Int. Zurich Seminar on Communications (I1ZS), March 12-14, 2008

On Universal Coding for Parallel Gaussian Channels

Maryam Modir Shanechi
Dept. EECS, MIT
Cambridge, MA
Email: shanechi@mit.edu

Abstract— Two classes of approximately universal codes are
developed for parallel Gaussian channels whose state information
is not available at the encoder. Both architectures convert the
channel into a set of scalar additive white Gaussian noise
(AWGN) channels to which good AWGN base codes can be
applied, and both are layered schemes used in conjunction with
successive interference cancellation to keep decoding complexity
low. The first construction uses a concatenated code structure,
and with perfect base codes achieves an arbitrarily high fraction
of capacity in the limit of high SNR. The second construction
uses a layer-dither-repeat structure, and with perfect base codes
can achieve better than 90% of capacity at typical target spectral
efficiencies, corresponding to a roughly 1 dB gap to capacity.

I. INTRODUCTION

The design of practical universal codes for parallel Gaussian
channels, when the capacity is known at the transmitter but
the channel parameters themselves are not, is of significant
interest in a variety of emerging wireless applications and stan-
dards based on, for example, orthogonal frequency-division
multiplexing (OFDM) and multi-input multi-output (MIMO)
technologies.

In principle, one can simply code across the subchannels in
such applications. Indeed, the usual Gaussian random codes
are capacity-achieving when used in this way, even though
the signal-to-noise ratio (SNR) varies across the subchannels.
However, practical codes such as low density parity check
(LDPC) codes, and their associated low-complexity iterative
decoding algorithms, are typically designed for use in situa-
tions where the SNR is uniform across the block. As such,
it is often difficult to predict the performance of such codes
when used in this way.

In this paper we develop two code architectures with low-
complexity decoding that avoid this problem, and that allow
standard additive white Gaussian (AWGN) channel codes to
be used efficiently. Our first construction is a concatenated
code that is strongly inspired by (and therefore adopts the key
features of) both the permutation codes developed in [1] and
the rateless codes introduced in [2], and can be viewed as
modest refinement of both. The code is asymptotically perfect
at high SNR, i.e., it achieves an arbitrarily high fraction of
capacity in the limit of high SNR. However, as we show, at
typical target spectral efficiencies, the gap to capacity for such
codes is large.
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As a more practical architecture, we then develop a second
class of codes based on a layer-dither-repeat code structure in
the spirit of the rateless codes of [3]. We show that numerically
optimized versions of these codes substantially reduce the gap
to capacity even with small numbers of layers.

II. CHANNEL MODEL AND PROBLEM FORMULATION

The channel model of interest takes the form
y=Ax+w, (D
where

A = diag(av), S QK), (2)

where channel input x and output y at any particular time
are K -dimensional vectors, and where the associated noise w
is CN(0,I) and independent over time. The channel input is
constrained to a total average power of K P.

In our formulation, the channel realization ¢ is known to
the receiver but not to the transmitter. However, the transmitter
does know the white-input capacity of the channel

a=(a1,as,..

K
Cla) :ZIOg (14 Pla]?). 3)
k=1
The encoder generates from the message a collection of K
codewords of length N, for transmission over the respective
subchannels. There are 2"V 7 possible messages, corresponding
to a rate R code. The receiver, in turn, collects and jointly uses
the K received blocks to decode the message. The block length
of NV symbols is assumed to be large, but otherwise plays no
role in the analysis.
A code of rate R is a perfect universal code if the message
is decodable (with high probability) for any channel with
parameters « € A(C) such that

A(C) ={a : Cla) =C} ©)
when C' is chosen arbitrarily close to R.

IIT. AN ASYMPTOTICALLY PERFECT CONSTRUCTION

In the low SNR limit, simple repetition coding across
subchannels is a universal code in a meaningful asymptotic
sense. By contast, in the high SNR limit, more effort is
required, as we now discuss.

First, there are a variety of notions of asymptotic optimality
that may be of interest. As perhaps the coarsest notion, we say
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a family of codes of fixed block length N and increasing rate
R is asymptotically universal in the coarse sense if for some
f(-) such that f(R)/R — 1 as R — oo,

lim  sup Po(Cn(R),

R=%0 acA(f(R))

a) =0, &)

where Cn(R) denotes the sequence of codes, P, denotes
the (maximal) probability of a decoding error, and A(R)
is as defined in (4). Constructions satisfying this notion of
universality are developed in [1].

Note that codes optimum in the coarse sense need not have
vanishing error probability for any fixed rate and channel
realization. As a somewhat more refined notion, then, we say a
family of codes is asymptotically universal in the fine sense if
R/Cmin(R) — 1 as R — oo, where Cyyin(R) is the minimum
value of C such that
hm Po(Cn(R),

N—oo

a) =0. (6)

sup
acA(C)

A code that is asymptotically universal in the fine sense, can
be constructed as the concatenation of an outer binary erasure
code and an inner AWGN code. Specifically, the message is
first encoded using the erasure code, the result of which is then
divided among the K subchannels, and then further broken
down into layers in each subchannel. For each subchannel,
each layer is independently encoded using an AWGN code at
a fixed rate and according to a geometric power progression
over the layers. The encoded layers are then superimposed to
form the block to be transmitted over the subchannel.

At the receiver, as many layers as possible on each subchan-
nel are (independently) decoded via successive interference
cancellation. The number of layers decoded depends on the
realized SNR in the subchannel. The result is fed as input
to the decoder for the outer erasure code, which treats the
undecoded layers as erasures and reconstructs the message.

We now describe how the parameters of the code are chosen,
and analyze the resulting performance. We begin with the inner
AWGN codes.

For each subchannel &k, we decompose its (length-N) input
as xg = xéo) + x(l) . corresponding to the different layers
(the number of Wthh we discuss shortly), with which we use
a geometric power allocation of total power P of the form

P = P(1-a)d, 1=0,1,... (7

for some parameter 0 < a < 1. As a result, the signal-to-
interference ratio (SIR) is identical for all layers:

1—
SIR = —2& 8)

a
while the signal-to-interference+noise ratio (SINR) experi-
enced in the decoding of the [th layer in the kth subchannel

is

lag|* Py

SINRl = —
P kPP 1

©)

We allocate the same rate to all the layers of all the
subchannels, viz.,

Ri=log(1+(1—¢)SIR), [=0,1,... (10)
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for some choice of parameter 0 < ¢ < 1/2. Thus, to determine
how many layers are decodable, we determine for which values
of |

SINR! >

(1 —€)SIR. (11

To this end, let I, be the (not necessarily integer) value of [
in the kth subchannel such that (11) is satisfied with equality.
Hence, substituting (9) into (11), we get [; as the solution to

|ak‘2-Plk :(1_6)1—0,
|ak‘2Bk 1ga +1 a
which, using (7), yields
| |2 Pal* ! = (1 — €)/e. (12)

Hence, the number of decodable layers in the K subchan-

nels is
Z [k +1]

{k:1,,>0}

(13)

which, solving (12) for [, and substituting into (13), and noting
that K = {k : I, > 0} = {k : |ax|?> > (1—€)/(Pac)}, yields

- Igﬂ:{ LOg (1/a) <10g(|ozk2P) ~log X Z 6>J
- Z log 1 ; 6) e

<log(|ak2P) —log

keX
> L) -3 Pl - X 12 o L6
- log( b log ae
kg X kex
(14)
1 1—€¢ Kae 1—¢
>—— | C - K — - K1
~ log(1/a) ( (a) ae 1—c¢ %8 e )’
(15)
where (14) follows from using (3), log(z) = log(l + z) —

log(1+ 1/x), and log(1 +y) <y (for x > 0 and y > 0).

Next we consider the outer erasure code. We begin by
observing from (14) that since C(a) = C is fixed, L is
also fixed (at least in the high SNR regime), though how the
decodable layers are distributed across subchannels depends
on the ay’s. In the most extreme case, all L decodable layers
are in a single subchannel. Thus, we need a total of L layers
per subchannel in our scheme, which in turn implies that the
rate of the outer erasure code should be 1/K. In practice, the
outer erasure code can be implemented via a maximal distance
separable (MDS) or near-MDS code designed to recover L
source packets from any L of KL encoded packets.

Finally, the rate R achievable via this concatenated code
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TABLE I
ACHIEVABLE EFFICIENCIES 7, LAYER REQUIREMENTS L, AND OPTIMIZING
PARAMETER €, FOR CONCATENATED CODE AS A FUNCTION OF THE TOTAL
CHANNEL CAPACITY C FOR THE CASE OF K = 2 SUBCHANNELS.

C, b/s/Hz a € L n

20 1 0.18 0o 64%
20 0.5 025 148 60%
20 0.1 047 39 50%
50 1 0.06 [e's) 79%
50 05 009 414 7%
50 0.1 018 11.7 72%
satisfies
R=LR (16)
1 Kae 1—c¢
>—— | C - — — Kl
~ log(1/a) ( (a) 1—¢ %8 e >
1—
log <1+(1—e) a) (17)
a
1—¢ Kae 1—e€
> (1— C - K — — Kl
= 6)( (e) ae 1—e¢ °8 ae )
(18)

where to obtain (17) we have substituted (14) and (10) with
(8) into (16), and where to obtain (18) we have exploited the
inequality log(1 + pz) > plog(1 4 ), which holds for any
0 <p<1and z > 0, and that follows from concavity of
the log function. Finally, if we let, e.g., ¢ = 1/4/C(ax) and
a =1—e" then from (18) we obtain R/C(a) — 1 as
C(a) — o0, and thus the code is universal in the sense of (6).

While fine-sense asymptotically universal, this scheme is
rather far from capacity even at large but finite spectral
efficiencies, as the numerical results of Table I reveal. In these
simulations, there are K = 2 subchannels, and we use the
lower bound (17), optimized over the choice of € for a given
choice of a. The resulting lower bound and the associated
number of decodable layers both increase monotonically with
a. Note that with the proper choice of ¢, the achievable
efficiency is not especially sensitive to the number of layers
in the scheme.

The results of Table I suggest that a concatenated code
of this type, with the associated decoding procedure, while
asymptotically perfect, is too far from capacity at typical target
spectral efficiencies to be practical. Accordingly, in the next
section we consider an alternative construction with better
efficiency characteristics in the regime of interest.

IV. A NEAR-PERFECT CONSTRUCTION

Our layered construction in this section replaces the outer
code with dithered repetition, and minimum mean-square error
(MMSE) combining during successive interference cancella-
tion (SIC), following the approach in [3] for rateless coding.

Specifically, the contruction for a rate R code is as follows.
First, we choose the number of layers L and the associated
codebooks C1, ..., Cr. We further constrain the codebooks to
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have equal rate R/L, which has the advantage of allowing
them to be derived from a single base code. We assume ca-
pacity achieving independent identically distributed Gaussian
codebooks are used.

Given codewords ¢; € €, | = 1,...,L, the blocks
X1i,...,Xx to be distributed across the K subchannels take
the form

X1 Ci
=G (19)
XK CL

where G is an K x L matrix of complex gains and where
xy, for each k and c; for each [ are row vectors of length V.
The power constraint enters by limiting the rows of G to have
squared norm P and by normalizing the codebooks to have
unit power.

In addition to the layered code structure, there is additional
decoding structure, namely that the layered code be succes-
sively decodable. Specifically, to recover the message, we
decode one layer, treating the remaining layers as (colored)
noise, then subtract its effect from the received codeword.
Then we decode another layer from the residual, treating
further remaining layers as noise, and so on.

There are several degrees of freedom in this code design,
which can be used to maximize the efficiency of the code for
a given C. At the encoder, we are free to choose G, which
has KL phase and K (L — 1) magnitude degrees of freedom
available. At the decoder, the decoding order can be chosen as
a function of the realized channel parameters . Since there
are L! possible decoding orders, this degree of freedom can
be described by a discrete variable m.

The optimization of the rate of the code over the available
degrees of freedom can be expressed as

R=L -max min max min [;(a, G, m)

(20)
GeS acA(C) 1<m<LI1<I<L

where G is the set of G satisfying the power constraint, i.e.,
G={G :[GGyx =P, k=1,...,K}

where A(C) is as given in (4), and where I;(a, G, m) is the
mutual information in the [th layer with respect to the decoding
order specified by m, i.e., for [ =1,...,L,

L
Z Il/ (a, G, m)

U=l
— log det (I + A[GH(m)]l:L[GH(m)]lT:LAT) . @D

with A = diag(a), with II(m) denoting the matrix that
permutes the columns of G according to m, and with [];.;
denoting the submatrix consisting of columns ¢ through j
of its argument. Finally, using (20), we obtain the resulting
efficiency of the optimized code as 7y, = R/C as a function
of the number of layers L in the code.

In the sequel, we restrict our attention to the case of K =
2 subchannels to simplify the exposition. Moreover, we let
P =1 without loss of generality. In this case, we note that
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the set A(C') can be expressed in the equivalent form A(C) =
{a(t), |t| <1} where

lag ()2 = 20-0C/2 1, laa ()2 = 20+DC/2 1. (22)

When L = 1, our construction specializes to a simple repe-
tition code across subchannels, and serves as a useful baseline.
Such a code can achieve rate Ry = log (14 |oy |> 4 |a2?),
and hence yields an efficiency of

m = (1/C)log (1 +2(2072 — 1)) .

As we will see, this efficiency is significantly lower than that
achievable by our construction.

In addition, a simpler version of our construction in which
the decoding order is fixed (independent of the realized chan-
nel gains) incurs a significant price in performance. Indeed,
such a scheme has an efficiency n} that is strictly less than
unity (for C' > 0) even as L — oo. In particular, we have the
following claim, whose proof we omit due to space constraints.

(23)

Claim 1: For the case of K = 2 subchannels, the efficiency
of the fixed-decoding-order variant of our code is bounded
according to

n.(C) <0’y = R4 (C)/C, (24a)
where
Ry =2log (1+ Plaf?) + log <ﬂ> (24b)
1+ Pla/|?
with
&> =262 -1, |&/|?=2 -1, P= @ “E (24c)

It is straightforward to verify that 1; and 7/ both approach
las C — 0 and 1/2 as C' — oo. It can also be verified nu-
merically that the 7/ is at most a gain of 13.8% in efficiency
over 71, which occurs at C' = 3.76 b/s/Hz. Thus, without the
use of a variable decoding order, our code construction cannot
achieve large gains over a simple repetition code.

We evaluate the efficiency of our code with variable de-
coding order via a numerical evaluation of (20). In our
simulations, both L and C' are varied, but we continue to
restrict our attention to K = 2 subchannels. The results are
summarized in Table II. As the table reflects, efficiencies in
the range of 90% are possible over typical target spectral
efficiencies. The table also shows the loss in efficiency that
is incurred when a fixed decoding order is used. As described
above, the efficiency with fixed decoding order also implies a
system with substantially greater complexity, since it requires
the use of many layers.

In Table II, we also show the SNR gaps A (in dB) to
capacity corresponding to the calculated efficiencies. Note that
the SNR gap for each value of C' depends on the realized
channel gain pair (aq, a2). In the table, we indicate the worst-
case SNR gap, which corresponds to, e.g., the case as = 0.

In summary, the efficiency improvements of our scheme
relative to a simple repetition code vary from 23% (3.3
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TABLE I
ACHIEVABLE EFFICIENCIES 777, AND n’L, AND CORRESPONDING SNR GAPS
Ajp AND A’ TO CAPACITY, FOR THE LAYERED-DITHER-REPEAT CODE
WITH VARIABLE AND FIXED DECODING ORDERS RESPECTIVELY, AS A
FUNCTION OF THE NUMBER OF LAYERS L AND THE TOTAL CHANNEL
CAPACITY C (B/S/HZ) FOR THE CASE OF K = 2 SUBCHANNELS.

| C=433 C =3 C =12
ns (As) | 92% (1.1 dB)  90% (2.4 dB)  87% (4.7 dB)
n2 (A2) | 88% (1.7 dB)  82% (4.4 dB)  77% (8.3 dB)
m (A1) | 69% (4.4 dB)  62% (9.3 dB)  58% (15.2 dB)
n.. (AL) | 83% (2.4 dB) 73% (6.6 dB)  66% (12.3 dB)

dB) at C = 4.33 b/s/Hz, to 29% (10.5 dB) at C = 12
b/s/Hz. Moreover, at the typical target spectral efficiency of
4.33 b/s/Hz, our code achieves within approximately 1 dB of
capacity, neglecting losses due to the base code.

V. MIMO AND RATELESS EXTENSIONS

Both the asymptotically-perfect and near-perfect universal
code constructions of this paper for the parallel Gaussian
channel can be readily extended both to the Gaussian MIMO
channel and to a rateless scenario, where even the capacity C'
is not known a priori. Codes for the MIMO channel can be
constructed, for example, by combining the codes of this paper
with the diagonal Bell Labs space-time codes (D-BLAST)
via concatenation. When, in addition, we are interested in the
rateless scenario, we need not only spatial redundancy blocks
across channel inputs as in this paper, but temporal redundancy
blocks as well. In particular, if we desire that, given some C,
the code be decodable whenever the MIMO channel matrix H
is such that Cyvipvo (H) = C'/m for some 1 < m < M, where
Cwvivo (H) is the capacity of the associated (K -input) MIMO
channel, then a total of KM redundancy blocks are required.
Since the spatial and temporal dimensions are otherwise
indistinguishable, it suffices to replace K with K’ = KM
in the constructions of this paper. In the rateless extension
of our concatenated code, this implies using a good rateless
erasure code as the outer code, such as a raptor code [4].
Such an architecture therefore leverages the existance of good
rateless codes for the erasure channel in the construction of
good rateless codes for Gaussian channels. We omit the details
due to space constraints.
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