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Abstract—The classical alternating minimization (or projection)
algorithm has been successful in the context of solving optimiza-
tion problems over two variables. The iterative nature and sim-
plicity of the algorithm has led to its application in many areas
such as signal processing, information theory, control, and finance.
A general set of sufficient conditions for the convergence and cor-
rectness of the algorithm are known when the underlying problem
parameters are fixed. In many practical situations, however, the
underlying problem parameters are changing over time, and the
use of an adaptive algorithm is more appropriate. In this paper, we
study such an adaptive version of the alternating minimization al-
gorithm. More precisely, we consider the impact of having a slowly
time-varying domain over which the minimization takes place. As
a main result of this paper, we provide a general set of sufficient
conditions for the convergence and correctness of the adaptive al-
gorithm. Perhaps somewhat surprisingly, these conditions seem to
be the minimal ones one would expect in such an adaptive setting.
We present applications of our results to adaptive decomposition
of mixtures, adaptive log-optimal portfolio selection, and adaptive
filter design.

Index Terms—Adaptive filters, adaptive signal processing, algo-
rithms, Arimoto–Blahut algorithm, optimization methods.

I. INTRODUCTION

A. Background

S OLVING an optimization problem over two variables in a
product space is central to many applications in areas such

as signal processing, information theory, statistics, control, and
finance. The alternating minimization or projection algorithm
has been extensively used in such applications due to its iterative
nature and simplicity.

The alternating minimization algorithm attempts to solve a
minimization problem of the following form: given and a
function , minimize over . That is, find

Often minimizing over both variables simultaneously is not
straightforward. However, minimizing with respect to one
variable while keeping the other one fixed is often easy and
sometimes possible analytically. In such a situation, the alter-
nating minimization algorithm described next is well suited:
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start with an arbitrary initial point ; for , itera-
tively compute

(1)

In other words, instead of solving the original minimization
problem over two variables, the alternating minimization algo-
rithm solves a sequence of minimization problems over only one
variable. If the algorithm converges, the converged value is re-
turned as the solution to the original problem. Conditions for
the convergence and correctness of such an algorithm, that is,
conditions under which

(2)

have been of interest since the early 1950s. A general set of
conditions, stated in the paper by Csiszár and Tusnády [1, The-
orem 2], is summarized in the next theorem.1

Theorem 1: Let and be any two sets, and let
such that for all

Then the alternating minimization algorithm converges, i.e., (2)
holds, if there exists a nonnegative function
such that the following two properties hold.

(a) Three-point property : For all

(b) Four-point property : For all

B. Our Contribution

In this paper, we consider an adaptive version of the above
minimization problem. As before, suppose we wish to find

by means of an alternating minimization algorithm. However,
on the th iteration of the algorithm, we are provided with sets

which are time-varying versions of the sets and ,
respectively. That is, we are given a sequence of optimization
problems

(3)

1The conditions in [1] are actually slightly more general than the ones shown
here and allow for functions � that take the value ��, i.e., � � � �
� ����.
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Such situations arise naturally in many applications. For ex-
ample, in adaptive signal processing problems, the changing pa-
rameters could be caused by a slowly time-varying system, with
the index representing time. An obvious approach is to solve
each of the problems in (3) independently (one at each time in-
stance ). However, since the system varies only slowly with
time, such an approach is likely to result in a lot of redundant
computation. Indeed, it is likely that a solution to the problem
at time instance will be very close to the one at time in-
stance . A different approach is to use an adaptive algorithm
instead. Such an adaptive algorithm should be computationally
efficient: given the tentative solution at time , the tenta-
tive solution at time should be easy to compute. Moreover,
if the time-varying system eventually reaches steady state, the
algorithm should converge to the optimal steady-state solution.
In other words, instead of insisting that the adaptive algorithm
solves (3) for every , we only impose that it does so as .

Given these requirement, a natural candidate for such an al-
gorithm is the following adaptation of the alternating minimiza-
tion algorithm: start with an arbitrary initial ; for
compute (cf. (1))

Suppose that the sequences of sets and con-
verge (in a sense to be made precise later) to sets and , re-
spectively. We are interested in conditions under which

As a main result of this paper, we provide a general set of suffi-
cient conditions under which this adaptive algorithm converges.
These conditions are essentially the same as those of [1] summa-
rized in Theorem 1. The precise results are stated in Theorem 4.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we introduce notation, and some preliminary results.
Section III provides a convergence result for a fairly general
class of adaptive alternating minimization algorithms. We
specialize this result to adaptive minimization of divergences
in Section IV, and to adaptive minimization procedures in
Hilbert spaces (with respect to inner product induced norm) in
Section V. This work was motivated by several applications
in which the need for an adaptive alternating minimization
algorithm arises. We present an application in the divergence
minimization setting from statistics and finance in Section IV,
and an application in the Hilbert space setting from adaptive
signal processing in Section V. Section VI contains concluding
remarks.

II. NOTATIONS AND TECHNICAL PRELIMINARIES

In this section, we setup notations and present technical pre-
liminaries needed in the remainder of the paper. Let be

a compact metric space. Given two sets , define the
Hausdorff distance between them as

It can be shown the is a metric, and in particular satisfies the
triangle inequality.

Consider a continuous function . For
compact sets , define the set

With slight abuse of notation, let

Due to compactness of the sets and continuity of , we
have , and hence is well defined.

A. Some Lemmas

Here we state a few auxiliary lemmas used in the following.

Lemma 2: Let be sequences of real num-
bers, satisfying

for all and some . If then

If, in addition2

then

Lemma 3: Let be a sequence of subsets of . Let

be a closed subset of such that . Consider any
sequence such that for all , and such

that . Then .
Proof: Since and , the definition

of Hausdorff distance implies that there exists a sequence
such that for all and as

. Therefore

as . Since the sequence is entirely in , this
implies that is a limit point of . As is closed, we therefore
have .

Let be a metric space and . Define the
modulus of continuity of as

2We use ��� ������ ��.
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Remark 1: Note that if is uniformly continuous then
as . In particular, if is compact and

is continuous then is uniformly continuous, and hence
.

III. ADAPTIVE ALTERNATING MINIMIZATION ALGORITHMS

Here we present the precise problem formulation. We then
present an adaptive algorithm and sufficient conditions for its
convergence and correctness.

A. Problem Statement

Consider a compact metric space , compact sets
, and a continuous function .

We want to find . However, we are not given the sets
directly. Instead, we are given a sequence of compact

sets that are revealed at time

such that as and . Given an
arbitrary initial , the goal is to find a
sequence of points such that

B. Algorithm

The problem formulation described in the last section sug-
gests the following adaptive version of the alternating minimiza-
tion algorithm. Initially, we have . Recur-
sively for , pick any

We call this the Adaptive Alternating Minimization (AAM) al-
gorithm in the sequel. Note that if and for
all , then the above algorithm specializes to the classical alter-
nating minimization algorithm.

C. Sufficient Conditions for Convergence

In this section, we present a set of sufficient conditions under
which the AAM algorithm converges to . As we shall
see, we need “three-point” and “four-point” properties (general-
izing those in [1]) also in the adaptive setup. To this end, assume
there exists a function3 such that the following
conditions are satisfied.

(C1) Three-point property : for all

(C2) Four-point property : for all
,

Our main result is as follows.

3Note that unlike the condition in [1], we do not require � to be nonnegative
here.

Theorem 4: Let be compact subsets of
the compact metric space such that

and let be a continuous function. Let condi-
tions C1 and C2 hold. Then, under the AAM algorithm

and all limit points of subsequences of
achieving this belong to . If, in addition

where , and is the
modulus of continuity of , then

and all limit points of belong to .

Remark 2: Compared to the conditions of [1, Theorem 2]
summarized in Theorem 1, the main additional requirement here
is in essence uniform continuity of the function (which is im-
plied by compactness of and continuity of ), and summa-
bility of the . This is the least one would expect in this
adaptive setup to obtain a conclusion as in Theorem 4.

D. Proof of Theorem 4

We start with some preliminaries. Given that is com-
pact, the product space with

for all , is compact. Let
be the modulus of continuity of with respect to the metric

space . By definition of , for any and
such that

we have

Moreover, continuity of and compactness of imply
(see Remark 1) that as .

Recall the definition of

By the hypothesis of Theorem 4, we have as ,
and

with as .
We now proceed to the Proof of Theorem 4. Condition C1

implies that for all

(4)
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Condition C2 implies that for all

(5)

Adding (4) and (5), we obtain that for all

(6)

Given that , there exists such
. It follows that

and hence

(7)

From (7) and the AAM algorithm, we have

since

(8)

Adding inequalities (6) and (8)

(9)
for all .

Since and , there exists a sequence
such that

and for all . Pick
any such sequence . Replacing in (9) by
this , we obtain

(10)

By choice of the

(11)

Moreover

and therefore

(12)

Combining inequalities (11) and (12) with (13), we obtain

(13)

Define

and note that by (13)

Since is a continuous function over the compact set
, it is also a bounded function. Hence, we have

. Applying Lemma 2

(14)
Since and imply , (14)
yields

(15)

Now, let be a subsequence such that

By compactness of , we can assume without loss of
generality that for some . Since

and are compact, Lemma 3 shows that . By
continuity of this implies that

Together with (15), this shows that

and that all limit points of subsequences of
achieving this belong to . This completes the
proof the first part of Theorem 4.

Suppose now that we have in addition

(16)

Since

we have

Thus, by (16)

and applying again Lemma 2 yields

(17)

Authorized licensed use limited to: MIT Libraries. Downloaded on June 18, 2009 at 14:13 from IEEE Xplore.  Restrictions apply.



NIESEN et al.: ADAPTIVE ALTERNATING MINIMIZATION ALGORITHMS 1427

As every limit point of belongs to by
Lemma 3, (17) and continuity of imply that if (16) holds,
then every limit point of must also belong to

. This concludes the Proof of Theorem 4.

IV. DIVERGENCE MINIMIZATION

In this section, we specialize the algorithm from Section III
to the case of alternating divergence minimization. A large
class of problems can be formulated as a minimization of diver-
gences. For example, computation of channel capacity and rate
distortion function [2], [3], selection of log-optimal portfolios
[4], and maximum-likelihood estimation from incomplete data
[5]. These problems were shown to be divergence minimiza-
tion problems in [1]. For further applications of alternating
divergence minimization algorithms, see [6]. We describe
applications to the problem of adaptive mixture decomposition
and of adaptive log-optimal portfolio selection.

A. Setting

Given a finite set and some constant , let
be the set of all measures on such that

(18)

Endow with the topology induced by the metric
defined as

It is easy to check that the metric space is compact. The
cost function of interest is divergence4

for any . Note that (18) ensures that is well defined
(i.e., does not take the value ). It is well known (and easy to
check) that the function is continuous and convex in both
arguments. Finally, define the function

In [1], it has been established that for convex and
, the pair of functions satisfy the “three-point” and

“four-point” properties C1 and C2. As stated above, the space
with metric is a compact metric space,

and the function is continuous. Hence, Theorem 4 applies in
this setting.

B. Application: Decomposition of Mixtures and Log-Optimal
Portfolio Selection

We consider an application of our adaptive divergence min-
imization algorithm to the problem of decomposing a mixture.
A special case of this setting yields the problem of log-optimal
portfolio selection.

4All logarithms are with respect to base �.

We are given a sequence of independent and identically dis-
tributed (i.i.d.) random variables , each taking values
in the finite set . is distributed according to the mixture

, where the sum to one, for
all , and where are distributions on .
We assume that for all .
The goal is to compute an estimate of from and
knowing .

Let

be the empirical distribution of . The maximum-likeli-
hood estimator of is given by (see, e.g., [7, Lemma 3.1])

(19)

Following [7, Example 5.1], we define

for some with

(20)

Note that and are convex and compact. From [7,
Lemma 5.1], we have

and the minimizer of the left-hand side (and hence (19)) is re-
covered from the corresponding marginal of the optimal on
the right-hand side.

We now show how the projections on the sets and can
be computed. Fix a , assuming without loss of generality that

We want to minimize over all , or, equivalently,
over all valid . The minimizing can be shown
to be of the form for all and for all

. More precisely, define

and choose such that

for

for
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Then the optimal are given by

for

for

For fixed , the minimizing is

(21)

We now check that (18) is satisfied for some values of and
. As and are sets of distributions, we can choose .

For all , we have
. However, for , we have in general only

. In order to apply the results from Section IV-A,
we need to show that we can, without loss of optimality, restrict
the sets to contain only distributions that are bounded
below by some . In other words, we need to show that
the projections on are bounded below by .

Assume for the moment that the empirical distribution is
close to the true one in the sense that

for all . As , this implies
for all . From (18), this implies that the projection in
of any point in satisfies for all

. Hence, in this case satisfies (21)
with and .

It remains to argue that is close to . Suppose
that instead of constructing the set (see (20)) with respect to

, we construct it with respect to the distribution defined
as

where is chosen such that . is bounded
below by by construction. Moreover, by the strong law of
large numbers

Hence, we have almost surely, where is constructed
as in (20) with respect to the true distribution .

Applying now the results from Section IV-A and Theorem 4
yields that under the AAM algorithm

almost surely, and that every limit point of
achieving this is an element of .

Since by the law of the iterated logarithm, convergence of
to is only as almost surely,

and since only if is a constant [8],
we can in this scenario not conclude from Theorem 4 that

.
As noted in [7], a special case of the decomposition of

mixture problem is that of maximizing the expected value of
, where is distributed according to .

The standard alternating divergence minimization algorithm
is then the same as Cover’s portfolio optimization algorithm
[4]. Thus, the AAM algorithm applied as before yields also an
adaptive version of this portfolio optimization algorithm.

V. PROJECTIONS IN HILBERT SPACE

In this section, we specialize the algorithm from Section III
to the case of minimization in a Hilbert space. A large class of
problems can be formulated as alternating projections in Hilbert
spaces. For example, problems in filter design, signal recovery,
and spectral estimation. For an extensive overview, see [9]. In
the context of Hilbert spaces, the alternating minimization algo-
rithm is often called POCS (projection onto convex sets).

A. Setting

Let be a compact subset of a Hilbert space with the usual
norm . Then is a compact
metric space. The cost function of interest is

The function is continuous and convex. Define the function
(as part of conditions C1 and C2), as

In [1], it is established that for convex and the pair of
functions satisfies the “three-point” and “four-point” prop-
erties C1 and C2. Hence, Theorem 4 applies in this setting.

B. Application: Set-Theoretic Signal Processing and Adaptive
Filter Design

In this subsection, we consider a problem in the Hilbert space
setting as defined in Section V-A. Let be a collection of
convex compact subsets of the Hilbert space with the usual
inner product, and let be positive weights summing to
one. In set-theoretic signal processing, the objective is to find a
point minimizing

(22)

where . Many problems in signal
processing can be formulated in this way. Applications can be
found for example in control, filter design, and estimation. For
an overview and extensive list of references, see [9]. As an ex-
ample, in a filter design problem, the could be constraints on
the impulse and frequency responses of a filter [10], [11].

Following [12], this problem can be formulated in our frame-
work by defining the Hilbert space with inner product

where for are the components of
and . Let
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be the convex hull of the union of the constraint sets ,
and let

be its -fold product. Since each of the sets is compact,
is compact and by definition also convex. We define the set

as

and the set as

(23)

We now show how the projections on the sets and can
be computed. For a fixed , the
minimizing has the form

where is the minimizing . For a fixed
, the minimizing is

given by

Moreover, a solution to (22) can be found from the standard al-
ternating minimization algorithm for Hilbert spaces on and .

To this point, we have assumed that the constraint sets
are constant. The results from Section III enable us

to look at situations in which the constraint sets are
time-varying. Returning to the filter design example mentioned
above, we are now interested in an adaptive filter. The need for
such filters arises in many different situations (see, e.g., [13]).

The time-varying sets give rise to sets , defined

in analogy to (23). We assume again that for all
, and let be defined with respect to the limiting

as before. Applying the results from Section V-A and
Theorem 4, we obtain convergence and correctness of the AAM
algorithm.

VI. CONCLUSION

We considered a fairly general adaptive alternating minimiza-
tion algorithm, and found sufficient conditions for its conver-
gence and correctness. This adaptive algorithm has applications
in a variety of settings. We discussed in detail how to apply it
to three different problems (from statistics, finance, and signal
processing).
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