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Abstract—We study secret-key agreement protocols over a
wiretap channel controlled by a state parameter. The secret-
key capacity is established when the wiretap channel is discrete
and memoryless, the sender and receiver are both revealed the
underlying state parameter, and no public discussion is allowed.
An optimal coding scheme involves a two step approach — (i)
design a wiretap codebook assuming that the state parameter
is also known to the eavesdropper (ii) generate an additional
secret key by exploiting the uncertainty of the state parameter
at the eavesdropper. When unlimited public discussion is allowed
between the legitimate terminals, we provide an upper bound
on the secret-key capacity and establish its tightness whenthe
channel outputs of the legitimate receiver and eavesdropper
satisfy aconditional independence property. Numerical results for
an on-off fading model suggest that the proposed coding schemes
significantly outperform naive schemes that either disregard the
contribution of the common state sequence or the contribution
of the underlying channel.

I. I NTRODUCTION

Generating a shared secret-key between two terminals by
exploiting the reciprocity in the physical wireless channel
has received a lot of recent attention. See e.g, [1] and the
references therein. The sender and receiver exchange pilot
signals to learn the channel gains in uplink and downlink
respectively. When the channels are reciprocal, the uplinkand
downlink gains are close to one another and this correlation
is exploited to generate shared secret keys.

Motivated by these works we study the information theoretic
problem of secret-key agreement over a channel controlled
by one state parameter. This state parameter is revealed to
both the sender and the receiver and not to the eavesdropper.
In the fading model discussed above, this state parameter
models the fading gain between the sender and the receiver.
The sender and receiver can learn this value over reciprocal
wireless channels by exchanging pilot signals, whereas the
eavesdropper cannot directly learn this value. A good coding
scheme for this problem exploits two sources of uncertainty
at the eavesdropper — one due to the lack of knowledge
of state parameter at the eavesdropper, and the other due to
the equivocation introduced by the channel. As our capacity
expression illustrates, there is in fact a balance between the
gains from the two uncertainties.

In other related works, the case when anindependent
message needs to be transmitted over the wiretap channel with
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state parameters (and no public discussion) has been studied
in [2], [3], [4]. Achievable rate-equivocation regions arepro-
vided for the case of either transmitter-side information or
two-sided state information, but the complete characterization
of this region remains open. In contrast to sending independent
messages, the formulation studied in the present paper, allows
the secret key to arbitrarily depend on the state sequence.

II. PROBLEM STATEMENT

The problem setup is described in Fig. 1. The sender and
receiver communicate over a discrete-memoryless-wiretap-
channel with input symbolx , the output at the legitimate
receiveryr and the output at the eavesdropperye. The channel
transition probability is conditioned on state parametersr is
specified by

Pr(yn
r = yn

r ,y
n
e = yn

e|x
n = xn,sn

r = sn
r )=

n
∏

i=1

pyr,ye|x,sr
(yri, yei|xi,sri)

(1)
where the state parameter sequences

n
r is sampled i.i.d. from

the distributionpsr
(·).

In defining a length-n encoder and decoder, we will as-
sume that the state sequences

n
r is known non-causally to

the senderand the receiver. However our coding theorems
only require a causal knowledge of the state sequence. We
first separately consider the case when no public discussion
is allowed between the encoder and the decoder and when
unlimited discussion is allowed.

A. No Public Discussion

A length n encoder is defined as follows. The sender
samples a random variablesu from the conditional distribution
pu|sn

r
(·|sn

r ). The encoding function produces a channel input
sequencexn = fn(u, sn

r ) and transmits it overn uses of
the channel. At timei the symbol xi is transmitted and
the legitimate receiver and the eavesdropper observe output
symbolsyri andyei respectively, sampled from the conditional
distribution pyr,ye|x,sr

(·). The sender and receiver compute
secret keysκ = gn(u, sn

r ) and l = hn(sn
r , y

n
r ). A rateR is

achievable if there exists a sequence of encoding functions
such that for some sequenceεn that vanishes asn → ∞,
we have thatPr(κ 6= l) ≤ εn and 1

n
H(κ) ≥ R − εn and

1
n
I(κ; yn

e ) ≤ εn. The largest achievable rate is the secret-key
capacity.
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Fig. 1. Secret-key agreement over a wiretap channel controlled with a state parameter. The channel is a discrete-memoryless-broadcast channel. The state
parametersr is sampled i.i.d. and revealed to the sender and receiver. Weseparately consider two cases (a) unlimited interactive public discussion is allowed
between the sender and the receiver and (b) no such discussion is allowed.

Remark 1: Note that the formulation can be easily extended
to include the case when the eavesdropper is also revealed
the state parametersr. This can be done by re-defining the
output symbolỹe = (ye, sr). More generally, our formulation
also extends to the case when the eavesdropper observes a
state parameterse correlated withsr and the channel transition
probability ispyr,ye|x,sr ,se

(·). In this case it sufficies to consider
the channel where the eavesdropper observesỹe = (ye, se)
with transition probability

pyr ,̃ye|x,sr
(yr, ỹe|x, sr)=pyr,ye|x,sr,se

(yr, ye|x, sr, se)pse|sr
(se|sr),

(2)
which reduces to the present formulation.

B. Presence of Public Discussion

When a public discussion channel is present, the described
protocol follows closely the interactive communication proto-
col in [5]. The sender transmits symbolsx1, . . . , xn at times
0 < i1 < i2 < . . . < in over the wiretap channel. At
these times the receiver and the eavesdropper observe symbols
yr1, . . . , yrn and ye1, . . . , yen respectively. In the remaining
times the sender and receiver exchange messagesψt andφt

where1 ≤ t ≤ k. For convenience we letin+1 = k + 1. The
eavesdropper observes bothψt andφt.

More specifically the sender and receiver sample random
variablesu and v from conditional distributionspu|sn

r
(·|sn

r )
andpv|sn

r
(·|sn

r ) and observe thatu → s
n
r → v .

• At times 0 < t < i1, the sender generates
φt = Φt(u, s

n
r , ψ

t−1) and the receiver generatesψt =
Ψt(v , s

n
r , φ

t−1). These messages are exchanged over the
public channel.

• At times ij , 1 ≤ j ≤ n, the sender generatesxj =
Xj(u, s

n
r , ψ

ij−1) and sends it over the channel. The re-
ceiver and eavesdropper observeyr,j adye,j respectively.
For these times we setψij

= φij
= 0.

• For timesij < t < ij+1, where1 ≤ j ≤ n, the sender
and receiver computeφt = Φt(u, s

n
r , ψ

t−1) and ψt =
Ψt(v , s

n
r , y

j
r , φ

t−1) respectively and exchange them over
the public channel.

• At time k + 1, the sender and receiver compute
κ = gn(u, sn

r , ψ
k) and the receiver computesl =

hn(v , sn
r , y

n
r , φ

k).

We require that for some sequenceεn that vanishes asn→
∞, Pr(κ 6= l) ≤ εn and 1

n
I(κ; yn

e , ψ
k, φk) ≤ εn.

III. SUMMARY OF RESULTS

A. No Public Discussion

The following theorem characterizes the secret-key capacity
when no public-discussion channel is available between the
legitimate terminals.

Theorem 1: The secret-key capacity for the channel model
in section II-A is

C = max
P

{I(t; yr|sr) − I(t; ye|sr) +H(sr|ye)} , (3)

whereP is the set of all joint distributionspt,x,sr,yr,ye(·) that
satisfy the Markov chaint → (x , sr) → (yr, ye). Furthermore
in (3) it suffices to maximize over the auxiliary random
variablest whose cardinality is bounded by|Sr|(1 + |X |).�

Remark 2: The expression in (3) can be interpreted as
generating two independent keys. The first key at rateRch =
I(t; yr|sr) − I(t; ye|sr) is achieved by transmitting an inde-
pendent message with perfect secrecy using a wiretap code-
book for a modified channel wheresn

r is revealed to the
eavesdropper (in addition to legitimate terminals). The second
key, which is independent of the first key and has a rate
of Rsrc = H(sr|ye) is produced by exploiting the common
knowledge ofsn

r at the legitimate terminals. This intuition is
formalized in the achievability scheme in section V-A.

Next, consider the case when for eachsr ∈ Sr, the channel
of the eavesdropper is less noisy than the channel of the
legitimate receiver i.e.,maxP I(t; yr|sr) − I(t; ye|sr) = 0. In
this case, the secret-key capacity reduces to

C = max
px|sr

H(sr|ye).

It is achieved by generating the secret-key based on the
common knowledge ofsn

r between the legitimate terminals and
choosing an input distribution that leaks minimal information
aboutsn

r to the eavesdropper. More generally, there is a balance
between the amount of information leaked to the eavesdropper
and the ability to transmit information over the wiretap channel
in the capacity achieving scheme. This balance is reflected in
the maximization in (3).



B. Unlimited Public Discussion

When unlimited public discussion is allowed between the
sender and the receiver, as described in section II-B, we have
the following result on the secret-key capacity.

Theorem 2: The secret-key capacity in the presence of un-
limited public discussion between the sender and the receiver
is

C = max
px|sr

I(x ; yr|ye, sr) +H(sr|ye). (4)

when the channel satisfies the Markov conditionyr →
(x , sr) → ye. For any discrete memoryless channel (4)
provides an upper bound to the secret-key capacity.

Remark 3: The Markov condition in Theorem 2 can be
interpreted as requiring that the noise on the legitimate and the
eavesdroppers channel be mutually independent. Furthermore,
analogous to the capacity expression in Theorem 1 the expres-
sion in (4) also involves a sum of two terms and accordingly
the lower bound is constructed by generating two separate
keys.

IV. N UMERICAL EXAMPLE

We consider the the following on-off channel for the re-
ceivers:

yr = srx + zr

ye = sex + ze,
(5)

where bothsr, se ∈ {0, 1}, the random variables are mutu-
ally independent andPr(sr = 0) = Pr(se = 0) = 0.5.
Furthermore we assume thatsr is revealed to the legitimate
terminals, whereas the eavesdropper is revealedỹe = (se, ye).
The noise random variables are mutually independent, zero
mean and unit variance Gaussian random variables and the
power constraint is thatE[x2] ≤ P .

We evaluate the secret-key rate expression for Gaussian
inputs i.e.,t = x ∼ N (0, P0) when sr = 0 and t = x ∼
N (0, P1) when sr = 1. Further to satisfy the average power
constraint we have thatP0 + P1 ≤ 2P . An achievable rate
from Theorem 1 and Remark 1 is,

R = I(x ; yr|sr) − I(x ; ỹe|sr) +H(sr|ỹe) (6)

= I(x ; yr|sr) − I(x ; ye, se|sr) +H(sr|se, ye) (7)

Substituting (5) above and simplifying, we have that

R =
1

8
log(1 + P1) +

1

2
Eye [H(p(ye), 1 − p(ye))] +

1

2
, (8)

where

p(ye) =
Nye

(0, P0 + 1)

Nye
(0, P0 + 1) + Nye

(0, P1 + 1)
(9)

is the aposterior distributionPr(se = 0|ye) which is used
to numerically evaluate the second term in (8). Similarly by
choosing Gaussian inputs in Theorem 2, the secret-key rate
reduces to

R =
1

8
log(1 + 2P1) +

1

2
Eye [H(p(ye), 1− p(ye))] +

1

2
. (10)

Fig. 2 illustrates the secret-key rate in (8),(10) as a function
of the power allocation when SNR = 17 dB. There are three

curves — the solid curve is the resulting secret key rate
in (8), while the dashed curve is the entropyH(sr|se = 1, ye)
and the dotted curve denotes the secret-message rate. The
upper solid and dashed curves denote the case of public
discussion whereas the lower curves denote the case of no
public discussion. Note that in general there is a tradeoff
between these two terms. To maximize the conditional entropy
we setP0 = P1 = P/2, while to maximize the secret-message
rate we setP0 = 0 andP1 = P . The resulting secret-key rate
is maximized by selecting a power allocation that balances
these two terms. The optimum fraction of power transmitted
in the statesr = 0 as a function of the signal to noise ratio is
shown in Fig. 3. Note that no power is transmitted when the
signal-to-noise ratio is below≈ −2.5dB. In this regime the
channels are sufficiently noisy so thatH(sr|ye, se = 1) ≈ 1
even withP0 = 0 and hence all the available power is used for
transmitting the secret-message. As the signal-to-noise ratio
increases more information regardingsr gets leaked to the
eavesdropper and to compensate for this effect, a non-zero
fraction of power is transmitted whensr = 0.

V. PROOFS

A. Coding Theorem for Theorem 1

The lower bound involves separately constructing two in-
dependent keysκch and κsrc at ratesRch = I(t; yr|sr) −
I(t; ye|sr) andRsrc = H(sr|ye) respectively.

The keyκch is constructed by using a multiplexed coding
scheme as follows. LetSr = {s1, . . . , sm} and let pi =
Pr(si = si). For eachi construct a wiretap codebook [6] of
rateRi = I(t; yr|sr = si)−I(t; ye|sr = si)−2εn consisting of
2npiI(t;yr|sr=si)−εn codewords each of lengthnpi and sampled
i.i.d. from the distributionpt|sr=si

(·). For each codebook an
independent messagewi uniformly distributed over the set
{1, 2, . . . , 2npiRi} is selected and corresponding codeword
symbols are transmitted whenevers = si. The resulting key
is the collection of these messages i.e.,κch = (w1, . . . ,wm).
Clearly the multiplexed codebook has a rate of

Rch =

m
∑

i=1

piRi (11)

= I(t; yr|sr) − I(t; ye|sr) − 2εn (12)

as required. We further show below that

1

n
H(κch|y

n
e , s

n
r ) = Rch − on(1), (13)

whereon(1) decays to zero asn→ ∞. From the analysis of
each wiretap codebookCi, we have that

1

n
H(wi|y

n
e|i) =

1

n
H(wi) − εn

whereyn
e|i is the projection ofyn

e onto those time indices where
the state parameter takes the valuesr = si. Furthermore, since
the messages and codewords are selected independently in
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to maximize the secret-key rate with Gaussian inputs. The curve marked with
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each codebook

1

n
H(wi|y

n
e , s

n
r ,w1, . . . ,wi−1,wi+1, . . . ,wm)

=
1

n
H(wi|y

n
e|i) =

1

n
H(wi) − εn. (14)

Finally we have that
1

n
H(κch|y

n
e , s

n
r ) =

1

n
H(w1, . . . ,wm|yn

e , s
n
r )

≥
1

n

m
∑

i=1

H(wi|w1, . . . ,wi−1,wi+1, . . . ,wm, y
n
e , s

n
r )

≥
1

n

m
∑

i=1

H(wi) −mεn = Rch −mεn

as required.
The remaining keyκsrc is obtained from the sequencesn

r

via random binning. No additional communication between
the sender and receiver is required in this step. To generate
this key, the set of all typical sequencessn

r is partitioned into
2nH(sr|ye) bins, each consisting2n(I(sr;ye)−εn) sequences. The
secret-keyksrc is the bin index of the sequencesn

r . Using
standard arguments it can be shown that

1

n
H(κsrc|y

n
e ) = H(sr|ye) − on(1). (15)

To complete the secrecy analysis of our codebook, note that
1

n
H(κsrc, κch|y

n
e )

=
1

n
H(κsrc|y

n
e ) +

1

n
H(κch|y

n
e , κsrc)

≥
1

n
H(κsrc|y

n
e ) +

1

n
H(κch|y

n
e , κsrc, s

n
r )

=
1

n
H(κsrc|y

n
e ) +

1

n
H(κch|y

n
e , s

n
r ) (16)

= H(sr|ye) + I(t; yr|sr) − I(t; ye|sr) − on(1) (17)

where (16) follows from the fact thatκsrc is a deterministic
function ofsn

r and the last step is obtained by substituting (13)
and (15) for the two equivocation terms.

B. Converse for Theorem 1
For any sequence of codes indexed by the codeword length

n, we show that the secret key rate is upper bounded by the
capacity expression (3) plus a term that vanishes to zero as
the block length goes to zero. Apply Fano’s inequality on
the secret-key rate, we have that for some sequenceεn that
approaches zero asn goes to infinity

nR ≤ I(κ; l) + nεn ≤ I(κ; sn
r , y

n
r ) + nεn (18)

where the last step follows from the data processing inequality
sincel = hn(sn

r , y
n
r ). Furthermore from the secrecy condition

we have that

nR ≤ I(κ; sn
r , y

n
r ) − I(κ; yn

e ) + 2nεn (19)

=

n
∑

i=1

I(κ, y i−1
e sn

r,i+1y
n
r,i+1; sr,i, yr,i)

−
n

∑

i=1

I(κ, y i−1
e sn

r,i+1y
n
r,i+1; ye,i) + 2nεn (20)

where the second step follows from the well known chain rule
applied to difference of mutual informations (see e.g., [6]).
For eachi = 1, 2, . . . , n, define the random variableti =
(κ, y i−1

e sn
r,i+1y

n
r,i+1). By noting that the encoding functions

are defined byκ = gn(u, sn
r ) and xn = fn(u, sn

r ), it can be
verified that the joint distribution,pti,xi,sr,i,yr,i,ye,i

∈ P . Thus
we have from (20) that

R− 2εn ≤
1

n

n
∑

i=1

I(ti; sr,i, yr,i) − I(ti; ye,i)

≤ max
P

{I(t; sr, yr) − I(t; ye)}



= max
P

{I(t; yr, sr) − I(t; ye, sr) + I(t; sr|ye)} (21)

= max
P

{I(t; yr|sr) − I(t; ye|sr) + I(t; sr|ye)} (22)

= max
P

{I(t; yr|sr) − I(t; ye|sr) +H(sr|ye)} , (23)

where (21) and (22) both follow from the chain rule of mutual
information and the last expression follows by observing that if
t? is any random variable that maximizes (22), then selecting
t = (t?, sr), we have

I(t?; yr|sr) − I(t?; ye|sr) = I(t; yr|sr) − I(t; ye|sr)

while the termI(t?; sr|ye) increases toH(sr|ye). Hence for
the maximizing distribution, we can replaceI(t; sr|ye) by the
entropy term as in (23).

C. Coding Theorem for Theorem 2

The proposed coding scheme is a direct extension of the
coding schemes in [7], [5] that consider the channel with
no state parameters. The sender chooses a distributionpx|sr

and givensr, samples the channel input symbol from this
distribution. Upon observing(yn

r , s
n
r ), the receiver transmits

the bin-index from a Slepian-Wolf code over a public channel.
The resulting secret-key rate is

R = max
px|sr

I(x , sr; yr, sr) − I(ye; yr, sr)

= max
px|sr

I(x ; yr|sr) − I(ye; yr|sr) +H(sr|ye).

which matches the upper bound (4) when the Markov condi-
tion yr → (x , sr) → ye is satisfied.

D. Upper Bound for Theorem 2

For any sequence of encoding and decoding functions, we
have from Fano’s inequalty that

nR ≤ I(κ; l) + nεn

≤ I(κ; v , sn
r , y

n
r , φ

k) + nεn (24)

≤ I(κ; v , sn
r , y

n
r , φ

k) − I(κ; yn
e , φ

k, ψk) + 2nεn (25)

≤ I(κ; v , sn
r , y

n
r |ψ

k, φk, yn
e ) + 2nεn

≤ I(κ; v , yn
r |ψ

k, φk, yn
e , s

n
r )+I(κ; sn

r |ψ
k, φk, yn

e )+2nεn

≤ I(κ; v , yn
r |ψ

k, φk, yn
e , s

n
r ) +H(sn

r |y
n
e ) + 2nεn

≤ I(κ; v , yn
r |ψ

k, φk, yn
e , s

n
r ) +

n
∑

i=1

H(sr,i|ye,i) + 2nεn

where (24) follows from the fact thatl = hn(v , sn
r , y

n
r , φ

k),
and (25) follows from secrecy constraint. It sufficies to show
that

I(κ; v , yn
r |ψ

k, φk, yn
e , s

n
r ) ≤

n
∑

i=1

I(xi; yr,i|sr,i, ye,i) (26)

since,

nR ≤
n

∑

i=1

I(xi; yr,i|sr,i, ye,i) +H(sr,i|ye,i) + 2nεn

≤ n

(

max
px|sr

I(x ; yr|sr, ye) +H(sr|ye) + 2εn

)

as required. Thus it only remains to establish (26). The proof
follows closely the upper bound derived in [5] with some
modifications to take into account the state parameters. Since
κ = gn(u, ψk, sn

r ) we have that

I(κ; v , yn
r |ψ

k, φk, yn
e , s

n
r ) ≤ I(u; v , yn

r |ψ
k, φk, sn

r , y
n
e )

= I(u; v , yn
r , ψ

k, φk, sn
r , y

n
e ) − I(u; sn

r , ψ
k, φk, yn

e )

= I(u; v , ψi1−1, φi1−1, sn
r ) − I(u; sn

r , ψ
i1−1, φi1−1)

+ I(u; yn
r , y

n
e , ψ

k
i1+1, φ

k
i1+1|v , ψ

i1−1, φi1−1, sn
r )

− I(u; yn
e , ψ

k
i1+1, φ

k
i1+1|s

n
r , ψ

i1−1, φi1−1)

= I(u; v |sn
r , φ

i1−1, ψi1−1) +

n
∑

j=1

Fr,j − Fe,j +

n
∑

j=1

Gr,j −Ge,j

(27)

where we have introduced

Fr,j = I(u; yrj , yej |s
n
r , v , φ

ij−1, ψij−1, y j−1
e , y j−1

r )

Fe,j = I(u; yej |φ
ij−1, ψij−1, y j−1

e , sn
r ),

(28)

Gr,j = I(u;φij+1, . . . , φij+1−1, ψij+1 . . . , ψij+1−1|φij−1, ψij−1,
y j
r , y

j
e , v , s

n
r ) andGe,j = I(u;φij+1, . . . , φij+1−1, ψij+1,

. . . , ψij+1−1|φij−1, ψij−1, y j
e , s

n
r ).

To complete the proof it suffices to show that

I(u; v |sn
r , φ

i1−1, ψi1−1) ≤ I(u; v |sn
r ) = 0 (29)

Fr,j − Fe,j ≤ I(xj ; yrj |yej , srj) (30)

Gr,j −Ge,j ≤ 0. (31)

Due to space limitations, we only establish the first rela-
tion. The remaining two relations can be established in an
analogous manner. Sinceφi1−1 = Φi1−1(u, s

n
r , ψ

i1−2) and
ψi1−1 = Ψi1−1(u, s

n
r , φ

i1−2) we have that

I(u; v |sn
r , φ

i1−1, ψi1−1)

≤ I(u, φi1−1; v , ψi1−1|s
n
r , φ

i1−2, ψi1−2)

= I(u; v |sn
r , φ

i1−2, ψi1−2).

Continuing this process, I(u; v |sn
r , φ

i1−1, ψi1−1) ≤
I(u; v |sn

r ) = 0.
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