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Abstract—In a variety of applications, ranging from high-
speed networks to massive databases, there is a need to maintain
histograms and other statistics in a streaming manner. Motivated
by such applications, we establish the existence of efficient source
codes that are both locally encodable and locally decodable. Our
solution is an explicit construction in the form of a (randomized)
data structure for storing N integers. The construction uses
multi-layered sparse graph codes based on Ramanujan graphs,
and has the following properties: (a) the structure utilizes
minimal possible space, and (b) the value of any of the integers
can be read or updated in near constant time (on average and
with high probability). 1 By contrast, data structures proposed
in the context of streaming algorithms and compressed sensing
in recent years (e.g., various sketches) support local encodability,
but not local decodability; and those known as succinct data
structures are locally decodable, but not locally encodable.

I. INTRODUCTION

In this paper, we are concerned with the designing space

efficient and dynamic data structures for maintaining a collec-

tion of integers, motivated by many applications that arise in

networks, databases, signal processing, etc. For example, in a

high-speed network router one wishes to count the number of

packets per flow in order to police the network or identify a

malicious flow. As another example, in a very large database,

relatively limited main memory requires “streaming” compu-

tation of queries. And for “how many?” type queries, this

leads to the requirement of maintaining dynamically changing

integers.

In these applications, there are two key requirements. First,

we need to maintain such statistics in a dynamic manner so that

they can be updated (increment, decrement) and evaluated very

quickly. Second, we need the data to be represented as com-

pactly as possible to minimize storage, which is often highly

constrained in these scenarios. Therefore, we are interested in

data structures for storing N integers in a compressed manner

and be able to read, write/update any of these N integers in

near constant time.2

A. Prior work

Efficient storage of a sequence of integers in a compressed

manner is a classical problem of source coding, with a long

history, starting with the pioneering work by Shannon [13].
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1See Section I-B for our sharp statements and formal results.
2Or, at worst , in poly-logarithmic time (in N ). Moreover, we will insist

that the space complexity of the algorithms utilized for read and write/update
be of smaller order than the space utilized by the data structure.

The work of Lempel and Ziv [14] provided an elegant univer-

sal compression scheme. Since that time, there has continued

to be important progress on compression algorithms. However,

most well-known schemes suffer from two drawbacks. First,

these schemes do not support efficient updating of the com-

pressed data. This is because in typical systems, a small change

in one value in the input sequence leads to a huge change in the

compressed output. Second, such schemes require the whole

sequence to be decoded from its compressed representation in

order to recover even a single element of the input sequence.

A long line of research has addressed the second drawback.

For example, Bloom filters [35], [36], [37] are a popular data

structure for storing a set in compressed form while allowing

membership queries to be answered in constant time. The

rank/select problem [27], [28], [29], [30], [31], [32], [33], [34]

and dictionary problem [38], [39], [32] in the field of succinct

data structures are also examples of problems involving both

compression and the ability to efficiently recover a single

element of the input, and [26] gives a succinct data structure

for arithmetic coding that supports efficient, local decoding

but not local encoding. In summary, this line of research

successfully addresses the second drawback but not the first

drawback, e.g., changing a single value in the input sequence

can still lead to huge changes in the compressed output.

Similarly, several recent papers have examined the first

drawback but not the second. In order to be able to update

an individual integer efficiently, one must consider compres-

sion schemes that possess some kind of continuity property,

whereby a change in a single value in the input sequence leads

to a small change in the compressed representation. In recent

work, Varshney et al. [40] analyzed “continuous” source codes

from an information theoretic point of view, but the notion of

continuity considered is much stronger than the notion we are

interested in, and [40] does not take computational complexity

into account. Also, Mossel and Montanari [1] have constructed

space efficient “continuous” source codes based on nonlinear,

sparse graph codes. However, because of the nonlinearity, it

is unclear that the continuity property of the code is sufficient

to give a computationally efficient algorithm for updating a

single value in the input sequence.

In contrast, linear, sparse graph codes have a natural,

computationally efficient algorithm for updates. A large body

of work has focussed on such codes in the context of streaming

algorithms and compressed sensing. Most of this work essen-

tially involves the design of sketches based on linear codes

[4], [5], [6], [3], [2], [7], [8], [9], [10], [11]. Among these,

[3], [2], [7], [8], [9], [10], [11] consider sparse linear codes.
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Existing solutions from this body of work are ill-suited for

our purposes for two reasons. First, the decoding algorithms

(LP based or combinatorial) requires decoding all integers to

read even one integer. Second, they are sub-optimal in terms

of space utilization when the input is very sparse.

Perhaps the work most closely related to this paper is that

of Lu et al. [21], which develops a space efficient linear code.

They introduced a multi-layered linear graph code (which they

refer to as a Counter Braid). In terms of graph structure, the

codes considered in [21] are essentially identical to Tornado

codes [41], so Counter Braids can be viewed as one possible

generalization of Tornado codes designed to operate over the

integers instead of a finite field. [21] establishes the space

efficiency of counter braids when (a) the graph structure and

layers are carefully chosen depending upon the distributional

information of inputs, and (b) the decoding algorithm is

based on maximum likelihood (ML) decoding, which is in

general computationally very expensive. The authors propose a

message-passing algorithm to overcome this difficulty and pro-

vide an asymptotic analysis to quantify the performance of this

algorithm in terms of space utilization. However, the message-

passing algorithm may not provide optimal performance in

general. In summary, the solution of [21] does not solve our

problem of interest because: (a) it is not locally decodable,

i.e., it does not support efficient evaluation of a single input3,

(b) the space efficiency requires distributional knowledge of

the input, and (c) there is no explicit guarantee that the space

requirements for the data structure itself (separate from its

content) are not excessive; the latter is only assumed.

B. Our contribution

As the main result of this paper, we provide a space

efficient data structure that is locally encodable and decodable.

Specifically, we consider the following setup.

Setup. Let there be N integers, x1, . . . , xN with notation x =
[xi]1≤i≤N . Define

S(B1, B2, N) = {x ∈ N
N : ‖x‖1 ≤ B1N, ‖x‖∞ ≤ B2}.

Let B2 ≥ B1 without loss of generality, where B1, B2 can

be arbitrary functions of N with B2 ≤ NB1. Of particular

interest is the regime in which both N and B1 (and thus

B2) are large. Given this, we wish to design a data structure

that can store any x ∈ S(B1, B2, N) that has the following

desirable properties:

Read. For any i, 1 ≤ i ≤ N , xi should be read in near

constant time. That is, the data structure should be locally

decodable.

Write/Update. For any i, 1 ≤ i ≤ N , xi should be

updated (increment, decrement or write) in near constant

time. That is, the data structure is locally encodable.

Space. The amount of space utilized is minimal possible.

The space utilized for storing auxiliary information about

the data structure (e.g. pointers or random bits) as well as

3For example, see the remark in Section 1.2 of [21].

the space utilized by the read and write/update algorithms

should be accounted for.

Naive Solutions Don’t Work. We briefly discuss two naive

solutions, each with some of these properties but not all, that

will help explain the non-triviality of this seemingly simple

question. First, if each integer is allocated log B2 bits, then one

solution is the standard Random Access Memory setup: it has

O(1) read and write/update complexity. However, the space re-

quired is N log B2, which can be much larger than the minimal

space required (as we’ll establish, it’s essentially N log B1).

To overcome this poor space utilization, consider the following

“prefix free” coding solution. Here, each xi is stored in a

serial manner: each of them utilizes (roughly) log xi bits to

store its value, and these values are separated by (roughly)

log log xi 1s followed by a 0. Such a coding will be essentially

optimal as it will utilize (roughly) N(log B1+log log B1) bits.

However, read and write/update will require Ω(N) operations.

As noted earlier, the streaming data structures and succinct

data structures have either good encoding or good decoding

performance along with small space utilization, but not both.

In this paper we desire a solution with both good encoding

and decoding performance with small space.

Our Result. We establish the following result as the main

contribution of this paper.

Theorem I.1 The data structure described in Section II

achieves the following:

Space efficiency. The total space utilization is (1 +
o(1))N log B1

4. This accounts for space utilized by aux-

iliary information as well.

Local encoding. The data structure is based on a lay-

ered, sparse, linear graphical code with an encoding

algorithm that takes poly(max(log(B2/B2
1), 1)) time to

write/update.

Local decoding. Our local decoding algorithm takes

exp
(

O(max(1, log log(B2/B2
1) × log log log(B2/B2

1)))
)

= quasipoly(max(log(B2/B2
1), 1))

on average and w.h.p.5to read xi for any i. The algorithm

produces correct output w.h.p.. Note that the randomness

is in the construction of the data structure.

In summary, our data structure is optimal in terms of space

utilization as a simple counting argument for the size of

S(B1, B2, N) suggests that the space required is at least

N log B1; encoding/decoding can take poly(log N) time at

worst, e.g. when B1 = O(1) and B2 = Nα for some α ∈
(0, 1), but in more balanced situations, e.g. when B2 = Nα

and B1 = Nα/2, the encoding/decoding time can be O(1).
In what follows, we describe a construction with the prop-

erties stated in Theorem I.1, but, due to space constraints, we

omit all proofs. Before detailing our construction, we provide

4The o(1) here is with respect to both B1 and N , i.e., the o(1) → 0 as
min(N, B1) → ∞.

5In this paper, unless stated otherwise by with high probability (w.h.p.) we
mean probability 1 − 1/poly(N).
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some perspectives. The starting point for our construction is

the set of layered, sparse, linear graphical codes introduced in

[21]. In order to obtain the desired result (as explained above),

we have to overcome two non-trivial challenges. The first chal-

lenge concerns controlling the space utilized by the auxiliary

information in order to achieve overall space efficiency. In the

context of linear graphical codes, this includes information

about adjacency matrix of the graph. It may require too

much space to store the whole adjacency matrix explicitly (at

least Ω(N log N) space for an N × Θ(N) bipartite graph).

Therefore, it is necessary to use graphs that can be stored

succinctly. The second challenge concerns the design of local

encoding and decoding algorithms. Sparse linear codes readily

have local encoding, but design of a local decoding algorithm

is not clear. All the known decoding algorithms in the literature

are designed for decoding all the information simultaneously.

Therefore, we need to come up with novel decoding algorithm.

To address the first challenge, we use pseudorandom graphs

based on appropriate Ramanujan graphs. These graphs have

efficient ‘look up’, a succinct description (i.e., O(
√

N log N)
space), and a ‘locally tree-like’ property (i.e., girth at least

Ω(log N)). To address the second challenge, using this locally

tree-like property and the classical message-passing algorithm,

we design a local decoding algorithm that is essentially a

successively refined maximum likelihood estimation based on

the local graph structure.

II. CONSTRUCTION

This section describes the construction and corresponding

encoding/decoding algorithms that lead to the result stated in

Theorem I.1. A caricature of the data structure is portrayed in

Figure 1.

Layer = L

1

N

2

Layer = 0

G1

Layer = 1

G2

Layer = 2

Fig. 1. An example of the data structure.

Overall Structure. Let L denote the number of layers. Let

V0 = {1, . . . , N}, with i ∈ V0 corresponding to xi. Each

index or node i ∈ V0 has a counter of b0 bits allocated to it.

Because of this association, in what follows, we use the terms

node (or vertex) and counter interchangeably, e.g., sometimes

we call the ith node (or vertex) in V0 the ith counter in V0, and

vice versa. Intuitively, the b0 bits corresponding to ith node or

index of V0 are used to store the least significant b0 bits of xi.

In order to store additional information, i.e., more significant

bits of xis collectively, layers 1 to L are utilized. To this end,

let Vℓ denote a collection of indices or nodes corresponding

to layer ℓ, 1 ≤ ℓ ≤ L with |Vℓ| ≤ |Vℓ−1| for 1 ≤ ℓ ≤ L.

Each node i ∈ Vℓ is allocated bℓ bits. The nodes of layers

ℓ − 1 and ℓ, i.e., Vℓ−1 and Vℓ, are associated by a bipartite

graph Gℓ = (Vℓ−1, Vℓ, Eℓ) for 1 ≤ ℓ ≤ L. We denote the ith

counter (stored at the ith node) in Vℓ by (i, ℓ), and use c(i, ℓ)
to denote the value stored by counter (i, ℓ).

Setting Parameters. Now we define parameters L, bℓ and |Vℓ|
for 0 ≤ ℓ ≤ L. Later we shall describe graphs Gℓ, 1 ≤ ℓ ≤
L. Let C and K ≥ 3 be positive integers, and let ε = 3

K .

Parameters C and ε control the excess space used by the data

structure compared to the information theoretic limit. Set L as

L =

(

log log

(

B2

2K2B2
1

)

− log log (B1)

)+

+ C.

Also set b0 = log(K2B1). Let |V1| = εN , and let b1 =
log(12KB). For 2 ≤ ℓ ≤ L − 1, |Vℓ| = 2−(ℓ−1)εN , and

bℓ = 3. Finally, |VL| = 2−(L−1)εN , and bL = log
(

B2

2K2B2
1

)

.

Graph Description. Here we describe the graphs

Gℓ, 1 ≤ ℓ ≤ L. Recall that we want these graphs to

have a succinct description, efficient look up, large girth and

‘enough’ randomness. With these properties in mind, we

start by describing the construction of GL. We start with

a bipartite graph H with properties: (a) H has
√

|VL−1|
vertices on the left and

√
|VL−1|

2 vertices on the right; and

(b) H is (3, 6)-regular. The construction of such an H will

be described later, but first we use it to define GL. Let

G̃ be a graph consisting of
√

|VL−1| disjoint copies of

H . Formally, G̃ has left vertices v0, v1, . . . , v|VL−1|−1

and right vertices w0, w1, . . . , w|VL|−1. Connect

v0, v1, . . . , v√|VL−1|−1
to w0, w1, . . . , w.5

√
|VL−1|−1

using

H . Then, connect v√
|VL−1|

, v
1+

√
|VL−1|

, . . . , v
2
√

|VL−1|−1
to

w
.5
√

|VL−1|
, w

1+.5
√

|VL−1|
, . . . , w√

|VL−1|−1
using H , and so

on. GL is constructed to be isomorphic to G̃. Specifically,

every left node i ∈ {0, . . . , |VL−1| − 1} of GL inherits the

neighborhood of left node Q(i) ∈ {0, . . . , |VL−1| − 1} of G̃,

where Q(i) is defined as follows:

1. Let M : {0, . . . , |VL−1| − 1} →
√

|VL−1| ×
√

|VL−1| be

such that M(i) = (r(i), c(i)) with

r(i) = i mod
√

|VL−1| and

c(i) =

(

i + ⌊ i
√

|VL−1|
⌋
)

mod
√

|VL−1|.

2. Let random map R :
√

|VL−1|×
√

|VL−1| →
√

|VL−1|×
√

|VL−1| be defined as R(x, y) = (π1(x), π2(y)) where

π1, π2 are two permutations of length
√

|VL−1| chosen

independently, uniformly at random.

3. Then, Q = M−1 ◦ R ◦ M .

The construction of Gℓ, 2 ≤ ℓ ≤ L− 1 follows a very similar

procedure with a different number of copies of H used to

construct the associated G̃ to account for the varying size of

Vℓ (and of course, new randomness to define the corresponding
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Q). We skip details due to space constraints. Finally, G1

is constructed in essentially the same way as GL, but with

a different (3,K)-regular base graph H1. The rest of the

construction is identical. Finally, the base graphs H and H1 are

based on Lubotzky et al.’s construction of Ramanujan graphs

[16]. Again, due to space constraints we skip the details of the

precise choice of parameters. We note that the earlier work

by Vontobel et al. uses such graphs in the context of LDPC

codes. However, we require an important modification of this

construction to suit our needs.

In summary, thus constructed graphs Gℓ, 1 ≤ ℓ ≤ L have

the following properties.

Lemma II.1 For 1 ≤ ℓ ≤ L, Gℓ has (a) girth Ω(log(N)), (b)

storage space O(
√

N log N), and (c) for any node v (in the

left or right partition), its neighbors can be computed in O(1)
time.

An Example: Encoding/Decoding. Here we explain how thus

described data structure can be used to store integers. Specif-

ically, we will describe encoding and decoding algorithm. To

this end, consider situation when N = 4 and L = 2. That

is, V0 = {1, 2, 3, 4}. Let V1, V2 be such that |V1| = 2 and

|V2| = 1. Let b0 = 2, b1 = 2 and b2 = 2 and initially all

counters are set to 0. Now we explain the encoding algorithm.

We wish to write x3 = 2, or equivalently we wish to increment

x3 by 2. For this, we add 2 to c(3, 0). Since there are two bits

in layer 0 in that position, its capacity is 4. Therefore, we

do addition of 2 to the current value modulo 4. That is, the

value in those two bits is updated to 0 + 2 mod 4 = 2. The

resulting ‘overflow’ or ‘carry’ is ⌊(0 + 2)/4⌋ = 0. Since it is

0, no further change is performed. This is shown in Figure

2(a).

(a)

Add 12

0

1

0

0 0

0

1

Carry 1

Carry 3

1

1

0

0 1

2

0

2 bits 2 bits 2 bits

Add 2

0

0

0

1

0

0 1

0

0
Carry 1Add 3

0

2

0

0

0

(b)

(c) (d)

Fig. 2. (a) Add 2 to x3, (b) add 3 to x3, (c) add 12 to x2, and (d) initial
config. for decoding.

Now, suppose x3 is increased further by 3. Then, c(3, 0) is

changed to 2 + 3 mod 4 = 1 and ‘carry’ ⌊(2 + 3)/4⌋ = 1 is

added to the counters in layer 1 that are connected to (3, 0)
via graph G1, ie. counter (1, 1). Repeating the same process,

c(1, 1) is changed to 0 + 1 mod 4 = 1, the resulting carry

is 0 and hence no further change is performed. This is shown

in Figure 2(b). Using a similar approach, writing x2 = 12
will lead to Figure 2(c). Algorithm to decrement any of the

xi is exactly the same as that for increment, but with negative

value.

Finally, we give a simplified example illustrating the intu-

ition behind the decoding algorithm. Figure 2(d) shows the

initial configuration. The decoding algorithm uses the values

stored in the counters to compute upper bounds and lower

bounds on the counters. To see how this can be done for the

simple example above, let us try to compute upper and lower

bounds on x3. First, observe that the counter (1, 2) stores 0.

Therefore, both counters in V1 did not overflow. Thus, each

counter in V1 must already be storing the sum of the overflows

of its neighbors in V0.

We know c(3, 0), so the problem of determining upper and

lower bounds on x3 is equivalent to determining upper and

lower bounds on the overflow of counter (3, 0). To determine

a lower bound, consider the tree obtained by doing a breadth-

first search of depth 2 in G1 starting from (3, 0), as shown

in Figure 3(a). A trivial lower bound for the overflow of the

0

1

Counter 3

Counter 2Counter 1

−3

2 2

2

Counter 4Counter 1

2

Counter 2 Counter 4

Two copies of the
same counter

00 0 0

22

(b)(a)

1

Counter 3

Counter 2Counter 1

1

0

Fig. 3. (a) Breadth-First Search Tree Rooted at the 3rd counter in V0, (b)
Breadth-First Search Tree of Depth 4 Rooted at (3, 0).

bottom two counters is 0. Therefore, 1 − 0 − 0 = 1 must be

an upper bound on the overflow of (3, 0).

Next, consider the graph obtained by doing a breadth-first

search of depth 4 in G1 starting from (3, 0). This graph is not

a tree, but we can pretend that it is a tree by making copies

of nodes that are reached by more than one path, as shown

in Figure 3(b). As before, 0 is a trivial lower bound for the

overflow of the counters at the bottom of the tree. Therefore,

2− 0− 0 = 2 is an upper bound for both counters at depth 2
in the tree. This means that 1 − 2 − 2 = −3 must be a lower

bound on the overflow of (3, 0). Of course, in this case the

trivial lower bound of 0 is better than the bound of −3 obtained

by this reasoning. Since our upper bound on the overflow is 1
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and our lower bound is 0, we haven’t recovered the value of

counter (3, 0)’s overflow. However, in general, if this type of

reasoning leads to matching upper and lower bounds, then the

value of (3, 0)’s overflow clearly must be equal to the value

given by the matching upper and lower bounds. One can view

our analysis later in the paper as showing that if we choose the

graphs and counter sizes properly, then in fact it is extremely

likely that the reasoning above does give matching upper and

lower bounds, and thus we can use this kind of reasoning to

construct an efficient decoding algorithm.

III. ENCODING AND DECODING ALGORITHMS

The encoding or update algorithm is the same as that of

[21]. The example of Section II provides enough intuition to

reconstruct the formal description of the encoding algorithm.

Therefore, we skip details due to space constraints. In what

follows, we provide a detailed description of the decoding

algorithm that decodes each element w.h.p. It is based on

the message passing algorithm proposed by [21]. However,

to achieve the local decoding property, we carefully design an

incremental version of the algorithm. Our analysis (unfortu-

nately, skipped here due to space constraints) establishes this

property. We call this algorithm WHP.

The idea behind WHP is that to decode a single input, we

only need to use local information, e.g., instead of looking

at all counters, we only use the values of counters that are

close (in terms of graph distance) to the input we care about.

As illustrated in Section II, use of local information provides

upper and lower bounds for a given input. Following this

insight, algorithm can provide better upper and lower bounds

if more and more local information (w.r.t. graphical code) is

utilized. Therefore, the algorithm can incrementally use more

information until it manages to decode (i.e., obtains matching

upper and lower bounds). This is precisely the insight behind

our algorithm.

Formally, the description of the WHP algorithm is stated

as follows. First, a subroutine is stated that can recover the

overflow of a single counter in an arbitrary layer of the

data structure, given an additional information not directly

stored in our structure – the values in the next layer assuming

the next layer has infinite sized counters. This subroutine is

used by the ‘basic algorithm’ that utilizes more and more

local information incrementally as discussed above. Now, the

assumption utilized by the subroutine is not true for any

layer ℓ < L, but holds true for the last layer L under our

construction (i.e., the last layer never overflows as long as

x ∈ S(B1, B2, N)). Therefore, using this subroutine, one can

recursively obtain values in layers L − 1, . . . , 0. The ‘final

algorithm’ achieves this by selecting appropriate parameters

in the ‘basic algorithm’.

WHP: The Subroutine. For any counter (u, ℓ), the goal is to

recover the value that it would have stored if bℓ = ∞. To this

end, suppose the values of the counters in Vℓ+1 are known

with bℓ+1 = ∞. As explained before, this will be satisfied

recursively, starting with ℓ + 1 = L. The subroutine starts

by computing the breadth first search (BFS) neighborhood of

(u, ℓ) in Gℓ+1 of depth t, for an even t. Hence the counters at

depth t of this BFS or computation tree belong to Vℓ (root is at

depth 0). This neighborhood is indeed a tree provided that Gℓ

does not contain a cycle of length ≤ 2t. We will always select

t so that this holds. This computation tree contains all the

counters that are used by subroutine to determine the value

that (u, ℓ) would have had if bℓ = ∞. Given this tree, the

overflow of the root (u, ℓ) can be determined using the upper

bound-lower bound method described by example in Section

II. We skip detailed description of this method due to space

constraints, but some intuition follows.

Imagine that the edges of the computation tree are oriented

to point towards the root, so that it makes sense to talk about

incoming and outgoing edges. Let C((v, ℓ)) denote the set

of all children of counter (v, ℓ), and let P ((v, ℓ)) denote the

parent of counter (v, ℓ), with similar notation for counters in

Vℓ+1. Also, for a counter (v, ℓ + 1) ∈ Vℓ+1, let cv denote the

value that this counter would have had if bℓ+1 = ∞, which

we recall was assumed to be available.

The algorithm passes a message (a number) m(v,ℓ)→(w,ℓ+1)

along the directed edges pointing from counter (v, ℓ) to

counter (w, ℓ + 1) and similarly for edges pointing from a

counter in Vℓ+1 to a counter in Vℓ in this directed computation

tree. The messages are started from the counters at depth t,
that belong to Vℓ. These are equal to 0. Recursively, messages

are propagated upwards in this computation tree as explained

earlier in the example in Section II. Therefore, eventually the

root will receive upper and lower bound values for trees of

depth t and t + 2.

WHP: The Basic Algorithm. Using repeated calls to the

subroutine described above, the basic algorithm determines

the value of xi.

The basic algorithm has a parameter for each layer, which

we denote by t
(1)
ℓ . The algorithm proceeds as follows. Assume

that we want to recover xi. Then, we start by building the

computation tree of depth t
(1)
1 + 2 in the first layer, i.e.,

computation tree formed by a breadth-first search of the graph

G0 rooted at (i, 0). Next, for each counter in this computation

tree that also belongs to V1, i.e., the counters at odd depth

in the computation tree, we form a new computation tree of

depth t
(1)
2 + 2 in the second layer. This gives us a set of

computation trees in the second layer. For each computation

tree, the counters at odd depth belong to V3, so we repeat

the process and build a computation tree of depth t
(1)
3 + 2

in the third layer for each of these counters. We repeat this

process until we reach the last layer, layer L. Figure 4 gives

an example of this process.

Now, we work backwards from layer L. Each computation

tree in layer L has depth t
(1)
L + 2. We run the subroutine

described above on each of these computation trees. When we

run the subroutine on a particular computation tree, we set the

input cv for each counter (v, L) in VL that also belongs to the

computation tree to be c(v, L). Intuitively, this means that we

are assuming that no counter in VL overflows. As mentioned
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earlier, under our construction for any x ∈ S(B1, B2, N), this

holds true. Details are skipped due to space constraints.

Assuming that none of the subroutine calls fail, we have

computed the overflow for all the counters that appear in

computation trees for layer L− 1. Let (v, L− 1) be a counter

in VL−1 that also belongs to a computation tree in layer

L − 1. We have computed (v, L − 1)’s overflow, which we

denote by overflow(v, L − 1). To compute the value that

(v, L−1) would have stored if bL−1 = ∞, we simply compute

cv = c(v, L − 1) + 2bL−1 overflow(v, L − 1). Once we have

computed these values, we can run the subroutine on the

computation trees for layer L − 1. Then, we compute the

appropriate values for counters in VL−2 using the formula

cv = c(v, L − 2) + 2bL−2overflow(v, L − 2),

and so on until either the subroutine fails or we successfully

run the subroutine on all the computation trees. Assuming that

the subroutine finishes successfully on all of the computation

trees, the final subroutine call gives us the overflow of (i, 0).
Then,

xi = c(i, 0) + 2b0overflow(i, 0).

Thus, if none of the subroutine calls fail, then we successfully

recover xi.

WHP: The Final Algorithm. The final algorithm repeats the

basic algorithm several times. Specifically, the final algorithm

starts by running the basic algorithm. If none of the subroutine

calls fail, then we recover xi and we are done. Otherwise,

we run the basic algorithm again, but with a new set of

parameters t
(2)
1 , t

(2)
2 , . . . , t

(2)
L . If some subroutine call fails, we

run the basic algorithm again with a new set of parameters

t
(3)
1 , t

(3)
2 , . . . , t

(3)
L , and so on up to some maximum number

M of repetitions. If after M repetitions we still fail to recover

xi, then we declare failure. For our purposes, we set the pa-

rameters as follows. To specify t
(p)
ℓ , we introduce the auxiliary

numbers δ(p) and n
(p)
ℓ . For 1 ≤ p ≤ log(N)

(log(L))2 , 1 ≤ ℓ ≤ L, we

define δ(p), n
(p)
ℓ , and t

(p)
ℓ as follows:

δ(p) = e−Lp+1

n
(p)
ℓ = e

ℓ
“

c1+
log(c)
log(d)

log log
“

L

δ(p)

””

t
(p)
ℓ =

⌈

t∗ +
1

log d
log

(

1

a
log

(

n
(p)
ℓ L

δ(p)

))⌉

,

where a, c, c1, d, and t∗ are some fixed constants. Finally, we

set M = log(N)
log(L)2 . This completes the specification of all the

parameters.
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