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Abstract—We consider the problem of delivering content
cached in a wireless network of n nodes randomly located on a
square of area n. In the most general form, this can be analyzed
by considering the 2

n
×n-dimensional caching capacity region of

the wireless network. We propose a communication scheme for
transmission of messages cached in the network. This provides
an inner bound to the caching capacity region.

I. INTRODUCTION

With the continued large-scale deployment of infrastructure,

wireless networking remains an area of active research. In

this context, unicast and multicast traffic has been widely

studied. The influence of caches on the network performance,

on the other hand, has received considerably less attention.

Nevertheless, the ability to cache data at several places in

the network is likely to significantly increase supportable data

rates. In this paper, we consider the problem of characterizing

achievable rates with caching in wireless networks.

In its most general form, this problem can be formulated

as follows. Consider a wireless network with n nodes, and

assume a node w in the wireless network requests a message

available at the set of caches U (a subset of the n nodes)

at a certain rate λU,w. The collection of all {λU,w}U,w can

be represented as a caching traffic matrix λ ∈ R
2n×n
+ . The

question is then to characterize the set of achievable caching

traffic matrices Λ(n) ⊂ R
2n×n
+ . We will be interested in

the behavior of this caching capacity region Λ(n) for large
wireless networks (i.e., as n → ∞) under random node
placement.

A. Related Work

Several aspects of caching in wireless networks have been

investigated in prior work. In the computer science literature,

the wireless network is usually modelled as a graph induced

by the geometry of the node placement. This is tantamount

to making a protocol model assumption (as proposed in [1])

about the communication scheme used. The quantity of interest

involves the distance from each node to the closest cache that

holds the requested message. The problem of optimal cache

location for multicasting from a single source has been inves-

tigated in [2], [3]. Optimal caching densities under uniform

random demand have been considered in [4], [5]. Several

cache replacement strategies are proposed, for example, in [6].
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To the best of our knowledge, caching has not been directly

considered in the information theory literature. However, it can

be seen that the problem of optimally transmitting messages

held at several caches to a destination is a special case

of communicating correlated sources over a noisy network.

Indeed, we can consider that each cache has an identical

message to send to the same destination. This more general

problem of transmitting correlated sources has received con-

siderable attention. Unlike the situation with point-to-point

communication, for network communication problems source-

channel separation does not hold in general [7]. Hence, the

problem of source and channel coding have to be considered

jointly. While for some special cases optimal communication

strategies for transmitting correlated sources over a noisy

network are known (for example, broadcast from a single

source with independent network links [8], [9]), the general

problem is unsolved.

Finally, a special case of the caching problem considered

here, in which each destination has only a single cache (i.e.,

standard unicast traffic), has been widely studied and is by

now well understood. See for example [1], [10]–[19].

B. Our Contribution

We consider the general caching problem from an infor-

mation theoretic point of view. Compared to the prior work

mentioned in the last section, there are several key differences.

First, we do not make a protocol channel model assumption,

and instead allow the use of arbitrary communication protocols

over the wireless network. Second, we allow for general

traffic demands, i.e., arbitrary number of caches, and arbitrary

demands from each destination. Third, we do not impose that

each destination requests the desired message from only the

closest cache, nor do we impose that the entire message has

to be requested from the same cache. Rather we allow parts

of the same message to be requested from distinct caches.

We present a communication scheme for the caching prob-

lem, which can be used to transmit general caching traffic.

The proposed scheme solves the problems of optimal cache

selection, load balancing, and interference and noise mitigation

separately, suggesting a layered approach.

C. Organization

The remainder of the paper is organized as follows. In

Section II, we introduce the channel model as well as notation.



In Section III, we present the main results of the paper. Section

contains IV concluding remarks.

Due to space constraints, we present results here without

proofs. They can be found in the journal version of the paper.

II. NETWORK MODEL AND NOTATION

Consider the square A(n) , [0,
√

n]2 of area n, and let

V (n) ⊂ A(n) be a set of |V (n)| = n nodes on A(n). We
assume the following channel model. The (sampled) received

signal at node v and time t is

yv(t) =
∑

u∈V (n)\{v}

hu,v(t)xu(t) + zv(t)

for all v ∈ V (n), t ∈ N, where {xu(t)}u,t are the (sampled)

signal sent by the nodes in V (n) at time t. Here {zv(t)}v,t

are independent and identically distributed (i.i.d.) circularly

symmetric complex Gaussian random variables with mean 0
and variance 1, and

hu,v(t) = r−α/2
u,v exp(

√
−1θu,v(t)),

for path-loss exponent1 α > 2, and where ru,v is the Euclidean

distance between u and v. {θu,v(t)}u,v is assumed to be i.i.d.

with uniform distribution on [0, 2π). We either assume that
{θu,v(t)}t is stationary and ergodic as a function of t which

is called fast fading in the following, or we assume {θu,v(t)}t

is constant as a function of t, which is called slow fading

in the following. In either case, we assume full channel state

information is available at all nodes2, i.e., each node knows

all {hu,v(t)}u,v at time t. We also impose an average power

constraint of 1 on the signal {xu(t)}t for every node u ∈
V (n).

Partition A(n) into 4ℓ squares {Aℓ,i(n)}4ℓ

i=1 of sidelength

2−ℓ
√

n, and let Vℓ,i(n) be the nodes in Aℓ,i(n). The integer
parameter ℓ varies between 0 and L(n) defined as3

L(n) ,
1

2
log(n)

(
1 − log−1/2(n)

)
,

The partitions at various levels ℓ form a dyadic decomposition

of A(n) as illustrated in Figure 1.
A caching traffic matrix is an element λ ∈ R

2n×n
+ . Consider

U ⊂ V (n) and w ∈ V (n). Assume a message that is requested
at destination node w is available at all of the caches U . λU,w

denotes then the rate at which node w wants to obtain the

message from the caches U . Note that we do not impose

here that any particular cache u ∈ U provides w with the

1It is worth pointing out that recent results [20] suggest that, under certain
assumptions on the location of scattering elements, for α ∈ (2, 3) and very
large values of n, the channel model used here might yield results that are
too optimistic. However, the same authors show in [21] that, under different
assumptions on the scatterers, the channel model used here is still valid also
for α ∈ (2, 3) and very large values of n. This indicates that the issue of
proper channel modelling in the low path-loss regime for very large networks
is somewhat delicate and requires further investigation.
2The proposed scheme can be shown to work also under weaker assump-
tions on the availability of CSI. In particular, for α ≥ 3, no CSI is necessary,
and for α ∈ (2, 3), a 2 bit quantization of the channel state {θu,v(t)}u,v

available at all nodes at time t is sufficient.
3Throughout log and ln represent the logarithms with respect to base 2
and e, respectively.

Fig. 1. Square-grids with 0 ≤ ℓ ≤ 2, i.e., with L(n) = 2. The grid at level
ℓ = 0 is the area A(n) itself. The grid at level ℓ = 1 is indicated by dashed
lines. The grid at level ℓ = 2 by dotted lines together. Assume for the sake
of example that the subsquares are numbered from left to right and then from
bottom to top (the precise order of numbering is immaterial). Then V0,1(n)
are all the nodes V (n), V1,1(n) are the nine nodes in the lower left corner
(delineated by dashed lines), and V2,1(n) are the three nodes in the lower
left corner (delineated by dotted lines).

desired message, rather multiple (or all) of the nodes in U

could provide parts of the message. Note also that λU,w and

λeU,w could both be strictly positive for U 6= Ũ , i.e., the

same destination could request more than one message from

different collection of caches. We assume that messages for

different (U, w) pairs are independent. The caching capacity
region Λ(n) of the wireless network V (n) is the set of all
achievable caching traffic matrices λ ∈ R

2n×n
+ .

Example 1. Consider V (n) = {ui}4
i=1 with n = 4. As-

sume that u1 requests a message m{u3,u4},u1
available at

the caches u3, and u4 at rate 1 bit per channel use, and
an independent message m{u3},u1

available only at u3 at a

rate of 2 bits per channel use. Node u2 requests a message

m{u3,u4},u2
available at the caches u3 and u4 at a rate of 4

bits per channel use. The messagesm{u3,u4},u1
,m{u3},u1

, and

m{u3,u4},u2
are assumed to be independent. This traffic pattern

can be described by a caching traffic matrix λ ∈ R
16×4
+ with

λ{u3,u4},u1
= 1, λ{u3},u1

= 2, λ{u3,u4},u2
= 4, and λU,w = 0

otherwise. Note that in this example node u1 is destination

for two (independent) caching messages, and node u3 and u4

serve as caches for more than one message (but these messages

are assumed independent). ♦

III. MAIN RESULTS

A. Caching Capacity Region

Let G = (VG, EG) be an undirected capacitated graph,
constructed as follows. G is a tree with leaf nodes V (n) ⊂ VG.

Leaf nodes in G share the same parent node in G if they fall

within the same grid square at level L(n) in A(n). Nodes
at level ℓ in the tree G share the same parent node if all

their children fall in the same grid square at level ℓ − 1 in
A(n). Note that through this construction, each set Vℓ,i(n) for



ℓ ∈ {0, . . . , L(n)}, i ∈ 4ℓ is represented by exactly one non-

terminal node in G. This construction is illustrated in Figure

2. Assign to each edge e ∈ EG at level ℓ in G (i.e., between

Fig. 2. Construction of the tree graph G. We consider the same nodes as in
Figure 1 with L(n) = 2. The leaves of G are the nodes V (n) of the wireless
network. They are always at level ℓ = L(n) + 1 (i.e., 3 in this example). At
level 0 ≤ ℓ ≤ L(n) in G, there are 4ℓ nodes. The tree structure is the one
induced by the grid decomposition {Vℓ,i(n)}ℓ,i delineated by dashed and
dotted lines. Level 0 contains the root node of G.

node levels ℓ and ℓ − 1) a capacity

ce ,

{
(4−ℓn)2−min{3,α}/2 if 1 ≤ ℓ ≤ L(n),

1 if ℓ = L(n) + 1.

With slight abuse of notation, we let for (u, v) = e ∈ EG

cu,v , ce.

As we shall see in the following, a set of messages can

be transmitted reliably over the wireless network at rates λ if

they can be routed at approximately the same rates between

the leaf nodes of G. Given this relation between the wireless

network and the graph G, we continue to analyze the caching

capacity region (under routing) of G. The caching capacity

region of G, in turn, will be shown to be approximately equal

to the following quantity:

Λ̂(n) ,

{
λ ∈ R

2n×n
+ :

∑

U⊂S∩V (n)

∑

w∈V (n)\S

λU,w ≤
∑

(u,v)∈EG:
u∈S,v/∈S

cu,v ∀S ⊂ VG

}
.

The region Λ̂(n) bounds the sum rate for all subsets S ⊂ VG.

Each such subset can hence be understood as a cut in the

graph G.

We now state the main result of this paper, providing an

inner bound on the caching capacity region Λ(n).

Theorem 1. Under either fast or slow fading, for any α > 2,
there exist b(n) ≥ n−o(1) such that

b(n)Λ̂(n) ⊂ Λ(n)

with probability 1 − o(1) as n → ∞.

B. Computational Aspects

If we consider large wireless networks (i.e., large values of

n), computational aspects are of importance. The inner bound

to the capacity region Λ̂(n) in Theorem 1 is described in
terms of Θ(4n) cuts S ⊂ VG. In other words, computing the

entire set Λ̂(n) is not computationally efficient. On the other
hand, we shall see that the problem of testing membership

of λ ∈ Λ̂(n) can be approximately solved in an efficient
manner. More precisely, we show that λ ∈ Λ̂(n) can be
checked approximately in polynomial time in the description

complexity of λ.

Formally, define for any caching traffic matrix λ ∈ R
2n×n
+

ρ̂λ(n) , sup{ρ ≥ 0 : ρλ ∈ Λ̂(n)}.

Membership λ ∈ Λ̂(n) can then be evaluated by checking
if ρ̂λ(n) ≤ 1. Let ρ̃λ(n) to be the solution to the following
linear program

max ρ

s.t.
∑

p∈PU,w
fp ≥ ρλU,w ∀ U ⊂ V (n), w ∈ V (n),∑

p∈P :e∈p fp ≤ ce ∀ e ∈ EG,

fp ≥ 0 ∀ p ∈ P,
(1)

where PU,w is the collection of all paths in G from any node

in U to node w (since G is a tree, there are exactly |U | such
paths), and

P ,
⋃

U⊂V (n),w∈V (n)

PU,w.

Note that (1), and hence ρ̃λ(n), can be evaluated in polynomial
time in the description length of λ (i.e., in polynomial time

in the length of the “input” of the linear program). The next

theorem shows that ρ̃λ(n) is a good approximation to ρ̂λ(n).

Corollary 2. For any α > 2, there exists b = O(log(n)) such
that for any caching traffic matrix λ

ρ̃λ(n) ≤ ρ̂λ(n) ≤ b(n)ρ̃λ(n).

As argued above, ρ̃λ(n) can be computed in polynomial
time in the description length of λ. Hence Theorem 2 shows

that testing membership λ ∈ Λ̂(n) can be done approximately
in polynomial time in the description length of λ.

C. A Content Delivery Protocol

We now describe the communication scheme achieving the

inner bound in Theorem 1. The proposed communication

scheme consists of three layers, similar to a protocol stack.

From high to low level of abstraction, these layers will be

denoted by routing layer, cooperation layer, and physical

layer. The three layers in this communication scheme serve

the following functions. The routing layer performs cache

selection and routing, the cooperation layer performs load

balancing, and the physical layer deals with interference and

noise.

From the view of the routing layer, the wireless network

consists of the noiseless capacitated tree graph G defined in

Section III-A (see Figure 2 there). To send a message at the



caches U to its destination w, the routing layer routes the

message over G. The optimal requests of message parts from

the caches in U is found by solving the linear program (1).

The cooperation layer provides the tree abstraction G to

the routing layer. Sending a message up or down an edge

in the tree G in the routing layer corresponds to distributing

or concentrating the same message in the wireless network.

More precisely, to send a message from a child node to its

parent in G (i.e., towards the root node of G), the message

at the wireless nodes in V (n) represented by the child node
in G is distributed (over the wireless channel) evenly among

all nodes in V (n) represented by the parent node in G. This

distribution is performed by splitting the message into equal

size parts. To send a message from a parent node to a child

node in G (i.e., away from the root node of G), the message

at the wireless nodes in V (n) represented by the parent node
in G is concentrated on the wireless nodes V (n) represented
by the child node in G. This concentration is performed be

collecting parts of the previously split up message.

Finally, the physical layer performs this concentration or

distribution of messages. Note that the kind of traffic resulting

from the operation of the cooperation layer is regular in

the sense that within each grid square, all nodes receive

data at the same rate. Uniform traffic of this sort is well

understood. Depending on the path-loss exponent α, we use

either hierarchical relaying [17], [18] (for α ∈ (2, 3]) or multi-
hop communication (for α > 3). It is this operation of each
edge in the physical layer that determines the edge capacity

of the graph G as seen from the routing layer.

Figure 3 shows an example of the operation of this three

layer scheme. For more details on this architecture (in partic-

ular the cooperation and physical layer), we refer the reader

to [19].

D. Example Scenario

Example 2. (Nearest Neighbor Cache Selection)

A reasonable strategy of selecting caches is to request the

entire message from the nearest available cache. In fact, this

is the strategy implicitly assumed in most of the prior work

considering caching in wireless networks cited in Section I-A.

This example shows that this strategy can be arbitrarily bad.

Assume V2,1(n) and V2,2(n) are subsets of V1,1(n), and
V2,3(n) is a subset of V1,2(n). Consider a node u∗ ∈ V2,2(n),
and label the nodes in V2,1(n) = {w1, w2, . . .} and in
V2,3(n) = {u1, u2, . . .}. Construct

λU,w ,

{
ρ(n) if U = {u∗, ui}, w = wi for some i,

0 else,

for some ρ(n) ≥ 0. This is illustrated in Figure 4.
For every wi, the nearest cache is u∗, and it can be shown

that any communication scheme requesting the entire message

from it results in a per node rate of

ρ(n) ≤ n−1+o(1).

On the other hand, assume each wi requests the entire message

only from the more distant cache ui. It can be shown that this

u

w

Fig. 3. Example operation of the three layer architecture. The three
layers depicted are (from top to bottom in the figure) the routing layer, the
cooperation layer, and the physical layer. In this example, we consider a single
(U, w) pair. Here, the set of caches U consists of a single node {u} in the
wireless network shown at the bottom left, and its destination w is in the top
right of the network. At the routing layer, the optimal choice of caches is in
this case trivial (since there is just one cache u). The optimal route between u
and w chosen at the routing layer is indicated in black dashed lines. Consider
now the second edge along the path in G from u to w. The middle plane in
the figure shows the induced behavior from using this edge in the cooperation
layer. The bottom plane in the figure shows (part of) the corresponding actions
induced in the physical layer.

︸︷︷︸
V2,1(n)

︸︷︷︸
V2,3(n)u

∗

Fig. 4. Caching traffic pattern for Example 2.

is in fact an order-optimal strategy, resulting in a per-node rate

of

ρ∗(n) = n1−min{3,α}/2−o(1) ≫ n−1+o(1).

Our proposed communication architecture achieves the same

order-optimal rate ρ∗(n). This is because the routing layer
optimizes over the cache selection instead of simply choosing

the closest one. ♦



IV. CONCLUSIONS

We analyzed the influence of caching on the performance

of wireless networks. We propose a communication scheme

that allows for the transmission of arbitrary caching traffic.

This communication scheme consists of three layers, dealing

with optimal selection of caches, load balancing, noise and

interference, respectively. Using the proposed communication

scheme we obtain an inner bound to the caching capacity

region. Even though this region, and hence also the inner

bound, are 2n×n-dimensional (i.e., exponential in the number

of nodes n in the wireless network), we present an algorithm

that checks approximate feasibility of a particular caching

traffic matrix efficiently (in polynomial time in the description

length of the caching traffic matrix).
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