Secret Key Agreement Using Asymmetry in
Channel State Knowledge

Ashish Khisti Suhas Diggavi Gregory Wornell
Deutsche Telekom Inc. R&D Lab USA LICOS, EPFL EECS Dept., MIT
Los Altos, CA, 94040 Lausanne, Switzerland Cambridge, MA, 02139
Email: ashish.khisti@telekom.com Email: suhas.diggavi@epfl.ch Email: gww@mit.edu

_Abstract—We study secret-key agreement protocols over a state parameters (and no public discussion) has been dtudie
wiretap channel controlled by a state parameter. Thg secret in [2], [3], [4]. Achievable rate-equivocation regions greo-
key capacity is established when the wiretap channel is disgte iqaq for the case of either transmitter-side information o

and memoryless, the sender and receiver are both revealed éh ¢ ided state inf fi but th lete ch it
underlying state parameter, and no public discussion is atiwed wo-sided state Information, but the complete characieon

An Optima| Coding scheme involves a two Step approach N (|) Of th|S region remains Open. In contrast to Sending Indeﬁﬂhd
design a wiretap codebook assuming that the state parameter messages, the formulation studied in the present papewsll

is also known to the eavesdropper (i) generate an additiona the secret key to arbitrarily depend on the state sequence.
secret key by exploiting the uncertainty of the state parameer Il. PROBLEM STATEMENT

at the eavesdropper. When unlimited public discussion is &wed ] ) ) ]
between the legitimate terminals, we provide an upper bound  The problem setup is described in Fig. 1. The sender and
on the secret-key capacity and establish its tightness whethe receiver communicate over a discrete-memoryless-wiretap

channel outputs of the legitimate receiver and eavesdroppe channel with input symbok, the output at the legitimate
satisfy aconditional independence property. Numerical results for receivery, and the output at the eavesdropperThe channel

an on-off fading model suggest that the proposed coding scimes - e " .
significantly outperform naive schemes that either disregad the transition probability is conditioned on state paramefers

contribution of the common state sequence or the contributn ~ Specified by

of the underlying channel.
I. INTRODUCTION

n

X . Pr(}/rn = y:}vycn = yglxn = xnas:} = S:}):prr,yelx,sr (yrivyei|a7i,5ri)

Generating a shared secret-key between two terminals by i

exploiting the reciprocity in the physical wireless channe 1)

has received a lot of recent attention. See e.g, [1] and th&ere the state parameter sequesités sampled i.i.d. from

references therein. The sender and receiver exchange gt distributionps, (-).

signals to learn the channel gains in uplink and downlink In defining a length: encoder and decoder, we will as-

respectively. When the channels are reciprocal, the uglink sume that the state sequeng is known non-causally to

downlink gains are close to one another and this correlatifit senderand the receiver. However our coding theorems

is exploited to generate shared secret keys. only require a causal knowledge of the state sequence. We
Motivated by these works we study the information theoretfé'st separately consider the case when no public discussion

problem of secret-key agreement over a channel controlidallowed between the encoder and the decoder and when

by one state parameter. This state parameter is revealed!imited discussion is allowed.

both the sender and the receiver and not to the eavesdrop’g\erNo Public Discussion

In the fading model discussed above, this state parametér

models the fading gain between the sender and the receiveA length n encoder is defined as follows. The sender

The sender and receiver can learn this value over reciproég@mples a random variablesrom the conditional distribution

wireless channels by exchanging pilot signals, whereas thes: (-|s;'). The encoding function produces a channel input

eavesdropper cannot directly learn this value. A good apdigeduencex” = f,(u,sy') and transmits it ovemn uses of

scheme for this problem exploits two sources of uncertainfye channel. At timei the symbolx; is transmitted and

at the eavesdropper — one due to the lack of knowledﬂ’ée legitimate receiver and the eavesdropper observe butpu

of state parameter at the eavesdropper, and the other dué¥@bolsy:; andy.; respectively, sampled from the conditional

the equivocation introduced by the channel. As our capacf§stribution p,, , |, s (-). The sender and receiver compute

expression illustrates, there is in fact a balance betwhen §€cret keyss = gn(u,s;') and/ = hy,(s7, y"). A rate R is

gains from the two uncertainties. achievable if there exists a sequence of encoding functions
In other related works, the case when amwlependent such that for some sequeneg that vanishes as — oo,

message needs to be transmitted over the wiretap channel witke have thatPr(x # /) < e, and LH(k) > R — e, and
L1(k;y") < en. The largest achievable rate is the secret-key

This work was supported in part by NSF under Grant No. CCF0892 capacity.



r
presenseeanseases O
H '
H '
'
'
. H
H '
0 '
v v :
'
3 .
S = A O
___) Receiver
l Public discussion channel l
K K

Fig. 1. Secret-key agreement over a wiretap channel ctedrolith a state parameter. The channel is a discrete-méessrproadcast channel. The state
parametes,. is sampled i.i.d. and revealed to the sender and receiveséperately consider two cases (a) unlimited interactivgipuliscussion is allowed
between the sender and the receiver and (b) no such disgussaiowed.

Remark 1: Note that the formulation can be easily extended We require that for some sequenggethat vanishes as —
to include the case when the eavesdropper is also reveated Pr(x # /) < e, and 2I(k; y2,v%, ¢%) < &,,.
the state parameter.. This can be done by re-defining the
output symboly. = (ye,s,). More generally, our formulation
also extends to the case when the eavesdropper observés B0 Public Discussion
state paramete, correlated withs, and the channel transition  The following theorem characterizes the secret-key caypaci
probability ispy, .|xs, s. (+)- In this case it sufficies to considerwhen no public-discussion channel is available between the
the channel where the eavesdropper obseges- (y.,s.) legitimate terminals.
with transition probability Theorem 1: The secret-key capacity for the channel model
in section Il-A is

IIl. SUMMARY OF RESULTS

iqlryclx,sT(yra ge|x7 Sr) :pyr,yclx,sr,sc(yra ye|$, Sry Se)psc\sT (Se|87‘)7

_ _ @ C = max {I(t;yls,) — It vels,) + Hs:lye)} . (3)
which reduces to the present formulation. P

whereP is the set of all joint distributiong; .., . (-) that

satisfy the Markov chain — (x,s,) — (w, ). Furthermore

When a public discussion. chann(_al s present, th(_e descriqR (3) it suffices to maximize over the auxiliary random
prot_ocol follows closely the interactive communicatiomfor | - iobie o \whose cardinality is bounded g, |(1 + |X|).0
col |n.[5]. The sender trapsmns symbo}_s,...,xn at times Remark 2: The expression in (3) can be interpreted as
0 < i1 < iz < ... < in Over the wiretap channel. At enerating two independent keys. The first key at fate =
these times the receiver and the eavesdropper observe ksym E)t;yr|sr) — I(t: ye|s.) is achieved by transmitting an inde-

Yriy. - Vrn and yer, ... » Yen respectively. In the remaining pendent message with perfect secrecy using a wiretap code-
times the sender and receiver exchange messagesid¢. ooy for 4 modified channel where is revealed to the
wherel < ¢ < k. For convenience we let,1 = k+ 1. The o5 eqqropper (in addition to legitimate terminals). Theose
eavesdropper _observes bath and ;. . key, which is independent of the first key and has a rate
More specifically the senc_igr and receiver sample randodrp Rue = H(s,|ye) is produced by exploiting the common
variablesu ind v from conditional dft”buuongj”‘s?("s?) knowledge ofs! at the legitimate terminals. This intuition is
andp,j;; (-|s7') and observe that — s — v. formalized in the achievability scheme in section V-A.
« At times On <t71t < 1, the sender generates eyt consider the case when for eaghe S,, the channel
¢ = ‘bt(”t’_slr”/’ ) and the receiver generates = st the eavesdropper is less noisy than the channel of the
Uy (v, sy ). These messages are exchanged over tré?]itimate receiver i.emaxp I(t; yils,) — I(t; yels,) = 0. In

»Y=ro
this case, the secret-key capacity reduces to

B. Presence of Public Discussion

public channel.
o At timesi; , 1 < j < n, the sender generates =

X;(u,s",¢%~1) and sends it over the channel. The re- C = max H (s.|ye).

ceiver and eavesdropper obsepyg ady. ; respectively. Prler

For these times we set;, = ¢;, = 0. It is achieved by generating the secret-key based on the
o For timesi; <t < ij11, wherel < j < n, the sender common knowledge of’ between the legitimate terminals and

and receiver compute;, = ®,(u,s”?,9*"') andy, = choosing an input distribution that leaks minimal inforroat

U, (v,s? vy, ¢'~1) respectively and exchange them ovepbouts” to the eavesdropper. More generally, there is a balance

the public channel. between the amount of information leaked to the eavesdroppe
o At time k + 1, the sender and receiver comput@nd the ability to transmit information over the wiretap chel

k = gn(u,s?, %) and the receiver computes = in the capacity achieving scheme. This balance is reflected i

B (v, s2, yl, o). the maximization in (3).



B. Unlimited Public Discussion curves — the solid curve is the resulting secret key rate

When unlimited public discussion is allowed between ti#€ (8), while the dashed curve is the entroflys,|s. =1, y.)
sender and the receiver, as described in section 1I-B, we h&nd the dotted curve denotes the secret-message rate. The
the following result on the secret-key capacity. upper solid and dashed curves denote the case of public

Theorem 2: The secret-key capacity in the presence of ufiscussion whereas the lower curves denote the case of no
limited public discussion between the sender and the receipublic discussion. Note that in general there is a tradeoff

is between these two terms. To maximize the conditional egitrop
C = max I(x; yi|ye,sr) + H(sr|ye). (4) We sethy = P = P/2, while to maximize the secret-message
Px|sp. rate we setPy = 0 and P, = P. The resulting secret-key rate

when the channel satisfies the Markov conditign — IS maximized by selecting a power allocation that balances
(x,s,) — y.. For any discrete memoryless channel (4hese two terms. The optimum fraction of power transmitted
provides an upper bound to the secret-key capacity. in the states,, = 0 as a function of the signal to noise ratio is
Remark 3: The Markov condition in Theorem 2 can beshown in Fig. 3. Note that no power is transmitted when the
interpreted as requiring that the noise on the legitimatetha Signal-to-noise ratio is belows —2.5dB. In this regime the
eavesdroppers channel be mutually independent. Furtmerméhannels are sufficiently noisy so that(s, |y.,s. = 1) =~ 1
analogous to the capacity expression in Theorem 1 the exprééen with P, = 0 and hence all the available power is used for
sion in (4) also involves a sum of two terms and accordingtyansmitting the secret-message. As the signal-to-naitie r
the lower bound is constructed by generating two separdigreases more information regardiag gets leaked to the
keys. eavesdropper and to compensate for this effect, a non-zero

fraction of power is transmitted when = 0.
IV. NUMERICAL EXAMPLE

We consider the the following on-off channel for the re- V. PROOFS
ceivers:
Yo =S X+ 2z A. Coding Theorem for Theorem 1

5
_ye = SeX + Zea ( ) . . .
The lower bound involves separately constructing two in-

where boths,,s. € {0,1}, the random variables are mutu-dependent keys.., and ks at ratesRe, = I(t;y|sr) —
ally independent and®r(s, = 0) = Pr(se = 0) = 0.5. I(t;¥|s;) and Rg,c = H(s,|y.) respectively.
Furthermore we assume thst is revealed to the legitimate The keykq, is constructed by using a multiplexed coding
terminals, whereas the eavesdropper is revegled (s.,y.). scheme as follows. LeS, = {si,...,s,} and letp; =
The noise random variables are mutually independent, zérg(s; = s;). For eachi construct a wiretap codebook [6] of
mean and unit variance Gaussian random variables and th&R,; = I(t; y;|s, = s;)—I(t; yo|s- = si)—2e, consisting of
power constraint is thab[x?] < P. onpil (tiyelsr=s:)—¢n codewords each of lengifp; and sampled
We evaluate the secret-key rate expression for Gaussian. from the distributionp,s.—, (-). For each codebook an
inputs i.e.,t = x ~ N(0,P) whens, = 0 andt = x ~ independent message; uniformly distributed over the set
N(0, P1) whens, = 1. Further to satisfy the average power1,2,... 2"7:% is selected and corresponding codeword
constraint we have thak, + P, < 2P. An achievable rate symbols are transmitted whenewer= s;. The resulting key

from Theorem 1 and Remark 1 is, is the collection of these messages i, = (w1, ..., wy,).
. . Clearly the multiplexed codebook has a rate of
R =1(x;y:lsr) = 1(x; Yelsr) + H(sr|ye) (6) y P
= 1(x; yelsr) — 1(X; Ye, Selsr) + H (sr[se, Ye) (7) Ui
L o Ren = ZPiRi (11)
Substituting (5) above and simplifying, we have that =
= I(t; yelsr) — I(t; yelsr) — 2en (12)

R=Slog(1 + P1) + 3 B [Hp(ye), 1~ ple))] + 5, )

as required. We further show below that

- N,. (0, Py +1) 1 n oy
p(ye) - Nye(OaPO + 1) +Ne(oapl + 1) (9) EH(K/ChLye 3Sr) - RCh - 0"(1)3 (13)

is the aposterior distributio®r(s. = 0ly.) which is used whereo, (1) decays to zero as — oo. From the analysis of
to numerically evaluate the second term in (8). Similarly bgach wiretap codeboak;, we have that

choosing Gaussian inputs in Theorem 2, the secret-key rate
1 1
reduces to EH(WHYQJ _ EH(Wi) —e,

1 1 1
R=—log(1+2P)+=E, [H(p(ye),1 - p(ye))] + =. (10 _ o L
8 &l ) 2 1H (P(ye) P(ye))] 2 (10) whereyj; is the projection of* onto those time indices where
Fig. 2 illustrates the secret-key rate in (8),(10) as a fianct the state parameter takes the value- s;. Furthermore, since
of the power allocation when SNR = 17 dB. There are thréahe messages and codewords are selected independently in

where
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Fig. 3. Optimal fraction of power that must be allocated te #iates, = 0
to maximize the secret-key rate with Gaussian inputs. Theecmarked with
Fig. 2. The achievable secret-key rate as a fraction of pallecated to the a (x) denotes the case of public discussion while the other cderetes the
states, = 0 and SNR = 17 dB. The solid curve denotes the secret-key rategase of no public discussion.
the dashed curve denotes the rate of the secret-messade thehtlotted curve
denotes the conditional entropy tetHi(s,[se = 1, ye = ye) in (8). The upper
solid and dashed curves denote the case of public discusdida the other
solid and dashed curves denote the case of no public discussi

each codebook where (16) follows from the fact that,,. is a deterministic
1 function ofs)* and the last step is obtained by substituting (13)
SH Wy st Wit Wi W) and (15) for the two equivocation terms.

= lH(Wib/;Ti) = lH(Wi) —¢e,. (14) B. Converse for Theorem 1 .

n n For any sequence of codes indexed by the codeword length
Finally we have that n, we show that the secret key rate is upper bounded by the
capacity expression (3) plus a term that vanishes to zero as
the block length goes to zero. Apply Fano’s inequality on
1 the secret-key rate, we have that for some sequepcinat
-~ S H(wilwa, .o Wii1, Wit Wi, Y2 ST) approaches zero asgoes to infinity
i=1

1 1
EH(HChb/cnvS:}) = EH(le ceey Wm|ygl,S:})

Y

nR < I(k;l) +ne, < I(k;s;,y) + nen (18)

1 m
>—§ H(w;) — = R — PR
T n4 (ws) —men ch = Men where the last step follows from the data processing indigyual
-

since! = h, (s, y*). Furthermore from the secrecy condition

as required. we have that

The remaining keyk,. is obtained from the sequeneg
via random binning. No additional communication between nR < I(k;s!,y)") — I(k;y2) + 2ne, (19)
the sender and receiver is required in this step. To generate n _
this key, the set of all typical sequencesis partitioned into = I(n,y‘j*ls,ifiﬂyr’f”l; Sryis Yrii)
onH(s-lye) pins, each consistingf*(/(s-i¥e)—<») sequences. The i=1
secret-keyks,. is the bin index of the sequenc&. Using n P N
standard arguments it can be shown that - ZI(“’VC Sri+1Ypit1iYei) +2nen  (20)

i=1
1
—H{(#seclye') = H(srlye) = 0n(1)- (15) where the second step follows from the well known chain rule
To complete the secrecy analysis of our codebook, note tﬁzﬁ’tpl'ed tq difference of mut_ual informations (se_e €.g.).[6]
1 For eachi = 1,2,...,n, define the random variable =
— H (Ksre, Kenly™) (K, ¥ 'sti 1 yi1). By noting that the encoding functions
”1 1 are defined by = g,,(u,s") andx"™ = f,(u,s?), it can be
—H (Kseelyd') + —H (Ken|ye' s Ksee) verified that the joint distributiony;, , s, ..y, ;... € P. Thus
" n we have from (20) that

Y

1 1
EH(“srCD’en) + EH(HChb/:v Rsrcs 5?)

1 n
1 a1 . R—2e, < =% I(tiisni, yri) = (8 yed)
EH(HSYCD/C )+ EH(’{chb’c »Sr) (16) nia

H(selye) + It ilse) — I(Eyels:) —on(1)  (17) < max {I(t; s, yr) — I(t; ye)}



:mgX{I(t;}/er)—I(t§}/e75r)+j(t§sr|)’C)} (21)
= max {I(t;yr|s) = I(t; yelsr) + I(t;sr|ye)} (22)
= max {1(t yrls,) = I(t yelsr) + H(srlye) ), (23)

where (21) and (22) both follow from the chain rule of mutual £(k: v,y [0", &%, v, s?) < I(us v,y [0, ¢F, sy,

information and the last expression follows by observirag th

t* is any random variable that maximizes (22), then selecting I(uyv, =1, ¢ =1 sn

t = (t*,s,), we have
I(t*; yrlsr) — I(t*; Yelsr) = I(t; yr|sr) — I(t; yelsr)

while the termI(t*;s,|y.) increases tdH (s,|y.). Hence for
the maximizing distribution, we can replaéét;s,|y.) by the
entropy term as in (23).

C. Coding Theorem for Theorem 2

The proposed coding scheme is a direct extension of tWe
coding schemes in [7], [5] that consider the channel with

G

é]’i?ayg7 V7S;L) andGeaj = I(”v ¢ij+la e

no state parameters. The sender chooses a distributjgn
and givens,, samples the channel input symbol from thi
distribution. Upon observingy.”,s”), the receiver transmits
the bin-index from a Slepian-Wolf code over a public chann
The resulting secret-key rate is

R= glaxf(x,sr;yr,sr) — I(Ye; Yoy Sr)
x| s

= ?%xl(x;ydsr) — I(Ve; yr|sr) + H(sr|Ye)-

which matches the upper bound (4) when the Markov condi-

tion y, — (x,s,) — y. is satisfied.

D. Upper Bound for Theorem 2

as required. Thus it only remains to establish (26). The foroo
follows closely the upper bound derived in [5] with some
modifications to take into account the state parametergeSin
K = gn(u, ¥, s") we have that

Y
ycn) - I(u;s?’¢k7¢k’yg)
) = I(ussp, =t g )
)

k 1k
:I(U;V7yl:n,ﬂ} 7¢ 75;’}7
r

k k i1 —1 i1 —1
+I(u;yrn7yen7wil+la¢il+l|va1/1“ a¢“
k k 1 —1 i1 —1
_I(u;yenvwi]-Q—b¢i1+1|577}7w“ 7¢“ )
n

= I(uvls),¢" L)+ F i —Fo i+ Grj—Gey

Sn

» r

j=1 j=1
(27)
here we have introduced
F.;= I(U;YTj,y§j|57a V‘a ¢ij_1‘a ¢ij_17yéj_layg_l) (28)
Fej = I(usyej|¢' 1 0l =t yd =t st),

=T(U;iyq1s s Diyor—1, Vi1 - ooy iy —1| P 8L
. ) ’ ¢ij+1—17 wij+1,
T wij+l—1|¢1j_la 1/sz_1ayé]7sf)'

To complete the proof it suffices to show that

I(usvlst, ¢~y 1) < I(usvis!) =0 (29)
Frj = Fej < 1(xj3YrjlYejs Sri) (30)
Gr;—Ge; <0. (32)

Due to space limitations, we only establish the first rela-
tion. The remaining two relations can be established in an
analogous manner. Singg, 1 = ®;, _1(u,s?, 9" ~?) and

For any sequence of encoding and decoding functions, We | =W, _(u,s", ¢~2) we have that
t1—4 11— 97

have from Fano’s inequalty that

nR < I(k;l) + ne,

< I(k;v,st, y™ ¢F) + ne, (24)
< I(r;vys7, 00 0) = I(rsye, 68, 90%) + 2ne, - (25)
< I(ks v, 87,y %, 05, y2) + 2ney

S I(k; v, Y 8, 6,y st + 1 (s sy |0, 6, i) + 2,
< Ik v,y |08, 68, 2 s) + H(sylyl) + 2nen

S I(ﬁ; V7yrn|,¢k7 (bkayena S?) + Z H(ST,i|ye7i) + 2”‘571
=1

where (24) follows from the fact that= h,,(v,s?, y", ¢*),

and (25) follows from secrecy constraint. It sufficies towho
that

n
(ks v,y (0%, 0%, y8s7) <) 1063 Yoilseis yei)  (26)
=1
since,

n
nR <Y (%5 Yol Sris Yeui) + H(spilYe.i) + 2nen

N
Il
-

< n (max I(x: valses ve) + Hs lye) + 2en)

DPx|sy

I(u; v|sf,¢i1_17wi1—1)
< I(u, sy —1; v, iy —1|st, ¢ 2,11 72)
= I(u;vlsy, ¢ 7%, 9" 7).

Continuing  this
I(u;v|sy) = 0.

<

process, I(u;v|s?, ¢t~ ¢pir—1)
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