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Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the
traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of
coherent image formation that strikes a balance between the utility of the light field and the comprehensive
predictive power of Maxwell’s equations. We synthesize research in optics and signal processing to formulate,
capture, and form images from quasi light fields, which extend the light field from incoherent to coherent ra-
diation. Our coherent cameras generalize the classic beamforming algorithm in sensor array processing and
invite further research on alternative notions of image formation. © 2009 Optical Society of America
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1. INTRODUCTION
The light field represents radiance as a function of posi-
tion and direction, thereby decomposing optical power
flow along rays. The light field is an important tool used
in many imaging applications in different disciplines, but
is traditionally limited to incoherent light. In computer
graphics, a rendering pipeline can compute new views at
arbitrary camera positions from the light field [1]. In com-
putational photography, a camera can measure the light
field and later generate images focused at different
depths, after the picture is taken [2]. In electronic dis-
plays, an array of projectors can present multiple view-
points encoded in the light field, enabling 3D television
[3]. Many recent incoherent imaging innovations have
been made possible by expressing image pixel values as
appropriate integrals over light field rays.

For coherent imaging applications, the value of decom-
posing power by position and direction has long been rec-
ognized without the aid of a light field, since the complex-
valued scalar field encodes direction in its phase. A
hologram encodes multiple viewpoints, but in a different
way than the light field [4]. An ultrasound machine gen-
erates images focused at different depths, but from air
pressure instead of light field measurements [5]. A
Wigner distribution function models the operation of op-
tical systems in simple ways, by conveniently inferring di-
rection from the scalar field instead of computing non-
negative light field values [6]. Comparing these applica-
tions, coherent imaging uses the scalar field to achieve re-
sults similar to those that incoherent imaging obtains
with the light field.

Our goal is to provide a model of coherent image forma-
tion that combines the utility of the light field with the
comprehensive predictive power of the scalar field. The
similarities between coherent and incoherent imaging
motivate exploring how the scalar field and light field are

related, which we address by synthesizing research across
three different communities. Each community is con-
cerned with a particular Fourier transform pair and has
its own name for the light field. In optics, the pair is po-
sition and direction, and Walther discovered the first gen-
eralized radiance function by matching power predictions
made with radiometry and scalar field theory [7]. In
quantum physics, the pair is position and momentum,
and Wigner discovered the first quasi-probability distri-
bution, or phase-space distribution, as an aid to comput-
ing the expectation value of a quantum operator [8]. In
signal processing, the pair is time and frequency, and
while instantaneous spectra were used as early as 1890
by Sommerfeld, Ville is generally credited with discover-
ing the first nontrivial quadratic time–frequency distribu-
tion by considering how to distribute the energy of a sig-
nal over time and frequency [9]. Walther, Wigner, and
Ville independently arrived at essentially the same func-
tion, which is one of the ways to express a light field for
coherent radiation in terms of the scalar field.

The light field has its roots in radiometry, a phenom-
enological theory of radiative power transport that began
with Herschel’s observations of the sun [10], developed
through the work of astrophysicists such as Chan-
drasekhar [11], and culminated with its grounding in
electromagnetic field theory by Friberg et al. [12]. The
light field represents radiance, which is the fundamental
quantity in radiometry, defined as power per unit pro-
jected area per unit solid angle. Illuminating engineers
would integrate radiance to compute power quantities, al-
though no one could validate these calculations with the
electromagnetic field theory formulated by Maxwell. Ger-
shun was one of many physicists who attempted to physi-
cally justify radiometry, and who introduced the phrase
light field to represent a three-dimensional vector field
analogous to the electric and magnetic fields [13]. Ger-
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shun’s light field is a degenerate version of the one we dis-
cuss, and more closely resembles the time-averaged Poyn-
ting vector that appears in a rigorous derivation of
geometric optics [14]. Subsequently, Walther generalized
radiometry to coherent radiation in two different ways
[7,15], and Wolf connected Walther’s work to quantum
physics [16], ultimately leading to the discovery of many
more generalized radiance functions [17] and a firm foun-
dation for radiometry [12].

Meanwhile, machine vision researchers desired a rep-
resentation for all the possible pictures a pinhole camera
might take in space–time, which led to the current formu-
lation of the light field. Inspired by Leonardo da Vinci,
Adelson and Bergen defined a plenoptic function to de-
scribe “everything that can be seen” as the intensity re-
corded by a pinhole camera parametrized by position, di-
rection, time, and wavelength [18]. Levoy and Hanrahan
tied the plenoptic function more firmly to radiometry by
redefining Gershun’s phrase light field to mean radiance
parametrized by position and direction [1]. Gortler et al.
introduced the same construct, but instead called it the
lumigraph [19]. Light field is now the dominant terminol-
ogy used in incoherent imaging contexts.

Our contribution is to describe and characterize all the
ways to extend the light field to coherent radiation, and to
interpret coherent image formation using the resulting
extended light fields. We call our extended light fields
quasi light fields, which are analogous to the generalized
radiance functions of optics, the quasi-probability and
phase-space distributions of quantum physics, and the
quadratic class of time–frequency distributions of signal
processing. Agarwal et al. have already extended the light
field to coherent radiation [17], and the signal processing
community has already classified all of the ways to dis-
tribute power over time and frequency [20]. Both have
traced their roots to quantum physics. But to our knowl-
edge, no one has connected the research to show (i) that
the quasi light fields represent all the ways to extend the
light field to coherent radiation, and (ii) that the signal
processing classification informs which quasi light field to
use for a specific application. We further contextualize the
references, making any unfamiliar literature more acces-
sible to specialists in other areas.

Our paper is organized as follows. We describe the tra-
ditional light field in Section 2. We formulate quasi light
fields in Section 3 by reviewing and relating the relevant
research in optics, quantum physics, and signal process-
ing. In Section 4, we describe how to capture quasi light
fields, discuss practical sampling issues, and illustrate
the impact of light field choice on energy localization. In
Section 5, we describe how to form images with quasi
light fields. We derive a light-field camera, demonstrate
and compensate for diffraction limitations in the near
zone, and generalize the classic beamforming algorithm
in sensor array processing. We conclude the paper in Sec-
tion 6, where we remark on the utility of quasi light fields
and future perspectives on image formation.

2. TRADITIONAL LIGHT FIELD
The light field is a useful tool for incoherent imaging be-
cause it acts as an intermediary between the camera and

the picture, decoupling information capture and image
production: the camera measures the light field, from
which many different traditional pictures can be com-
puted. We define a pixel in the image of a scene by a sur-
face patch ! and a virtual aperture (Fig. 1). Specifically,
we define the pixel value as the power P radiated by ! to-
ward the aperture, just as an ideal single-lens camera
would measure. According to radiometry, P is an integral
over a bundle of light field rays [21]:

P =!
!

!
"r

L"r,s#cos # d2sd2r, "1#

where L"r ,s# is the radiance at position r and in unit di-
rection s, # is the angle that s makes with the surface
normal at r, and "r is the solid angle subtended by the
virtual aperture at r. The images produced by many dif-
ferent conventional cameras can be computed from the
light field using Eq. (1) [22].

The light field has an important property that allows us
to measure it remotely: the light field is constant along
rays in a lossless medium [21]. To measure the light field
on the surface of a scene, we follow the rays for the im-
ages we are interested in, and intercept those rays with
our camera hardware (Fig. 1). However, our hardware
must be capable of measuring the radiance at a point and
in a specific direction; a conventional camera that simply
measures the irradiance at a point is insufficient. We can
discern directional power flow using a lens array, as is
done in a plenoptic camera [2].

In order to generate coherent images using the same
framework described above, we must overcome three
challenges. First, we must determine how to measure
power flow by position and direction to formulate a coher-
ent light field. Second, we must capture the coherent light
field remotely and be able to infer behavior at the scene
surface. Third, we must be able to use integral (1) to pro-
duce correct power values, so that we can form images by
integrating over the coherent light field. We address each
challenge in a subsequent section.

3. FORMULATING QUASI LIGHT FIELDS
We motivate, systematically generate, and characterize
quasi light fields by relating existing research. We begin
in Subsection 3.A with research in optics that frames the
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Fig. 1. (Color online) We can compute the value of each pixel in
an image produced by an arbitrary virtual camera, defined as the
power emitted from a scene surface patch toward a virtual aper-
ture, by integrating an appropriate bundle of light field rays that
have been previously captured with remote hardware.
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challenge of extending the light field to coherent radiation
in terms of satisfying a power constraint required for ra-
diometry to make power predictions consistent with sca-
lar field theory. While useful in developing an intuition for
quasi light fields, the power constraint does not allow us
to easily determine the quasi light fields. We therefore
proceed in Subsection 3.B to describe research in quan-
tum physics that systematically generates quasi light
fields satisfying the power constraint and that shows how
the quasi light fields are true extensions that reduce to
the traditional light field under certain conditions. While
useful for generating quasi light fields, the quantum
physics approach does not allow us to easily characterize
them. Therefore, in Subsection 3.C we map the generated
quasi light fields to the quadratic class of time–frequency
distributions, which has been extensively characterized
and classified by the signal processing community. By re-
lating research in optics, quantum physics, and signal
processing, we express all the ways to extend the light
field to coherent radiation, and provide insight on how to
select an appropriate quasi light field for a particular
application.

We assume a perfectly coherent complex scalar field
U"r# at a fixed frequency $ for simplicity, although we
comment in Section 6 on how to extend the results to
broadband, partially coherent radiation. The radiometric
theory we discuss assumes a planar source at z=0. Con-
sequently, although the light field is defined in three-
dimensional space, much of our analysis is confined to
planes z=z0 parallel to the source. Therefore, for conve-
nience, we use r= "x ,y ,z# and s= "sx ,sy ,sz# to indicate
three-dimensional vectors and r!= "x ,y# and s!= "sx ,sy# to
indicate two-dimensional projected versions.

A. Intuition from Optics
An extended light field must produce accurate power
transport predictions consistent with rigorous theory;
thus the power computed from the scalar field using wave
optics determines the allowable light fields via the laws of
radiometry. One way to find extended light fields is to
guess a light field equation that satisfies this power con-
straint, which is how Walther identified the first extended
light field [7]. The scenario involves a planar source at z
=0 described by U"r#, and a sphere of large radius % cen-
tered at the origin. We use scalar field theory to compute
the flux through part of the sphere, and then use the defi-
nition of radiance to determine the light field from the
flux.

According to scalar field theory, the differential flux d&
through a portion of the sphere subtending differential
solid angle d" is given by integrating the radial compo-
nent of the energy flux density vector F. From diffraction
theory, the scalar field in the far zone is

U'"%s# = −
2(i

k
sz

exp"ik%#

%
a"s#, "2#

where k=2( /) is the wave number, ) is the wavelength,
and

a"s# = $ k

2(
%2! U"r#exp"− iks · r#d2r "3#

is the plane wave component in direction s [23]. Now

F'"%s# = $2(

k %2

a"s#a*"s#
sz

2

%2s, "4#

so that

d& = $2(

k %2

sz
2a"s#a*"s#d". "5#

According to radiometry, radiant intensity is flux per
unit solid angle

I"s# =
d&

d"
= $2(

k %2

sz
2a"s#a*"s#. "6#

Radiance is I"s# per unit projected area [21], and this is
where the guessing happens: there are many ways to dis-
tribute Eq. (6) over projected area by factoring out sz and
an outer integral over the source plane, but none yield
light fields that satisfy all the traditional properties of ra-
diance [24]. One way to factor Eq. (6) is to substitute the
expression for a"s# from Eq. (3) into Eq. (6) and change
variables:

I"s# = sz! &$ k

2(
%2

sz! U$r +
1

2
r!%U*$r −

1

2
r!%

*exp"− iks! · r!! #d2r!'d2r. "7#

The bracketed expression is Walther’s first extended light
field

LW"r,s# = $ k

2(
%2

szW"r,s!/)#, "8#

where

W"r,s!# =! U$r +
1

2
r!%U*$r −

1

2
r!%exp"− i2(s! · r!! #d2r!

"9#

is the Wigner distribution [25]. We may manually factor
Eq. (6) differently to obtain other extended light fields in
an ad hoc manner, but it is hard to find and verify the
properties of all extended light fields this way, and we
would have to individually analyze each light field that
we do manage to find. So instead, we pursue a systematic
approach to exhaustively identify and characterize the ex-
tended light fields that guarantee the correct radiant in-
tensity in Eq. (6).

B. Explicit Extensions from Quantum Physics
The mathematics of quantum physics provides us with a
systematic extended light field generator that factors the
radiant intensity in Eq. (6) in a structured way. Walther’s
extended light field in Eq. (8) provides the hint for this
connection between radiometry and quantum physics.
Specifically, Wolf recognized the similarity between
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Walther’s light field and the Wigner phase-space distribu-
tion [8] from quantum physics [16]. Subsequently, Agar-
wal et al. repurposed the mathematics behind phase-
space representation theory to generate new light fields
instead of distributions [17]. We summarize their ap-
proach, define the class of quasi light fields, describe how
quasi light fields extend traditional radiometry, and show
how quasi light fields can be conveniently expressed as fil-
tered Wigner distributions.

The key insight of Agarwal et al. was to introduce a po-
sition operator r̂! and a direction operator ŝ! that obey
the commutation relations [26]

(x̂, ŝx) = i)/2(, (ŷ, ŝy) = i)/2(, "10#

and to map the different ways of ordering the operators to
different extended light fields. This formulation is valu-
able for two reasons. First, relations (10) are analogous to
the quantum-mechanical relations for position and mo-
mentum, allowing us to exploit the phase-space distribu-
tion generator from quantum physics for our own pur-
poses, thereby providing an explicit formula for extended
light fields. Second, in the geometric optics limit as )→0,
the operators commute per relations (10), so that all of
the extended light fields collapse to the same function
that can be related to the traditional light field. There-
fore, the formulation of Agarwal et al. not only provides us
with different ways of expressing the light field for coher-
ent radiation, but also explains how these differences
arise as the wavelength becomes nonnegligible.

We now summarize the phase-space representation cal-
culus that Agarwal and Wolf invented [27] to map opera-
tor orderings to functions, which Agarwal et al. later ap-
plied to radiometry [17], culminating in a formula for
extended light fields. The phase-space representation
theory generates a function L̃" from any operator L̂ for
each distinct way " of ordering collections of r̂! and ŝ!.
So by choosing a specific L̂ defined by its matrix elements
using the Dirac notation [26],

*r!
R +L̂+r!

C, = U"rR#U*"rC#, "11#

and supplying L̂ as input, we obtain the extended light
fields

L""r,s# = $ k

2(
%2

szL̃""r!,s!# "12#

as outputs. The power constraint from Subsection 3.A
translates to a minor constraint on the allowed orderings
", so that L" can be factored from Eq. (6). Finally, there is
an explicit formula for L" [27], which in the form of Fri-
berg et al. [12] reads

L""r,s# =
k2

"2(#4sz!!! "̃"u,kr!" #

*exp(− iu · "r! − r!! #)exp"− iks! · r!" #

*U$r! +
1

2
r"%U*$r! −

1

2
r"%d2u d2r!d2r",

"13#

where "̃ is a functional representation of the ordering ".
Previous research has related the extended light fields

L" to the traditional light field by examining how the L"

behave for globally incoherent light of a small wave-
length, an environment technically modeled by a quasi-
homogeneous source in the geometric optics limit where
)→0. As )→0, r̂! and ŝ! commute per relations (10), so
that all orderings " are equivalent and all of the extended
light fields L" collapse to the same function. Since, in the
source plane, Foley and Wolf showed that one of those
light fields behaves like traditional radiance [28] for glo-
bally incoherent light of a small wavelength, all of the L"

behave like traditional radiance for globally incoherent
light of a small wavelength. Furthermore, Friberg et al.
showed that many of the L" are constant along rays for
globally incoherent light of a small wavelength [12]. The
L" thereby subsume the traditional light field, and glo-
bally incoherent light of a small wavelength is the envi-
ronment in which traditional radiometry holds.

To more easily relate L" to the signal processing litera-
ture, we conveniently express L" as a filtered Wigner dis-
tribution. We introduce a function + and substitute

"̃"u,v# =!! +"− a,− b#exp(− i"a · u + b · v#)d2a d2b

"14#

into Eq. (13), integrate first over u, then over a, and fi-
nally substitute b=s!! −s!:

L""r,s# = $ k

2(
%2

sz!! +"r! − r!! ,s! − s!! #

*W"r!,s!! /)#d2r!d2s!

= $ k

2(
%2

sz+"r!,s!# " W"r,s!/)#. "15#

The symbol " in Eq. (15) denotes convolution in both r!

and s!. Each filter kernel + yields a different light field.
There are only minor restrictions on +, or equivalently on
"̃. Specifically, Agarwal and Wolf ’s calculus requires that
[27]

1/"̃ be an entire analytic function

with no zeros on the real component axes. "16#

The derivation additionally requires that

"̃"0,v# = 1 for all v, "17#

so that L" satisfies the laws of radiometry and is consis-
tent with Eq. (6) [17].

We call the functions L", the restricted class of ex-
tended light fields that we have systematically generated,
quasi light fields, in recognition of their connection with
quasi-probability distributions in quantum physics.

C. Characterization from Signal Processing
Although we have identified quasi light fields and justi-
fied how they extend the traditional light field, we must
still show that we have found all possible ways to extend
the light field to coherent radiation, and we must indicate
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how to select a quasi light field for a specific application.
We address both concerns by relating quasi light fields to
bilinear forms of U and U* that are parameterized by po-
sition and direction. First, such bilinear forms reflect all
the different ways to represent the energy distribution of
a complex signal in signal processing, and therefore con-
tain all possible extended light fields, allowing us to iden-
tify any unaccounted for by quasi light fields. Second, we
may use the signal processing classification of bilinear
forms to characterize quasi light fields and guide the se-
lection of one for an application.

To relate quasi light fields to bilinear forms, we must
express the filtered Wigner distribution in Eq. (15) as a
bilinear form. To this end, we first express the filter ker-
nel - in terms of another function K:

+"a,b# =! K$− a +
)

2
v,− a −

)

2
v%exp"− i2(b · v#d2v.

"18#

We substitute Eq. (18) into Eq. (15), integrate first over
s!! , then over v, and finally substitute

rR = r! +
1

2
r", rC = r! −

1

2
r" "19#

to express the quasi light field as

L"r,s# = $ k

2(
%2

sz!! U"rR#.K"r!
R − r!,r!

C − r!#

* exp(− iks! · "r!
R − r!

C#)/U*"rC#d2rR d2rC.

"20#

We recognize that Eq. (20) is a bilinear form of U and U*,
with kernel indicated by the braces.

The structure of the kernel of the bilinear form in Eq.
(20) limits L to a shift-invariant energy distribution. Spe-
cifically, translating the scalar field in Eq. (20) in position
and direction orthogonal to the z-axis according to

U"r# → U"r − r0#exp"iks!
0 · r!# "21#

results in a corresponding translation in position and di-
rection in the light field, which after rearranging terms,
becomes

L"r,s# → L"r − r0,s − s0#. "22#

Such shift-invariant bilinear forms compose the qua-
dratic class of time–frequency distributions, which is
sometimes misleadingly referred to as Cohen’s class [20].

The quasi light fields represent all possible ways of ex-
tending the light field to coherent radiation. This is be-
cause any reasonably defined extended light field must be
shift-invariant in position and direction, as translating
and rotating coordinates should modify the scalar field
and light field representations in corresponding ways.
Thus, on the one hand, an extended light field must be a
quadratic time–frequency distribution. On the other
hand, Eq. (20) implies that quasi light fields span the en-
tire class of quadratic time–frequency distributions, apart
from the constraints on - described at the end of Subsec-

tion 3.B. Constraint (17) is necessary to satisfy the power
constraint implied by Eq. (6), which any extended light
field must satisfy. In contrast, constraint (16) is a techni-
cal detail concerning analyticity and the location of zeros;
extended light fields strictly need not satisfy this mild
constraint, but the light fields that are ruled out are well-
approximated by light fields that satisfy it.

We obtain a concrete sensor array processing interpre-
tation of quasi light fields by grouping the exponentials in
Eq. (20) with U instead of K:

L"r,s# = $ k

2(
%2

sz!! .U"rR#exp(iks · "r − rR#)/
*K"r!

R − r!,r!
C − r!#

* .U"rC#exp(iks · "r − rC#)/*
d2rR d2rC. "23#

The integral in Eq. (23) is the expected value of the en-
ergy of the output of a spatial filter with impulse response
exp"iks ·r# applied to the scalar field, when using K to es-
timate the correlation E(U"rR#U*"rC#) by

U"rR#K"r!
R − r!,r!

C − r!#U*"rC#. "24#

That is, the choice of quasi light field corresponds to a
choice of how to infer coherence structure from scalar field
measurements. In adaptive beamforming, the spatial fil-
ter exp"iks ·r# focuses a sensor array on a particular plane
wave component, and K serves a similar role as the cova-
riance matrix taper that gives rise to design features such
as diagonal loading [29]. But for our purposes, the sensor
array processing interpretation in Eq. (23) allows us to
cleanly separate the choice of quasi light field in K from
the plane wave focusing in the exponentials.

Several signal processing texts meticulously classify
the quadratic class of time–frequency distributions by
their properties and discuss distribution design and use
for various applications [20,25]. We can use these re-
sources to design quasi light fields for specific applica-
tions. For example, if we desire a light field with fine di-
rectional localization, we may first try the Wigner quasi
light field in Eq. (8), which is a popular starting choice.
We may then discover that we have too many artifacts
from interfering spatial frequencies, called cross terms,
and therefore wish to consider a reduced interference
quasi light field. We might try the modified
B-distribution, which is a particular reduced interference
quasi light field that has a tunable parameter to suppress
interference. Or, we may decide to design our own quasi
light field in a transformed domain using ambiguity func-
tions. The resulting tradeoffs can be tailored to specific
application requirements.

4. CAPTURING QUASI LIGHT FIELDS
To capture an arbitrary quasi light field, we sample and
process the scalar field. In incoherent imaging, the tradi-
tional light field is typically captured by instead making
intensity measurements at a discrete set of positions and
directions, as is done in the plenoptic camera [2]. While it
is possible to apply the same technique to coherent imag-
ing, only a small subset of quasi light fields that exhibit
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poor localization properties can be captured this way. In
comparison, all quasi light fields can be computed from
the scalar field, as in Eq. (15). We therefore sample the
scalar field with a discrete set of sensors placed at differ-
ent positions in space and subsequently process the scalar
field measurements to compute the desired quasi light
field. We describe the capture process for three specific
quasi light fields in Subsection 4.A and demonstrate the
different localization properties of these quasi light fields
via simulation in Subsection 4.B.

A. Sampling the Scalar Field
To make the capture process concrete, we capture three
different quasi light fields. For simplicity, we consider a
two-dimensional scene and sample the scalar field with a
linear array of sensors regularly spaced along the y-axis
(Fig. 2). With this geometry, the scalar field U is param-
eterized by a single position variable y, and the discrete
light field ! is parameterized by y and the direction com-
ponent sy. The sensor spacing is d /2, which we assume is
fine enough to ignore aliasing effects. This assumption is
practical for long-wavelength applications such as
millimeter-wave radar. For other applications, aliasing
can be avoided by applying an appropriate prefilter. From
the sensor measurements, we compute three different
quasi light fields, including the spectrogram and the
Wigner.

Although the spectrogram quasi light field is attractive
because it can be captured like the traditional light field
by making intensity measurements, it exhibits poor local-
ization properties. Zhang and Levoy explain [30] how to
capture the spectrogram by placing an aperture stop
specified by a transmission function T over the desired po-
sition y before computing a Fourier transform to extract
the plane wave component in the desired direction sy. Pre-
viously Ziegler et al. used the spectrogram as a coherent
light field to represent a hologram [4]. The spectrogram is
an important quasi light field because it is the building
block for the quasi light fields that can be directly cap-
tured by making intensity measurements, since all non-
negative quadratic time–frequency distributions, and
therefore all nonnegative quasi light fields, are sums of
spectrograms [20]. Ignoring constants and sz, we compute
the discrete spectrogram from the scalar field samples by

!S"y,sy# = 01
n

T"nd#U"y + nd#exp"− ikndsy#02
. "25#

The Wigner quasi light field is a popular choice that ex-
hibits good energy localization in position and direction
[20]. We already identified the Wigner quasi light field in
Eq. (8); the discrete version is

!W"y,sy# = 1
n

U"y + nd/2#U*"y − nd/2#exp"− ikndsy#.

"26#

Evidently, the spectrogram and Wigner distribute energy
over position and direction in very different ways. Per Eq.
(25), the spectrogram first uses a Fourier transform to ex-
tract directional information and then computes a qua-
dratic energy quantity, while the Wigner does the reverse,
per Eq. (26). On the one hand, this reversal allows the
Wigner to better localize energy in position and direction,
since the Wigner is not bound by the classical Fourier un-
certainty principle as the spectrogram is. On the other
hand, the Wigner’s nonlinearities introduce cross-term
artifacts by coupling energy in different directions,
thereby replacing the simple uncertainty principle with a
more complicated set of tradeoffs [20].

We now introduce a third quasi light field for capture,
in order to help us understand the implications of requir-
ing quasi light fields to exhibit traditional light field prop-
erties. Specifically, the traditional light field has real non-
negative values that are zero where the scalar field is
zero, whereas no quasi light field behaves this way [24].
Although the spectrogram has nonnegative values, the
support of both the spectrogram and Wigner spills over
into regions where the scalar field is zero. In contrast, the
conjugate Rihaczek quasi light field, which can be ob-
tained by substituting Eq. (3) for a*"s# in Eq. (6) and fac-
toring, is identically zero at all positions where the scalar
field is zero and for all directions in which the plane wave
component is zero:

LR"r,s# = szU*"r#exp"iks · r#a"s#. "27#

However, unlike the nonnegative spectrogram and the
real Wigner, the Rihaczek is complex-valued, as each of
its discoverers independently observed: Walther in optics
[15], Kirkwood in quantum physics [31], and Rihaczek in
signal processing [32]. The discrete conjugate Rihaczek
quasi light field is

!R"y,sy# = U*"y#exp"ikysy#1
n

U"nd#exp"− ikndsy#.

"28#

B. Localization Tradeoffs
Different quasi light fields localize energy in position and
direction in different ways, so that the choice of quasi
light field affects the potential resolution achieved in an
imaging application. We illustrate the diversity of behav-
ior by simulating a plane wave propagating past a screen
edge and computing the spectrogram, Wigner, and Rihac-
zek quasi light fields from scalar field samples (Fig. 3).
This simple scenario stresses the main tension between
localization in position and direction: each quasi light

optional aperture stop T

y

sy

(y, sy) sensors

d/2
s

radiation

Fig. 2. (Color online) We capture a discrete quasi light field ! by
sampling the scalar field at regularly spaced sensors and process-
ing the resulting measurements. We may optionally apply an ap-
erture stop T to mimic traditional light field capture, but this re-
stricts us to capturing quasi light fields with poor localization
properties.
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field must encode the position of the screen edge as well
as the downward direction of the plane wave. The quasi
light fields serve as intermediate representations used to
jointly estimate the position of the screen edge and the
orientation of the plane wave.

Our simulation accurately models diffraction using our
implementation of the angular spectrum propagation
method, which is the same technique used in commercial
optics software to accurately simulate wave propagation
[33]. We propagate a plane wave with wavelength )
=3 mm a distance R=50 m past the screen edge, where
we measure the scalar field and compute the three dis-
crete light fields using Eqs. (25), (26), and (28). To com-
pute the light fields, we set d=) /10, run the summations
over +n+,10/), and use a rectangular window function of
width 10 cm for T. We plot !S, +!W+, and +!R+ in terms of the
two-plane parameterization of the light field [1], so that
each ray is directed from a point u in the plane of the
screen toward a point y in the measurement plane, and so
that sy= "y−u# / (R2+ "y−u#2)1/2.

We compare each light field’s ability to estimate the po-
sition of the screen edge and the orientation of the plane
wave (Fig. 3). Geometric optics provides an ideal esti-
mate: we should ideally see only rays pointing straight
down "u=y# past the screen edge, corresponding to a di-
agonal line in the upper-right quadrant of the light field
plots. Instead, we see blurred lines with ringing. The
ringing is physically accurate and indicates the diffrac-
tion fringes formed on the measurement plane. The blur-
ring indicates localization limitations. While the spectro-
gram’s window T can be chosen to narrowly localize
energy in either position or direction, the Wigner nar-
rowly localizes energy in both, depicting instantaneous
frequency without being limited by the classical Fourier
uncertainty principle [20].

It may seem that the Wigner light field is preferable to
the others and the clear choice for all applications. While
the Wigner light field possesses excellent localization
properties, it exhibits cross-term artifacts due to interfer-
ence from different plane wave components. An alterna-
tive quasi light field such as the Rihaczek can strike a bal-
ance between localization and cross-term artifacts, and
therefore may be a more appropriate choice, as discussed
at the end of Subsection 3.C. If our goal were only to es-
timate the position of the screen edge, we might prefer
the spectrogram; to jointly estimate both position and
plane wave orientation, we prefer the Wigner, and if there
were two plane waves instead of one, we might prefer the
Rihaczek. One thing is certain, however: we must aban-
don nonnegative quasi light fields to achieve better local-
ization tradeoffs, as all nonnegative quadratic time–
frequency distributions are sums of spectrograms and
hence exhibit poor localization tradeoffs [20].

5. IMAGE FORMATION
We wish to form images from quasi light fields for coher-
ent applications similarly to how we form images from the
traditional light field for incoherent applications, by using
Eq. (1) to integrate bundles of light field rays to compute
pixel values (Fig. 1). However, simply selecting a particu-
lar captured quasi light field L and evaluating Eq. (1)
raises three questions about the validity of the resulting
image. First, is it meaningful to distribute coherent en-
ergy over surface area by factoring radiant intensity in
Eq. (6)? Second, does the far-zone assumption implicit in
radiometry and formalized in Eq. (2) limit the applicabil-
ity of quasi light fields? And third, how do we capture
quasi light field rays remotely if, unlike the traditional
light field, quasi light fields need not be constant along
rays?

The first question is a semantic one. For incoherent
light of small wavelength, we define an image in terms of
the power radiating from a scene surface toward an aper-
ture, and physics tells us that this uniquely specifies the
image (Section 3), which may be expressed in terms of the
traditional light field. If we attempt to generalize the
same definition of an image to partially coherent, broad-
band light, and specifically to coherent light at a nonzero
wavelength, we must ask how to isolate the power from a
surface patch toward the aperture, according to classical
wave optics. But there is no unique answer; different iso-
lation techniques correspond to different quasi light
fields. Therefore, to be well-defined, we must extend the
definition of an image for coherent light to include a par-
ticular choice of quasi light field that corresponds to a
particular factorization of radiant intensity.

The second and third questions speak of assumptions
in the formulation of quasi light fields and in the image
formation from quasi light fields that can lead to coherent
imaging inaccuracies when these assumptions are not
valid. Specifically, unless the scene surface and aperture
are far apart, the far-zone assumption in Eq. (2) does not
hold, so that quasi light fields are incapable of modeling
near-zone behavior. Also, unless we choose a quasi light
field that is constant along rays, such as an angle-impact
Wigner function [34], remote measurements might not ac-

spectrogram Wigner Rihaczekideal

0 m 3 m

u

y

50 m
R =

opaque screen

measurement plane

plane wave

λ = 3 mm

0

3

0 3 0 3 0 3 0 3y (m)

u (m)

y (m) y (m) y (m)

Fig. 3. (Color online) The spectrogram does not resolve a plane
wave propagating past the edge of an opaque screen as well as
other quasi light fields, such as the Wigner and Rihaczek. We
capture all three quasi light fields by sampling the scalar field
with sensors and processing the measurements according to Eqs.
(25), (26), and (28). The ringing and blurring in the light field
plots indicate the diffraction fringes and energy localization
limitations.
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curately reflect the light field at the scene surface [35], re-
sulting in imaging inaccuracies. Therefore, in general, in-
tegrating bundles of remotely captured quasi light field
rays produces an approximation of the image we have de-
fined. We assess this approximation by building an accu-
rate near-zone model in Subsection 5.A, simulating imag-
ing performance of several coherent cameras in
Subsection 5.B, and showing how our image formation
procedure generalizes the classic beamforming algorithm
in Subsection 5.C.

A. Near-Zone Radiometry
We take a new approach to formulating light fields for co-
herent radiation that avoids making the assumptions
that (i) the measurement plane is far from the scene sur-
face and (ii) light fields are constant along rays. The re-
sulting light fields are accurate in the near zone, and may
be compared with quasi light fields to understand the lat-
ter’s limitations. The key idea is to express a near-zone
light field L"r ,s# on the measurement plane in terms of
the infinitesimal flux at the point where the line contain-
ing the ray "r ,s# intersects the scene surface (Fig. 4).
First we compute the scalar field at the scene surface,
next we compute the infinitesimal flux, and then we iden-
tify a light field that predicts the same flux using the laws
of radiometry. In contrast to Walther’s approach (Subsec-
tion 3.A), (i) we do not make the far-zone approximation
as in Eq. (2), and (ii) we formulate the light field in the
measurement plane instead of in the source plane at the
scene surface. Therefore, in forming an image from a
near-zone light field, we are not limited to the far zone
and we need not relate the light field at the measurement
plane to the light field at the scene surface.

The first step in deriving a near-zone light field L for
the ray "r ,s# is to use the scalar field on the measurement
plane to compute the scalar field at the point rP where the
line containing the ray intersects the scene surface. We
choose coordinates so that the measurement plane is the
xy-plane, the scene lies many wavelengths away in the
negative z-0 half-space, and r is at the origin. We denote
the distance between the source rP on the scene surface
and the point of observation r by %. Under a reasonable
bandwidth assumption, the inverse diffraction formula
expresses the scalar field at rP in terms of the scalar field
on the measurement plane [36]:

U"rP# =
ik

2(
! U"rM#

− zP

+rP − rM+

exp"− ik+rP − rM+#

+rP − rM+
d2rM.

"29#

Next, we compute the differential flux d& through a
portion of a sphere at rP subtending differential solid
angle d". We obtain d& by integrating the radial compo-
nent of the energy flux density vector

F"rP# = −
1

4(k$
& !U*

!t
" U +

!U

!t
" U*' . "30#

To keep the calculation simple, we ignore amplitude decay
across the measurement plane, approximating

+rP − rM+ 2 +rP+ "31#

outside the exponential in Eq. (29), and

!

!+rP+
+rP − rM+ 2 1, "32#

when evaluating Eq. (30), resulting in

F"− %s# = $2(

k %2

ã"− %s#ã*"− %s#
sz

2

%2s, "33#

where

ã"− %s# = $ k

2(
%2! U"rM#exp"− ik+− %s − rM+#d2rM.

"34#

Thus,

d& = $2(

k %2

sz
2ã"− %s#ã*"− %s#d". "35#

Finally, we factor out sz and an outer integral over sur-
face area from d& /d" to determine a near-zone light
field. Unlike in Subsection 3.A, the nonlinear exponential
argument in ã complicates the factoring. Nonetheless, we
obtain a near-zone light field that generalizes the Rihac-
zek by substituting Eq. (34) for ã* in Eq. (35). After fac-
toring and freeing r from the origin by substituting r
−%s for −%s, we obtain

L%
R"r,s# = szU*"r#exp"ik%#ã"r − %s#

= $ k

2(
%2

szU*"r#exp"ik%#

*! U"rM#exp"− ik+r − %s − rM+#d2rM, "36#

where the subscript % reminds us of this near-zone light
field’s dependence on distance.

L%
R is evidently neither the traditional light field nor a

quasi light field, as it depends directly on the scene geom-
etry through an additional distance parameter. This dis-
tance parameter % is a function of r, s, and the geometry
of the scene; it is the distance along s between the scene
surface and r. We may integrate L%

R over a bundle of rays
to compute the image pixel values just like any other light

s
y

z

dΩ

r = 0

dΦ

virtual
aperture

scene
surface
patch

remote
measurement
plane

rP = −ρs

rM

Fig. 4. (Color online) To ensure that integrating bundles of re-
mote light field rays in the near zone results in an accurate im-
age, we derive a light field L%

R"r ,s# in the measurement plane
from the infinitesimal flux d& at the point rP where the ray origi-
nates from the scene surface patch. We thereby avoid making the
assumptions that the measurement plane is far from the scene
and that the light field is constant along rays.
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field, as long as we supply the right value of % for each ray.
In contrast, quasi light fields are incapable of modeling
optical propagation in the near zone, as it is insufficient to
specify power flow along rays: we must also know the dis-
tance between the source and point of measurement along
each ray.

We can obtain near-zone generalizations of all quasi
light fields through the sensor array processing interpre-
tation in Subsection 3.C. Recall that each quasi light field
corresponds to a particular choice of the function K in Eq.
(23). For example, setting K"a ,b#=."b#, where . is the
Dirac delta function, yields the Rihaczek quasi light field
LR in Eq. (27). To generalize quasi light fields to the near
zone, we focus at a point instead of a plane wave compo-
nent by using a spatial filter with impulse response
exp"−ik+r−%s+# instead of exp"iks ·r# in Eq. (23). Then,
choosing K"a ,b#=."b# yields L%

R, the near-zone generali-
zation of the Rihaczek in Eq. (36), and choosing other
functions K yields near-zone generalizations of the other
quasi light fields.

B. Near-Zone Diffraction Limitations
We compute and compare image pixel values using the
Rihaczek quasi light field LR and its near-zone generali-
zation L%

R, demonstrating how all quasi light fields implic-
itly make the Fraunhofer diffraction approximation that
limits accurate imaging to the far zone. First, we con-
struct coherent cameras from LR and L%

R. For simplicity,
we consider a two-dimensional scene and sample the light
fields, approximating the integral over a bundle of rays
(Fig. 1) by the summation of discrete rays directed from
the center rP of the scene surface patch to each sensor on
a virtual aperture of diameter A, equally spaced every

distance d in the measurement plane [Fig. 5(a)]. Ignoring
constants and sz, we compute the pixel values for a far-
zone camera from the Rihaczek quasi light field in Eq.
(27),

PR = 1
+nd+-A/2

.(U"nd#exp"− ikndsy
n#)*

*1
m

U"md#exp"− ikmdsy
n#/ , "37#

and for a near-zone camera from the near-zone generali-
zation of the Rihaczek in Eq. (36),

P%
R = & 1

+nd+-A/2

U"nd#exp"− ik/n#'*&1
m

U"md#exp"− ik/m#' .

"38#

In Eq. (37), sn denotes the unit direction from rP to the
nth sensor, and in Eq. (38), /n denotes the distance be-
tween rP and the nth sensor.

By comparing the exponentials in Eq. (37) with those in
Eq. (38), we see that the near-zone camera aligns the sen-
sor measurements along spherical wavefronts diverging
from the point of focus rP, while the far-zone camera
aligns measurements along plane wavefront approxima-
tions [Fig. 5(b)]. Spherical wavefront alignment makes
physical sense in accordance with the Huygens–Fresnel
principle of diffraction, while approximating spherical
wavefronts with plane wavefronts is reminiscent of
Fraunhofer diffraction. In fact, the far-zone approxima-
tion in Eq. (2) used to derive quasi light fields follows di-
rectly from the Rayleigh–Sommerfeld diffraction integral
by linearizing the exponentials, which is precisely Fraun-
hofer diffraction. Therefore, all quasi light fields are valid
only for small Fresnel numbers, when the source and
point of measurement are sufficiently far away from each
other.

We expect the near-zone camera to outperform the far-
zone camera in near-zone imaging applications, which we
demonstrate by comparing their ability to resolve small
targets moving past their field of view. As a baseline, we
introduce a third camera with nonnegative pixel values
P%

B by restricting the summation over m in Eq. (38) to
+md+-A /2, which results in the beamformer camera used
in sensor array processing [5,37]. Alternatively, we could
extend the summation over n in Eq. (38) to the entire ar-
ray, but this would average anisotropic responses over a
wider aperture diameter, resulting in a different image.
We simulate an opaque screen containing a pinhole that
is backlit with a coherent plane wave (Fig. 6). The sensor
array is D=2 m wide and just R=1 m away from the
screen. The virtual aperture is A=10 cm wide and the
camera is focused on a fixed 1 mm pixel straight ahead on
the screen. The pinhole has width 1 mm, which is smaller
than the wavelength )=3 mm, so the plane wavefronts
bend into slightly spherical shapes via diffraction. We
move the pinhole to the right, recording pixel values +PR+,
+P%

R+, and P%
B for each camera at each pinhole position. Be-

cause of the nature of the coherent combination of the
sensor measurements that produces the pixel values,

rP
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surface
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∆m − ∆0

y
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Fig. 5. (Color online) Near-zone light fields result in cameras
that align spherical wavefronts diverging from the point of focus
rP, in accordance with the Huygens–Fresnel principle of diffrac-
tion, while quasi light fields result in cameras that align plane
wavefront approximations in accordance with Fraunhofer dif-
fraction. Quasi light fields are therefore accurate only in the far
zone. (a) We derive both cameras by approximating the integral
over a bundle of rays by the summation of discrete light field
rays, and (b) we interpret the operation of each camera by how
they align sensor measurements along wavefronts from rP.
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each camera records a multilobed response. The width of
the main lobe indicates the near-zone resolution of the
camera.

The near-zone camera is able to resolve the pinhole
down to its actual size of 1 mm, greatly outperforming the
far-zone camera, which records a blur 66 cm wide, and
even outperforming the beamformer camera. Neither
comparison is surprising. First, with a Fresnel number of
D2 /R)21333, the Fraunhofer approximation implicitly
made by quasi light fields does not hold for this scenario,
so we expect the far-zone camera to exhibit poor reso-
lution. Second, the near-zone camera uses the entire D
=2 m array instead of just the sensors on the virtual ap-
erture that the beamformer camera is restricted to, and
the extra sensors lead to improved resolution.

C. Generalized Beamforming
We compare image formation from light fields with tradi-
tional perspectives on coherent image formation by relat-
ing quasi light fields and our coherent cameras to the
classic beamforming algorithm used in many coherent im-
aging applications, including ultrasound [5] and radar
[37]. The beamforming algorithm estimates a spherical
wave diverging from a point of focus rP by delaying and
averaging sensor measurements. When the radiation is
narrowband, the delays are approximated by phase shifts.
With the sensor array geometry from Subsection 5.B, the
beamformer output is

g = 1
m

T"md#U"md#exp"− ik/m#, "39#

where the T"md# are amplitude weights used to adjust
the beamformer’s performance. As rP moves into the far
zone,

/m − /0 → mdsy
m → mdsy

0, "40#

so that apart from a constant phase offset, Eq. (39) be-
comes a short-time Fourier transform

g' = 1
m

T"md#U"md#exp"− ikmdsy
0#. "41#

Evidently, +g'+2 is a spectrogram quasi light field, and we
may select T to be a narrow window about a point r to
capture LS"r ,s0#. We have already seen how quasi light
fields generalize the spectrogram.

Beamformer applications instead typically select T to
be a wide window to match the desired virtual aperture
and assign the corresponding pixel value to the output
power +g+2. We can decompose the three cameras in Sub-
section 5.B into such beamformers. First, we write P%

R in
Eq. (38) in terms of two different beamformers,

P%
R = g1

*g2, "42#

where

g1 = 1
+nd+-A/2

U"nd#exp"− ik/n# "43#

and

g2 = 1
m

U"md#exp"− ik/m#, "44#

so that the windows for g1 and g2 are rectangular with
widths matching the aperture A and sensor array D, re-
spectively. Next, by construction

P%
B = +g1+2. "45#

Finally, in the far zone, sn→s0 in Eq. (37) so that

PR → "g1
'#*g2

', "46#

where g1
' and g2

' are given by Eq. (41) with the windows T
used in Eqs. (43) and (44). In other words, the near-zone
camera is the Hermitian product of two different beam-
formers and is equivalent to the far-zone camera in the
far zone.

We interpret the role of each component beamformer
from the derivation of Eq. (38). Beamformer g1

* aggregates
power contributions across the aperture using measure-
ments of the conjugate field U* on the aperture, while
beamformer g2 isolates power from the point of focus us-
ing all available measurements of the field U. In this
manner, the tasks of aggregating and isolating power con-
tributions are cleanly divided between the two beamform-
ers, and each beamformer uses the measurements from
those sensors appropriate to its task. In contrast, the
beamformer camera uses the same set of sensors for both
the power aggregation and isolation tasks, thereby limit-
ing its ability to optimize over both tasks.

plane wave

sensor array

pinhole offset

pinhole offset

fixed scene
surface patch

moving 1 mm pinhole
in opaque screen

λ = 3 mm

R = 1 m

D = 2 m
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13 dB
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ρ

Fig. 6. (Color online) Images of nearby objects formed from pure
quasi light fields are blurry. In the scene, a small backlit pinhole
moves across the field of view of a sensor array that implements
three cameras, each computing one pixel value for each pinhole
position, corresponding to a fixed surface patch. As the pinhole
crosses the fixed scene surface patch, the near-zone camera re-
solves the pinhole down to its actual size of 1 mm, while the far-
zone camera records a blur 66 cm wide.
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The near-zone camera achieves a new tradeoff between
resolution and anisotropic sensitivity. We noted that the
near-zone camera exhibits better resolution than the
beamformer for the same virtual aperture (Fig. 6). This is
not an entirely fair comparison because the near-zone
camera is using sensor measurements outside the aper-
ture, and indeed, a beamformer using the entire array
would achieve comparable resolution. However, extending
the aperture to the entire array results in a different im-
age, as anisotropic responses are averaged over a wider
aperture diameter. We interpret the near-zone camera’s
behavior by computing the magnitude

+P%
R+ = 3+g1+2+g2+2. "47#

Evidently, the pixel magnitude of the near-zone camera is
the geometric mean of the two traditional beamformer
output powers. +P%

R+ has better resolution than +g1+2 and
better anisotropic sensitivity than +g2+2.

Image formation with alternative light fields uses the
conjugate field and field measurements to aggregate and
isolate power in different ways. In general, image pixel
values do not neatly factor into the product of beamform-
ers, as they do with the Rihaczek.

6. CONCLUDING REMARKS
We enable the use of existing incoherent imaging tools for
coherent imaging applications by extending the light field
to coherent radiation. We explain how to formulate, cap-
ture, and form images from quasi light fields. By synthe-
sizing existing research in optics, quantum physics, and
signal processing, we motivate quasi light fields, show
how quasi light fields extend the traditional light field,
and characterize the properties of different quasi light
fields. We explain why capturing quasi light fields directly
with intensity measurements is inherently limiting, and
demonstrate via simulation how processing scalar field
measurements in different ways leads to a rich set of en-
ergy localization tradeoffs. We show how coherent image
formation using quasi light fields is complicated by an im-
plicit far-zone (Fraunhofer) assumption and the fact that
not all quasi light fields are constant along rays. We dem-
onstrate via simulation that a pure light field representa-
tion is incapable of modeling near-zone diffraction effects,
but that quasi light fields can be augmented with a dis-
tance parameter for greater near-zone imaging accuracy.
We show how image formation using light fields general-
izes the classic beamforming algorithm, allowing for new
tradeoffs between resolution and anisotropic sensitivity.

Although we have assumed perfectly coherent radia-
tion, tools from partial coherence theory (i) allow us to
generalize our results and (ii) provide an alternative per-
spective on image formation. First, our results extend to
broadband radiation of any state of partial coherence by
replacing U"rR#U*"rC# with the cross-spectral density
W"rR,rC,$#. W provides a statistical description of the ra-
diation, indicating how light at two different positions rR

and rC is correlated at each frequency $ [38]. Second, W
itself may be propagated along rays in an approximate
asymptotic sense [39,40], which forms the basis of an en-
tirely different framework for using rays for image forma-

tion, using the cross-spectral density instead of the light
field as the core representation.

We present a model of coherent image formation that
strikes a balance between utility and comprehensive pre-
dictive power. On the one hand, quasi light fields offer
more options and tradeoffs than their traditional, incoher-
ent counterpart. In this manner, the connection between
quasi light fields and quasi-probability distributions in
quantum physics reminds us of the potential benefits of
forgoing a single familiar tool in favor of a multitude of
useful yet less familiar ones. On the other hand, com-
pared with Maxwell’s equations, quasi light fields are less
versatile. Therefore, quasi light fields are attractive to re-
searchers who desire more versatility than traditional
energy-based methods, yet a more specialized model of
image formation than Maxwell’s equations.

Quasi light fields illustrate the limitations of the
simple definition of image formation that is ubiquitous in
incoherent imaging. An image is the visualization of some
underlying physical reality, and the energy emitted from
a portion of a scene surface toward a virtual aperture is
not a physically precise quantity when the radiation is co-
herent, according to classical electromagnetic wave
theory. Perhaps a different image definition may prove
more fundamental for coherent imaging, or perhaps a
quantum optics viewpoint is required for precision. Al-
though we have borrowed the mathematics from quantum
physics, our entire discussion has been classical. Yet if we
introduce quantum optics and the particle nature of light,
we may unambiguously speak of the probability that a
photon emitted from a portion of a scene surface is inter-
cepted by a virtual aperture.
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