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Abstract—We consider asynchronous communication
over discrete memoryless channels. The transmitter starts
sending one block codeword of length N at an instant
that is uniformly distributed within a certain time period
A, which represents the level of asynchronism between
the transmitter and the receiver. The receiver, by means
of a sequential decoder, must isolate the message without
knowing when the codeword transmission starts but being
cognizant of the asynchronism level. Motivated by certain
monitoring type of applications, we are interested in com-
munication strategies that 1) operate with short codeword
length with respect to the asynchronism level and 2) that
guarantee quick decoding.
In a recent work the authors showed that the com-

munication rate — defined with respect to the decoder’s
reaction delay to the sent message — can be strictly
positive unless A grows faster than eNα and α exceeding
the synchronization threshold.
The present work focuses on the regime where α is

smaller than the synchronization threshold. The main
contribution consists of simple expressions that give upper
and lower bounds on the highest achievable rate for any
α below the synchronization threshold. For random code
constructions these bounds are tight.

Index Terms—Asynchronous communication, detection
and isolation problem, discrete-time communication, er-
ror exponent, monitoring, point-to-point communication,
quickest detection, sequential analysis, sparse communica-
tion, stopping times

I. INTRODUCTION
Information theoretic communication models com-

monly assume that the transmitter and the receiver are
perfectly synchronized. Basic quantities, such as the
channel capacity, are defined under this assumption [3].
Coding strategies need only to overcome the ‘vertical’
uncertainty introduced by the channel noise, but not the
‘horizontal’ uncertainty introduced when the receiver has
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only a partial knowledge of when information is sent.
However, this assumption appears unreasonable for many
situations, e.g., when there is time uncertainty due to
burstiness in the information source. In such cases, an
inherently asynchronous communication model is more
appropriate.

The present work is motivated by questions such
as ‘What is the rate loss incurred by lack of syn-
chronization?’, ‘What is the tradeoff between asynchro-
nism level and the maximum rate for which reliable
communication can still be achieved?’, ‘How to code
over asynchronous channels?.’ To provide some answers
to these questions, we pursue the investigation of the
communication model introduced in [4]. This model is
motivated by certain monitoring type of applications
where a sensor sporadically emits alarm messages to a
base station, and otherwise remains idle. The time an
alarm is sent relates to external events (such as fire)
which results in asynchronous communication between
the sensor and the base station. In such a setting, two
communication parameters are important: the message
size and the ‘reaction delay’ of the base station to the
sent message. The message size, assuming the same
cost per transmitted symbol, should be minimized in
order to meet low sensor energy consumption criteria.
Similarly, the reaction delay to the sent message should
also be minimized in order to allow quick responses to
the alarms.

The model assumes that the transmitter starts sending
information at a time that is unknown to the receiver
and uniformly distributed within an interval of known
size, which defines the asynchronism level between the
transmitter and the receiver. The communication rate is
defined with respect to the average reaction delay, and
we aim to maximize it given the asynchronism level.

In the next section we recall the formulation of the
problem introduced in [4].
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Fig. 1. Communication is carried over a discrete memoryless
channel. When ‘no information’ is sent the input of the channel is
the ‘�’ symbol.

II. PROBLEM FORMULATION

We first introduce the communication model and its
performance criteria, then comment on them.
We consider discrete-time communication over a

point-to-point discrete memoryless channel (DMC) char-
acterized by its finite input and output alphabets X and
Y , respectively, transition probability matrix Q(y|x), for
all y ∈ Y and x ∈ X , and ‘noise’ symbol � ∈ X (see
Fig. 1).1 The codebook C consists of M ≥ 2 equally
likely codewords of lengthN composed of symbols from
X — possibly also the � symbol. The transmission of a
particular codeword starts at a random time ν, indepen-
dent of the codeword to be sent, uniformly distributed
in [1, 2, . . . , A], where the integer A ≥ 1 characterizes
the asynchronism level between the transmitter and the
receiver. We assume that the receiver knows A but not
ν. If A = 1 the channel is said to be synchronized.
Before and after the transmission of the information,

i.e., before time ν and after time ν +N −1, the receiver
observes noise. Specifically, conditioned on the value of
ν and on the message to be conveyed m, the receiver
observes independent symbols Y1, Y2, . . . distributed as
follows. If i ≤ ν − 1 or ν + N ≤ i ≤ A + N − 1,
the distribution is Q� � Q(·|�). At any time i ∈ [ν, ν +
1, . . . , ν + N − 1] the distribution is Q(·|ci−ν+1(m)),
where cn(m) denotes the nth symbol of the codeword
cN (m) assigned to message m.
The decoder consists of a sequential test (τ, φ), where

τ is a stopping time — bounded by A + N − 1 —
with respect to the output sequence Y1, Y2, . . .

2 indicating
when decoding happens, and where φ denotes a decision
rule that declares the decoded message (see Fig. 2).3
We are interested in reliable and quick decoding.

To that aim we first define the maximum (over the

1Throughout the paper we always assume that for all y ∈ Y there
is some x ∈ X for which Q(y|x) > 0.
2Recall that a (deterministic or randomized) stopping time τ with

respect to a sequence of random variables {Yi}∞i=1 is a positive,
integer-valued random variable such that the event {τ = n} depends
only on Y1, Y2, . . . , Yn and not on Yn+1, Yn+2, . . ., for all n ≥ 1.
3Formally, φ is an Fτ -measurable map (F1,F2, . . . is the nat-

ural filtration induced by the process Y1, Y2, . . .) with φ(yτ ) ∈
{1, 2, . . . , M} for any yτ .

Y1 Y2 . . .

� � . . . � c1(m)

ν

. . .

τ

cN (m)� � . . . �

Fig. 2. Time representation of what is sent (upper arrow) and what
is received (lower arrow). The ‘�’ represents the ‘noise’ symbol. At
time ν message m starts being sent and decoding occurs at time τ .

messages) decoding error probability as

P(E) = max
m

1
A

A∑

l=1

Pm,l(E),

where E indicates the event that the decoded message
does not correspond to the sent codeword, and where
the subscripts m,l indicate the conditioning on the event
that message m starts being sent at time ν = l. Second,
we define the communication rate with respect to the
maximum (over messages) communication delay it takes
the receiver to react to the sent codeword, i.e.

R =
ln M

E(τ − ν)+
nats per channel use, (1)

where

E(τ − ν)+ = max
m

1
A

A∑

l=1

Em,l(τ − l)+ ,

x+ denotes max{0, x}, and where Em,l denotes the
expectation with respect to Pm,l.
As shown in [4, Theorem 1], the exponential growth

of the asynchronism level with respect to the codeword
length represents a natural scaling: vanishing error prob-
ability can be achieved only if A grows no faster than
exponentially with N with an exponent smaller than the
synchronization threshold. This motivates the following
definition.

Definition 1 ((R,α) coding scheme). A pair
(R,α) is achievable if there exists a sequence
{(CN , (τN , φN )}N≥1 of codebook/decoder pairs,
labeled by the codebook length N , that asymptotically
achieves a rate R at an asynchronism exponent α. This
means that, for any ε > 0 and N large enough, the
pair (CN , (τN , φN ))
• operates under asynchronism level A = e (α−ε)N ;
• yields a rate at least equal to R − ε;
• achieves a maximum error probability at most equal
to ε.

An (R,α) coding scheme is a sequence
{(CN , (τN , φN ))}N≥1 that achieves a rate R at
an asynchronism exponent α as N → ∞.
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Definition 2 (capacity region of an asynchronous DMC).
The capacity region of an asynchronous DMC with
synchronized capacity C(Q) is the function

[0, C(Q)] → R+

R �→ α(R,Q)

where α(R,Q) is the supremum of the set of asynchro-
nism exponents that are achievable at rate R.

We now motivate our model and its performance
criteria. For a detailed discussion we refer the reader
to [4].
First observe that there is no feedback from the

receiver to the transmitter. With noiseless feedback it
is possible to inform the transmitter of the receiver’s
decoding time, say in the form of ACK/NACK, therefore
allowing the sending of multiple messages instead of just
one as in our model. Here the noiseless assumption is
crucial. If the feedback is noisy, the receiver’s decision
may be wrongly recognized by the transmitter, which
possibly may result in a loss of message synchronization
between transmitter and receiver (say the receiver hasn’t
yet decoded the first message while the transmitter has
already started to emit the second one). Therefore, in
order to avoid a potential second source of asynchronism,
we omit feedback in our study and limit transmission to
only one message.
The reaction delay E(τ − ν)+ indicates the average

time the transmitter needs to wait until the receiver
makes a decision. It is therefore reasonable to define the
communication rate with respect to it instead of with
respect to the codeword length N as usually. Indeed, the
blocklength does not have a direct operational meaning:
in light of the use of sequential decoding, the codeword
length does not provide a measure of the delay needed
for the information to be reliably decoded. Instead of
E(τ − ν)+ one might also consider defining the rate
with respect to E(τ) or, equivalently, Eν + E(τ − ν).
The fact that this delay takes into account the initial
offset Eν can be regarded as a weakness since it can be
influenced neither by the transmitter nor by the receiver.
Also, were we to choose such a delay measure, it can
be shown that, in the regime of positive asynchronism
exponents in which we are interested, the achievable
rate would always be (asymptotically) vanishing for any
reliable coding strategy.
In the definition of achievable pair (R,α) (Definition

1), we choose to grow A with N . Indeed, when A
is fixed the problem of finding the capacity region of
asynchronous channels becomes trivial since it reduces
to the computation of the capacity of the synchronized
channel [4].

III. RESULTS
We start with a few notation conventions. We denote

by PX and PY the set of distributions over the finite
alphabets X and Y , respectively, and by PY |X the set of
conditional distributions over X ×Y . We use (PQ)Y (y)
to denote

∑
x P (x)Q(y|x) for some P ∈ PX and

Q ∈ PY |X . Also, we denote by I(PQ) the mutual
information induced by the joint distribution P (·)Q(·|·).
The Kullback-Leibler distance between two distributions
P1 and P2 is denoted by D(P1||P2). The following
Theorem provides an inner bound on the capacity region
of asynchronous DMCs.

Theorem 1. Let P ∈ PX be such that, for any distribu-
tion V ∈ PY , at least one of the following inequalities

D(V ||(PQ)Y ) > α

D(V ||Q�) > α

holds, i.e.

min
V ∈PY

max{D(V ||(PQ)Y ),D(V ||Q�)} > α .

Then, the pair (R = I(PQ), α) is achievable.

Hence, maximizing over the input distributions, a
lower bound to α(R,Q) in Definition 2 is

max
P∈PX :I(PQ)≥R

min
V ∈PY

max{D(V ||(PQ)Y ),D(V ||Q�} .

(2)

Sketch of the proof of Theorem 1: The proof is
based on a random coding argument associated with the
following strategy. Each codeword has a common initial
prefix of size (actually (ln N)ρ with any ρ > 1 works as
well) followed by N−(ln N)2 information symbols. The
prefix is a maximum length shift register sequence [2].
The part that carries information is randomly generated
so that each symbol of each codeword is i.i.d. according
to P .
The sequential decoder operates according to a two-

step procedure. The first step consists in making an
approximate estimation of the location of the sent code-
word by using only the N−(lnN)2 information symbols
of each codeword. It should be emphasized that the
prefix is not involved in this initial detection phase.
Specifically, at time n the decoder tests whether the last
N − (ln N)2 symbols are generated by noise or by some
codeword on the basis of their empirical distribution P̂ .
If D(P̂ ||Q�) ≤ α the decoder decides to continue to time
n + 1. If D(P̂ ||Q�) > α, i.e., if P̂ is far from the noise
distribution, the decoder marks the current time as the
beginning of the ‘decoding window’ and proceeds to the
second step of the decoding procedure. This step consists
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in exactly locating and identifying the sent codeword.
Once the beginning of the decoding window has been
marked, the decoder stops and makes a decision the first
time both the lastN−(ln N)2 symbols are jointly typical
with one of the codewords, and the previous (ln N)2

symbols are jointly typical with the prefix. If no such
time is found withinN successive time steps, the decoder
declares a random message.
The encoding corresponding to the information sym-

bol portion of the codeword must accomplish two ob-
jectives. First, it must help the decoder approximate the
codeword location, and, second, it must enable reliable
decoding of the message conditioned on the decoder
knowing the codeword location. The role of the prefix is
to allow a second order fine estimation of the location of
the sent codeword, once this position has already been
approximated using the second part of the codewords.
The theorem is proven by analyzing the above coding

strategy and using the fact that a maximum length shift
register sequence has the property that the Hamming
distance between any two (circular) shifts of the se-
quence is linear in the sequence length. This property
guarantees that, given that the codeword’s position has
been correctly approximated during the first phase of the
decoding procedure, i.e., that the confidence interval for
the position is of order N , the prefix identifies the exact
position with high probability.
The next result provides an outer bound on the capac-

ity region of asynchronous DMCs. Recall that a code-
book has constant composition P if all the codewords
have the same empirical type [1, p.117].

Theorem 2. Suppose {(CN , (τN , φN ))}N≥1 achieves
(R,α) with R > 0. Then there exists C ′N ⊂ CN such
that {(C′N , (τN , φN ))}N≥1 has the following properties.
Each C ′N has constant composition P 1

N over the first
dN � min{E(τN − ν)+, N} symbols and constant
composition P 2

N over N symbols. Furthermore, |C ′N |,
dN , P 1

N , and P 2
N satisfy

i) I(P 1
NQ)(1 + o(1)) ≥ ln |C′N |

dN
= R(1 + o(1)) as

N → ∞;
ii) For any W ∈ PY |X at least one of the following
two inequalities holds as N → ∞4

D(W ||Q�|P 2
N ) > α(1 + o(1))

D(W ||Q|P 2
N ) > α(1 + o(1)) .

If E(τN − ν)+ = N , then P 1
N = P 2

N . However, if
E(τN −ν)+ 	= N , the theorem does not say how P 1

N and
P 2

N are related. The fact that potentially E(τN−ν)+ 	= N

4GivenW1, W2 ∈ PY |X and P ∈ PX ,D(W1||W2|P ) denotes the
Kullback-Leibler distance between P (·)W1(·|·) and P (·)W2(·|·).

for capacity achieving strategies represents a major dif-
ficulty in deriving the capacity region for asynchronous
channels.

Sketch of the proof of Theorem 2: Let
{(CN , (τN , φN ))}N≥1 be a coding scheme that satisfies
the hypothesis of the Theorem. An expurgation argument
shows that there exists {(C ′N , (τN , φN ))}N≥1 with the
following properties. Each C ′N is a subset of CN and
has constant composition P 1

N over dN � min{E(τN −
ν)+, N} symbols and constant composition P 2

N over N
symbols. Furthermore, |C ′N |, dN , and P 1

N , satisfy the
condition i) in the theorem statement

I(P 1
NQ)(1 + o(1)) ≥ ln |C′N |

dN
= R(1 + o(1))

as N → ∞. To show that P 2
N satisfies the condition ii)

we proceed as follows.
Consider the maximum (over messages) average re-

action delay E(τN − ν)+. Let cN (m) be the codeword
assigned to message m, W ∈ PY |X , and let Y (i) denote
the output sequence of length N running from time i up
to time i + N − 1. Using Markov’s inequality and [1,
Lemma 2.6, p. 32] one first shows that

E(τN − ν)+ � max
m

1
A

A∑

i=1

Em,i(τN − i)+

≥ 1
3

e−ND1

(N + 1)|X |·|Y|

×
A/3∑

i=1

Pm,i(τN ≥ i + A/3|Y (i) ∈ TW (cN (m)))

for any m, where D1 � D(W ||Q|P 2
N ) and where

TW (cN (m)) denotes the set of sequences yN that are
in the W -shell of the codeword cN (m), i.e., whose
conditional distribution with respect to cN (m) is W (see
[1, p.31]).
The key step is to observe that the change of measure

Pm,i(τN ≥ i + A/3|Y (i) ∈ TW (cN (m)))

= P∞(τN ≥ i + A/3|Y (i) ∈ TW (cN (m))) (3)

holds, where P∞ denotes the output distribution under
pure noise, i.e., when the Yi’s are i.i.d. according to Q�

for all i ∈ [1, 2, . . . , A + N − 1]. To see this note that

Pm,i(τN ≥ i + A/3|Y (i) = y(i))

= P∞(τN ≥ i + A/3|Y (i) = y(i))
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and thus

Pm,i(τN ≥ i + A/3|Y (i) ∈ TW (cN (m)))

=
∑

y(i)∈TW (cN (m))

Pm,i(τN ≥ i + A/3|Y (i) = y(i))

× Pm,i(Y (i) = y(i)|Y (i) ∈ TW (cN (m)))

=
∑

y(i)∈TW (cN (m))

P∞(τN ≥ i + A/3|Y (i) = y(i))

× P∞(Y (i) = y(i)|Y (i) ∈ TW (cN (m)))

= P∞(τN ≥ i + A/3|Y (i) ∈ TW (cN (m))) .

Using the above observation and applying again [1,
Lemma 2.6, p. 32] one deduces that

E(τN − ν)+ ≥ e−N(D1−D2)

3(N + 1)|X |·|Y|

×
A/3∑

i=1

P∞(τN > 2A/3, Y (i) ∈ TW (cN (m)))) (4)

where D2 � D(W ||Q�|P 2
N ). Finally, letting A =

eN(α+μ), where μ > 0 is arbitrarily small, one gets
A/3∑

i=1

P∞(τN > 2A/3, Y (i) ∈ TW (cN (m)))

= Ω(eN(α+μ)−N(D2+μ/2))

if D2 < α by (reverse) union bound. Hence using
(4), if D1 < α and D2 < α, then E(τN − ν)+

grows exponentially with N , implying that the rate is
asymptotically equal to zero. We conclude that, if the
coding scheme achieves a strictly positive rate, then
either D1 ≥ α, or D2 ≥ α, or both inequalities hold.
Condition ii) follows.
The following result is related to the random codebook

capacity region, i.e., the capacity region computed with
respect to codebooks having all the components of all the
codewords independently drawn according to some com-
mon distribution. Specifically, an (R,α) coding scheme
{(CN , (τN , φN ))}N≥1 with random codebooks has all
the codebooks {CN}N≥1 randomly generated according
to some distribution P , and satisfies the important con-
straint limN→∞ E(τN − ν)+/N ≥ 1.

Theorem 3. The random codebook capacity region over
strictly positive rates is characterized by (2).

Sketch of the proof of Theorem 3: Let
{(CN , (τN , φN ))}N≥1 be an (R,α) (R > 0) coding
scheme with each codebook CN randomly generated
according to P .
By Fano’s inequality and the constraint

limN→∞ E(τN − ν)+/N ≥ 1 the input distribution P

must satisfy I(PQ) ≥ R. The second argument consists
in showing that one of the following inequalities

D(V ||(PQ)Y ) > α

D(V ||Q�) > α

must hold for any V ∈ PY . One then concludes that α
is upper bounded by

max
P :I(PQ)≥R

min
V ∈PY

max{D(V ||(PQ)Y ),D(V ||Q�} ,

and, using Theorem 1, one deduces the theorem.
To prove the desired claim one repeats the argument

that yields Theorem 2 claim ii) by replacing the set
TW (cN (m)) by T N (V ), the set of sequences yN ∈ YN

that have empirical type equal to V . In particular note
that the key step (3) holds since, under Pm,i, the proba-
bility of any sequence y(i) conditioned on T N (V ) is the
same.

IV. REMARK
It may be interesting to note that the achievability

result is obtained via a non-standard training based
coding strategy. The small prefix at the beginning of
each codeword is not used to pinpoint the codeword’s
location as in practice. Instead, it is the large portion
of information symbols that is mainly used for detecting
the codeword. These symbols locate the codeword within
an order N confidence interval of the exponentially large
(in N ) uncertainty window. The role of the prefix is only
at a second order since it is used to exactly locate the
codeword within an order N uncertainty window.
Because random codes achieve the capacity of syn-

chronized channels, it may be tempting to believe that
this is also valid in the situation of asynchronous chan-
nels. Surprisingly perhaps, this claim is false. Indeed,
preliminary results show that non-randomly constructed
codebooks — i.e., not satisfying the conditions given in
the paragraph that precedes Theorem 3 — outperform
the bound (2).
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