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Abstract—The impact of side information about the distortion
measure in problems of quantization is analyzed. It is shown that
such “distortion side information” is not only useful in general, but
that in many cases knowing it at only the encoder is as good as
knowing it at both encoder and decoder, and knowing it at only
the decoder is useless. Moreover, it is shown that the strategy of ex-
ploiting distortion side information at the encoder by describing it
for the decoder is inefficient. Thus, distortion side information is a
natural complement to side information about the source signal, as
studied by Wyner and Ziv, which if available only at the decoder
is often as good as knowing it at both encoder and decoder. When
both types of side information are present, conditions are estab-
lished under which encoder-only distortion side information and
decoder-only signal side information are sufficient in the high-res-
olution limit, and the rate penalty for deviating from this configu-
ration is characterized.

Index Terms—Data compression, distributed source coding,
quantization, sensor networks, Wyner–Ziv coding.

I. INTRODUCTION

I N settings ranging from sensor networks and communica-
tion networks, to distributed control and biological systems,

different parts of the system of interest typically have limited,
noisy, or incomplete information but must somehow cooperate
to achieve some overall functionality.

In such scenarios, it is important to understand a variety of
issues. These include: 1) the penalties incurred due to the lack
of full, globally shared information; 2) the best ways to encode
and combine available information from different sources; and
3) where different kinds of information are most useful in the
system. A simple example of such a distributed source coding
scenario was introduced by Wyner and Ziv [1], and is illustrated
in Fig. 1(a). An encoder observes a signal to be represented
digitally for a subsequent decoder having some additional signal
side information , which is correlated with . An analysis
of the fundamental performance limits for this problem [1]–[5]
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Fig. 1. Compressing a source with side information into a quantized repre-
sentation .

reveals both that such side information is useful only if avail-
able at the decoder, and that in many cases a properly designed
system can realize essentially the full benefit of this side infor-
mation (i.e., as if it were known to both encoder and decoder)
even if it is available only at the decoder.

In this paper, we introduce and analyze a different scenario,
illustrated in Fig. 1(b). As before, the encoder quantizes its ob-
servations into a collection of bits, which the decoder uses to
reconstruct the observations to some level of fidelity. But now
the encoder has some distortion side information describing
the relative importance of different components of the observed
signal, which enters into our model as a parameter of the distor-
tion measure.

We develop the fundamental performance limits for this
problem. Our analysis reveals, in some broad scenarios of in-
terest, both that such side information is useful only if available
at the encoder, and that a properly designed system can realize
essentially the full benefit of such side information (i.e., as if it
were known to both encoder and decoder) even if it is available
only at the encoder.1 As such, distortion side information plays
a complementary role to that of signal side information as
developed by Wyner and Ziv.

Finally, we show that these kinds of source coding results
continue to hold even when both distortion side information
and signal side information are jointly considered, under
appropriate conditions. Specifically, we establish that a system
where only the encoder knows and only the decoder knows

can be asymptotically as good as a system with both types
of side information known at both the encoder and the decoder.
Moreover, we bound the performance gap in the nonasymp-
totic regime, and also derive the penalty for deviating from the
asymptotically sufficient side information configuration.

1Clearly, such results can be true only if the side information bears a reason-
able statistical relationship to the source, and only if it parameterizes the distor-
tion measure in reasonable ways. Our treatment will make such requirements
precise.
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In terms of background, an analysis of the value and effi-
cient use of distortion side information available at only the en-
coder or decoder has received relatively little attention in the
information theory and compression communities to date. The
rate–distortion function with decoder-only side information, rel-
ative to side-information-dependent distortion measures (as an
extension of the Wyner–Ziv setting [1]), is given in [4]. And
a high-resolution approximation for this rate–distortion func-
tion for locally quadratic weighted distortion measures is given
in [6]. However, we are not aware of an information-theoretic
treatment of encoder-only side information with such distortion
measures. In fact, the mistaken notion that encoder-only side in-
formation is never useful is common folklore. This may be due
to a misunderstanding of Berger’s result that side information
that does not affect the distortion measure is never useful when
available only at the encoder [3], [7], a result we will generalize
and develop further insight into in this paper.

Before proceeding with our development, it is worth stressing
that there are a wide range of applications where distortion side
information may be available in some parts of a system but not
others. As one example, in a sensor network a node may have in-
formation about the reliability of the measurements, which can
fluctuate due to calibration or processing. As another example,
in audio, image, or video compression systems, the encoder may
apply signal analysis to determine which parts of the signal
are more or less important (i.e., sensitive to distortion) due to
context, masking effects, and other perceptual phenomena [8].
While in practice the conventional approach to exploiting such
side information in these kinds of examples involves sharing it
with decoders via a side channel, the results of this paper imply
that this is both an unnecessary and inefficient use of bandwidth.

An outline of the paper is as follows. Section II summarizes
some notation for the paper, and Section III introduces the
formal problem model of interest. Section IV then develops the
rate–distortion tradeoff for source coding with only distortion
side information, and in particular, identifies conditions under
which such side information is sufficient at the encoder and
useless at the decoder. Section V then extends the problem of
interest to include both signal and distortion side information,
emphasizing the case of continuous sources in the high-resolu-
tion regime. For this scenario, we identify and characterize both
ineffective and asymptotically effective partial side information
combinations. For ineffective combinations, Section VI then
quantifies the penalty incurred by misplaced side information.
For asymptotically effective combinations, Section VII de-
velops bounds on the vanishing rate gap relative to the case
of complete side information at lower resolutions. Finally,
Section VIII contains some concluding remarks.

II. NOTATION

We use , , , , and to denote mu-
tual information, entropy, differential entropy, information di-
vergence, and Fisher information, respectively. All such quan-
tities are expressed in bits, except for Fisher information, which
is defined in terms of the natural logarithm. More generally,

will refer to base- logarithms throughout. In addition,
denotes the binary en-

tropy function, and denotes the Hamming distortion
measure, which is if and otherwise. We also use
to denote expectation, to denote cardinality for set-valued
arguments and absolute value for scalar arguments, and to
denote the Euclidean norm of its argument.

Finally, sequences are denoted using superscripts and se-
quence elements with subscripts (e.g., ),
and random variables are distinguished from sample
values by the use of sans-serif fonts for the former (e.g.,

).

III. PROBLEM MODEL

Our general rate–distortion problem with side information
corresponds to the tuple

(1)

Specifically, a source sequence consists of the samples
drawn from the alphabet , and the side information likewise
consists of samples drawn from the alphabet . These random
variables are drawn according to the memoryless distribution

(2)

A rate encoder maps the source as well as
possible encoder side information to an index

. The corresponding decoder maps the
resulting index as well as possible decoder side information

to a reconstruction of the source that takes values in
the alphabet , which we will generally take to be the same as

. Distortion in a reconstruction of a source is measured
via the additive measure

(3)

where we explicitly denote the dependence of the distortion
measure on the side information. As usual, the rate–distortion
function at a particular distortion is the infimum of rates such
that there exists a system where the distortion is less than with
probability approaching as .

Of particular interest in this paper is the case in which the side
information can be decomposed into two kinds of side infor-
mation, which we term “signal side information” and “dis-
tortion side information” , i.e., . The former, whose
elements take values in an alphabet , corresponds to informa-
tion that is statistically related to the source but does not directly
affect the distortion measure, while the latter, whose elements
take values in an alphabet , corresponds to information that
does not have a direct statistical relationship to the source but
does directly affect the distortion measure. Formally, we cap-
ture this decomposition via the following definition.

Definition 1: A decomposition of side informa-
tion into signal side information and distortion side infor-
mation for a rate–distortion problem with source and addi-
tive distortion measure(3) is admissible if the following Markov
chains are satisfied:

(4a)

and

(4b)
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Several remarks are worthwhile before proceeding with our
development. First, note that (4a) is equivalent to the condition

(5)

for all and . Moreover, when
(4b) holds, we can (and will), with slight abuse of notation, use

in place of . We restrict our attention to de-
terministic such functions .

Second, Definition 1 allows much flexibility in decomposing
some side information of interest into signal and distortion com-
ponents. Indeed, such decompositions always exist—one can al-
ways simply let . Nevertheless, we will see that
any such decomposition effectively decomposes the side infor-
mation into a component that is of value at the encoder, and a
component that is of value at the decoder.

Third, when separating phenomena that have physically dif-
ferent origins, such decompositions arise quite naturally. More-
over, in such cases, the resulting signal side information and
distortion side information are often statistically independent,
in which case additional results can be obtained on the relative
value of different side information availability configurations.
Hence, in our treatment we will often impose this further re-
striction on the side information requirements of Definition 1,
which corresponds to a situation in which and are indepen-
dent not just conditioned on as per (4a), but unconditionally
as well:

Moreover, in this case is also independent of , i.e.,

However, it should be emphasized that admissible decomposi-
tions satisfying this further restriction are not always possible,
and, later in the paper, for such cases we assess the penalties in-
curred by the lack of a suitable decomposition.

It is also worth emphasizing that a subclass of side informa-
tion scenarios with and independent corresponds to the case
in which signal side information is altogether absent ,
so and are independent in this case too. This case will also
be of special interest in parts of the paper.2

Finally, to obtain many of our results, we further restrict the
form of the distortion measure , a simple example
of which is the modulated quadratic distortion

for . In general, each of our theorems
will make clear any particular restrictions on the form of the
distortion measure that apply.

In the remainder of the paper, we consider the 16 possible
scenarios depicted in Fig. 2, corresponding to where each of
and is available. In our notation for the associated rate–dis-
tortion functions, the subscripts DEC, ENC, BOTH, and NONE in-
dicate that the associated form of side information is available at
the decoder, the encoder, both terminals, or neither terminal, re-
spectively. For example, denotes the Wyner–Ziv

2By contrast, when exists but is unobserved, and can be dependent, as
will also arise at times in our development.

Fig. 2. Scenarios for source coding with distortion side information and
signal side information . The four switches may each be open or closed,
corresponding to whether the associated side information is available or not at
the associated terminal.

rate–distortion function where is available at the decoder
[1], corresponding to the scenario depicted in Fig. 1(a). Simi-
larly, when all information is available at both encoder and de-
coder, describes Csiszár and Körner’s
[4] generalization of Gray’s [9] conditional rate–distortion func-
tion to the case where the side information can
affect the distortion measure. Finally, denotes the
rate–distortion function corresponding to the scenario of Fig.
1(b).

We also emphasize that some side information being avail-
able at neither terminal (the NONE case) is not in general equiv-
alent to there being no such side information in the problem.
Indeed, an unobserved form of side information can affect the
problem through the other form of side information if the latter
is observed and if the two are statistically dependent. Hence,
for example, in general corresponds to
a version of the Wyner–Ziv problem in which the signal side
information affects the distortion measure through its cor-
relation with the unobserved , a scenario equivalent to one
considered in [6]. However, is equiva-
lent to , the rate–distortion function without side informa-
tion (for the corresponding averaged distortion measure), since
no side information at all is observed and, hence, any correla-
tion is irrelevant.

As pointed out by Berger [10], all the relevant rate–distortion
functions may be derived by considering as part of or (i.e.,
by considering various combinations of “super sources” and/or
“super side information” such as , ,
etc.) and applying well-known results for source coding, source
coding with side information, the conditional rate–distortion
theorem, etc. The resulting expressions are a natural starting
point for our development. We begin with the simpler set of
cases in which there is no signal side information.

IV. SOURCE CODING WITH DISTORTION

SIDE INFORMATION ALONE

It is straightforward to express the rate–distortion tradeoff
for quantization when distortion side information is present, but
signal side information is not. In particular, we obtain the fol-
lowing.

Proposition 1: The rate–distortion functions for a source ,
distortion measure (3), and distortion side information are

(6a)

(6b)
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Fig. 3. Source coding with encoder-only distortion side information. In this example, an “erasure-based” distortion is used, whereby the side information indicates
which k of n source symbols are important and must be reproduced exactly; the remaining n�k symbols are completely unimportant do not need to be reproduced
correctly. The depicted system construction exploits Reed–Solomon coding and its “curve-fitting” interpretation. Depicted is the case n = 7 and k = 5, with a
source alphabet of jX j = 8 possible values.

(6c)

(6d)

The rate–distortion functions in (6a)–(6d) follow from stan-
dard results (e.g., [1], [3], [4], [7], [9]). To obtain (6c), for ex-
ample, we apply the classical rate–distortion theorem to the
super-source .

In the remainder of this section, we turn our attention to ad-
dressing when encoder-only distortion side information is as
good as having it at both encoder and decoder, and when de-
coder-only distortion side information is useless. Before devel-
oping our formal results, we first describe some examples of
such behavior that provide some preliminary intuition.

A. Illuminating Examples

To develop an appreciation for how having distortion side in-
formation available only at the encoder can be as effective as
having it at both encoder and decoder, we begin with two mo-
tivating examples, corresponding to a discrete and continuous
source, respectively. We keep the discussion fairly informal in
this section to emphasize the basic insights.

Example 1 (Discrete Source): Consider a source sequence
whose samples are drawn uniformly and independently from
the finite alphabet with cardinality . Let corre-
spond to the binary variables indicating which
source samples are relevant. Specifically, let the distortion mea-
sure be of the form if and only if either or

. Finally, let the sequence be statistically independent
of the source , with drawn uniformly from the subsets
with exactly ones.3

If the side information were available at both encoder and
decoder, then only the relevant source samples would need to
be described to avoid incurring distortion (i.e., achieve ),
which requires bits. Thus, this is obviously a lower

3If the distortion side information were a Bernoulli (k=n) sequence, then
there would be about k ones with high probability. We focus on the case with
exactly k ones for simplicity.

bound on the number of bits required when side information is
available only at the encoder.

At the other extreme, an upper bound is obtained from the
scenario in which side information is unavailable or ignored.
In this case, representing the source without distortion would
require exactly bits.

When , with denoting
the binary entropy function as defined in Section II, a better
(though still suboptimal) approach when encoder side informa-
tion is available would be for the encoder to describe for the de-
coder which samples are relevant and then describe only those
samples. Using Stirling’s approximation, the former description
would require about bits, while the latter description
would, again, require bits. However, it is possible to
represent the source without distortion using still fewer bits, as
we now describe.

As depicted in Fig. 3, we view the source samples as
a codeword of an Reed–Solomon code (or more gen-
erally any maximal distance separable (MDS) code4) with

indicating an erasure at sample . The encoder uses
the Reed–Solomon decoding algorithm, which coresponds to

th-order polynomial interpolation, to “correct” the erasures
and determine the information symbols, which constitute
the source representation. To reconstruct the signal, the de-
coder uses the Reed–Solomon encoding algorithm, which
corresponds to th-order polynomial extrapolation of the
information symbols to produce the reconstruction . In
this way, whenever and the relevant samples
are represented without distortion using only bits.
Remarkably, we see this is precisely our lower bound above,
corresponding to the best possible rate were the side informa-
tion also available at the decoder.

It is also worth remarking that in this example not only is it
sufficient to have the side information only at the encoder, but
we will show later that having it only at the decoder is useless,
i.e., the number of bits required to achieve distortion is

4The desired MDS code always exists since we assumed jX j � n. For jX j <
n, near-MDS codes exist, which give asymptotically similar performance with
an overhead that goes to zero as n ! 1.
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Fig. 4. Quantizers for distortion side information available at encoder and de-
coder. When the side information indicates the horizontal (respectively, ver-
tical) coordinate is more important, the encoder and decoder use the upper (re-
spectively, lower) codebook lattice and partition function to increase horizontal
(respectively, vertical) accuracy.

in this case, the same as if the side information were
not available.

An analogous approach can be used for continuous sources.
In particular, for such sources the discrete Fourier transform
(DFT) plays the role of the Reed–Solomon code. Specifically, to
encode the source samples, we view the relevant samples as
elements of a complex, periodic, Gaussian, sequence with pe-
riod , which is band-limited in the sense that only its first
DFT coefficients are nonzero. Using periodic, band-limited, in-
terpolation we can use only the samples where to find
the corresponding nonzero DFT coefficients, which are subse-
quently quantized. To reconstruct the signal, the decoder recon-
structs the temporal signal corresponding to the quantized DFT
coefficients.

Rather than developing this analogy further, we instead next
develop some additional insights afforded by a rather different
approach to continuous sources.

Example 2 (Continuous Source): Consider the quantization
of a single pair of samples from a continuous source
(i.e., ) where the side information selects one of
two possible distortion measures. In particular, the distortion is
of the form

Fig. 5. Quantizers for distortion side information available only at the encoder.
A common codebook lattice is used at the decoder, independent of the realized
side information, but when the side information indicates that the horizontal
(respectively, vertical) coordinate is more important, the encoder uses the upper
(respectively, lower) partition to increase horizontal (respectively, vertical) ac-
curacy.

where the corresponding side information pair takes on
one of two different values, or (with ), inde-
pendently of the realization of the source pair . Hence,
in one of the distortion measures, the first of the samples is more
important (i.e., less distortion tolerant) than the other. In the
other measure, it is the second sample that is more important.

If the side information were available to both encoder and
decoder, then one could choose a codebook lattice and partition
function for each of the two values of the side information. Such
a solution is as depicted in Fig. 4.

When the side information is available only at the encoder,
then one requires a solution that involves a single, common
codebook lattice. However, we can still use two partition func-
tions chosen according to the value of the (binary) side informa-
tion. For this example, such a solution is as depicted in Fig. 5.

Comparing Fig. 5 with Fig. 4, it is apparent—neglecting edge
effects and considering a uniformly distributed source—that
having the distortion side information only at the encoder incurs
no additional distortion. Later in the paper we will make such
statements precise through high-resolution analysis, but our
qualitative discussion to this point suffices to reveal the basic
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intuition and the fundamental role that fixed-codebook/vari-
able-partition encoders play more generally in the associated
systems. Moreover, this encoding strategy generalizes readily
to arbitrary block lengths and more efficient partitions, and
can be implemented with only linear complexity in the block
length, as described in [11].

As a final comment, in this example, too, it turns out that not
only is it sufficient to have the side information only at the en-
coder, but, as we will later establish, having it only at the de-
coder is useless. In other words, as one might expect intuitively,
once the partition (i.e., encoder) has been fixed, there is no way
to exploit knowledge of the side information at the decoder to
reduce the distortion.

B. Cautionary Counterexamples

At this point, one might begin to get the mistaken impression
that encoder-only distortion side information is always suffi-
cient, and that decoder-only distortion side information is never
useful. In fact, there must be at least some meaningful structural
constraints on the form of the distortion measure for these prop-
erties to hold, as the following simple counterexamples make
clear.

Claim 1: Consider a source and side information each
uniformly distributed over the alphabet . If
the and are independent and the distortion measure is of the
form

(7)

then both

(8)

and

(9)

Moreover, even in the high-resolution limit the
rate gaps corresponding to (8) and (9) are each at least
1/2 bit/sample.

Proof: To establish (8), first note that when the side infor-
mation is available at the decoder, the problem is equivalent to
one without side information, but with effective source , since
due to the form of the distortion measure (7) the side information
can be added to the reconstruction to eliminate its effect. How-
ever, when the side information is available only at the encoder,
then the quantization problem is equivalent to one without side
information, but with an effective source . Thus, we have
for

(10)

where the first term on the second line of (10) is the readily com-
puted Shannon lower bound on the rate required to quantize the
effective source, whence (8). Finally, to establish (9) it suffices
to note that

where the first inequality is (8).

It is also worth emphasizing that if Definition 1 is not sat-
isfied (specifically, if and are not independent in this case
where there is only distortion side information), encoder-only
side information may or may not be sufficient, even when the
distortion measure is otherwise reasonably chosen.

We begin with the following proposition.

Proposition 2: If the source is discrete and the distortion
measure has a unique minimum with respect to at

, then we have

(11)

with . Moreover, for all , we
have

(12)

Proof: To obtain (11), note that

(13)

(14)

(15)

where (13) follows from (6c) with corresponding to the dis-
tribution that optimizes (6d) instead of (6c), where to obtain (14)
we have used the chain rule of mutual information, and where
to obtain (15) we have used (6d). In turn, noting that
implies , we can rewrite (15) in the form of (11), as de-
sired.

To obtain (12), it suffices to note that ,
and that, via (6a) with the particular choice , which al-
ways meets the distortion constraint, we have

.

The following claim establishes that the inequalities (11) and
(12) can hold with equality, and thus they quantify the maximum
insufficiency of encoder-only side information and maximum
efficacy of decoder-only side information.

Claim 2: If the source is discrete, the side information satis-
fies , and the distortion measure is of the form

, where is the usual Hamming distortion mea-
sure as defined in Section II, then

(16)

and

(17)

Proof: To verify (16) and (17), it suffices to note that, for
all ,

(18)

since is available at the decoder, and that

(19)

corresponding to lossless encoding of .
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We now turn to developing our main results of the section:
comparing the rate–distortion functions in Proposition 1 to iden-
tify general conditions under which it is sufficient to have dis-
tortion side information at the encoder, i.e.,

, and under which it is useless to have it at the
decoder, i.e., . We begin with
the former.

C. Sufficiency of Encoder-Only Side Information

First, we have the following equivalent characterization of
sufficiency.

Proposition 3: if and only
if for some that optimizes (6d).

Proof: It suffices to equate (6c) and (6d), expanding the ar-
gument of the former using the chain rule of mutual information
as follows:

and note that if some minimizes (6d) and satisfies ,
it also minimizes (6c).

Proposition 3 admits a simple interpretation. In particular,
since represents the distribution of the codebook, the
condition corresponds to the requirement that the
codebook distribution be independent of the side information.
In the language of Example 2, this says that encoder-only side
information can only be sufficient if and only if a common code-
book can perform as well as can be achieved by separate code-
books (tuned to each possible value of the side information).

From another perspective, the condition tells
us that in a system in which encoder-only side information is
sufficient and used efficiently, no information about the side
information sequence can be inferred from observation of
the reconstruction (or, equivalently, the quantization index).
As such, we can infer that the naive approach to encoder-only
side information problems, whereby the side information is con-
veyed to the decoder via a side channel, can never be efficient in
such cases. Indeed, the rate penalty (overhead) associated with
such a scheme must be at least , which can be arbitrarily
large.

There are two natural scenarios where can be zero
and hence : the case of arbitrary
sources with erasure distortions, and the case of uniform sources
with group difference distortions. We consider each separately,
in turn, and remark in advance that Example 1 is an instance of
both.

1) Arbitrary Sources With Erasure Distortions: The fol-
lowing theorem establishes that for erasure-type distortion
measures, encoder-only side information is sufficient.

Theorem 1: For any source , if the side information has
binary elements, i.e., , and the associated distortion
measure is of the form

(20)

for some function , then

(21)

Before proceeding with a proof, we make some remarks.
First, we emphasize that there is no requirement that and
be independent. Second, not only is encoder side information
sufficient in the case of erasure distortions, but the quantizers
for optimally exploiting side information at the encoder alone
can be especially simple, as Example 1 suggests.

Proof: Let correspond to a distribution that optimizes
(6d). Define a new random variable obtained from ac-
cording to

(22)

where is the usual Kronecker delta function. Via this con-
struction, both and have the same expected distortion
since they only differ when . Moreover, since

form a Markov chain (conditioned on ), we have, by the
data processing inequality,

(23)

so also optimizes (6d). Finally, since , Propo-
sition 3 is satisfied and we obtain the desired result.

2) Uniform Sources With Group Difference Distortions:
Uniform source and group difference distortion measures arise
naturally in a variety of applications, such as those where
phase is a quantity of particular interest. Example application
domains range from magnetic resonance imaging, synthetic
aperture radar, and ultrasonic microscopy, to audio, image, and
video processing.

The following theorem establishes that for uniform sources
and group-difference-type distortion measures, encoder-only
side information is also sufficient.

Theorem 2: Suppose the source of interest is uniformly
distributed over a group and the distortion measure is of the
form

(24)

for some function and binary relation ,5 where the dis-
tortion side information is independent of . Then

(25)

Before proceeding with the proof, we remark that this re-
sult is rather natural. Indeed, the symmetry in this case ensures
that the optimal codebook distribution is uniform independent
of the side information, allowing a fixed codebook to perform
as well as a variable codebook—provided it is used in con-
junction with a suitably chosen variable partition function. The
Reed–Solomon-based encoding of Example 1 has precisely this
character.

For the most general case of mixed groups with both discrete
and continuous components, we provide a direct proof based
on symmetry and convexity arguments in Appendix I. How-
ever, for the case of either purely discrete or purely continuous

5The relation	 is, in turn, defined via a	 b a� (�b), where�b denotes
the additive inverse of b in the group.
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groups, a simple and intuitive proof is possible via the con-
ditional Shannon lower bound on the right-hand side of (25),
which we establish in the sequel.

Proof of Theorem 2: First, consider the case in which is
a discrete group. With denoting the random variable corre-
sponding to the optimizing distribution in (6d), the conditional
Shannon lower bound on is

(26)

(27)

(28)

(29)

(30)

where (26) follows from (6d), (27) follows from the indepen-
dence of and , (28) follows since conditioning cannot in-
crease entropy, where in (29) is a random variable that
maximizes subject to the constraint ,
and where (30) follows from being uniformly distributed.
Note that as a consequence of its maximum entropy property,

is dependent on , but independent of , i.e.,

(31)

Next, observe that and must be related according to
, since the inequalities (28) and (29) then hold with

equality. To verify that (28) holds with equality, it suffices to
note that since and are independent and is uniform, is
also uniform. Thus, since the distribution of does not depend
on , the two random variables are independent.

To complete the proof, it suffices to apply Proposition 3,
noting that since is uniform regardless of the value of ,
these two random variables are also independent, whence

.
For the case of continuous groups, it suffices, in (30), to re-

place with the Lebesgue measure of the group, and
with the differential entropy .

D. Inefficacy of Decoder-Only Side Information

A fairly general scenario under which decoder-only distortion
side information is ineffective is given by the following theorem.

Theorem 3: For any source , a distortion measure of the
scaled form6

(32)

for some , , and , and any side information
that is independent of , we have

(33)

Proof: From (6b) we see that if is optimal, then

(34)

6Obviously, without loss of generality, we could let 
(�) be the identity func-
tion by appropriately (re)defining . Nevertheless, our form will be convenient.

However, substituting (32) into(34) and noting that

we obtain

(35)

where to obtain (35) we have used the Markov chain
implicit in (6b), and that and are independent. Since the

right-hand side of (35) does not depend on , we conclude that
is only a function of , in which case we simply replace

and with in (6b). Finally, since
is zero by the same argument used to obtain (35), we see

that (6b) specializes to (6a).

A couple of additional insights are worth developing. In par-
ticular, we address the question of companion inefficacy results
corresponding to the two special classes of problems considered
in Sections IV-C1 and IV-C2.

First, considering the results in Section IV-C1, one might
wonder whether for problems with erasure distortion measures
that decoder side information would be of no value even without
the requirement that the source and side information be inde-
pendent. In particular, we know from Theorem 3 that this is true
when there is such independence. However, without such inde-
pendence, this is not true, as the following counterexample es-
tablishes.

Claim 3: Suppose is a Bernoulli source, is a
Bernoulli( ) process that is independent of with ,
and , where is the EXCLUSIVE-OR operator corre-
sponding to modulo- addition. Then, for the erasure distortion
measure , we have

(36)

Proof: First, it is straightforward to verify (e.g., via a
simple Shannon lower bound) that to achieve requires
rate

1 bit/sample (37)

On the other hand, via (6b) with the particular choices
and , which satisfies the distortion constraint, we have,

in bits per sample

(38)
where the middle equality follows from the fact that is also
independent of . Comparing (37) to (38) yields (36).

Second, considering the results in Section IV-C2, one might
wonder whether for problems with group-difference distortion
measures and independent side information, that decoder side
information would be useless provided the source were uni-
formly distributed over the group. We know from Claim 1 that
this is not true without this constraint on the source. However,
even with this additional constraint, the result is still not true, as
the following counterexample establishes.
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Claim 4: Consider a source and side information each
uniformly distributed over the alphabet . If
and are independent, , and the distortion measure is of
the binary group difference form (where

is the EXCLUSIVE-OR operator), then for any

(39)

Proof: To verify the right equality in (39), note that for
the case in which is only at the decoder, we can encode as
if the distortion measure were , producing
the intermediate reconstruction . This is the familiar
binary-Hamming source coding problem. Then we can produce
the final reconstruction via for , so
the ultimate distortion is .
Hence, the rate–distortion function is the binary-Hamming one,

, and is the same as that achievable
were also known at the encoder.

Next, to establish the left inequality in (39), note that if is
known at neither encoder nor decoder, then
for any rate since is uniformly distributed regardless
of how is chosen.

E. Example: A Binary-Hamming Case

More detailed results are possible for the key special case of
Theorem 2 in which the source is binary (i.e., ), and
where, for convenience, we let the side information be discrete,
i.e., for some . In this case, the distortion
measure (24) can be expressed, without loss of generality, in the
form

(40)

where and are side-information-dependent
weights, with again denoting the Hamming distortion
measure.

Clearly, both Theorems 2 and 3 apply for this case. The asso-
ciated rate distortion expressions are, when ,

(41a)

where is chosen to satisfy the distortion constraint

(41b)

and

(42)

The derivations of (41) and (42) are provided in Appendix II.
Two instances of the distortion measure form (40) are worth

developing in more detail for additional insight.
1) Noisy Observations: Suppose is a noisy observation of

some underlying source, where the noise is governed by a binary
symmetric channel with crossover probability controlled by the

side information. Specifically, let the crossover probability of
the channel be

(43)

which is at most . Furthermore, a distortion of is incurred
if an error occurs due to either the noise in the observation or
the noise in the quantization—but not both—and there is no
distortion otherwise, i.e., using (43)

(44)

Since (44) corresponds to a distortion measure of the form (40)
with

and

the rate-distortion formulas (41) and (42) apply.7

Fig. 6 depicts the associated rate—distortion tradeoffs for the
cases and . The solid curves shows the tradeoff
achievable when the side information is available at the encoder,
while the dashed curves shows the (poorer) tradeoff achievable
when it is not.

It should also be emphasized that this is an instance in which
the naive encoding method, whereby the encoder losslessly
communicates the side information to the decoder and then
uses encoding for the case of side information at both encoder
and decoder, can require arbitrarily higher rate than the optimal
rate-distortion tradeoff. Indeed, to losslessly encode the side
information requires an additional rate of , which is
unbounded in .

2) Weighted Distortion: In a number of applications, certain
samples of a source are inherently more important than others.
Such sources are naturally quantized with a weighted distortion
measure, an example of which is of the form (40) with

, , and . In the sequel, we let be uniformly
distributed over .

This weighted Hamming distortion measure can be used to
demonstrate that not having (or ignoring) the side information
at the encoder can incur an arbitrarily high distortion penalty.
To see this, it suffices to restrict attention to the case for which

and observe that as , a system without encoder
side information suffers increasingly more distortion. This is
most evident for . In this rate region, a simple system
with the side information at both encoder and decoder that loss-
lessly encodes the important samples (as revealed by the side
information) achieves a distortion that is at most . However,
a system without encoder side information experiences a distor-
tion

which grows without bound in . Thus, the extra distortion (and
hence rate loss) incurred when is not available to the encoder
can be arbitrarily large.

7Note that an optimal encoding strategy when the side information is available
at both encoder and decoder is to encode the noisy observation directly although
with different amounts of quantization depending on the side information [12].
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TABLE I
RATE-DISTORTION EQUIVALENCE RESULTS FOR CONTINUOUS SOURCES, AS INDICATED BY ARROWS, ASSOCIATED THEOREMS, AND CONDITIONS(H:

HIGH-RESOLUTION; I: AND INDEPENDENT; S: SCALED DIFFERENCE DISTORTION)

Fig. 6. Rate-distortion tradeoffs for noisy observations of a binary source. The
solid and dashed curves represent the minimum possible Hamming distortion
when side information specifying the crossover probability of the observation
noise is and is not available at the encoder, respectively.

V. SOURCE CODING WITH DISTORTION

AND SIGNAL SIDE INFORMATION

We now turn our attention to the more general scenario in
which there is both signal and distortion side information in the

problem. Our results take the form of a set of four theorems
describing when different types of side information knowledge
are equivalent. These results show that the 16 possible informa-
tion configurations of Fig. 2 can be reduced to the four shown
in Table I.

We partition our results into two classes: those establishing
where side information is of no value, and those establishing
where side information is (asymptotically) of full value. We
begin with the former.

A. Inefficacy Theorems

Our first pair of theorems show, respectively, and under ap-
propriate conditions, that known only at the encoder is of no
value, and known only at the decoder is of no value. Proofs
are provided in Appendices III-A and B, respectively.

Theorem 4: If Definition 1 is satisfied, then

(45)

where (both ’s are identical). Moreover,
(45) also holds for provided and are
independent.

Theorem 5: If Definition 1 is satisfied and the distortion mea-
sure is of the scaled form (32), then

(46)

where (both ’s are identical). Moreover, (46)
also holds for provided and are indepen-
dent.

These theorems constitute the promised generalization of
Berger’s result on the inefficacy of signal side information
known only at the encoder [7]. Indeed, for the case in which no
distortion side information is involved, Theorem 4 specializes
to this classical result [3], [7], i.e.,

(47)

Moreover, in a similar way, Theorem 5 is the natural general-
ization of Theorem 3 in Section IV.

The preceding analysis suggests that in pursuing effective
side information configurations, we should focus our attention
on those in which distortion side information is available at the
encoder, and signal side information is available at the decoder.
In the sequel, we examine the degree to which having each of
these forms of the side information only at these respective ter-
minals is sufficient.
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B. Admissibility Requirements for Sufficiency Analysis

For our analysis, we restrict our attention to the case of contin-
uous and generally multidimensional sources, and to distortion
measures of the difference form

(48)

Moreover, in contrast to the preceding inefficacy analysis
(and to the treatment of Section IV), we focus on an asymptotic
analysis. Specifically, we examine conditions under which the
relaxed notion of sufficiency in the high-resolution limit is
achieved. Such an analysis avoids, for example, some of the
edge effects that arise in the formal analysis at finite resolutions
of scenarios such as that of Example 2 in Section IV-A.

When there is no signal side information, one would expect
to find asymptotic sufficiency of encoder-only distortion side
information rather generally. In particular, provided the distor-
tion measure has a unique minimum with respect to at

, then we would expect with

(49)

to imply , and thus , which is zero
when and are independent. Considering Proposition 3, this
would then suggest asymptotic sufficiency.

The above intuition turns out to be correct under certain tech-
nical conditions, as we establish in this section. Indeed, for the
more general side information scenario, we show the asymptotic
sufficiency of encoder-only distortion side information and de-
coder-only signal side information under such conditions.

We begin with the technical conditions we require our source,
side information, and distortion measure to satisfy to obtain the
anticipated asymptotic behavior. These conditions generalize
those in [13].

Definition 2: The collection of a source , side information
pair , and difference distortion measure (48) is admissible
if, in addition to the conditions (4) of Definition 1, the following
conditions are satisfied.

1) , for all .
2) For all and all , the distribution of the

form

(50)

corresponding to the random variable that maximizes
subject to

(51)

exists and is well behaved, i.e., there exist unique functions
and that are continuous func-

tions of their arguments such that

(52a)

and

(52b)

3) The random variable that maximizes subject to
the constraint , for , satisfies

in distribution (conditioned on )

i.e., for all

otherwise.
(53)

4) There exists an auxiliary distortion measure such that8

a) the distribution of the form

(54)

which maximizes entropy subject to the constraint
, exists and is well behaved,

i.e., there exist unique functions and
that are continuous functions of their ar-

guments such that

(55a)

and

(55b)

for all ;
b) with

(56a)

(56b)

we have

(57)

where the convergence is uniform for ;
c) there exists an such that for all , the

maximizing entropy

(58)

is a uniformly continuous function on the neighbor-
hood .

First, some remarks. It should also be noted that the condi-
tions of Definition 2 are not particularly hard to satisfy in prac-
tice. For example, any source, side information, and distortion
measure where

(59a)

s.t. (59b)

(59c)

are admissible in the sense of Definition 2, where , ,
and can be freely chosen.9

However, it should be emphasized that certain forms of distor-
tion measure are not admissible in the sense of Definition 2, re-
gardless of the nature of the source statistics (unless they are de-
generate). An example is the distortion measure (7) in Claim 1.

8In practice, �(�) can often be taken to be the quadratic measure in problems
where the relevant quantities of interest have finite variance.

9Note that the auxiliary distortion measure in this class of examples is �(�) =
k � k .
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It is also worth noting that for our asymptotic analysis to
follow, only the local properties of the distortion measure are
relevant—specifically, only the behavior of in a neigh-
borhood of for each —in essence only the behavior of
the Taylor series expansion of the measure about mat-
ters. However, to simplify the exposition, in the sequel we will
express our distortion measure requirements in terms of global
structure.

Finally, Definition 2 can be readily specialized to the cases of
no distortion side information or no signal side infor-
mation by eliminating dependences and conditioning
on the absent side information throughout the definition.

The random variable in Definition 2, which as a conse-
quence of its maximum entropy property satisfies the Markov
chain

(60)

plays a special role in our high-resolution analysis. In particular,
it characterizes a fundamental Shannon lower bound of interest,
as we now describe.

Lemma 1: When , , satisfy Definition 1 and the distor-
tion measure is of the form (48), then the conditional rate-dis-
tortion function

(61)
satisfies

(62)

where is the random variable defined in condition 3 of Def-
inition 2.

Proof: Using to denote the random variable corre-
sponding to the optimizing distribution in (61), we obtain the
conditional Shannon lower bound

(63)

(64)

(65)

where to obtain (63) we have used the Markov condition (4a),
and where in (65) we have used the maximum-entropy property
of .

The technical conditions of Definition 2 serve to ensure that
a key “continuity of entropy” property is satisfied. This prop-
erty can be viewed as a natural extension of the corresponding
result [13, Theorem 1] to mixtures of entropy maximizing dis-
tributions. A proof is provided in Appendix IV.

Lemma 2: If , , , and satisfy the conditions of Defi-
nition 2, then

(66)

The importance of Lemma 2 stems from the fact that it im-
plies the Shannon lower bound above is tight in the high-resolu-
tion regime, i.e., an asymptotically optimal test-channel for the
case of complete side information takes the form

(67)

To see this it suffices to note that [cf. (62)]

(68)

(69)

(70)

(71)

where to obtain (68) we have used the particular (rather than
minimizing) test-channel choice (67) in (61), to obtain (69) we
have used that conditioning cannot increase entropy, to obtain
(70) we have used the Markov chain (60), and to obtain (71) we
have used (66) in Lemma 2.

Finally, two special cases of Lemma 2 will be useful in our
development. First, when there is no distortion side information,
we obtain the following corollary.

Corollary 1: If , , and satisfy the conditions of Defini-
tion 2 (when specialized to the case ), then

(72)

where is the random variable defined in Condition 3 of the
specialization of Definition 2 to the case , and hence is
independent of .

Note that here maximizes over all random variables
such that .
Second, when there is no signal side information, we obtain

the following corollary.

Corollary 2: If , , and satisfy the conditions of Defini-
tion 2 (when specialized to the case ), then

(73)

where is the random variable defined in Condition 3 of the
specialization of Definition 2 to the case , and hence

are independent of .

Note, too, that the distribution corresponding to is the
same as when is present; it is due to (4a) that is inde-
pendent of when . In fact, it is also straightforward to
verify that when is present, so and are in general cor-
related, (73) also holds, i.e., that we have continuity of not only
conditional entropy as in (66), but of unconditional entropy as
well. Specifically, we have the following.

Corollary 3: If , , , and satisfy the conditions of Def-
inition 2, then

(74)

C. Asymptotic Sufficiency Theorems

We begin with the following lemma establishing that, under
our technical conditions, having the distortion side information
at the encoder and the signal side information at the decoder
is sufficient to ensure there is asymptotically no loss relative to
the case of complete side information everywhere. A proof is
provided in Appendix V-A.
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Lemma 3: If Definition 2 is satisfied, then

(75)

where

(76)

is the rate penalty for not knowing at the decoder and at
the encoder.

Lemma 3 establishes that there is a natural division of side
information between the encoder and decoder (at least asymp-
totically). Ultimately, this lemma can be viewed as generalizing
prior results on the lack of rate loss for the Wyner–Ziv problem
in the high-resolution limit [5]. In some ways, Lemma 3 is quite
remarkable in its generality. The admissibility conditions (4) re-
quire to be conditionally independent of given , and re-
quire the distortion to be conditionally independent of given

, , . However, since our model allows for and to
be statistically dependent, can be indirectly correlated with
(through , and can indirectly affect the distortion (through

).
It is also worth noting that Lemma 3 is readily specialized to

the cases in which there is either no distortion side information
or no signal side information in the problem. In the former

case, the lemma specializes to the results of [5]: if Definition 2
is satisfied (when specialized to the case ), then

(77)

In the latter case, the lemma provides an extension of the re-
sults of Section IV-C that encompasses Example 2. In particular,
the specialization is as follows.

Corollary 4: If Definition 2 is satisfied (when specialized to
the case ), then

(78)

Note that satisfying the specialized version of Definition 2
in this case means, among other requirements, that must be
independent of .

Our second pair of theorems extend Lemma 3 to show that
regardless of where signal (respectively, distortion) side infor-
mation is constrained to be available, having the distortion (re-
spectively, signal) side information at the encoder (respectively,
decoder) results in the best possible performance attainable sub-
ject to that constraint. Proofs are provided in Appendices V-B
and V-C, respectively.

Theorem 6: If Definition 2 is satisfied, then

(79)

where (both *’s are identical). Moreover, (79)
also holds for provided and are indepen-
dent, and the difference distortion measure is of the scaled form

(80)

for some functions , , and .

Theorem 7: If Definition 2 is satisfied, then

(81)

where (both ’s are identical). Moreover, (81)
also holds for provided and are indepen-
dent.

In essence, Theorems 6 and 7 collectively establish an ap-
proximation result: that, under reasonable conditions, the closer
one can get to the ideal of providing to the encoder and
to the decoder implied by Lemma 3, the better the system will
perform.

VI. RATE LOSS FOR MISPLACED SIDE INFORMATION

While the results of Section V-C establish that providing dis-
tortion side information to the encoder and signal side informa-
tion to the decoder is best, in this section we quantify the loss
incurred by deviations from this ideal. In particular, our results
take the form of yet another pair of theorems, which respec-
tively characterize the rate loss when signal side information is
not available at the decoder, and when distortion side informa-
tion is not available at the encoder. Finally, corollaries of each of
these theorems establish how statistical dependencies between
the two types of side information influence the associated losses.

Our two theorems are as follows.

Theorem 8: If Definition 2 is satisfied, then the penalty

(82)

for not knowing at the decoder satisfies

(83)

where (both ’s are identical), where the left-
hand inequality holds with equality for , and where
either left- or right-hand inequalities can hold with equality if

. Moreover, (83) also holds for pro-
vided and are independent, and the difference distortion
measure is of the scaled form (80); the upper and lower bounds
coincide in this case.

Theorem 9: If Definition 2 is satisfied, , and the
difference distortion measure is of the particular scaled form

(84)

for some and with , then the penalty

(85)
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for not knowing at the encoder satisfies

(86)

where (both ’s are identical), where the left-
hand inequality holds with equality for , and where
either left- or right-hand inequalities can hold with equality if

.10 Moreover, (86) also holds for
provided and are independent; the upper and lower bounds
coincide in this case.

It should be noted that the cases in Theorem 8
and in Theorem 9 are somewhat special, and their
more complicated behavior is a consequence of the potential
(unconditional) dependency between and .

Proofs of these theorems are provided in Appendix V-B and
V-C, respectively. That for Theorem 8 makes use of the fol-
lowing lemma, whose proof is provided first in Appendix VI-A.

Lemma 4: If Definition 2 is satisfied (when specialized to the
case ), and the distortion measure is of the difference
form , then

(87)

As the counterpart to Lemma 4, when there is no signal side
information, Theorem 9 specializes as follows.

Corollary 5: If Definition 2 is satisfied (when specialized to
the case ), , and the distortion measure is of the
form (84) for some , then

(88)

To verify Corollary 5, we note that there being no signal side
information is equivalent to there being signal side information

that is independent of and available at neither encoder
nor decoder. Indeed, then

(89)

(90)

(91)

where to obtain (89) we have used Theorem 3, and where to
obtain (91) we have used the case of Theorem 5.
Finally, taking the limit of (91) as and applying the case

of Theorem 9 yields (88).
In Table II, we evaluate the high-resolution rate penalty (88)

for a number of possible distortion side-information distribu-
tions. Note that for all of these side information distributions

(except the uniform and exponential distributions), the
rate penalty can be made arbitrarily large by choosing the appro-
priate shape parameter to place more probability near or

10The � = case, when k = 1 and r = 2 specifically, can be deduced,
in part, directly from the results of [6].

. In the former case (lognormal, gamma, or pathological
), the large rate loss occurs because when , the informed

encoder can transmit almost zero rate while the uninformed en-
coder must transmit a large rate to achieve high resolution. In
the latter case (Pareto or Cauchy ), the large rate loss is caused
by the heavy tails of the distribution for . Specifically, even
though is big only very rarely, it is the rare samples of large

that dominate the moments. Thus, an informed encoder can
describe the source extremely accurately during the rare occa-
sions when is large, while an uninformed encoder must always
spend a large rate to obtain a low average distortion.11

It is also worth observing that the effects of Theorems 8 and 9
are cumulative, as the following simple corollary indicates.

Corollary 6: If Definition 2 is satisfied, , and
are independent, and the difference distortion measure is of the
particular scaled form (84) for some , then the penalty

(92)

for not knowing at the encoder and at the decoder is,
asymptotically,

(93)
To verify (93), it suffices to note that

(94)

and evaluate the first and second terms of (94) using Theorems 8
and 9, respectively, in the high-resolution limit.

Finally, Theorems 8 and 9 emphasize the case when the side
information decomposes naturally into independent signal side
information and distortion side information components. When
such a decomposition is not possible, it is straightforward to
characterize the losses associated with not having the side in-
formation everywhere, as we now develop.

Consider a general side information that both influences
the distortion measure via
and is correlated with the source. Then we have the following
corollaries of Theorems 8 and 9, respectively.

Corollary 7: If Definition 2 is satisfied with , and
the difference distortion measure is of the scaled form

for some , , and , then the asymptotic penalty
for knowing general side information only at the encoder is
bounded via

(95)

where either the left- or right-hand inequalities can hold with
equality.

11As an aside, note that while encoder-only distortion side information is
asymptotically sufficient for scenarios of Table II, the simple strategy of ex-
ploiting encoder-only side information by separately encoding the side informa-
tion for the decoder is suboptimal. Indeed, for all but one of the distributions in
Table II, infinite rate would be required to represent the side information without
loss.
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TABLE II
ASYMPTOTIC RATE LOSS FOR NOT KNOWING DISTORTION SIDE INFORMATION AT THE ENCODER WHEN

DISTORTION IS MEASURED VIA d(x; x̂; q) = q(x � x̂) AND X =

Corollary 8: If Definition 2 is satisfied with ,
, and the difference distortion measure is of the particular

scaled form

for some , the asymptotic penalty for not knowing at the
encoder is bounded via

(96)
where either the left- or right-hand inequalities can hold with
equality.

In essence, Corollary 7 establishes that not having general
side information at the decoder can only incur a loss if that side
information is correlated with the source, while Corollary 8 es-
tablishes that not having such side information at the encoder
can only incur a loss if that side information influences the dis-
tortion measure. However, the corollaries also make clear that
there need not be a loss in either case, depending on the specific
nature of the distortion measure and side information.

To obtain both Corollaries 7 and 8, it suffices to i) let
in Theorems 8 and 9, respectively, for the

cases and , respectively, taking into
account the respective footnotes in these theorems; and ii)
note that

when . Also, the examples
for meeting respective left-hand and right-hand inequalities
with equality in Theorems 8 and 9 also lead to the corre-
sponding left-hand and right-hand inequalities in Corollaries 7
and 8 being met with equality, since in these examples .

VII. SUFFICIENCY RATE GAP AT LOWER RESOLUTIONS

In Section V, we showed that in the quantization of contin-
uous sources, the rate loss due to encoder-only distortion side
information and decoder-only signal side information vanishes
in the high-resolution limit. In this section, we provide a finer
grained analysis of this behavior, upper-bounding how quickly

this rate loss decays with increasing resolution. In our treatment,
and are not constrained to be independent. To simplify our

analysis, we restrict our attention to scaled quadratic distortion
measures, but briefly suggest how these results can be general-
ized to other distortion measures. In the sequel, we separately
characterize behavior at medium and low resolutions.

A. Medium Resolution

The following theorem bounds the rate penalty incurred by
incomplete side information at moderate resolutions; a proof is
provided in Appendix VII-A.

Theorem 10: If Definition 1 is satisfied, and the distortion
measure is of the particular scaled-difference form (84) with

and , i.e.,

(97)

with , then the rate gap (76) at distortion
is bounded by

(98)

where is the Fisher information in estimating a non-
random parameter from conditioned on knowing ,
i.e.,

(99)

A few remarks are worthwhile. First, there is an intuitively
satisfying interpretation of the Fisher information factor in our
bound. In particular, since is inversely related to the ac-
curacy with which can be estimated from the additive test
channel output (67), it is a measure of the degree to which
one can further improve on the additive test channel(67) for
achieving a better rate–distortion tradeoff for the encoder-only
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distortion side information and decoder-only signal side infor-
mation configuration. Thus, a large value of means that
a large further improvement is possible, so the test channel is
far from optimum, which is reflected in a large rate gap. In turn,
this implies that the value of the bound is, as a result, limited by
the degree to which the Fisher information is a good measure
of the accuracy to which estimation is possible; in general it is,
itself, of course, only a bound on such accuracy.

Second, we emphasize that the proof of Theorem 10 does not
require any extra regularity conditions such as those of Defini-
tion 2—whenever the Fisher information of the source is finite,
the bound can be applied.

Finally, in principle, similar bounds can be obtained for other
distortion measures. A possible approach is suggested at the end
of Appendix VII-A. Also, related bounds are discussed in [14,
Appendix D].

B. Low Resolution

The Fisher information bound (98) can be quite poor in the
low-resolution regime if the source is not smooth. For such sce-
narios, we develop an alternative bound, which is independent
of the distortion level and hence most useful at low resolution.
A proof is provided in Appendix VII-B.

Theorem 11: If Definition 1 is satisfied, and the distortion
measure is of the particular scaled-difference form (97), then
the rate gap (76) at any distortion is at most

(100)

where12

(101)

and where

(102)

with the notation defined as follows: for a random variable
corresponding to any distribution (having finite first and

second moments), denotes a Gaussian distribution with
mean and variance .

Again, we make some remarks. First, the bound (100) can be
readily evaluated in various cases of interest. As an example, in
the Wyner–Ziv scenario where and are jointly Gaussian, the
divergence term on the right-hand side of (100) vanishes, and
moreover does not depend on , so we obtain
that the rate loss is at most 1/2 bit/sample, as in [5].

Second, we note that both the bounds (98) and (100) depend
on the source distribution, in contrast to, e.g., the bound of [5].
As a result, we conjecture that our bounds are loose. In partic-
ular, for a discrete source, the worst case rate loss is at most

12Obviously, the bound is useful only if � > 0.

, yet this is not reflected by our bounds since both be-
come infinite in this case. Exploiting techniques from [5], [15],
[16] may yield tighter bounds.

Finally, as with our medium-resolution bound, in principle,
similar bounds can be developed for other distortion measures;
a possible approach is suggested at the end of Appendix VII.

C. Example: A Gaussian-Quadratic Case

To gain some sense for when the asymptotic results take
effect, we consider an example involving a Gaussian source
and binary-valued distortion side information. Specifically,
we consider a zero-mean, unit-variance Gaussian source ,
and the quadratic distortion measure ,
where the distortion side information is independent of and

, . Without loss of
generality, we let .

The case without side information is equivalent to quantizing
a Gaussian random variable with distortion measure
where

(103)

and thus the rate-distortion function is

(104)

which, of course, is one upper bound on .
To determine we must set up a

constrained optimization as we did for the binary-Hamming
scenario in Appendix II. This optimization results in a “wa-
terfilling” bit allocation, which uses more bits to quantize the
source when than when . Specifically, the
optimal test channel is a Gaussian distribution where both the
mean and the variance depend on and, thus, has a Gaussian
mixture distribution. The resulting rate–distortion tradeoff is

.
(105)

Expressions (104) and (105) can be compared in the high-res-
olution regime via (88). In particular, the asymptotic rate loss
(88) for not having the side information at the encoder evalu-
ates to

(106)

To assess the rate achievable by encoder-only
side information, we first obtain a good numerical upper bound
by evaluating (6c) with the codebook distribution that optimizes
(6d).13 Comparing (6c) to (6d), we see that with this approach
the resulting rate loss for not having the side information at the
decoder is at most

(107)

with this choice of codebook distribution. In turn, this numer-
ical bound can be compared to the medium-resolution analytic

13Actually, we further optimize our bound by allowing time sharing in the
code, which corresponds to taking the lower convex envelope of the rate–distor-
tion tradeoff resulting from this choice of test-channel distribution.
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Fig. 7. Rate-distortion tradeoffs for quantizing a zero-mean, unit-variance
Gaussian source with binary side information , where the distortion in the
reconstruction is measured via d( ; ; ) = ( � ) . The top and bottom
dashed curves correspond to being at neither encoder nor decoder (104), and

being at both encoder and decoder (105), respectively. From top to bottom
on the left-hand side, the solid curves correspond to the analytic bounds (109)
and (108), and the numerical bound (107), respectively, on the tradeoffs for
being available only at the encoder. In this example, Pr[ = 1] = 3=5 and
Pr[ = 10] = 2=5, i.e., q = 1, q = 10, and p = 3=5.

bound (98) of Theorem 10, which establishes that the rate loss
satisfies

(108)

in this example. Finally, since is Gaussian, the low-resolution
analytic bound (100) of Theorem 11 is simply

1/2 bit/sample (109)

in our example.
Fig. 7 illustrates the four resulting rate–distortion tradeoffs

(104)–(109) for the case in which , , and .
At low rates ( 1/2 bit/sample), the rate-distortion func-

tions for the cases of no side information, encoder-only side in-
formation, and full side information are close and all converge
to the same distortion in the limit since no bits are available
for quantization. We also see that our medium-resolution bound
(108) is loose at low rates, as is the low-rate bound (109).

At middle resolutions (e.g., in the vicinity of 1/2 bit/
sample, the system with full side information does best because
it uses the few available bits to represent only the important
source samples (i.e., those for which ); the as-
sociated codebook distribution is a Gaussian mixture. The de-
coder reconstructs these source samples from the compressed
data and reconstructs the less important samples to zero (their
mean). In this regime, the system with side information only at
the encoder also more accurately quantizes the important source
samples. But since the decoder does not know , it does not
know which samples of to reconstruct to zero, and thus does
not perform as well as the system with full side information.

At high rates ( 1/2 bit/sample), we see it is sufficient
to have side information at the encoder alone. Such systems
quantize both more and less important source samples, and the

codebook distribution becomes increasingly Gaussian. Note
that our numerical bound establishes that beyond even the
moderate rate of 1 bit/sample, the asymptotic sufficiency
effects promised by (81) in Theorem 7 can be seen—the benefit
of decoder side information is fairly negligible. Note, also, that
our medium-resolution analytic bound is still somewhat loose
at such rates—it does not start to get tight until closer to
2 bits/sample. Finally, evaluating (106) for this example, we
obtain that the rate loss for not having the side information
at the encoder approaches 0.44
bits/sample in the high rate limit, as reflected in Fig. 7.

VIII. CONCLUDING REMARKS

Through the framework of this paper, we have developed a
variety of insights on problems of source coding with side in-
formation. Foremost, our analysis indicates that side informa-
tion that affects the distortion measure can provide significant
benefits in compression systems. Perhaps most surprisingly, in
a number of cases we also show that having such side informa-
tion at the encoder alone is just as effective as having it at both
encoder and decoder. Furthermore, this “separation theorem”
can be combined with the prior result that exploiting signal side
information at the decoder is often as effective as exploiting it
at both encoder and decoder.

Equally interesting, as an extension of Berger’s well-known
result on the inefficacy of misplaced side information, we show
that not only is encoder-only signal side information generally
of no value, but the same is true of decoder-only distortion
side information. Our collective results on the impact of having
side information in different configurations are summarized in
Table I.

More generally, we determine the rate loss for lacking a par-
ticular type of side information where it is needed (relative to
having full side information available). The resulting theorems
show that poorly chosen side information configurations can
incur arbitrarily large performance penalties.

Among many possible applications, one area where distor-
tion side information may provide benefits in practice is in de-
signing perceptual coders, which exploit features of the human
visual and/or auditory systems to achieve low subjective distor-
tion even when the objective distortion (e.g., mean-square error)
is quite large. Recent examples of such systems have shown
gains in image coding; see, e.g., [17]. Unfortunately, current
systems often communicate the distortion side information (in
the form of model parameters or quantizer step sizes) explic-
itly to the decoder and thus are not as efficient as they could be,
as the results of our analysis in this paper reveal. Perhaps more
importantly, the abstraction of distortion side information devel-
oped in this paper may facilitate future perceptual coder design
by allowing quantizer design issues to be considered separately
from semantic modeling issues.

Obviously our treatment is a deliberately coarse-scale one. In-
deed, we have idealized several aspects of the problem, hiding
finer scale detail that will be no doubt ultimately be important
to apply this framework. In practice, for example, the distor-
tion side information may not be independent of the source,
the source itself may not be memoryless, the distortion measure
may not be additive, and there may be a noisy channel through
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which the source representation must be conveyed. Thus, there
remain several questions and issues for further research.

At least in principle, a number of the required generalizations
can be developed. For example, while Corollary 7 indicates that
knowing general side information only at the encoder may
be suboptimal, the loss is essentially due to lack of signal side
information. In particular, even when distortion side informa-
tion known only at the encoder is correlated with the source, the
fixed-codebook/variable-partition code architecture outlined in
Section IV and further developed in [11] can still provide sig-
nificant benefits.

In addition, we believe that information spectrum tech-
niques [18]–[20] can be used to establish both that the familiar
source–channel separation theorem holds when a communi-
cation channel is also involved, and that the results developed
here can be extended to stationary, ergodic scenarios.

Finally, developing efficient practical systems based on the
framework, principles, architecture, and techniques of this paper
will introduce many interesting issues and constraints, and will
obviously be a substantial undertaking in and of itself.

APPENDIX I
PROOF OF THEOREM 2

Let be an optimal test-channel distribution. By
symmetry, for any , the shifted distribution

(110)

must also be an optimal test-channel. Since mutual information
is convex in the test-channel distribution, yet another optimal
test-channel distribution is

(111)

where is the uniform measure. To see that the resulting
distribution for given is uniform for all (and hence inde-
pendent of ), it suffices to note that we have, for any

(112)

(113)

(114)

(115)

(116)

(117)

(118)

where (112) follows from Bayes’ law and the fact that is the
uniform measure on , where (113) follows from (111), and
where (114) follows from (110). To obtain (115), we make the
change of variable , and then apply the fact that the
uniform measure is shift invariant to obtain (116). Similarly, we
make the change of variable to obtain that (117) and
(118) follows from (111).

Note that this argument applies regardless of whether the side
information is available at the encoder, decoder, both, or neither.

APPENDIX II
DERIVATION OF BINARY-HAMMING RATE–DISTORTION

FUNCTIONS (41) AND (42)

The first equality in (41) follows directly from Theorem 2. To
establish the second equality in (41), we note that the optimal
rate–distortion code corresponds to simultaneous description of
independent random variables [21, Sec. 13.3.3]. Specifically, the
source samples for each value of can be quantized separately
using the distribution

(119)

for appropriate choices of , . These corre-
spond to a rate allocation for each value of the side information
and are obtained as the values that yield the solution to the con-
strained optimization problem

(120)
Using Lagrange multipliers, we construct the functional

whose minimum is easily shown to be attained by the choice

(121)

where is chosen to meet the distortion constraint, whence (41).
Next, the first equality in (42) follows immediately from The-

orem 3. To establish the second equality in (42), it suffices to
note that the problem is equivalent to conventional quantization
a symmetric binary source, but with the side-information-aver-
aged distortion measure

(122)

Thus, the relevant distortion–rate function is simply an affine
transformation of the familiar distortion–rate function for the
canonical binary-Hamming case, whence the right-hand side
of (42).
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(138)

(139)

(140)

(141)

APPENDIX III
INEFFICACY THEOREM PROOFS

Proof of Theorem 4: When , the encoder
can simulate by generating it from . When

(123)

where the second equality follows from the independence of
and (which, in turn, implies, via the Markov condition (4a),
that and are also independent). Thus, in this case, the en-
coder can still simulate correctly. Hence, has no value
at the encoder, and (45) follows.

Proof of Theorem 5: We establish (46) for the four cases
separately.

Case: : We first apply familiar the Wyner–Ziv
rate–distortion formula [1] with the super-side-information

to obtain

(124)
The optimizing in (124) is given by

(125)

(126)

(127)

where to obtain (126) we have substituted the form of the distor-
tion measure (32), and to obtain (127) we have used the Markov
relation , which follows from (4a) and the
Markov chain implicit in (124). In turn, (127)
implies that the reconstruction does not depend on , and thus
the distortion side information is not exploited at the decoder,
whence

(128)

Case: : In this scenario, the encoder and decoder
agree on a different source coding subsystem for each value of

. The subsystem for a fixed value corresponds to source
coding with distortion side information at the decoder. Specif-
ically, the source has distribution , and the distortion
side information has distribution . The performance of

each such subsystem is given by , which via The-
orem 3 equals the corresponding , whence

(129)

Case: : For this case, is unobserved and does
not influence , since and are independent. Thus, it has
no impact on the problem, so our scenario is equivalent to one
in which there is no signal side information, to which Theorem
3 can be applied, whence

(130)

Case: : The independence of and implies that

(131)

since, via (123), an encoder without can generate a simu-
lated from without requiring access to . Moreover, by
identical reasoning we obtain

(132)

Combining (131), (132), and (130) yields

(133)

APPENDIX IV
PROOF OF LEMMA 2 (CONTINUITY OF ENTROPY)

We begin with some notation. Let be a distribution of
the form (54). Specifically, let

(134)

where

(135)

For such distributions we have [cf. (58)]

(136)

and, hence, the following readily verified identity:

(137)

which we use in our proof.
In particular, we have (138)–(141), shown at the top of this

page as desired. To obtain (138) we have exploited the identity

Authorized licensed use limited to: MIT Libraries. Downloaded on June 18, 2009 at 14:11 from IEEE Xplore.  Restrictions apply.



MARTINIAN et al.: SOURCE CODING WITH DISTORTION SIDE INFORMATION 4657

(137). In turn, to obtain (139) we have used the definitions (56)
and (58), and that

(142)

(143)

where (142) follows from Fatou’s lemma [22, p. 78], and where
(143) follows from the lower semi-continuity of (conditional)
divergence [23], together with the fact that (53) implies

(144)

(145)

where in (144) denotes the convolution operator.
To obtain (140), we have used Lebesgue’s dominated con-

vergence theorem [22, p. 78] to switch the order of limiting
and integration, which can be applied since via (57) and Con-
dition 4b of Definition 2, converges uniformly to

, whence there exists a such that for all
and sufficiently close to

(146)

where we note the right-hand side of (146) is nonnegative and
integrable.

APPENDIX V
SUFFICIENCY THEOREM PROOFS

A. Proof of Lemma 3

We first lower bound via (62) of
Lemma 1. Next, can be expressed in the
form of the Wyner–Ziv rate–distortion formula [1] applied to
the super-source , yielding

(147)
In turn, (147) can be upper-bounded via

(148)

(149)

where to obtain (148) we have made the particular (rather
than optimizing) choices , with as defined via
Lemma 1, and in (147) that meet the distortion
constraint, and where to obtain (149) we have used the Markov
property (60).

Finally, using (62) and (149) with (76) we obtain

(150)

so to obtain the desired result (75) from (150), it suffices to apply
Lemma 2.

B. Proof of Theorem 6

We establish (79) for the four cases separately.
Case: : We have

(151)

(152)

where (151) follows from using
with (76), and where (152) follows

from applying Lemma 3.
Case: : We have, similarly

(153)

(154)

(155)

where (154) follows from using
with (76), and where (155) follows from

applying Lemma 3.
Case: : Here, is unobserved and does not

influence , since and are independent. Thus, it has no
impact on the problem, so our scenario is equivalent to one in
which there is no distortion side information, to which (77) can
be applied, whence

(156)
Note that for this application of asymptotic Wyner–Ziv results,
the relevant distortion measure is

(157)

Case: : We have

(158)

(159)

(160)

where (158) follows from
, where (159) follows from the case

of Theorem 5, which applies because the distortion
measure is of the scaled form (32), and where (160) follows
from (156), which holds because and are independent.

C. Proof of Theorem 7

We establish (81) for the four cases separately.
Case: : We have

(161)
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where the inequality follows from (76) and that
, and

where the final equality follows from applying Lemma 3.
Case: : We similarly obtain

(162)

using that in
(76), and applying Lemma 3.

Case: : Here, is unobserved and does not
influence , since and are independent. Thus, it has no
impact on the problem, so our scenario is equivalent to one in
which there is no signal side information, to which Corollary 4
can be applied, whence

(163)
Case: : We have

(164)

(165)

(166)

where (164) follows from using that
, where (165) follows from applying the

case of Theorem 4, and where (166) follows from
(163), which holds because and are independent.

APPENDIX VI
ASYMPTOTIC RATE LOSS THEOREM PROOFS

A. Proof of Lemma 4

First, via (47) we have

(167)

Next, using [13, Theorem 1], we have that

(168)

where is a random variable maximizing subject to
the constraint . Note that as a consequence is
independent of , .

Now for the case with signal side information, we use a
different subsystem for each value of the side information .
Moreover, applying [13, Theorem 1] to the subsystem corre-
sponding to , which is just a system without side information
parameterized by , we have

(169)

which when averaged over all values of yields

(170)

In this case, is a random variable maximizing
subject to the constraint . Substituting (168) and
(170) into (167) then yields(87) as desired, provided

(171)

To verify (171), it suffices to exploit the fact that without loss
of generality we can restrict our attention to that are inde-
pendent of in the entropy maximization corresponding to .
Indeed, in this case, the two entropy functions being maximized
in the generation of and are identical, and thus the corre-
sponding entropies are the same.

To confirm that the above restriction does not incur a price in
entropy, let be a random variable independent of , such
that . Then and

(172)

(173)

(174)

(175)

(176)

where (175) follows form the concavity of differential entropy,
and where we have used the notation and inter-
changeably. But since maximized the conditional entropy,
we must have .

B. Proof of Theorem 8

First, note that we can apply Theorem 4 to (82) to obtain

(177)
for all .

We now consider each of the four cases separately.
Case: : In this case, is unobserved and does

not influence , since and are independent. Thus, it has
no impact on the problem, so our scenario is equivalent to one
in which there is no distortion side information, i.e.,

(178)

Noting that the relevant distortion measure is [cf. (157)]

and applying Lemma 4 to (178) then yields

(179)
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Case: : Since the distortion measure (80) is of
the scaled form (32) and since and are independent,
the cases of Theorem 5 apply, and so we
have and

. From
(177), we then have

applying (179) to which gives the desired result.
Case: : Since is known to both encoder

and decoder, the systems corresponding, respectively, to
and in (82) can

be realized by using a separate source coding subsystem for
each value of . Consider the two subsystems corresponding to
a particular value , for which the modified source distribution
is and the modified signal side information is .
These subsystems are equivalent to ones without distortion side
information but parameterized by . Thus, using Lemma 4 the
associated rate loss is therefore

(180)

Averaging over all values of in (180) then yields

(181)

Case: : For the lower bound we have

(182)

(183)

(184)

where (182) follows from (177), where (183) follows from the
fact that more side information cannot increase rate to the first
term and applying the case of Theorem 7 to the
second term, and where (184) follows from (181).

For the upper bound, we note

(185)

(186)

where (185) reproduces (182), where (186) follows from ap-
plying the case of Theorem 7 to the second term.

We lower-bound the second term in (186) via (62) of
Lemma 1. The first term in (186) we upper-bound by

(187)

(188)

(189)

(190)

where (187) follows from (6c) for any satisfying the distortion
constraint, where to obtain (189) have made make the particular
choice in (6c), where is the maximum-entropy
variable defined via Lemma 1, which satisfies the distortion con-
straint.

Finally, substituting (190) and (62) into (186) we obtain

(191)

(192)

(193)

where (193) follows from the application of Corollary 3.
It remains only to show that both the upper and lower bounds

can be tight. To verify that the lower bound can be tight, consider
a scenario in which the source has dimension , i.e.,

, the signal and distortion side information are related
according to , the distortion measure is of
the form with , and
where , , and are independent, zero-mean, unit-variance
Gaussian random variables. This is obviously equivalent to a
scenario with source , distortion side information

, distortion measure with
, and no signal side information. Hence

(194)

(195)

(196)

(197)

(198)

(199)

where to obtain (196) we have used Corollary 4, and where to
obtain (197) we have used that .

To verify that the upper bound can be tight, consider a sce-
nario in which the source is Gaussian, the signal and distortion
side information are related according to , the
distortion measure is of the form , and
where and are independent, zero-mean, Gaussian random
variables. This is obviously equivalent to a scenario with no dis-
tortion side information, since does not affect the distortion
measure. Hence

(200)

(201)
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(202)

(203)

(204)

(205)

(206)

(207)

(208)

where (202) follows from (77) and (47), where to obtain
(203) we have substituted the particular form of the regular
and Wyner–Ziv [2] rate distortion functions for the Gaussian
scenario, and where to obtain (206) we have recognized the
form of differential entropy for Gaussian random variables.

C. Proof of Theorem 9

First, note that we can apply Theorem 5 to (85) to obtain

(209)
for all .

Moreover, in the sequel, some facts will be convenient. First,
the following differential entropy can be computed.

Fact 1 ([24]): Let be a random variable defined over .
Then

(210)

where

(211)

with denoting the volume of the unit sphere
, and with denoting the gamma function.

In turn, Fact 1 is used in establishing the following.

Fact 2 ([13]): For a source coding scenario (without side
information) in which and the distortion measure is of
the form , the rate–distortion tradeoff is
asymptotically

(212)

where is as defined in (211).

We now consider the four cases of (86) separately.
Case: : First, from (209), we have

(213)

Via (6a), we see that is obtained by
conventional source coding with the modified distortion mea-
sure

which using Fact 2 yields

(214)

Next, via (6d), we see that evaluating the conditional rate dis-
tortion function involves the familiar
waterfilling distortion (and thus rate) allocation (see, e.g., [21,
Sec. 13.3.3]). Specifically, for each , we quantize the corre-
sponding source samples to distortion using
rate , so the overall rate and distortion are, respectively,

and .
To find the optimal distortion allocation we use Lagrange

multipliers, and thus minimize

(215)

with respect to . Since via Fact 2 we have

(216)

it is straightforward to verify that the optimizing distortion al-
location is

(217)

whence

(218)

Subtracting (218) from (214) and using (213) establishes

(219)

Case: : From Theorem 4, we obtain immediately
that

which when used with (219) above gives the desired result.
Case: : First, via (209) we have

(220)

Next, for the two systems corresponding to the two terms on
the right-hand side of (220), the encoder and decoder in both
cases agree to use a separate source coding subsystem for each
value of . Thus, the performance loss between each corre-
sponding pair of subsystems for each such value of is ob-
tained as a conditioned version of the results above for the case

.
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Specifically, via the obvious generalization of the right-hand
side of (219), the asymptotic rate loss for the subsystem corre-
sponding to the realized side information is

(221)

averaging over which with respect to yields

(222)

Case: : First, we obtain our lower bound via

(223)

(224)

(225)

where to obtain (223) we have used (209) and the case
in Theorem 6, where to obtain (224) we have used that

additional side information cannot increase rate, and where to
obtain (225) we have used (222).

We obtain our upper bound starting from (223). In partic-
ular, note that corresponds to Wyner–Ziv
source coding with the modified (signal side information depen-
dent) distortion measure .

While [6, Theorem 2] can be applied when and ,
for the more general case, we begin by introducing as the
random variable that maximizes and satisfies the con-
straint . Then we have

(226)

(227)

(228)

(229)

(230)

(231)

where (226) follows from the obvious Wyner–Ziv style random
coding argument based on binning, where (227) follows from
the particular choice so can be renamed , where
(228) follows from the particular test-channel choice
with as defined at the outset, which by construction ensures
that the distortion constraint is met, where (229) follows from
the independence of and , , and where to obtain (230)

we have used Fact 1. Finally, using Corollary 1 (since is ef-
fectively absent), we have that the entropy-difference term in
brackets in (231) vanishes as , whence

(232)

In turn, is obtained by using a sep-
arate coding subsystem for each value of . Specifically, for a
particular realization , the rate–distortion function for the cor-
responding subsystem is equivalent to
for a modified source with distribution
and a modified distortion side information with distribution

. Adapting (218) accordingly, we obtain

(233)

Finally, substituting (232) and (233) into(223), we obtain

(234)

It remains only to show that both upper and lower bounds can
be tight. To verify that the lower bound can be tight, consider the
scenario in which . In this case, having at the
decoder is equivalent to having at the decoder, so

and thus

(235)

(236)

(237)

where (236) follows from noting that .
To verify that the upper bound can be tight, consider the sce-

nario in which , but this side information is independent
of . Then

(238)

(239)

(240)

where to obtain (239) we have used the case of
Theorem 6, and where to obtain (240) we have used that
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. Finally, taking the limit of (240) as and applying
Corollary 5 yields

(241)

(242)

APPENDIX VII
NONASYMPTOTIC RATE GAP THEOREM PROOFS

A. Proof of Theorem 10

We use of the following lemma, which bounds the entropy of
the sum of arbitrary random variable and a Gaussian mixture.

Lemma 5: Let be an arbitrary random variable with vari-
ance . Let be a zero-mean, unit-variance Gaussian
independent of and let be a random variable independent of

and with . Then

(243)

where

(244)

with equality if and only if is a constant and is Gaussian.
Proof: To obtain (243), we have

(245)

(246)

(247)

(248)

(249)

(250)

where (245) follows from the concavity of differential entropy,
(247) follows from de Bruijn’s identity, (248) follows from the
convolution inequality for Fisher information [25], [21, p. 497],
and where in (249), we have used that the Fisher information for
a Gaussian distribution is the reciprocal of its variance.

Finally, the inequality used in (248) is both tight if and only if
is Gaussian, and (245) is tight if and only if is a constant.

As an aside, we note that Lemma 5 can be used to bound
the (classical) rate–distortion function of an arbitrary source
relative to quadratic distortion. Specifically, using an additive
Gaussian noise test-channel and combining the right-
hand side of (243) in Lemma 5 (with and ) to
upper-bound yields

where the left-hand inequality is the Shannon lower bound
[13]. Evidently, the error in the Shannon lower bound is at most

.

Proof of Theorem 10: To establish (98), we first note that the
desired rate gap (76) is bounded via

(251)

(252)

(253)

(254)

(255)

(256)

where to obtain (251) we have used (150). To obtain (253) we
exploit the upper bound from (243) in Lemma 5 with

(257)

since conditioned on , is a zero-mean Gaussian, which
maximizes entropy, and so

(258)

is a Gaussian mixture. Further maximizing the resulting differ-
ential entropy

(259)

over the choice of subject to the constraint

(260)

yields the waterfilling solution , which satisfies

(261)

whence (254). Finally, using the identity

(262)

valid for all we obtain (255).
A second bound on desired rate gap (76) exploits a slightly

different Shannon lower bound. In particular, starting from(64)
we can write a Shannon lower bound as

(263)

(264)
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where is a random variable that maximizes
subject to the constraint

(265)

with corresponding to the optimizing distribution in (61),
and with denoting the optimum waterfilling allocation for
achieving . As before, as a consequence
of the entropy-maximizing property of , we have

But then

(266)

(267)

where, to obtain (266), we have used iterated expecta-
tion, and where to obtain (267) we have used that, from
minimum mean-square error (MMSE) estimation theory,

cannot generate greater distortion than the choice
.

In turn, we have

(268)

(269)

(270)

(271)

(272)

(273)

To obtain (268) we have used the counterpart to (149) corre-
sponding to the choice , which leads to the counterpart of
(150) in terms of . To obtain (270), we have exploited the
upper bound from (243) in Lemma 5, again recognizing that
conditioned on , is a zero-mean Gaussian, so is
a Gaussian mixture by the counterpart of (258) in terms of .
Finally, to obtain (271) we apply the variance bound (267), and
to obtain (272) we again use the identity (262).

Choosing the minimum of the bounds (256) and (273) then
yields (98).

As an aside, one approach for pursuing similar bounds for
other distortion would be based on upper-bounding the deriva-
tive of with respect to . Due to the concavity of
differential entropy, such a bound should be obtainable from the
derivative at . To obtain the desired derivative at , one
can write

(274)

using the Markov chain , and note from the
results of Prelov and van der Meulen [26] that under certain
regularity conditions14

(275)

B. Proof of Theorem 11

The following alternative version of the Shannon lower bound
will be useful in our development.

Lemma 6 (Alternative Shannon Lower Bound): Consider
a scaled quadratic distortion measure of the form

and let denote the random variable corresponding
to an optimizing distribution for (61), associated with and
both known at both encoder and decoder. If we let denote a
random variable satisfying the Markov chain

(276)

and having the same distribution as when conditioned
on , then

(277)

Proof: Equation (277) is readily verified via

(278)

(279)

(280)

(281)

where (279) follows from the conditional rate–distortion func-
tion characterization, (280) follows from the Markov constraint
(4), and where (281) follows from the Markov constraint (276).

The key difference between the bound (277) in Lemma 6 and
the corresponding traditional Shannon lower bound (62) is in the
choice of the distribution for . The traditional bound uses an
entropy-maximizing distribution for , which has the advan-
tage of being computable without knowing . However, can
have a conditional variance that is unbounded as . By
contrast, the conditional variance of remains bounded in this
limit, as the following lemma establishes.

Lemma 7: There exists a choice for in Lemma 6 such
that for all

(282)

where is as defined in (101).
Proof: We establish our proof by contradiction. Suppose

every satisfying the requirements of Lemma 6 violates (282).

14Alternatively, (275) can be obtained by rewriting the mutual information in
(274) as a relative entropy, and expand the result in a Taylor series [27, Sec. 2.6],
assuming certain derivatives of the associated probability distributions exist.
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Then from any such corresponding to some optimizing
we construct a new random variable from a corresponding

obtained from as follows:

(283)

where is again the Kronecker delta function, and where

(284)

with as defined in (101).
First note that must also be an optimizing distribution for

(61). Indeed, by the data processing inequality the associated
rate is at least as small

(285)

and by optimality of the conditional MMSE estimation, i.e.,

(286)

it follows that the distortion induced by is also at least as
small.

Next, we note that the corresponding satisfies

(287)

(288)

(289)

(290)

where to obtain (287) we have used that for any
random variable , and to obtain (288) we have used that, for all

and ,

(291)

by the definition of , where to obtain (289) we have used
iterated expectation, and where to obtain (290) we have used
that, for all and ,

(292)

To verify (292), note it is trivial for . For ,
we simply note

(293)

(294)

(295)

where (293) follows from the fact that, via (283),
, where (294) follows from the fact that

conditioning cannot increase variance (which follows, in turn,
from MMSE estimation theory), and where (295) follows from
(101).

But (290) establishes that there does exist a distribution satis-
fying the requirements of Lemma 6 that does not violate (282),
thereby establishing the desired contradiction.

Proof of Theorem 11: First, with denoting the variable
defined in Lemma 6, and following reasoning analogous to that
used to obtain (149), we have

(296)

In turn, we then have

(297)

(298)

(299)

where to obtain (297) we have combined (296) with the alterna-
tive Shannon lower bound (277), to obtain (298) we have used
the following identity [cf. (137)]:

(300)

valid for any random variable with finite first and second mo-
ments, and where to obtain (299) we have used that divergence
is nonnegative.

In addition, we have

(301)

(302)

(303)

where to obtain (301) we have used the identity

(304)

together with the fact that and are independent given
due to the Markov chain , where to obtain
(302) we have used (282) in Lemma 7, and to obtain (303) we
have used that by (101)

for all .
Finally, using (303) in (299) we obtain (100).
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As a final aside, in principle, analogous bounds for other
distortion measures can be developed, and involve replacing,
in and above, the Gaussian distribution
with the entropy maximizing distribution matched the distortion
measure.
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