - H,)KpH]
= (8'H,~ Ho)R pH/(I+H.K pH}) ™ (@' + H.R pH])
=(0'H, - HOK,H!6' (70)
which reduces to (56) as desired. |

In preparation for proving Lemma 4, we establish the
following key proposition, whose proof is provided in
Appendix IV.

Proposition 1: When x ~ CN'(0,Kp) andz ~ CN(0,Kg)
with Kg > 0 in the model (1), we have>

argmax h(y, — O(Kp)y,.) = argmax h(y, — Qy,) (71)

KpeKp KpeKp

where © and ©(K p) are as defined in (17) with (18).

Proof of Lemma 4: Again, here we consider the simpler
case when Kg is nonsingular; a proof for the case when Kg is
singular is provided in Appendix V.

We begin by noting that

Kp € argmax Ry (Kp,Kg) (72)
KpreKp

= arg max h(y,|y.) (73)
KpreKp

= argmax h(y, — O(Kp)y,) (74)
KpeKp

= argmax h(y, — Oy,) (75)
KpeKkp

= arg max log det(I + I:Ieﬂ‘KPI:I:[ﬂ-) (76)
KpreKp

where (72) follows from the first inequality in (47), where (73)
follows from the fact that Kg > 0, where (75) follows from
Proposition 1, and where in (76) we have the effective channel®

H.z £ J-Y2(H, - 6H.,) (77a)
with
J21,:606"-63" - 36'
—(1-3d")+(0-d)O-d)f (77b)

which is nonsingular since Kg >~ 0.

SNote that the maximum on the left-hand side is in general a lower bound on
the maximum on the right-hand side.

6As an aside, note that (76) provides the interpretation of K 5 as an optimal
input covariance for a MIMO channel with matrix H.¢r and unit-variance white
Gaussian noise.
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Finally, because J - o, showing (57) is equivalent to
showing that that H.¢S has full column-rank, which we estab-
lish in the sequel to conclude the proof. First, we express Hog
in terms of its singular value decomposition

H.s = AX 4B' (78)
i.e., A and B are unitary matrices, and
v ¥ 0 (79)
Ter= [ 0 0 }

where v £ rank (Hegr) > 0 and £y is diagonal with strictly
positive entries. We establish that H.gS has full column-rank
by showing that the columns of S are spanned by the first v
columns of B, i.e.,

_ _ v Fo 0 (80)
£ Bt =

F =B"KpB . [ 0 0 }

for some Fy = 0.
To this end, substituting (78) into (76), we obtain
Kp = arg max log det(I + AzeﬂBTKPBEZHAT)

KpeKp

= arg max log det(I + Zeﬂ‘BTKPBEiﬁ-) (81)
KpreKp

Now Kp € Kp if and only if F = BKpB € Kp, so (81)
implies that

F € arg maxlog det(I + 2eﬁFEIﬂ)
FeKkp
= arg max log det(I + 20F02$) (82)
FeKp

with F expressed in terms of the block notation

v F, F
Fo [ ? 1 } (83)
ng—v Fl F2

and where (82) follows from (79).

Finally, it follows that F; and F5, the F; and F5 in (83) when
F = F, are both 0. Indeed, if Fy # 0, then tr (F3) > 0.
This would contradict the optimality in (82): since the objective
function only depends on Fy, one could strictly increase the
objective function by increasing the trace of Fy and decreasing
the trace of Fs. Finally, since F > 0 and F, = 0, it follows that
F,=0. ]

C. Evaluation of the Saddle Value: Proof of Theorem 1

The conditions in Lemmas 3 and 4 can be used in turn to
establish the tightness of the upper bound (35).

Lemma 5: The saddle value Ry (Kp,Kg) in (35) can be
expressed as

R_(Kp),
0

H, # 6H.

84
otherwise (84)

Ry (K Ke) = {

7

where R_(Kp) is as given in (15).
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The proof of Theorem 1 is a direct consequence of
Lemma 5. If Ry (Kp,Kg) = 0, the capacity is zero,
otherwise R (Kp,Kg) = R_(Kp), and the latter ex-
pression is an achievable rate as can be seen by setting
pu = px = CN(0,Kp) in the argument of (19).

Thus, to conclude the section it remains only to prove our
lemma.

Proof of Lemma 5: Here we consider the case when when
Kg >~ 0,ie., [|[®|]> < 1; the proof for the case when Kg is
singular is provided in Appendix VI.

To obtain (84) when H, # ©H.,, we begin by writing the gap

between upper and lower bounds as

R+(KP, K(I)) - R—(KP)
=I(xy,lye) — [H(xy,) — I(x;¥e)]
=1(xY,.ly,)

= h(Yc|Yr) - h(ZE|Zr) (85)
then note that this gap is zero since
h(yely:)
= log det weAy, (86)

= logdet me(I+ H.KpH! — &' (1+H, K ,H)®) (87)
= log det we(I — i)T(i))

= h(zo|zy) (88)
where in (86)
Ay, =
I + HeKPHl,
— (®'+H.KpH))(I+HKpH) ™! (8+H,KpH)))
(89)

is the “backward” error covariance associated with the linear
MMSE estimate of y, from y,, and where to obtain each of (87)
and (88) we have used (22) of Property 1.

To obtain (84) when H, = OH., we note that

Ry (Kp,Ka) =1(x;y,ly.) (90)
=h(y.ly.) — h(zze)
=h(y, — Oy,) — h(z, — Pz,.) 91
=h(z, — Oz.) — h(z, — ®z.) (92)
=0 93)

where (91) follows from the fact that © in (17) is the coefficient
in the MMSE estimate of y, from y,, and @ is the coefficient in
the MMSE estimate of z, from z., where (92) follows via the
relation H, = ©H.,, so that Y, — éye = z, — Oz, and where
(93) follows from (23). |

VI. CAPACITY ANALYSIS IN THE HIGH-SNR REGIME

We begin with a convenient upper bound that is used in our
converse argument, then exploit the GSVD in developing the
coding scheme for our achievability argument. We separately
consider the cases where H. does and does not have full
column-rank.
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Lemma 6: For all choices of @ € C™ %"t and ® € C"r*"e
such that ||®||» < 1, the secrecy capacity (35) of the channel (1)
is upper bounded by

C(P)< max R, (Kp,©,®) (94a)
KpreKp
where
Ri1(Kp,0,9)
2 h(y, — Oy,) — log det we(I — ®®1)
i & T_ T_ T
g det(HKpH' +1+00" -00" - 20") (04b)
det(I — ®®")
with
H=H, — 6H.. (94c)

Proof: First note that the objective function R4 (Kp, Kg)
in (11) can be expressed in the form

Ry(Kp,Ka) =1(x;y,ly.)

= h(y,lye) — h(z:[ze)

= h(y,|y.) — log det we(I — ®®")

= min h(y, — Oy,) — logdet me(I - ®d")

= min Ry (Kp, 0, @) 95)

Hence
R.(Kp,Kg) = mKin Hl%ix R{(Kp,Ks) (96)

= r}&n max ngn R, (Kp,0,®) o7
< I%Ln mein max R, (Kp,0,®) (98)

min  min_max R4+ (Kp,©,®)
Q”‘I’”zﬁl 0 KpeKp

99)

where to obtain (96) we have used (35), where to obtain (97)
we have used (95), and where to obtain (98) we have used that a
minimax quantity upper bounds a corresponding maximin quan-
tity.

Finally, we further upper bound (99) by making arbitrary
choices for © and ®, yielding (94). ]

A. GSVD Properties

The following properties of the GSVD in Definition 1 are
useful in our analysis.

First, the GSVD simultaneously diagonalizes the channels in
our model (1). In particular, applying (6) we obtain

Yo(t) =XeX(t) + Zo(t) (100)
where
k—p—s s p
- s 0 D, O
Er:p[ 0 0 I}
k—p—s s p
- k—p—s I 0 O
°T [ 0 D, 0}
and
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j— N2 mN)—b

X(t) =7 [¥x(1)]
¥:(t) = [Tly.(D], i,
Ye(t) = [\Iflye(t)] Lik—p
() =[Wz0], i
z.(t) = [‘I'ize(t)]m—p

The corresponding equivalent channel is as depicted in Fig. 4.

Second, the GSVD yields a characterization of the null space
of H,. In particular,

Null (H.) = S8, US, (101)

where, expressing ¥, as defined in (6) in terms of its columns
Y, 1 =1,...,m, viz.,

we have [cf. (2a), (2d)]

¥ (102a)

(102b)

We first verify (102). To establish (102b), it suffices to note
that

S = Span (¢k—p+17 s

Hr¢j:He¢j:0> j:k"i'lv"'?nt

which can be readily verified from (6).

To establish (102a), we show forall j € {k —p+1,...,k}
that Hctp;, = 0 and that the {H,%;} are linearly independent.
It suffices to show that the last p columns of 2,0 ! are linearly
independent and the last p columns of 2.0 are zero. To this
end, note that since Qtin (6) is a lower triangular matrix, it
can be expressed in the form

k—p—ls s p
k—p—s Ql_ 0 0
_ _ 103
Ql= Ty Q5 0 (103)
P Ty Ts Qf

By direct block left-multiplication of (103) with (7a) and (7b),
we have

) k—p—s s p
k—p—s 0 0 0
st - DT, D' o |10
P | Ta T3 le
) kfpfls s p
k—p—s Q; 0 0
TOQ = s D.T;; D.Q;' 0 (104b)
P L 0 0 0
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Since 3 is invertible (since € is nonsingular), the last p
columns of £,Q7" are linearly independent and the last p
columns of 269_1 are zero, establishing (102a).

To characterize Null (H,), we use (102a) and (102b) with
(101) to obtain

from which we obtain that

H! =¥, ¥ (105)
is the projection matrix onto Null (H,), where
Ve = [Pr_pi1 ¥, |- (106)
In turn, using (106) and (104a) in (6a) we obtain
p ny—k
HY,. =0, ) { 09 }
r*¥ne — r » le 0
whence
ny—p p
) ne— 0 0 ol (107
HngHI :\Ilr p |: il :| r ( )
p 0 Q50

Third, the GSVD can be more simply described when the
matrix H. has a full column-rank. To see this, first note from
(3) and (5) that

k=n¢ and p=0 (108)
respectively, and thus (6) specializes to
VHYQ=%, UHUQ=3X (109a)
with [cf. (7)]
s ° ng—s "I_ 0
ne—s 0o o017, '
Zr = |: 0 D :| ! Ee = s 0 DC
3 r ne—ny 0 0
(109b)
and D, and D, as in (8). Hence, it follows from (109) that
ng—s s MNe —T4¢ -i-
ta ni—s I 0 0 ¥l (110)
H: = 0.0 s 0 D! 0

satisfies Hg H. = T and thus is the Moore-Penrose pseudo-
inverse of H,. Finally, from (109) and (110) we obtain

P 1 0 0 0 ol
HHe =W, || 0 DD.;! o

from which we see that the generalized singular values of (H,,

H,) in (9) are also the (ordinary) singular values of H. H¢.
We now turn to our secrecy capacity analysis in the high-SNR

regime. There are two cases, which we consider separately.
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B. Case I: rank (H,) = ny

In this case, we use that (108) holds and so the GSVD is
given by (109), and thus dim &, . = s, dim S, = ny — s, and
dim S, = dimS,, = 0.

Achievability: In the equivalent parallel channel model of
Fig. 4, there are s subchannels that go to the intended receiver
(and also to the eavesdropper, with different gains), which cor-
respond to S, .. Of these s subchannels, we use only the subset
for which the gains to the intended receiver are stronger than
those to the eavesdropper, and with these our communication
scheme uses Gaussian wiretap codebooks.

In particular, we transmit

Ont—s
u

x:\IItQ[ }7 u=1[0,...,0,uy,Ups1,...,us] (111)

where v is the smallest integer such that o; > 1, and
where the nonzero elements of u are i.i.d. CAV/(0,aP) with
a = 1/(ntomax(2)) so that the transmitted power is at most P.
Using (111) and (109) in (1), the observations at the intended
receiver and eavesdropper, respectively, take the form

Ontfs
y, =V, {0]5‘:] +z, y.=%.| Do | +z.
' Ono—nt

In turn, via (19), the (secrecy) rate achievable with this system
is

R :I(uaYr) - I(”aYc)
i 14+ aPr?

=N log— 7
Z 81 abe?
j=v Vi
= Z log o} — o(1)
j:cr]>1
as required. ]

Converse: It suffices to use Lemma 6 with the choices

ng—s s Me—T4¢
t ne—s 0 0 o0 w!
6= HrHev ®= ‘I’r s 0 =

(112a)
where

2 =diag (&1,&2, ..., &s), & = min (cri,%> (112b)

2

and where Hg is the pseudo-inverse defined in (110). With these
choices of parameters, (94c) evaluates to H = 0, so we can
ignore the maximization over K p in (94a). Simplifying (94) for
our choice of parameters yields

det(I+ (D,D_;!)? — 2D,D_'E)

R <lo
=08 det(I — E7)
= Y logo} (113)
jio;>1
which establishes our result. [ |
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C. Case II: rank (H,) < ny

In this case, we use the general form of the GSVD as given
by (6), sonow dim S, = p > 0 and dim S; o = 5 > 0.

Achievability: In the equivalent parallel channel model of
Fig. 4, there are p subchannels that go only to the intended
receiver, corresponding to S,, and s subchannels that go to both
the intended receiver and eavesdropper (with different gains),
corresponding to S; .. Our communication scheme uses both
sets of subchannels independently with Gaussian (wiretap)
codebooks.

In particular, we transmit

Ok—p—s
02u

\"

x =0, (114)

Ont—k

where v and u are the length-p and length-s auxiliary random
vectors associated with communication over S, and S, ., re-
spectively. The elements of v are i.i.d. CN(0, (P — /P)/p),
corresponding to allocating power P — /P to S,. For Sies
we use only the subset of channels for which the gains to the
intended receiver are stronger than those to the eavesdropper,
sou=1[0,...,0,u,,...,us]T, where v is the smallest integer
such that o; > 1, and where the nonzero elements are i.i.d.
CN(0,/P), independent of v, with & = 1/ (140 max (22)) 0
that the power allocated to S, . is at most VP.

With x as in (114), the observations at the intended receiver
and eavesdropper, respectively, take the form

0, —p—s
y, =¥, D.u +z,, (115a)
| T3205 'u+ Q5 'v
[ Ok—p—s
y. =", D.u + Z.. (115b)
_One+P—k
Via (19), the system (115) achieves (secrecy) rate
R :I(U7V; yr) - I(U7V;YP,)
=1(wy,) — I(u;y,) + I(v;y,|u) (116)

where (116) follows from the fact that v is independent of
(Y., u), as (115b) reflects.
Evaluating the terms in (116), we obtain

" 1+ a\/]_DTJZ»
o1 Lo
= 14 a\/ﬁe?

= Z log o7 — o(1)

j:rrj>1

I(uy,) — I(uwy,) =
(117
and
I(v;y,|u) = logdet (I + P_pjﬂg,lﬂﬂ>
= log det <I+ §Q§193T> —o(1) (118)

P
= log det (I + —HngHI> —o(1) (119)
P
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where (118) follows from the continuity of logdet(-), and
where (119) follows from (107). Substituting (117) and (119)
into (116) yields our desired result. |

Converse: To establish the converse, we use Lemma 6 with
the choices

k—s—p s ne+p—k
ny—s—p 0 0 0 ot
0=, s 0 D,D;! 0 e
P F3; F3o 0
(120)
and
k—s—p s net+p—Fk
Ny—s—p 0 0 0 ¥
=0, s 0 = 0 v (121)

p 0 0 0
where Z is as defined in (112b), and where we choose

F3» = T3:0,D*

F3; =(T3; — F32D. Ty )
with T, T31, and T35 as defined in (103), so that

H, - OH,
:‘Ilr([zrﬂ_l On,.xnt—k]
— VOV, [2.Q7" 0, xn,—1]) ¥
k—p—s s p ny—k
Ne—8—p 0 0 o0 0 ¥
=, s 0 0 o0 0 v
. 0 0 Q' o

The upper bound expression (94) can now be simplified as
follows:

HK,H' = (H, - ©H.)Kp(H, — 6H,)"

ny—p—s S p
ny—p—s 0 0 0 t
=V, s 0 0 0 ¥,
» 0 0 leQQ;T
(122)
where Q is related to Kp via
k—p p ny—k
k—p
UKpU, = » Q
nyg—k

and satisfies tr (Q) < P. From (122), (121) and (120), we have
that the numerator in the right-hand side of (94b) simplifies to
(123), shown at the bottom of the next page.

In turn, using (123) and the Fischer inequality (which gener-
alizes Hadamard’s inequality) for positive semidefinite matrices
[30], we obtain

log det (I+ HOH' + 66" — 08" — 20")
< logdet(I+ (D,D_1)? — 2D,D_E)
+log det(I + Fy Fl, + FooFly + 05'Q0; 1)
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which when used with (94) yields
c(p)
det(I+ (D,D71)? — 2D, D=
 log UL+ (DD ~ 2D, D '5)
det(I-E%)
+ o logdet(I+ FauFly + FuoFl, + o;'qe;h)
tr(Q)<P

the first term of which is identical to (113). Thus, it remains only
to establish that

mavx logdet(I+ Far Pl + FyoFl, + a;'qe; )

tr (Q)<P

P
< logdet <I + —HngH1> +o(1). (124)
p
To obtain (124), let

Y = Omax(F31F5, + F3oFL) (125)

denote the largest singular value of the matrix F31F;§1 +
F3,FJ,. Since log det(-) is increasing on the cone of positive
semidefinite matrices, we have

max  log det(I + F3,FL, + F3Fl, + 0;'QQ; f
tr (Q)<P

< max logdet((1+7)I+Q5'Q0; ") (126)

tr (Q)<P

= log det ((1 + I+ gnglnﬂ> +o0(1) (127)
— log det (1 + gnglnﬂ) +o(1)

P
= logdet (I + —HrHiHI> + 0(1) (128)
p

where (126) follows from the fact that Y1 —F3, F}, —FaoFl, >
0, and (127) follows from the fact that water-filling provides
a vanishingly small gain over flat power allocation when the

channel matrix has a full rank (see, e.g., [31]), and (128) follows
from (107).

D. Analysis of the Masked MIMO Transmission Scheme

To establish (29), we focus on the two terms in the argument
of (19), obtaining
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where we have used (27) to obtain the second equality, and

I(u;y.) = h(y.) — h(yc|u) (130)
with
h(y.) = log det(I + P,H.HY) (131)
and
h(y.|u) = logdet(I + P,H.V, VI HI)
= logdet(I+ P,H.(I- V,VHH!) (132)
= logdet(I+ P,(I- V,V)HIH,) (133)

where to obtain (132) we have used that V, V] + V,, Vi =1
since [V, V,,] is unitary, and where to obtain (133) we have
used that det(I + AB) = det(I + BA) for any A and B of
compatible dimensions.

In turn, substituting (131) and (133) into (130) we obtain,
with some algebra:

I(u;y,) = — logdet(I — P,(I+ PHIH,) " (V,VIHIH,))
= —logdet(I - PVIH!H.(I+ PH/H.) 'V,))
= —logdet(VI(I+ PH/H.)"'V,). (134)

Finally, using (129) and (134) in the argument of (19), and again
using (27), we obtain [cf. (29)]

Rsn(P)
= log det(I + P,A?) + logdet(VI(I+ PHIH,)"'V,)
= logdet(P,I+ A™?)
+log det(UAV{(I+ PH/H.)"'V,AU")
= logdet(P,I+ A™?) + log det(H,(I + P.HIH,)~'H)

as required.
Finally, to establish the first equality in (30), we take the limit
P; — oo in (29). In particular, we have

Rsn(P)
= logdet(T+ P7tA?)
+ logdet(H (P 'T+ HIH,)'H),
=O(P,; ") +logdet(H,((HIH.) "'+ O(P, ))H]) (135)
= log det(H,(H{H.) 'H[)
+logdet(I+ (HIH,)~/20(P~Y)(HIH.)~T/2)

I(U,Yr) - logdet(I—l- PtHrHI) = logdet(I—l— PtAQ) (129) = logdet(Hr(HiHe)—lHI) _|_ O(Pt_l) (136)
HOH' + I+ 66" — 04" — 361
Ny —8—p S P
Ny —S—p I 0 0 )
=", s 0 I+(D,D;')?-2D,D;'E (D,D;! — B)Fl, Ul (123)
r 0 Fy(D.D;' ~E) 1+ FyFl, + FyoFl, + 05'QQ;
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where to obtain (135) we have used that (eI +M)~! = M1 +
O(e) as e — 0 for any invertible M [32], and where we have
also used that log det(I+ W) is continuous in the entries of W.

VII. MIMOME CHANNEL SCALING LAWS

We first verify Claim 1, then use it to establish Corollary 2.
Proof of Claim 1: Clearly, omax(H;, Ho) = 0o when [cf.
(2a)] & # . Otherwise, it is known (see, e.g., [33]) that
Omax(+) s the largest generalized singular value of (H,, H,)
as defined in (9).

To establish that the secrecy capacity is zero whenever
Omax(Hy, He) < 1, it suffices to consider the high-SNR
secrecy capacity (24) when H, has full column-rank, which is
clearly zero whenever o, < 1.

When o, (H,, He) > 1, there exists a vector v such that
|H.v|| > ||H.v||. Then, choosing x = u ~ CAN(0, Pvv')
in the argument of (19) yields a strictly positive rate R(P), so
C(P) > R(P) > 0forall P > 0. ]

Combining Claim 1 and Fact 1 below, which is established in
[34, p. 642], yields Corollary 2.

Fact 1 ([34], [35]): Suppose that H, and H,. have i.i.d.
CN(0,1) entries. Let n,,ne,ny — oo, while keeping
ne/ne = v and ny/ne = [ fixed. Then if 8 < 1,

1+,\/1—(1—[3)(1—§)

1-p

2

Umax(Hr7 Ho) L v

(137)

VIII. CONCLUDING REMARKS

This paper resolves several open questions regarding secure
transmission with multiple antennas. First, it establishes the ex-
istence of a computable expression for the secrecy capacity of
the MIMOME channel. Second, it establishes that a Gaussian
input distribution optimizes the secrecy capacity expression of
Csiszar and Korner for the MIMOME channel, and thus that
capacity is achieved by Gaussian wiretap codes. Third, it es-
tablishes the optimum covariance structure for the input, ex-
ploiting hidden convexity in the problem. Nevertheless, many
questions remain that are worth exploring. As one example,
it remains to be determined whether such developments based
on Sato’s bounding techniques be extended beyond sum-power
constraints, as the channel enhancement based approach of [22]
can.

In addition, our analysis highlights the useful role that the
GSVD plays both in calculating the capacity of the MIMOME
channel in the high-SNR regime, and in designing codes for ap-
proaching this capacity. At the same time, we observed that a
simple, semi-blind masked MIMO scheme can be arbtrarily far
from capacity. However, for the special case of the MISOME
channel, [4] shows that the corresponding masked beamforming
scheme achieve rates close to capacity at high SNR. Thus, it re-
mains to be determined whether there are better and/or more nat-
ural generalizations of the masked beamforming scheme for the
general MIMOME channel. This warrants further investigation.

More generally, semi-blind schemes have the property that
they require only partial knowledge of the channel to the eaves-
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dropper. Much remains to be explored about what secrecy rates
are achievable with such partial information. One recent work
in this area [5] illustrates the use of interference alignment tech-
niques for the compound extension of the multi-antenna wiretap
channel. Another recent work [36], studies a constant-capacity
compound wiretap channel model which again captures the con-
straint that the transmitter only knows the capacity (or an upper
bound on the capacity) of the channel to the eavesdropper. Fur-
ther insights may arise from considering other multiple eaves-
dropper scenarios with limited or no collusion.

Finally, we characterize when an eaversdropper can prevent
secure communication, i.e., drive the secrecy capacity to zero.
Our scaling laws on antenna requirements and their optimal dis-
tribution in limit of many antennas provide convenient rules of
thumb for system designers, as the results become independent
of the channel matrices in this limit. However, it remains to
quantify for what numbers of antennas these asymptotic results
become meaningful predictors of system behavior. As such, this
represents yet another useful direction for further research.

APPENDIX 1
PROOF OF CLAIM 2
To begin:
I(x;y,ly.) = I(x; Uly,, Uly,ly.) (138)
= I(X, yr? UIYr - VIYC|Y0)
=1(x;¥,, Tx]y.) (139)

where (138) follows from the fact that [U; Ujy] is unitary,
and where (139) follows from substituting for y, and y, from
(1), using (45), from and the fact that

a.s.

Ulz, 22 Viz, (140)

since
cov (Ulz, Viz) = E[Ulzzlv,] = UléV, = L
Now when I(x;y,ly,) < oo, we have from (139) that Tx = 0,

so I(x;y,|y.) = I(x;¥,ly.), establishing (38).
Similarly,

1 Yly,) = I(x Viy., Viy.ly,) (141)
=I(x;¥., Vly. — Uly,ly,)
=1(x;y., Tx]y,) (142)

where we have used that [V V3] is unitary to obtain (141)
and (140) to obtain (142). When I(x;y,|y,) < oo, we have from
(142) that Tx = 0, so I(x;y,]y,) = I(x;¥.|y,), establishing
41).

To verify the “only if” statement of the last part of the claim,
when I(x;y,|y,) = oo, we expand (139) via the chain rule to
obtain

I(xy.ly.) = I1(x:¥.lye) + 1(x; Tx[y,, y.) (143)
and note that if Tx *=" 0 then the second term on the right-hand
side of (143) is zero. But the first term on the right-hand side is
finite, so cov (Tx) # 0, i.e., (44), holds.
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To verify the “if” statement of the last part of the claim, we
use the chain rule to write

=1(x;y,, Txly,)
(x; Tx|y,)
(x; Tx) — I(x;Y,)

I(x;y,ly.)
>T
>T (144)

and note that the first term in (144) is infinite when cov (Tx) #
0, while the second term is finite. |

APPENDIX II
OPTIMIZING R4 (px, Ko) OVER px WITH SINGULAR K¢

To establish that I (x; y, |y, ) withz ~ CN/(0, K¢ ) for singular
K is maximized subject to the constraint cov (x) = K p when
x is Gaussian (hence, justifying (50) in this case), we exploit
Claim 2.

In particular, if for all px meeting the covariance constraint
we have T(x;y,|y.) < oo, then we can use (38), expanding and
boundmg I(x;y,ly.) in the same manner as (53)—(54), with y,,
7z, A2 UTAU2 (the error covariance in the MMSE estimate
of y, fromy,), and o= UT¢I> [cf. (46)] replacing y,, z,, A, and
®, respectively. Spe01ﬁcally, we obtain that

I(X; yrb’o) = h’(?rh’c) - h(ir|ZC) (145)
is maximized when x is Gaussian.

If, instead, there exists a px satisfying the covariance con-
straint such that 7(x;y,|y,) = oo, then by the “only if” part of
the last statement of Claim 2 we have that (44) holds. But by the
“if” part of the same statement we know that I(x;y,|y,) = o0
for any px such that (44) holds, and in particular we may choose
px to be Gaussian. |

APPENDIX III
PROOF OF LEMMA 3 FOR SINGULAR Kg

We begin with the following. ~
Claim 3: There exists a matrix H such that the combined
channel matrix (4) can be expressed in the form

H=WH (146)

where

Ky = WEWT (147)
is the compact singular value decomposition of K, i.e., where
W has orthogonal columns (WTW = 1), and the diagonal
matrix = has strictly positive diagonal entries.

Hence, the column space of H is a subspace of the column
space of W.

Proof: We establish our result by contradiction. Suppose
the claim were false. Then clearly I(x;y,,y,) = oo when we
choose x = tv where v € Null (W) and vart > 0, which
implies that

Ri(Kp.Kg) = I(x:y,ly.) = 1(x¥,.Y.) — I(x;y.) = 00
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since I(x;y,) < 0o as cov (z,) = I is nonsingular. Hence

R.(Kp,Kg) = max R, (Kp,Kg)=

148
KpeKp ( )

But from (48) in Lemma 2 we know Ry (Kp,Ks) < oo,
which contradicts (148) and hence (146) must hold. |

Using Claim 3, we see that in this case the original channel
(1) with cov(z) = Kag can be replaced with the equivalent
combined channel

y=Hx+z (149)
where
y s Wi {y} . 22 Wiz
Ye
with cov (z) = E. Hence, we can write
Ri(Kp,Ke) = I(x¥,,Y.) — I(xy,)
where
1(6y,.¥e) = 1(xy) = log det(E;t}(I; PHD 150,
and
I(x;y,) = logdet(I + H.KpHY). (151)

But from the saddle point property it follows that Z can be ex-
pressed as

det(Z + HK pH)

det(Z)

-
[
—_——

argmin  log (152)

{EWEWT€Kqe}

In turn, the KKT conditions associated with the optimization
(152) are

! - Wirtw

—_
=
—

- (E+HKpHN?
or, equivalently

HK,H' = EWITW(Z + HKpH') (153)
where the dual variable Y is of the same block diagonal form
as in the nonsingular case, viz., (60). Multiplying the left- and
right-hand sides of (153) by W and W, respectively, and using
(146) and (147) we obtain (63). Thus, the remainder of the proof
uses the arguments following (63) in the proof for the nonsin-
gular case to establish the desired result. ]

APPENDIX IV
PROOF OF PROPOSITION 1

Consider first the right-hand side of (71). Since h(y, — ©y,)
is concave in Kp € Kp and differentiable over p, the KKT
conditions associated with the Lagrangian

Lo(Kp,\,T)

= h(y, — Oy,) + tr(VKp) — A(tr (Kp) — P) (154)
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are both necessary and sufficient, i.e., Kp is a solution to the
right-hand side of (71) if and only if there exists a A > 0 and
W > 0 such that

(H, - 6H,)'T(Kp,Kp) ™ (H,—OH.)+¥ = I,

tr (PKp)=0, and A(tr (Kp)—P)=0 (155)
where
I'Kp,Kp)
2 cov (y, — Oy,)
—1+00' - 08" — 36’
+ (H, - 6H,)Kp(H, — 6H,)". (156)

Considering next the left-hand side of (71), to which Kpis
a solution, we have, from the associated KKT conditions, that
there exists A’ > 0 and ¥ > 0 such that

Vi, by, — O(Kp)y)|k, g, +¥ =N1

tr(U'Kp) =0, and N(tr(Kp)—P)=0 (157)

where ©(K p) is as defined in (18).

Thus, it rem_ains to show that (155) and (157) are identical
when Kp = Kp. Focusing on the first equation in (157), we
have

Vi, by, — OKp)yo)lk, &,
=V, h(y:lYe) |k, —k,
= Vi, (MY ¥e) = h¥e)} |k, -k,
=H'(HK,H' + Kg)'H - H/ (I+H.KpH!)'H..
(158)

In turn, substituting for H and Kg from (4) and (21), and
using (17), the first matrix inverse in (158) can be expressed in
the form

(Hf(pI‘I]L + K@)_l
I+HKpH &+HKHH]!
[&’T +H,KpH! I+HXKpH]
~A(Kp)~'6
(I+H.KpH,) 1 +0'A(Kp) 16
(159)

|

where A(Kp) is as defined in (55), and where we have used
the matrix inversion lemma (see, e.g., [32]). Substituting (159)
into (158), and using the notation (55), yields, after some
simplification:

A(Kp)™!
~0'A(Kp)?

Vi, h(y, — OKr)ye)|k, k.,
=H'(Ks + HKpH')"'H - H/ (I + H.KpH!)'H,
=(H, - OH,)'A™'(H, — 6H.). (160)

Comparing (160) with the first equation in (155), we see that
it remains only to show that I'(K p, Kp) = A, which is verified
as follows. First, Oy, is the MMSE estimate of y, from y, when
Kp = Kp, and T(Kp,Kp) = cov (y, — Oy,) = cov (y,ly.)
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is the error covariance associated with the estimate. But by def-
inition [cf. (55)] A = cov (y,|y,.) is also the error covariance
associated with the MMSE estimate when Kp = Kp, so the
conclusion follows. |

APPENDIX V
PROOF OF LEMMA 4 FOR SINGULAR Kg

First, note that via (47) with (48), we have that
R, (Kp,Kes) = I(xy,ly.) < oo for all Kp € Kp. Hence,
via (38) of Claim 2 we have

R+(KP7K<I>) = I(X;yr|Ye)7 VI<P € ICP (161)
with the equivalent observations y, as given by (39) with (40).
Moreover, the noise cross-covariance = UT ® [cf. (46)] in the
equivalent channel model has all its singular values strictly less
than unity, i.e., the associated Kg is nonsingular.

Thus, we can apply to this equivalent model the arguments
of the proof of Lemma 4 for the nonsingular case. In particular,
from (72) onwards we replace y, with y,, we replace O(Kp)
and © with, respectively, [cf. (18), (17)]

O(Kp) £ (H,KpH! + @)(I+ H.KpH!) ™ = UlO(Kp)
(162)

and
©£0(Kp)=Ul6 (163)

which is the coefficient in the MMSE estimate of y, fromy,,
and we replace Heg and J with, respectively, [cf. (77)]

H. 2J'/?(H, — 6H.,)
and

JAI-88')+(6-8)(6- ) =ULIU,

noting that J > 0since K4 >~ 0. With these changes, and with
the SVD
Hep = AX4Bf

replacing (78), the arguments apply and it follows that (H, —
OH.,)S has a full column rank. Since

(H, — 6H,)S = Ul(H, — OH,)S

it then follows that (H, — ©H.,)S has a full column rank. W

APPENDIX VI
PROOF OF LEMMA 5 FOR SINGULAR K¢

Consider first the case in which H, # OH., and note that

Ri(Kp,Ke) — R_(Kp) = I(x;¥.ly,) < o0

where the equality is reproduced from (85), and where the in-
equality follows from (48) and that R_(Kp) > 0. Hence, ap-
plying (41) from Claim 2, we have

R (Kp,Ks) — R_(Kp) = I(x;¥.ly;)
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with the equivalent observations y, as given by (42) with (43).
Moreover, the noise cross-covariance

® 2 Ez,3l] = &V, (164)
in the equivalent channel model has all its singular values
strictly less than unity, i.e., the associated K 4 is nonsingular.

Thus, we can apply to this equivalent model the corre-
sponding arguments of the proof of Lemma 5 for the nonsin-
gular case. In particular, from (85) onwards we replace y, and
z. with, respectively, y, and z., we replace Ay, with

Ay =
I+ I:IEIZPI:IZL3
_ (&' +H.KpHN(I+H,KpH!) (& + H,KpHY)
=VIALV,

which is the backward error covariance associated with the
linear MMSE estimate of y, from y,, and we replace the use of
(22) in (87) and (88) with its form for the equivalent channel,
viz., for all full column-rank S such that SST = Kp:

&'H,S=Vie'H,S = VIH.S = A.S

where to obtain the first equality we have used (164), where to
obtain the second equality we have used Property 1, and where
to obtain the third equality we have used (43).
Finally, consider the case in which H, = ©H,. Since (48)
holds, so does (38) of Claim 2, and thus
R (Kp.Ks) = I(x;¥,ly.) (165)
with the equivalent observations y, as given by (39) with (40).
Thus, we can apply to this equivalent model the corre-
sponding arguments of the proof of Lemma 5 for the nonsin-
gular case. In particular (and as in Appendix V), from (90)
onwards (165) implies we replace y, and z, with, respectively,
y, and z,, we replace ® with [cf. (46)] @ = U;@, the coefficient
in the MMSE estimate of z, from z., and we replace © with
[cf. (162),(163)]
6 = (H,KpH! + &)1+ H.KpHH) ' =Ul® (166)
the coefficient in the MMSE estimate of y, from y,.
Note that in obtaining the counterpart of (92) we use that
y, — Oy, = z, — Oz, since
H, = UJH, = UJ6H. = 6H. (167)
where the first equality follows from (40), the second equality
follows from the assumption H, = ©H,, and the third equality

from (16§). Moreover, in obtaining the counterpart of (93) we
use that © = ® when (167) holds. |
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