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Abstract

As modern infrastructure systems become increasingly more complex, we are faced
with many new challenges in the area of information security. In this thesis we
examine some approaches to security based on ideas from information theory. The
protocols considered in this thesis, build upon the “wiretap channel,” a model for
physical layer security proposed by A. Wyner in 1975. At a higher level, the protocols
considered here can strengthen existing mechanisms for security by providing a new
location based approach at the physical layer.

In the first part of this thesis, we extend the wiretap channel model to the case
when there are multiple receivers, each experiencing a time varying fading channel.
Both the scenario when each legitimate receiver wants a common message as well as
the scenario when they all want separate messages are studied and capacity results are
established in several special cases. When each receiver wants a separate independent
message, an opportunistic scheme that transmits to the strongest user at each time,
and uses Gaussian codebooks is shown to achieve the sum secrecy capacity in the
limit of many users. When each receiver wants a common message, a lower bound to
the capacity is provided, independent of the number of receivers.

In the second part of the thesis the role of multiple antennas for secure communica-
tion studied. We establish the secrecy capacity of the multi antenna wiretap channel
(MIMOME channel), when the channel matrices of the legitimate receiver and eaves-
dropper are fixed and known to all the terminals. To establish the capacity, a new
computable upper bound on the secrecy capacity of the wiretap channel is developed,
which may be of independent interest. It is shown that Gaussian codebooks suffice
to attain the capacity for this problem. For the case when the legitimate receiver
has a single antenna (MISOME channel) a rank one transmission scheme is shown
to attain the capacity. In the high signal-to-noise ratio (SNR) regime, it is shown
that a capacity achieving scheme involves simultaneous diagonalization of the chan-
nel matrices using the generalized singular value decomposition and independently
coding accross the resulting parallel channels. Furthermore a semi-blind masked
beamforming scheme is studied, which transmits signal of interest in the subspace of
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the legitimate receiver’s channel and synthetic noise in the orthogonal subspace. It is
shown that this scheme is nearly optimal in the high SNR regime for the MISOME
case and the performance penalty for the MIMOME channel is evaluated in terms
of the generalized singular values. The behavior of the secrecy capacity in the limit
of many antennas is also studied. When the channel matrices have i.i.d. CN(0, 1)
entries, we show that (1) the secrecy capacity for the MISOME channel converges
(almost surely) to zero if and only if the eavesdropper increases its antennas at a rate
twice as fast as the sender (2) when a total of T � 1 antennas have to be allocated
betweeen the sender and the receiver, the optimal allocation, which maximizes the
number of eavesdropping antennas for zero secrecy capacity is 2 : 1.

In the final part of the thesis, we consider a variation of the wiretap channel where
the sender and legitimate receiver also have access to correlated source sequences.
They use both the sources and the structure of the underlying channel to extract
secret keys. We provide general upper and lower bounds on the secret key rate and
establish the capacity for the reversely degraded case.

Thesis Supervisor: Gregory W. Wornell
Title: Professor
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Chapter 1

Introduction

Traditional approaches to secure communication require that the legitimate parties
share secret keys which are not available to adversaries. The physical-layer provides
a reliable communication bit-pipe, while the encryption and decryption operations
are performed at the higher layers. Thus there is a separation between layers that
implement secure communication and reliable communication. In contrast, this thesis
considers protocols that jointly perform both reliable and secure communication at
the physical layer. See Fig. 1.
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Figure 1-1: The top figure shows traditional approaches to secure communication.
The figure below shows approaches using secure communication.

Our protocols are motivated by an information theoretic problem — the wiretap
channel. This setup is described in Section 1.1. Our motivation for studying these
protocols comes from the Pay-TV application.
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Figure 1-2: The wiretap channel model with one sender, one receiver and one eaves-
dropper. The (legitimate) receiver reliably decodes the message, while the eavesdrop-
pers’ channel produces a certain level of equivocation.

Example — Pay TV systems

A content provider wants to distribute programming content to a subset of receivers
that have subscribed to the program. Traditional cryptographic techniques for this
application suffer from piracy based attacks [16]. In these approaches, each user has
a unique private key, which can be used for decryption of the programming content
when it is subscribed. If any of the receivers’ key gets leaked in public, all the users
can use this key to decrypt the program subscribed by the user [5] resulting in serious
revenue losses to the content provider.

This thesis develops a class of protocols that can provide a different approach —
distribute secret keys online using physical layer techniques. We examine conditions
on the physical channels under which such transmission is possible. In particular,
we show how diversity techniques at the physical layer, which have been studied to
improve reliability, can also enhance physical layer security.

1.1 Wiretap Channel

The wiretap cannel model, introduced by Wyner [53] is shown in Fig. 1-2.In this setup,
there are three terminals — one sender, one receiver and one eavesdropper. As shown
in Fig. 1-2, the sender has a message w , that it wishes to communicate reliably to the
legitimate receiver, while keeping it secret from an eavesdropper. The communication
link is a broadcast channel described by the transition probability the pyr,ye|x(·) i.e.,
each channel use accepts an input symbol x and produces two output symbols — yr

at the legitimate receiver and ye at the eavesdropper, according to this distribution.
The alphabets of the input and output are denoted via X , Yr and Ye respectively.
The sender transmits a sequence xn over n channel uses of and the legitimate receiver
and the eavesdropper observe yn

r and yn
e according to the transition law,

Pr(yn
r , y

n
e | xn) =

n∏
i=1

pyr,ye|x(yr, ye|x). (1.1)

A length n, rate R wiretap code consists of,
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1. A set W � {1, 2, . . . , 2nR}, and the message w uniformly distributed over this
set.

2. An encoding function f : W → X n

3. A decoding function g : Yn
r → W.

A rate R, equivocation E is achieved by a wiretap code, if for some non-negative
sequence εn that vanishes to zero, there exists a sequence of rate R − εn codes such
that Pr(e) � Pr(g(yn

r ) �= w) → 0 as n→ ∞ and

1

n
H(w |yn

e ) ≥ E − εn. (1.2)

A sequence of rate R wiretap codes, that achieve an equivocation level of E = R
achieve (asymptotically) perfect secrecy. In this situation a negligible fraction of
information bits are leaked to the eavesdropper. The supremum of all rates that
can be achieved by perfect-secrecy wiretap codes is called the secrecy capacity of the
wiretap channel.

1.1.1 Secrecy Notion

The notion of secrecy (1.2) is an information theoretic notion of security. It is in-
teresting to compare this notion with other notions of secrecy. First, note that the
cryptographic approaches use a computational notion of security. These approaches
do not guarantee secrecy if the eavesdropper has sufficient computational power. In
the information theoretic literature, the notion of perfect secrecy is first introduced
by Shannon [46]. This notion requires that H(w |yn

e ) = H(w) i.e., message be statis-
tically independent of the observation sequence at the eavesdropper. Unfortunately
this notion is too strong a notion in practice. Wyner’s notion (1.2) is clearly a relax-
ation of this notion. A wiretap code that satisfies Wyner’s notion guarantees that,
asymptotically in n, the fraction of information that gets leaked to an eavesdropper
is zero, but the number of information bits that get leaked can be arbitrarily large.
Stronger versions of the secrecy notion are discussed in works by Maurer and Wolf [38]
and Csisz’ar[7]. Another notion that measures the number of guesses required by an
eavesdropper to learn the message is introduced in [39].

1.1.2 Rate-Equivocation Region

We summarize the main results of the wiretap channel in the literature.

For the discrete memoryless channel model, a single-letter expression for the trade-
off between rate and equivocation is obtained in [8].

Fact 1 (I. Csiszár and J. Körner: [8]) Let v and u be auxiliary random variables
and the joint distribution pvuxyrye(·) satisfy v → u → x → (yr, ye). The rate-
equivocation region is obtained by taking the convex hull of all the union of all rate
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E q u i v .
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Figure 1-3: The structure of rate-equivocation tradeoff for the wiretap channel. For
rates below the secrecy capacity, the maximum equivocation equals the transmission
rate. For rates above the secrecy capacity, the equivocation does not increase.

pairs (R,Req) over such joint distributions

Req ≤ I(u; yr|v) − I(u; ye|v) (1.3)

R ≤ I(u; yr). (1.4)

and it suffices to consider random variables u and v with cardinality U ≤ |X |2 +
4|X | + 3 and |V| ≤ |U| + 1.

A typical structure of the rate-equivocation region is provided in Fig. 1-3. Of
particular interest on the rate equivocation region is the secrecy capacity.

Fact 2 (I. Csiszár and J. Körner: [8]) The secrecy capacity of the discrete mem-
oryles wiretap channel is

C = max
pupx|u

I(u; yr) − I(u; ye), (1.5)

where the maximization is over random variables u → x → (yr, ye) and |U| ≤ |X |2 +
4|X | + 3.

To establish these results, the authors provide an achievability scheme and a
converse. We focus on achieving the perfect secrecy. The achievability scheme is
based on a “random binning technique”, a technique1 used to establish capacity
results in many multi-terminal source and channel coding problems.

1. Generate ≈ 2nI(u;yr) codewords i.i.d. from a distribution pu(·).
1A more structured coding approach is discussed later on in this chapter.
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2. Partition the space of codewords by randomly assigning to the messages, so
that there are ≈ 2nI(u;ye) codewords per message.

3. Given a message, select one of the candidate codewords uniformly at random,
and transit xn over the channel, generated from un according to px |u(·).

The legitimate receiver decodes the message with a vanishingly small error proba-
bility, by joint typical decoding. An eavesdropper upon observing yn

e finds a typical
codeword sequence in each bin and hence remains in (asymptotically) perfect equiv-
ocation.

The converse is established using a chain of mutual information inequalities remi-
niscent of the converse in many multiuser information theory problems such as channel
coding with side information [17] and the broadcast channel with degraded message
sets [26].

The bounds on the cardinality of alphabets are obtained via the Caratheodory’s
theorem.

When the underlying broadcast channel has a degraded structure i.e., x → yr → ye

holds, the secrecy capacity expression (5.6) has a simpler form. This result is due to
Wyner [53].

C = max
px

I(x ; yr|ye) (1.6)

The achievability follows by setting u = x in (5.6) and noting that since x → yr →
ye, we have that

I(x ; yr) − I(x ; ye) = I(x ; yr|ye).

For the converse, we need to show that it suffices to optimize (5.6) over input distri-
butions with u = x .

I(u; yr) − I(u; ye) = I(u; yr, ye) − I(u; ye) (1.7)

= I(u; yr|ye)

= H(yr|ye) −H(yr|ye, u)

≤ H(yr|ye) −H(yr|ye, u, x)

= H(yr|ye) −H(yr|ye, x) (1.8)

= I(x ; yr|ye)

where both (1.7) and (1.8) follow from the Markov condition u → x → yr → ye.

An explicit expression for the secrecy capacity of the Gaussian wiretap channel
has been obtained by Leung-Yan-Cheong and M. Hellman in 1978 [27]. The authors
consider a model

yr = x + zr

ye = x + ze,
(1.9)

where zr ∼ N (0, Nr) and ze ∼ N (0, Ne) are additive white Gaussian noise random
variables, with Ne > Nr and the input sequence satisfies an average power constraint
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E[X2] ≤ P . In this case, the secrecy capacity is

C(P,Nr, Ne) =
1

2
log

(
1 +

P

Nr

)
− 1

2
log

(
1 +

P

Ne

)
. (1.10)

The characterization of the secrecy capacity of the Gaussian wiretap channel does
not specify the joint correlation between (zr, ze). In fact, it follows from the definition
of the capacity that the secrecy capacity does not depend on the joint distribution of
these variables. Only the marginal distributions matter.

The achievability in (1.10) follows by setting u = x ∼ N (0, P ). For the converse, it
suffices to show that a Gaussian input achieves the capacity. In their paper, Hellman
and Leung-Yan-Cheong [27] use entropy power inequality to establish this result.
Nevertheless a simpler proof follows via (1.6), since the Gaussian wiretap channel
is degraded. We can assume, without loss of generality that ze = zr + Δz , where
Δz ∼ N (0, Ne −Nr) is independent of zr. Now note that

I(x ; yr|ye) = h(yr|ye) − h(zr|ze)

= h(yr − αye|ye) − h(zr|ze) (1.11)

≤ h(yr − αye) − h(zr|ze)

≤ 1

2
log

(
(P +Nr)ΔN

P +Ne

)
− 1

2
log

(
NrΔN

Ne

)
(1.12)

=
1

2
log

(
1 +

P

Nr

)
− 1

2
log

(
1 +

P

Ne

)

where α in (1.11) is the linear minimum mean squared estimate coefficient in esti-
mating yr from ye and ΔN � Nr −Ne in (1.12).

We now provide a few remarks about the wiretap channel.

1. What point should one operate on the rate-equivocation region? The secrecy
capacity is a natural operating point, if the application involves transmission of
secret keys. We will investigate a scenario of joint source channel coding where
the operating point depends on the correlation of sources and capacity of the
channels.

2. The secrecy capacity of the wiretap channel depends on the channel pyr,ye|x . In
practice the eavesdropper’s channel is not known to the legitimate terminals.
So the wiretap code could be designed for the worst case assumption on the
eavesdropper’s channel model.

3. For the Gaussian case, the secrecy capacity is zero if Nr ≥ Ne. So the scheme
is only applicable in situations where the eavesdropper is guaranteed to have a
degraded channel. We will explore the use of diversity techniques in the physical
layer of wireless systems to put an eavesdropper at a significant disadvantage.
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1.1.3 Code construction

The design of structured codes for the wiretap channel will not be explored in this
thesis. In this section, we provide some insights into the design of structured codes by
studying the uniform-additive-noise model in (1.9). We make the following assump-
tions

1. The sender uses quadrature-amplitude-modulation i.e., xn is a sequence of n-
QAM symbols. See Fig. 1-4.

2. The additive noise zr is uniformly distributed on [−1/2, 1/2] × [−1/2, 1/2] and
ze is uniformly distributed on [−1, 1] × [−1, 1].

Fig. 1-4 shows QAM constellations on the legitimate receiver and eavesdropper’s chan-

(a) Legitimate Receiver’s Constellation (b) Eavesdropper’s Constellation

Figure 1-4: Standard QAM constellation for legitimate receiver and eavesdropper’s
channel.

nel respectively. The minimum distance between two points is governed by the noise
on the respective receiver’s channel. Accordingly, the eavesdropper’s constellation is
a sparser 16-QAM while the legitimate receiver’s constellation is 64-QAM.

Fig. 1-5 shows how one can transmit at a rate of 2 bits/symbol in a secure manner
to the legitimate receiver, while keeping the eavesdropper in near perfect equivoca-
tion. Each of the four messages is represented by a separate color. There are 16 points
assigned to each message, i.e., every fourth point is assigned to the same message. To
transmit a message, the sender selects one of the sixteen points uniformly at random
from the constellation. The legitimate receiver’s channel perturbs the transmitted
point in the smaller square and hence the receiver correctly identifies the transmit-
ted point and declares the corresponding color to be the transmitted message. The
eavesdropper’s noise is sufficiently large to create a confusion as to which of the four
messages is transmitted. As shown in Fig. 1-5(b), the eavesdropper upon receiving

19



Msg 1

Msg 2

Msg 3

Msg 4

(a) 16 candidate points for each of the 4 messages

��

Msg 1

Msg 2

Msg 3

Msg 4

(b) The eavesdropper receives the black point
and cannot decide on which color was selected.

Figure 1-5: Secure QAM constellation.

its observation, draws the noise uncertainty ball around this point and all four colors
appear in this ball. Any of the points could have resulted in this received point, so
the eavesdropper does not get any information regarding the message.

Note that the above construction does leak information to the eavesdropper — if
one of the point on the boundary is transmitted, the eavesdropper can eliminate a
subset of points whenever the received signal is outside the constellation area. This
difficulty can be addressed by adding a (public) dither signal uniformly distributed
on the QAM constellation and reducing the sum, modulo the constellation. This
approach effectively “folds” the constellation to remove the boundary effects.

This approach of mapping multiple transmission points to a single message is
known as binning. Higher dimensional version of binning techniques can be used to
attain the capacity of a variety of wiretap channel models. Also note that the encoder
used is a stochastic encoder — given the message the transmitted signal is chosen at
random for a candidate set. This randomization is not known apriori to the receiver.

1.2 Secret Key Generation Using Correlated Sources

In this setup, two remote terminals A and B, observe a pair of correlated sources
uN , and vN as shown in Fig. 1-6. The sources are sampled i.i.d. from a joint dis-
tribution pu,v (·, ·). They also have access to a noiseless public channel of unlimited
capacity. They can exchange any amount of information over this channel, but this
communication happens in the clear and is observed by a wiretapper. The legitimate
terminals distill a common key that needs to be concealed from the wiretapper who
observes the public communications but does not have access to the correlated source
sequence.
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A B

N o i s e l e s s  C h a n n e l

W i r e t a p p e r

F

uN
vN

K K̂

Figure 1-6: The problem of secret key generation using correlated sources. Terminals
A and B observe a pair

1.2.1 One-Shot Secret Key Generation

In the one-shot protocol, terminal A sends F = f(uN) to terminal B and produces a
key K = KA(uN ). Terminal B, upon receiving F, produces K̂ = KB(vN , F ). These
functions must satisfy

1. Pr(e) = Pr
(
KA(uN ) �= KB(vN , f(uN))

)
→ 0,

2. 1
N
I
(
f(uN);KA(uN )

)
→ 0,

as N → ∞. Here I(u; v) denotes the mutual information function and is defined as
I(u; v) = H(u) −H(u|v). The quantity of interest is the secret key rate, defined as
1
N
H(K) and the secrecy capacity is the supremum of all achievable secret key rates.
This setup was studied in [2] and [37] where the authors show that the secret key

capacity equals I(u; v). The main steps of their coding theorem are listed below.

1. Assign each sequence uN to one of the M ≈ 2NH(u|v) bins randomly. There are
≈ 2NI(u;v) sequences in each bin.

2. All typical sequences uN in a given bin are ordered. The secret key is the
number assigned to a sequence in this bin.

3. Given a sequence uN , find the bin index i it is assigned to and transmit F = i
over the public noiseless channel.

4. The receiver upon observing i, searches all typical sequences that are assigned
to this bin index that are also typical with vN . It recovers the sequence uN with
high probability and hence recovers the secret key.

5. The wiretapper upon observing F , knows the bin index, but no information
about the secret key is revealed to the wiretapper.

The converse shows that the secret key rate cannot be higher than what is achieved
by the one-shot protocol above.
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Since the key is obtained from uN and (vN , F ), we have that2

H(K|uN) = 0, H(K|vN , F ) = 0 (1.13)

Now note that

NR = H(K) = H(K|F ) + I(K;F )

= H(K|F ) +NoN(1) (1.14)

= H(K|F, vN) + I(K; vN |F ) +NoN (1)

= I(K; vN |F ) +NoN (1) (1.15)

≤ I(K,F ; vN) +NoN(1)

≤ I(uN , K, F ; vN) +NoN (1)

= I(uN ; vN) +NoN(1) (1.16)

= N(I(u; v) + oN(1))

where (1.14) follows from the definition of the secret key rate that I(K;F ) = NoN(1),
and (1.15) follows from (1.13) and (1.16) follows from the fact that (K,F ) → uN →
vN form a Markov chain.

Note that in this setup no constraint is imposed on the rate of transmission over
the public channel. An extension to the case when the noiseless channel has a rate
constraint is provided in [10].

The setup of secret key generation has found applications in diverse problems such
as wireless channels with reciprocity constraints [52] as well as secure biometrics [14].

A natural scenario to further investigate is secret key generation in a joint source
and channel coding setup which we will investigate in this thesis.

E n c .

d e c

 w. t .

u

v

p(y , z |x)
x

y

z

Figure 1-7: Secret-key-generation setup using correlated sources and channels.

2In our definition, a small error probability is allowed. In this case, we can use Fano’s inequality
to replace the 0 in the right hand side of (1.13) with a term that goes to zero as N → ∞.
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Chapter 2

Parallel Broadcast Channels

In this chapter, we study an extension of the basic wiretap channel. We study the
case when there is one sender, multiple legitimate receivers, and one eavesdropper.
We consider two scenarios:

• A common message needs to be delivered to all legitimate receivers

• An individual message needs to be delivered to each legitimate receiver

Further we restrict our attention to the case when there are multiple parallel and
independent channels. Often we will assume that each of these channels is degraded
in a certain order, but the overall system may not be degraded. Such channel models
are referred to as reversely degraded broadcast channels [15]. See Fig. 2-1.

For the common message scenario we first derive upper and lower bounds on the
common-message secrecy capacity. These bounds coincide when the channels are
reversely-degraded thus establishing the secrecy capacity in this case.

For the case of independent messages we establish the secrecy sum-capacity for
the reversely degraded case. The capacity-achieving scheme is simple: transmit to
the strongest receiver on each channel and use independent codebooks across the
sub-channels.

We note that the problem of transmitting common and independent messages
to multiple receivers over parallel channels is first considered in [15]. Our results
generalize [15], by considering the secrecy constraint. Interestingly, however, the
specializations of our capacity-achieving schemes to the case of no eavesdropper are
different from those in [15].

2.1 Problem Model

We formulate the problems of interest as extensions of the wiretap channel model
introduced by Wyner [53] for studying reliable and secure communication in an
information-theoretic framework. As such, we emphasize that in our models there
is no prior key shared between the sender and legitimate receivers, and both the
encoding and decoding functions, and the codebook itself, are public.
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In this broadcast model, there are M parallel subchannels connecting a single
sender to each of K legitimate receivers and an eavesdropper, where M and K are
parameters.

Definition 1 A product broadcast channel is one in which the constituent sub-channels
have finite input and output alphabets, are memoryless and independent of each other,
and are characterized by their transition probabilities

Pr ({yn
1m, . . . , y

n
Km, y

n
em}m=1,...,M | {xn

m}m=1,...,M)

=
M∏

m=1

n∏
t=1

Pr(y1m(t), . . . , yKm(t), yem(t) | xm(t)), (2.1)

where xn
m = (xm(1), xm(2), . . . , xm(n)) denotes the sequence of symbols transmitted on

subchannel m, where yn
km = (ykm(1), ykm(2), . . . , ykm(n)) denotes the sequence of sym-

bols obtained by receiver k on subchannelm, and where yn
em = (yem(1), yem(2), . . . , yem(n))

denotes the sequence of symbols received by the eavesdropper on subchannel m. The
alphabet of xm is X , and the alphabet for both ykm and yem is Y.

A special class of product broadcast channels, known as the reversely degraded
broadcast channel [15] are of particular interest.

Definition 2 A product broadcast channel is reversely-degraded when each of the
M constituent subchannels is degraded in a prescribed order. In particular, for each
subchannel m, there exists a permutation {πm(1), πm(2), . . . , πm(K + 1)} of the set
{1, 2, . . . , K, e} such that the following Markov chain is satisfied, i.e.,

xm → yπm(1) → yπm(2) → · · · → yπm(K+1).

With this definition, yπm(1), yπm(2), . . . , yπm(K+1) is an ordering of the receivers from
strongest to weakest in the mth subchannel, and we will at times find it convenient
to adopt the additional notation πm � πm(1). Also, we stress that in Definition 2 the
order of degradation need not be the same for all subchannels, so the overall channel
need not be degraded. An example of reversely-degraded parallel broadcast channel
is depicted in Fig. 2-1.

We also emphasize that in any subchannel the K receivers and eavesdropper are
physically degraded. Our capacity results, however, only depend on the marginal
distribution of receivers in each subchannel. Accordingly, our results in fact hold
for the larger class of channels in which there is only stochastic degradation in the
subchannels.

Finally, we obtain further results when the channel is Gaussian.

Definition 3 A reversely-degraded product broadcast channel is Gaussian when it
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x1

x2

x3

y11

y22

y13

y21

ye2

ye3

ye1

y12

y23

Figure 2-1: An example of reversely-degraded parallel broadcast channel, in which
there are M = 3 subchannels connecting a single sender to each of K = 2 legitimate
receivers and an eavesdropper. The input symbols to the subchannels are (x1, x2, x3).
The output symbols at the kth intended receiver are (yk1, yk2, yk3), and at the eaves-
dropper are (ye1, ye2, ye3). Note that the order of degradation is not the same for for
all subchannels.

takes the form

ykm = xm + zkm, m = 1, . . . ,M, k = 1, . . . , K

yem = xm + zem,
(2.2)

where the noise variables are all mutually independent, and zkm ∼ CN (0, σ2
km) and

zem ∼ CN (0, σ2
em). For this channel, there is also an average power constraint

E

[
M∑

m=1

x2
m

]
≤ P.

We now provide the formal definitions of the common-message secrecy capacity
and the sum-secrecy capacity for independent messages.

Definition 4 A (n, 2nR) code consists of a message set W = {1, 2, . . .2nR}, a (pos-

sibly stochastic) encoder ωn : W → X n × X n× (M-fold). . . . . . . . . ×X n mapping the message

set to the codewords for the M subchannels, and a decoder Φk,n : Yn ×Yn× (M-fold). . . . . . . . .
×Yn → W for k = 1, 2, . . . , K at each receiver. Using ŵk to denote message estimate
at decoder k, a common-message-secrecy-rate R is said to be achievable if, for any
ε > 0, there exists a length n code such that Pr(w �= ŵk) ≤ ε for k = 1, 2, . . . , K,
while

1

n
H(w |yn

e1, y
n
e2, . . . , y

n
eK) ≥ R− ε. (2.3)

The common-message secrecy capacity is the supremum over all achievable rates.

Definition 5 A (2nR1 , 2nR2, . . . , 2nRK , n) code for the product broadcast channel in
Definition 1 consists of a message set Wk = {1, 2, . . . 2nRk)}, for k = 1, 2, . . . , K,

an encoder ωn : W1 × W2 × · · · × WK → X n × X n (M-fold). . . . . . . . . ×X n mapping the
messages for the K receivers to the M subchannel inputs, and K decoding functions
φk,n : Yn × Yn× (M-fold). . . . . . . . . ×Yn → Wk, one at each legitimate receiver. We denote
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the message estimate at decoder k by ŵk. A secrecy rate-tuple (R1, R2, . . . , RK) is
achievable if, for every ε > 0, there is a code of length n such that Pr(wk �= ŵk) ≤ ε
for all k = 1, 2, . . . , K, and such that

1

n
H(wk|w1, . . . ,wk−1,wk+1, . . . ,wK , y

n
e1, . . . , y

n
eM)

≥ 1

n
H(wk) − ε, k = 1, 2, . . . , K. (2.4)

The secrecy sum-capacity is the supremum of R1 +R2 + · · ·+RK over the achievable
rate tuples (R1, R2, . . . , RK).

We remark that our constraint (2.4) provides perfect equivocation for each mes-
sage, even if all the other messages are revealed to the eavesdropper. It may be
possible to increase the secrecy rate by exploiting the fact that the eavesdropper does
not have access to other messages. This weaker notion of secrecy is not considered
here.

2.2 Capacity results

We summarize the capacity results in this section. First, we will provide the capacity
results when there is a single legitimate receiver. The results here have been derived
in [53, 8] and [33]. Subsequently we provide the common message secrecy capacity
and the sum secrecy capacity with independent messages for the case of reversely
degraded parallel channels. Bounds on the capacity are provided when the channels
are not reversely degraded. These results have been published in [23].

2.2.1 Single User Case

First note that the case when K = 1 and M = 1 is the single user wiretap channel.

Theorem 1 (I. Csiszár and J. Körner: [8]) The secrecy capacity with M = 1
channel and K = 1 receiver is given by

C = max
pupx|u

I(u; yr) − I(u; ye), (2.5)

where the maximization is over random variables u → x → (yr, ye) and |U| ≤ |X |2 +
4|X | + 3.

The secrecy capacity with M parallel independent channels is provided in [33].

Theorem 2 (Liang et.al. [33]) The secrecy capacity for the case of M parallel
channels and K = 1 receiver and one eavesdropper is

C =

M∑
i=1

max
puipxi|ui

I(ui; yi) − I(ui; yei), (2.6)
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where the maximization is over random variables ui → xi → (yi, yei) with appropriate
cardinality constraints.

This result establishes that independent codebooks across the parallel channels achieve
the secrecy capacity. When the broadcast channel is reversely degraded, the secrecy
capacity expression simplifies as follows —

Corollary 1 The secrecy capacity for the reversely degraded broadcast channels with
K = 1 receiver is,

C =

M∑
i=1

max
pxi

{I(xi; yi) − I(xi; yei)}. (2.7)

The single user results are reminiscent of the well known fact (see e.g., [6]) that
(in absence of the secrecy constraint) independent coding across parallel channels
achieves the capacity in the single user case.

2.2.2 Common Message

We have the following upper and lower bounds on the common-message secrecy ca-
pacity for the product broadcast channel of Definition 1.

Proposition 1 For the product broadcast channel model, an upper bound on the se-
crecy capacity is given by

C̄K,M ≤ R̄+
K,M � min

P
max�M

m=1 p(xm)
min

k∈{1,...,K}

M∑
m=1

I(xm; ykm|yem) (2.8)

where the set P = P1×· · ·×PM is a cartesian product of the sets {Pm}M
m=1, and where

each Pm is the collection of all joint distributions p′(y1m, . . . , yKm, yem|xm) having the
same marginal distribution as p(y1m|xm), . . . , p(yKm|xm) and p(yem|xm), and where the
maximum is over all marginal distributions p(x1), . . . , p(xM).

Proposition 2 A lower bound on the secrecy capacity for the product broadcast chan-
nel model is given by

C̄K,M ≥ R̄−
K,M = max

{p(um)}M
m=1

{xm=fm(um)}M
m=1

min
k∈{1,...,K}

M∑
m=1

{I(um; ykm) − I(um; yem)}+, (2.9)

where the random variables u1, . . . , uM are independent over some alphabet U , and
each fm(·) for m = 1, . . . ,M is a mapping from U to X .

For the special case of a product broadcast channel that is reversely-degraded,
our upper and lower bounds above coincide, yielding the following common-message
secrecy capacity.
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Theorem 3 The common-message secrecy capacity for the reversely-degraded chan-
nel model is

C̄K,M = max�M
m=1 p(xm)

min
k∈{1,2,...,K}

M∑
m=1

I(xm; ykm|yem). (2.10)

Finally, for the Gaussian parallel channel model of Definition 3, we have the
following straightforward extension of Theorem 3.

Corollary 2 The common-message secrecy capacity for the Gaussian parallel broad-
cast channel is

C̄G
K,M = max

(P1,...,PM )∈F
min

1≤k≤K

M∑
m=1

{
log

(
1 + Pm/σ

2
km

1 + Pm/σ2
em

)}+

, (2.11)

where F is the set of all feasible power allocations, i.e.,

F =

{
(P1, . . . , PM)

∣∣∣∣ Pm ≥ 0,

M∑
m=1

Pm ≤ P

}
. (2.12)

2.2.3 Independent Message

In absence of the secrecy constraint, the sum capacity for the reversely degraded
broadcast channel is maximized when only the strongest user on each parallel channel
is served [15, 48]. We show that the same scheme is also optimal with the secrecy
constraint.

Theorem 4 Let πj denote the strongest user on channel j. The secrecy-sum-capacity
for the reversely broadcast channel is given by

Csum
K,M = max

p(x1)p(x2)...p(xM )

M∑
j=1

I(xj; yπj
|yej). (2.13)

Furthermore, the expression in (2.13) is an upper bound on the secrecy-sum-capacity
when only the legitimate users are reversely degraded — but the set of receivers to-
gether with the eavesdropper is not degraded.

2.2.4 Specializing to no-secrecy constraint

El Gamal [15] has studied this setup in absence of a secrecy constraint for reversely
degraded channels. It is interesting to specialize our schemes when there is no eaves-
dropper to compare with [15].

1. For the case of a common message [15] shows that independent coding across
the sub-channels is sub-optimal. He proposes a scheme where a single vector
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codebook is used across the channels to achieve the capacity. In contrast our
scheme yields another technique to achieve the common message capacity. We
use a separate codebook on each of the channels at a rate of the common message
capacity. The receivers are required to jointly decode accross the codebooks.

2. For the case of independent messages, we show that the sum-secrecy-capacity
can be achieved by transmitting to the strongest receiver on each channel and
independently coding across the channels, analogous to the case of no-secrecy
in [15].

2.3 Parallel Channels - Common Message

In this section we provide proofs for the capacity results in section 2.2.2. In sec-
tions 2.3.1 and 2.3.2 we derive Propositions 1 and 2 respectively. These bounds are
shown to coincide the the case of reversely-degraded channels in section 2.3.3 and the
Gaussian case is studied in section 2.3.4.

2.3.1 Upper Bound

We first state a few facts that will be used in this sequel. In Defn. 4, both the error
probability as well as the equivocation depend only on the marginal distribution of
the channels. Hence we have the following.

Fact 3 The common-message-secrecy-capacity for the wiretap channel depends on the
joint distribution p(y1j , . . . , yKj, p(yej)|xj) only via the marginal distributions
p(y1j|xj), p(y2j|xj), . . . , p(yej|xj) in (2.1) for each j = 1, 2, . . . ,M .

We establish the following in Appendix A.

Fact 4 For any random variables x , y , and z the quantity I(x ; y |z) is concave in
p(x).

We use these facts in the proof of the upper bound.

Proof. [Lemma 1]

Suppose there exists a sequence of (n, 2nR) codes such that, for every ε > 0, as
n→ ∞

Pr(w �= ŵi) ≤ ε, i = 1, 2, . . .K

1

n
I(w ; yn

e1, . . . , y
n
eM) ≤ ε.

(2.14)

We first note that from Fano’s inequality we have

1

n
H(w |yn

i1, y
n
i2, . . . , y

n
iM) ≤ 1

n
+ εR i = 1, 2, . . .K. (2.15)
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Combining (2.14) and (2.15) we have, for all i = 1, 2, . . .K and ε′ = ε+ 1
n

+ εR,

nR ≤ I(w ; yn
i1, . . . , y

n
iM) − I(w ; yn

e1, . . . , y
n
eM) + nε′

≤ I(w ; yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM) + nε′

= h(yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM) − h(yn

i1, . . . , y
n
iM |yn

e1, . . . , y
n
eM ,w)

≤ h(yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM) − h(yn

i1, . . . , y
n
iM |yn

e1, . . . , y
n
eM , x

n
1 , . . . , x

n
M ,w)

= h(yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM) − h(yn

i1, . . . , y
n
iM |yn

e1, . . . , y
n
eM , x

n
1 , . . . , x

n
M) (2.16)

= h(yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM) −

M∑
j=1

h(yn
ij|xn

j , y
n
ej) + nε′ (2.17)

≤
M∑

j=1

h(yn
ij|yejn) −

M∑
j=1

h(yn
ij |xn

j , y
n
ej) + nε′

≤
M∑

j=1

I(xn
j ; yn

ij|yn
ej) + nε′, (2.18)

where (2.16) follows from the fact that w → (xn
1 , . . . x

n
M , y

n
e1, . . . , y

n
eM) → (yn

i1, . . . , y
n
iM)

form a Markov chain, and (2.17) holds because the parallel channels are mutually
independent in (2.1) so that

h(yn
i1, . . . , y

n
iM |yn

e1, . . . , y
n
eM , x

n
1 , . . . , x

n
M) =

M∑
j=1

h(yn
ij|xn

j , y
n
ej) .

We now upper bound each term in the summation (2.18). We have

I(xn
j ; yn

ij|yn
ej) ≤

n∑
k=1

I(xj(k); yij(k)|yej(k)) (2.19)

=
n∑

k=1

I(xj(k); yij(k), yej(k)) − I(xj(k); yej(k)) (2.20)

= nI(xj; yij, yej|q) − nI(xj; yej|q) (2.21)

= nI(xj; yij|yej, q)

≤ nI(xj; yij|yej), (2.22)

where (2.19) follows from the fact that the channel is memoryless,and (2.21) is ob-
tained by defining q to be a (time-sharing) random variable uniformly distributed
over {1, 2, . . . , n} independent of everything else. The random variables (xj, yij, yej)
are such that, conditioned on q = k, they have the same joint distribution as
(xj(k), yij(k), yej(k)). Finally (2.22) follows from the fact that the mutual information
is concave with respect to the input distribution p(xj) as stated in Fact 4.
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Combining (2.22) and (2.17) we have

R ≤
M∑

j=1

I(xj; yij|yej) + ε′, i = 1, 2, . . .K

= min
1≤i≤K

M∑
j=1

I(xj; yij|yej) + ε′ (2.23)

≤ max�M
j=1 p(xj)

min
1≤i≤K

M∑
j=1

I(xj; yij|yej) + ε′ . (2.24)

The last step follows from that fact that for any input distribution p(x1, x2, . . . , xM),
the objective function min1≤i≤K

∑M
j=1 I(xj; yij|yej) only depends on the marginal dis-

tributions p(x1), . . . , p(xM). Accordingly it suffices to take x1, x2, . . . , xM as mutually
independent random variables. Finally note that (2.24) depends on the joint distri-
bution across the channels. Accordingly, we tighten the upper bound by considering
the worst distribution in P = P1 × P2 × . . .× PM which gives

R+
KM ≤ min

P
max�M
j=1 p(xj)

min
1≤i≤K

M∑
j=1

I(xj; yij|yej) + ε′ . (2.25)

2.3.2 Lower Bound

We now present a coding scheme that achieves the our lower bound.
We first discuss the structure of the coding scheme informally. We construct M

independent random codebooks C1, . . . , CM , one for each subchannel. Codebook Cm

has nearly 2n(R+I(um;yem)) codewords, randomly partitioned into 2nR bins, one for each
possible message. Hence, there are nearly Qm = 2nI(um;yem) codewords per bin. Given
a particular message W ∈ {1, 2, . . . , 2nR} to be sent, the encoder selects M codewords,
one for each subchannel. Specifically, if the message is w, then for each subchannel
m the encoder randomly selects for transmission one of the Qm codewords from the
wth bin in Cm. This bin structure of the codebooks is depicted in Fig. 2-2 for the
case of M = 2 subchannels.

To decode, each legitimate receiver attempts to find a message that is jointly
typical with its set of M received sequences. As we now show, the rate R of the
code can be chosen arbitrarily close to R̄−

K,M as defined in (2.9) and guarantees both
successful decoding with high probability for each legitimate receiver, and near-perfect
equivocation at the eavesdropper.

Before presenting our proof, we make some remarks. As mentioned earlier, when
specialized to the case in which there is no eavesdropper (and hence no secrecy con-
straint), our construction is different from that developed by El Gamal [15] for such
product broadcast channels. In particular, as illustrated in Fig. 2-3 for the case of
M = 3 subchannels, our construction has the distinguishing feature that independent
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Q1 ≈ 2nI(u1;ye1) codewords/bin Q2 ≈ 2nI(u2;ye2) codewords/bin

un
11(1)

un
11(2)

un
1Q1

(1)

un
1Q2

(2)

un
21(1) un

2Q2
(1)

codebook C1 codebook C2

2n
R

m
es

sa
ge

bi
ns

w = 1 bin

w = 2 bin

Figure 2-2: Binning encoder for the secure product broadcast channel, for the case
of M = 2 subchannels. The set of codewords for representing a particular message
w ∈ {1, . . . , 2nR} in the mth subchannel are denoted by un

m1(w), . . . , un
mQm

(w). To
encode a particular message w, the encoder randomly selects one of the Qm codewords
in the associated bin for transmission in the mth subchannel, for m = 1, . . . ,M .

codebooks are used for the different subchannels. By comparison, with the scheme
in [15], each message is mapped to a M × n dimensional codeword and the mth
component of the codeword is transmitted on subchannel m. This corresponds to a
single-codebook scheme. By extending this scheme to provide secrecy by incorporat-
ing random binning, one can achieve, again for the reversely-degraded channel,

Rsingle = max
p(x1,...,xM)

min
k∈{1,...,K}

{
I(x1, x2 . . . , xK ; yk1, . . . , ykK)−I(x1, x2 . . . , xK ; ye1, . . . , yeK)

}
,

(2.26)

which we observe is in general smaller than that achieved by our construction, viz.,
(2.10). Ultimately, allowing the sizes of bins to depend on the mutual information at
the eavesdropper on each particular subchannel makes it possible to confuse the eaves-
dropper on each subchannel, and thereby achieve higher secrecy rates than (2.26).

We now provide the formal details and analysis of the coding scheme.
Proof. [Proof of Proposition 2] First, fix the distributions p(u1), p(u2), . . . , p(uM)
and the (possibly stochastic) functions f1(·), . . . , fM(·). Let η2 and η1 be positive
constants, to be quantified later. With respect to these quantities, define

R = min
1≤k≤K

M∑
m=1

{I(um; ykm) − I(um; yem)}+ − η1 (2.27)

and
Rem = I(um; yem) − η2, m = 1, 2, . . . ,M. (2.28)

The set T (um) denotes the set of all sequences that are typical1 with respect to
distribution p(um) and the set T (xm, um) denotes the set of all jointly typical sequences

1Throughout our development, we mean typicality in the ε-weak sense; see, e.g., [6, Chapter 3].
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C2

C3

x1

x2

x2

(a) Secrecy capacity-achieving code struc-
ture.

W C

x1

x2

x2

(b) Nonsecrecy capacity-achieving code
structure of [15].

Figure 2-3: Structure of two coding schemes for common message transmission over
reversely degraded product broadcast channels, for the case of K = 2 legitimate
receivers and one eavesdropper. To obtain secrecy, separate codebooks are required
for each subchannel, so that separate binning can be performed on each. A single
codebook is sufficient when there is no secrecy requirement.
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(xn
m, u

n
m) with respect to the distribution p(xm, um). In turn, Tun

m
(xm|um) denotes the

set of all sequences xn
m conditionally typical with respect to a given sequence un

m

according to p(xm|um).
The details of our construction are as follows.

Codebook Generation

• Codebook Cm for m = 1, 2, . . . ,M has a total of Mm = 2n(R+Rem) length n
codeword sequences. Each sequence is selected uniformly and independently
from the set T (um).

• We randomly partition the Mm sequences into 2nR message bins so that there
are Qm = 2nRem codewords per bin.

• The set of codewords associated with bin w in codebook Cm is denoted as

Cm(w) = {un
m1(w), un

m2(w), . . . , un
mQm

(w)}, (2.29)

for w = 1, 2, . . . , 2nR and m = 1, 2, . . . ,M . Note that Cm =
⋃2nR

w=1 Cm(w) is the
codebook on subchannel m.

Encoding

To encode message w, the encoder randomly and uniformly selects a codeword in the
set Cm(w) for all 1 ≤ m ≤M . Specifically,

• Select M integers q1, q2, . . . , qM , where qm is selected independently and uni-
formly from the set {1, 2, . . .Qm}.

• Given a message w, select a codeword un
mqm

(w) from codebook Cm(w) for m =
1, 2, . . . ,M .

• The transmitted sequence on subchannel m is denoted by xn
m = xm(1), xm(2), . . . , xm(n).

The symbol xm(t) is obtained by taking the (possibly stochastic) function fm(·)
of each element of the codeword un

mqm
(w).

Decoding

Receiver k, based on its observations (yn
k1, y

n
k2, . . . , y

n
kM) from the M parallel subchan-

nels, declares message w according to the following rule:

• Let Sk = {m|1 ≤ m ≤ M, I(um; ykm) > I(um; yem)} denote the set of subchan-
nels where receiver k has larger mutual information than the eavesdropper. The
receiver only considers the outputs yn

km from these subchannels.

• Receiver k searches for a message w such that, for each m ∈ Sk, there is an index
lm such that (un

mlm
(w), yn

km) ∈ T (um, ykm). If a unique w has this property, the
receiver declares it as the transmitted message. Otherwise, the receiver declares
an arbitrary message.
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We now analyze the properties of this code.

Error Probability

We show that, averaged over the ensemble of codebooks, the error probability is
smaller than a constant ε′ (to be specified). This demonstrates the existence of a
codebook with error probability less than ε′. We do the analysis for receiver k and,
without loss of generality, assume that message w1 is transmitted.

We first analyze the false-reject event. Let E c
1m be the event {(un

mqm
(w1), y

n
km) /∈

T (um, ykm)}. Since un
mqm

∈ T (um) by construction and ykm is obtained by passing um

through a discrete memoryless channel, it follows that [6, Page 72, Theorem 3.1.2],
Pr(E c

1m) ≤ ε. Accordingly, if E c
1 denotes the event that message w1 does not appear

typical, then we have

Pr(E c
1) = Pr

(
M⋃

m=1

E c
1m

)
≤ Mε. (2.30)

We next analyze the false-accept event. As before, let Sk ⊆ {1, 2, . . . ,M} denote
the subset of subchannels for which I(um; ykm) > I(um; yem). In what follows, the
index m refers only to subchannels in Sk.

For each m ∈ Sk, let Eim denote the event that there is a codeword in the set
Cm(wi) (i > 1) typical with yn

km. Then

Pr(Eim) = Pr
(
∃l ∈ {1, . . . , Qm} : (un

ml(wi), y
n
km) ∈ T (um, ykm)

)
≤

Qm∑
l=1

Pr((un
ml(wi), y

n
km) ∈ T (um, ykm))

≤
Qm∑
l=1

2−n(I(um;ykm)−3ε) (2.31)

≤ 2−n(I(um;ykm)−I(um;yem)−3ε+η2), (2.32)

where (2.31) follows from the fact that since the sequences (un
ml(wi), y

n
km) are drawn

independently, the results in [6, Page 216, Theorem 8.6.1] apply and (2.32) follows
by noting that Qm = 2n(I(um;yem)−η2).

In turn, let Ei denote the event that message wi has a codeword typical on every
subchannel. Then

Pr(Ei) = Pr

( ⋂
m∈Sk

Eim

)

=
∏

m∈Sk

Pr(Eim) (2.33)

= 2−n
�

m∈Sk
(I(um;ykm)−I(um;yem)−3ε+η2)

= 2−n
�M

m=1({I(um;ykm)−I(um;yem)}+−3ε+η2),
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where (2.33) follows by independence of codebooks and sub-channels.

Finally, the probability of false accept event EF is given by

Pr(EF) = Pr

⎛
⎝2nR⋃

i=2

Ei

⎞
⎠

≤ 2nR2−n
�M

m=1({I(um;ykm)−I(um;yem)}+−3ε+η2)

≤ 2−n(−3Mε+Mη2+η1),

which vanishes with increasing n by selecting the code-parameters such that η1 +
Mη2 − 3Mε > 0.

Thus, the probability of error averaged over the ensemble of codebooks is less than

ε′ = max
(
Mε, 2−n(−3Mε+Mη2+η1)

)
,

which demonstrates the existence of a codebook with error probability less than ε′.

Secrecy Analysis

We now show that for any typical code in the ensemble the normalized mutual infor-
mation between the message and the output of the eavesdropper is vanishing in the
block-length. We establish this in two steps. First, our construction of codebooks
is such that an eavesdropper who observes only the output of channel m satisfies
(1/n)I(w ; yn

em) ∈ on(1).2 Secondly, as we show below, the eavesdropper’s mutual in-
formation only increases by a factor of M even when all the channel outputs are
observed:

1

n
I(w ; yn

e1, . . . , y
n
eM) =

1

n
h(yn

e1, . . . , y
n
eM) − 1

n
h(yn

e1, . . . , y
n
eM |w)

=
1

n
h(yn

e1, . . . , y
n
eM) −

M∑
m=1

1

n
h(yn

em|w) (2.34)

≤
M∑

m=1

1

n
I(w ; yn

em) ∈ on(1) (2.35)

where (2.34) follows from the fact that the codewords in the sets C1(w), C2(w), . . . , CM(w)
are independently selected.

We now show that for all m = 1, . . . ,M ,

1

n
I(w ; yn

em) ∈ on(1), . (2.36)

Since there are there are Qm = 2n(I(um;yem)−η2) codewords in each codebook Cm(w)

2We will use on(1) to refer to a function that approaches zero as n → ∞.
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we have that,

1

n
H(un

m|w) = I(um; yem) − η2, (2.37)

1

n
H(un

m|w , yn
em) ≤ γ � 1

n
+ η2 Rem, (2.38)

where, (2.37) follows from the fact that the codewords in each bin are selected uni-
formly, while (2.38) follows from the fact that a typical codebook Cm(w) satisfies
Fano’s inequality. Furthermore, following [53], we can show that for our codebook
Cm, all of whose codewords are equally likely to be transmitted, we have that

1

n
I(un

m; yn
em) ≤ I(um; yem) + |U|Pr(un

m /∈ T (u)) + on(1). (2.39)

The equivocation at the eavesdropper can then be lower bounded using (2.37)-(2.39).

H(w |yn
em) = H(w , un

m|yn
em) −H(un

m|w , yn
em)

≥ H(un
m|yn

em) − nγ (2.40)

= H(un
m) − I(un

m; yn
em) − nγ

= H(un
m,w) − I(un

m; yn
em) − nγ (2.41)

= H(w) +H(un
m|w) − I(un

m; yn
em) − nγ

≥ H(w) + nI(um; yem) − I(un
m; yn

em) − nγ − nη2, (2.42)

≥ H(w) − nγ − nη2 − non(1) − n|U|ε , (2.43)

where (2.40) follows from substituting (2.38), where (2.41) follows from the fact that
w is deterministic given un

m, and where (2.42) and (2.43) follow from substituting
(2.37) and (2.39) respectively, and the fact that Pr(un

m /∈ T (u)) ≤ ε. Since γ, η2

and ε can be selected to be arbitrarily small, provided n is sufficiently large, we
establish (2.36).

2.3.3 Capacity for Reversely degraded channels

We observe that the upper and lower bounds in Proposition 1 and 2 respectively,
coincide when the underlying channel is reversely degraded.

Proof. [Proof of Theorem 3] By selecting um = xm for each m = 1, 2, . . . ,M , in the
achievable rate expression (2.9) in Prop. 2, we have that

R̄−
K,M = min

k∈{1,...,K}

M∑
m=1

{I(xm; ykm) − I(xm; yem)}+,

is an achievable rate. For the reversely degraded channel, for each k = 1, 2, . . . , K,
and m = 1, 2, . . . ,M , we have that either xm → ykm → yem or xm → yem → ykm holds.
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In either case, note that

{I(xm; ykm) − I(xm; yem)}+ = I(xm; ykm|yem),

holds, and hence the lower bound above coincides with (2.8) in Prop. 1.

2.3.4 Gaussian Channel Capacity

We extend the secrecy capacity in Theorem 3 to Gaussian parallel channels. Since
the extension is based on standard techniques, we will only sketch the key steps in
the proof.
Proof. [Proof of Corollary 2] Note that the channel of Definition 3 has the same ca-
pacity as another (M,K) reversely-degraded broadcast channel in which the sequence
obtained at receiver πm(k + 1) on subchannel m is

ŷπm(k+1)m = ŷπm(k)m + ẑπm(k)m, k = 0, 1, . . . , K,

where πm(1), . . . , πm(K + 1) denotes the ordering of the eavesdropper and legitimate
receivers from strongest to weakest, where ŷπm(0)m � xm and σ2

πm(0)m � 0, and where

the noises ẑπm(k)m ∼ CN (0, σ2
πm(k+1)m − σ2

πm(k)m) are mutually independent.
With the appropriate Fano’s inequality, the converse for Theorem 3 extends to

continuous alphabets. The achievability argument relies on weak typicality and also
extends to the Gaussian case. Furthermore, the power constraint can be incorpo-
rated in the capacity expression, since the objective function is concave in the input
distribution, whence

C̄K,M(P ) = max�M
m=1 p(xm),

E[
�M

m=1 x2
m]≤P

min
k∈{1,...,K}

M∑
m=1

I(xm; ŷkm|ŷem). (2.44)

Next observe that
max

p(xm),E[x2
m]≤Pm

I(xm; ŷkm|ŷem)

denotes the capacity of a Gaussian wiretap channel [27]. Accordingly, for each m =
1, 2, . . . ,M ,

max
p(xm),E[x2

m]≤Pm

I(xm; ŷkm|ŷem) =

{
log

(
1 + Pm/σ

2
km

1 + Pm/σ2
em

)}+

. (2.45)

Now if (P ∗
1 , . . . , P

∗
M) denotes an optimal power allocation in (2.44), then via (2.45),

we have that

C̄K,M(P ) = min
k∈{1,...,K}

M∑
m=1

{
log

(
1 + P ∗

m/σ
2
km

1 + P ∗
m/σ

2
em

)}+

,

whence (2.11) follows.
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2.4 Parallel Channels — Independent Messages

We establish Theorem 4 by providing a converse and achievability result.

2.4.1 Converse Theorem 4

We establish the upper bound in Theorem 4. Suppose a genie provides the output
of the strongest receiver, πj , to all other receivers on each channel, i.e., on channel j
the output yn

πj
is made available to all the receivers. Because of degradation, we may

assume, without loss of generality, that each receiver only observes (yn
π1
, . . . , yn

πM
).

Clearly, such a genie aided channel can only have a sum capacity larger than the
original channel. Since all receivers are identical, to compute the sum capacity it
suffices to consider the situation with one sender, one receiver, and one eavesdropper.

Lemma 1 The secrecy-sum-capacity in Theorem 4 is upper bounded by the secrecy
capacity of the genie aided channel, i.e., Csum

K,M ≤ CGenieAided.

Proof. Suppose that a secrecy rate point (R1, R2, . . .RK) is achievable for the K
user channel in Theorem 4 and let the messages be denoted as (w1,w2, . . .wK). This
implies that, for any ε > 0 and n large enough, there is a length n code such that
Pr(̂i �= wi) ≤ ε for i = 1, 2, . . . , K, and such that

1

n
H(wi|w1, . . .wi−1,wi+1, . . .wK , y

n
e1, y

n
e2, . . . , y

n
eM) ≥ Ri − ε . (2.46)

We now show that a rate of (
∑K

i=1Ri, 0, . . . , 0︸ ︷︷ ︸
K−1

) is achievable on the genie aided

channel. First, note that any message that is correctly decoded on the original channel
is also correctly decoded by user 1 on the genie aided channel. It remains to bound
the equivocation on the genie aided channel when the message to receiver 1 is w =
(w1,w2, . . . ,wK). We have

1

n
H(w |yn

e1, y
n
e2, . . . , y

n
eM) =

1

n
H(w1,w2, . . . ,wK |yn

e1, y
n
e2, . . . , y

n
eM)

≥
K∑

i=1

1

n
H(wi|w1, . . .wi−1,wi+1, . . .wK , y

n
e1, y

n
e2, . . . , y

n
eM)

≥
K∑

i=1

Ri −Kε

where the last step follows from (2.46). Since ε is arbitrary, this establishes the claim.

Lemma 2 The secrecy capacity of the genie aided channel is

CGenieAided = max
p(x1)p(x2)...p(xM )

M∑
j=1

I(xj; yπj
|yej). (2.47)
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Proof. Since all receivers are identical on the genie aided channel, this setup reduces
to the case of K = 1 receivers and Corollary 1 applies.

Remark 1 The upper bound continues to hold even if the eavesdroppers channel is
not ordered with respect to the legitimate receivers. In general, following Lemma 1,
the upper bound can be tightened by considering, for all 1 ≤ j ≤ M , the worst
joint distribution p′(yπj

, yej|xj) among all joint distributions with the same marginal
distribution as p(yπj

|xj) and p(yej|xj), yielding

Csum
K,M ≤ min�M

j=1 p′(yπj ,yej |xj)
max�M
j=1 p(xj)

M∑
j=1

I(xj; yπj
|yej). (2.48)

2.4.2 Achievability for Theorem 4

The achievability scheme for Theorem 4 is as follows: we only send information
intended to the strongest user, i.e., only user πj on channel j can decode. It follows
from the result of the wiretap channel [53] that a rate of Rj = maxp(xj) I(xj; yπj

|yej
) is

achievable on channel j. Accordingly the total sum rate of
∑

j Rj is achievable which
is the capacity expression.

2.4.3 Gaussian Channels

Theorem 4 can be extended to the case of Gaussian parallel channels. Let σ2
πj

denote
the noise variance of the strongest user on channel j. Then the secrecy-sum-capacity
is given by

Csum,Gaussian
K,M (P ) = max

(P1,P2,...PM )

M∑
j=1

{
1

2
log

(
1 +

Pj

σ2
πj

)
− 1

2
log

(
1 +

Pj

σ2
ej

)}+

(2.49)

where the maximization is over all power allocations satisfying
∑M

j=1 Pj ≤ P . The
achievability follows by using independent Gaussian wiretap codebooks on each chan-
nel and only considering the strongest user on each channel. For the upper bound we
have to show that Gaussian inputs are optimal in the capacity expression in Theo-
rem 4. The justifications are the same as in the common message case in Section 2.3.4.

2.5 Conclusions

This chapter studies an extension of the wiretap channel when there are multiple
legitimate receivers. We examine two scenarios — when all receivers want a common
message and when each of the receivers wants an independent message. The notion
of secrecy capacities are appropriately extended in these cases and upper and lower
bounds are derived on the capacities in several cases. The common-message-secrecy-
capacity is established for the case of reversely degraded parallel channels. For the
case of independent messages, we show that a scheme that transmits to the strongest
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user on each channel achieves the sum-secrecy-capacity. The results on parallel chan-
nels provide important insights into the scenario of fading channels. The case of
fading channels is studied in the next chapter.
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Chapter 3

Fading Channels

In this chapter, we extend the schemes for the parallel channels discussed in the
previous chapter to the case of fading channels. In this setup, we assume that the
channel state information (CSI) of legitimate receivers is revealed to all communicat-
ing parties (including the eavesdropper), while the eavesdropper’s channel gains are
revealed only to her. The sender and receiver know the statistical properties of the
eavesdropper channel and this knowledge is used to characterize the secrecy capacity.

We first examine the case when a common message needs to be delivered to all
legitimate receivers in the presence of potential eavesdroppers and present a scheme
that achieves a rate that does not decay to zero with increasing number of receivers.
Interestingly, without the secrecy constraint the problem of multicasting a common
message to several receivers over ergodic fading channels has received little attention.
Indeed transmitter CSI appears to be of little value in these situations. Some thought
can convince that the capacity appears to be not too far from the maximum achievable
rate with a flat power allocation scheme.

In contrast, with the secrecy constraint a flat power allocation may not provide
any rate unless the eavesdropper’s channel is weaker on average than the legitimate
receiver. In this sense, the secrecy constraint adds a new dimension to the multicas-
ting problem. It requires us to consider protocols that exploit transmitter CSI in an
efficient manner. Note that there is a tension between receivers when the channels
undergo independent fading. Not all receivers will experience a strong channel simul-
taneously and the proposed multicasting protocols resolve this tension in an efficient
manner and achieve a rate that does not vanish with the number of receivers.

When there are independent messages, we propose an opportunistic scheme that
selects the user with the strongest channel at each time. With Gaussian wiretap
codebooks for each legitimate receiver, we show that this scheme achieves the sum
capacity in the limit of large number of receivers. Note that the analogous results
without secrecy constraints are established in [49].
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3.1 Problem Model

Definition 6 Our fast-fading broadcast model of interest has the following proper-
ties. The received sequences yn

1 , y
n
2 , . . . , y

n
K and yn

e at the legitimate receivers and
eavesdropper, respectively, are of the form

yk(t) = hk(t) x(t) + zk(t), k = 1, 2, . . . , K,

ye(t) = he(t) x(t) + ze(t),
(3.1)

where xn is the transmitted sequence, and zk(t) ∼ CN (0, 1). The channel gains and
noises among all receivers (including the eavesdropper) are all mutually independent of
one another, and all vary in an independently, identically-distributed (i.i.d.) manner
with time, corresponding to fast-fading.1 Finally, the input must satisfy an average
power constraint E[|x(t)|2] ≤ P .

Furthermore we will assume the case that hk(t) ∼ CN (0, 1) and he(t) ∼ CN (0, 1),
although many of our results can extend to more general fading models.

In addition, in our model the h1(t), . . . , hK(t) are revealed to the transmitter,
the K legitimate receivers and the eavesdropper in a causal manner. Implicitly we
assume that there is an authenticated public feedback link from the receivers to the
transmitter. The channel coefficients of the eavesdropper {hn

e } are known only to the
eavesdropper, but the transmitter and the legitimate receivers know the probability
distribution of the eavesdropper’s channel gains.

We now provide the formal definitions of the common-message secrecy capacity
and the sum-secrecy capacity for independent messages.

Definition 7 A (n, 2nR) code for the channel consists of an encoding function that
maps from the message w ∈ {1, 2, . . . , 2nR} into transmitted symbols x(t) = ft(w; ht

1, h
t
2, . . . , h

t
K)

for t = 1, 2, . . . , n, and a decoding function ŵk = φk(y
n
k ; hn

1 , h
n
2 , . . . , h

n
K) at each re-

ceiver k. A rate R is achievable if, for every ε > 0, there exists a sequence of length
n codes such that Pr(ŵk �= w) ≤ ε for any k = 1, 2, . . . , K such that

1

n
H
(
w
∣∣ yn

e , h
n
e , h

n
1 , . . . , h

n
K

)
≥ R− ε. (3.2)

Definition 8 A (n, 2nR1 , . . . , 2nRK) code consists of an encoding function from the
messages w1, . . . , wK with wk ∈ {1, 2, . . . , 2nRk} to transmitted symbols

x(t) = ft(w1, w2, . . . , wK ; ht
1, h

t
2, . . . , h

t
K)

for t = 1, 2, . . . , n, and a decoding function at each receiver ŵk = φk(y
n
k ; hn

1 , h
n
2 , . . . , h

n
K).

A secrecy rate-tuple (R1, R2, . . . , RK) is achievable if, for any ε > 0, there exists a
length n code such that, for each k = 1, 2, . . . , K, with wk uniformly distributed over

1In practice, the fast fading model (3.1) applies when the codebooks are interleaved so that each
symbol sees an independent fade.
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{1, 2, . . . , 2nRk}, we have Pr(ŵk �= wk) ≤ ε and

1

n
H
(
wk | w1, . . . ,wk−1,wk+1, . . . ,wK , y

n
e , h

n
e , h

n
1 , . . . , h

n
K

)
≥ Rk − ε. (3.3)

The secrecy sum-capacity is the supremum value of R1 + R2 + . . . + RK among all
achievable rate tuples.

Note that the entropy term in both (3.2) and (3.3) is conditioned on hn
1 , . . . , h

n
K as

these channel gains of the K receivers are assumed to be known to the eavesdropper.
However, the encoding and decoding functions do not depend on hn

e as this realization
is not known to the sender and the receivers.

An immediate consequence of this formulation is that the secrecy capacity depends
only on the distribution of he(t) and not on the actual realized sequence of these
eavesdropper gains. Indeed, since the transmitter and the legitimate receivers do not
have the eavesdropper’s CSI, the encoding and decoding functions cannot depend
on this information. From this perspective, in our formulation a message that is
secure with respect to any given eavesdropper is also secure against any statistically
equivalent eavesdropper. Thus, the assumption of only a single eavesdropper in our
model is purely one of convenience.

3.2 Capacity Results

In this section, we summarize the capacity results.
We first study the case of a single eavesdropper and present bounds on the secrecy

capacity. To the best of our knowledge, the secrecy capacity for this scenario remains
open. Upper and lower bounds for this problem were first provided in [22]. Similar
results subsequently appeared in [31].

We note that the secrecy capacity has been resolved in the following variations of
this setup which will not be discussed in this thesis.

1. When the eavesdropper’s channel coefficients he(t) are known to the sender, the
setup is mapped to the case of parallel independent channels and the capacity
is resolved by Liang et. al. [32]

2. When the eavesdropper’s channel coefficients are not known, but the coherence
period goes to infinity, the secrecy capacity is obtained in [20].

After discussing the bounds on capacity for the single user case, we discuss the case
of many users. These results have also been published in [22, 23].

3.2.1 Single User Case

We first consider the case when there is only one receiver in this section.

y(t) = h(t)x(t) + z(t)

ye(t) = he(t)x(t) + ze(t).
(3.4)
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Note that here we denote the channel of legitimate receiver with h(t) instead of
h1(t) as in (3.1).

Proposition 3 For the single user fast-fading channel, the secrecy sum-capacity is
bounded by

R−(P ) ≤ CK(P ) ≤ R+(P ), (3.5)

where

R+(P ) = max
ρ(h):

E[ρ(h)]≤P

E

[{
log

(
1 + |h|2ρ(h)

1 + |he|2ρ(h)

)}+
]

(3.6a)

and

R−(P ) = max
ρ(h):

E[ρ(h)]≤P

E

[
log

(
1 + |h|2ρ(h)

1 + |he|2ρ(h)

)]
. (3.6b)

Note that the difference between the upper and lower bounds is the {·}+ function
inside the expectation. Evaluating these bounds for i.i.d. Rayleigh fading channels,
with E[|h|2] = E[|he|2] = 1, in the SNR regime yields,

lim
P→∞

R−(P ) = E

[{
log |h|2 +

γ

log 2

}+
]

= 0.7089 b/s/Hz (3.7a)

lim
P→∞

R+(P ) = E

[{
log

|h|2
|he|2

}+
]

= 1 b/s/Hz. (3.7b)

The lower bound can be further improved by transmitting synthetic noise. This
improvement results in

lim
P→∞

R−
SN(P ) = 0.7479 b/s/Hz,

which is still far from the upper bound.

The achievability scheme corresponding to the lower bound (3.6b) involves map-
ping the fading channel to a set of parallel independent channels and using indepen-
dent codebooks accross these channels. The upper bound (3.6a) was first provided
by Gopala et. al. [20] and is included here for completeness.

3.2.2 Common Message

The common message constraint requires us to simultaneously adapt rate and power
to the channel gains of several legitimate users. How efficiently can this be done as the
number of receivers increases? Somewhat surprisingly, we observe that it is possible
to broadcast at a rate independent of the number of legitimate users.
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Theorem 5 The common-message-secrecy-rate for the fast-fading broadcast channel
is bounded by

R̄−(P ) ≤ C̄K(P ) ≤ R̄+(P ), (3.8)

where

R̄−(P ) = min
1≤k≤K

Ehk

[{
log

(
1 + |hk|2P

exp {Ehe [log(1 + |he|2P )]}

)}+
]

(3.9a)

and

R̄+(P ) = min
1≤k≤K

max
ρ(hk):

E[ρ(hk)]≤P

E

[{
log

(
1 + |hk|2ρ(hk)

1 + |he|2ρ(hk)

)}+
]
. (3.9b)

When the channel gains hk are identically distributed across the users, note that
both lower and upper bounds in (3.9) are independent of the number of receivers K.
The fact that the common-message secrecy-capacity does not vanish with the number
of users is surprising. Simple schemes such as transmitting when all the users have a
channel gain above a threshold or time-sharing between the users only achieve a rate
that vanishes with the number of users. In contrast our lower bound is achieved by a
scheme that simultaneously adapts to the time variations of all the legitimate users.

In the high signal-to-noise ratio (SNR) regime, the bounds Theorem 5 specialize
as follows.

Corollary 3 When the channel gains of all the receivers are distributed as CN (0, 1),
the bounds in (3.9) are, asymptotically,

lim
P→∞

R̄+(P ) = E

[{
log

|h|2
|he|2

}+
]

= 1 b/s/Hz (3.10a)

lim
P→∞

R̄−(P ) = E

[{
log |h|2 +

γ

log 2

}+
]

= 0.7089 b/s/Hz, (3.10b)

where γ is the Euler-Gamma constant (γ ≈ 0.5772).

While our proposed scheme achieves a rate independent of the number of users
(and hence the best possible scaling with the number of users), the optimality of the
scheme remains open.

3.2.3 Independent Messages

The problem of broadcasting independent messages to multiple receivers over ergodic
fading channels has been well studied when there is no security constraint; see. e.g.,
[48]. For such scenarios, an opportunistic transmission scheme is shown to attain the
largest sum-capacity. We establish the following analogous result for secure transmis-
sion.
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Proposition 4 For the fast-fading broadcast channel, the secrecy sum-capacity is
bounded by

R−
K(P ) ≤ CK(P ) ≤ R+

K(P ), (3.11)

where

R+(P ) = max
ρ(hmax):

E[ρ(hmax)]≤P

E

[{
log

(
1 + |hmax|2ρ(hmax)

1 + |he|2ρ(hmax)

)}+
]

(3.12a)

and

R−
K(P ) = max

ρ(hmax):
E[ρ(hmax)]≤P

E

[
log

(
1 + |hmax|2ρ(hmax)

1 + |he|2ρ(hmax)

)]
, (3.12b)

with hmax denoting the gain of the strongest of the K legitimate receivers (at any
instant).

Our upper and lower bounds in (3.12) are distinguished by the inclusion of the
operator {·}+ is inside the expectation of the former. Hence, the arguments of the
expectation differ whenever |hmax|2 ≤ |he|2, and so an upper bound on the rate gap is

R+
K(P ) −R−

K(P ) ≤ Pr(|he|2 ≥ |hmax|2)E
[
log

(
|he|2/|hmax|2

) ∣∣ |he|2 ≥ |hmax|2
]
. (3.13)

As the number of legitimate receivers grows the event {|hmax|2 ≤ |he|2} happens
increasingly rarely and for the case of identical Rayleigh distributed fading, the gap
between the bounds vanishes. As a result, we obtain the following theorem.

Theorem 6 For the fast-fading broadcast channel with identical Rayleigh distributed
fading and large K, the secrecy capacity scales according to

CK(P ) = max
ρ(hmax):

E[ρ(hmax)]≤P

E

[
log

(
1 + |hmax|2ρ(hmax)

1 + |he|2ρ(hmax)

)]
+ o(1). (3.14)

where we use o(1) to denote terms that approach zero as K → ∞.

Theorem 6 establishes that an architecture that uses single-user Gaussian wiretap
base codes in conjunction with opportunistic transmission achieves the secrecy sum-
capacity in the limit of a large number of receivers.

For finite values of K, incorporating synthesized noise into the transmission as a
masking technique yields still higher rates [22]. However, even with such refinements,
there remains a gap between the upper and lower bounds. Fig. 3-1 illustrates the
upper and lower bounds in (3.12) in the high SNR regime for identically distributed
Rayleigh fading distribution. We note that even for a moderate number of users, these
bounds are nearly tight and further improvements will only provide diminishing gains
in this regime.

We also remark that Theorem 6 more generally guarantees an arbitrarily small
gap between upper and lower bounds on the secrecy sum-capacity for Rayleigh fading
channels of fixed coherence time, provided the number of receivers is large enough.
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Figure 3-1: Upper and lower bounds on the secrecy sum-capacity in (3.12) for the
broadcasting of independent messages in Rayleigh fast-fading environments in the
high SNR regime, as a function of the number of legitimate receivers.

In [20] variable-rate and fixed-rate schemes are developed for the case of a single
receiver in a slow fading environment. Straightforward extensions of these schemes for
multiple receivers reveals the following insights. The variable-rate scheme achieves
our upper bound (3.12a), whereas the fixed-rate scheme achieves our lower bound
(3.12b). Since these two expressions coincide as the number of receivers tends to
infinity, it follows that the gains of variable-rate schemes become negligible in this
limit.

As a final remark, we comment on collusion attacks. As noted earlier, any number
of statistically equivalent eavesdroppers does not affect our capacity—as long as they
do not collude. However, if the eavesdroppers collude, they can combine the received
signals and attempt to decode the message. In such scenarios, the upper and lower
bounds in Proposition 4 can be extended by replacing the term |he|2 with ‖he‖2,
where he is the vector of channel gains of the colluding eavesdroppers. One interesting
implication of the resulting bounds is that the secrecy capacity is positive unless the
colluding eavesdropper population grows as logK.

3.3 Single User

We first consider the case when there is only one receiver, and study in turn a lower
bound and an upper bound on the secrecy capacity.

3.3.1 Achievability

We can view the model (3.4) as a set of parallel channels in Fig. 3-2 indexed by the
channel gain h of the intended receiver, which is known globally. Thus in each parallel
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Figure 3-2: Parallel channel decomposition of the fading channel with one receiver and
one eavesdropper. The decomposition on the left is used in the achievability scheme
when the channel coefficients of the intended receiver are known to the sender, the
receiver and the eavesdropper. This contrasts with the decomposition on the right
when both the intended receiver and the eavesdropper are known to all the nodes.

channel the intended receiver’s channel is complex Gaussian while the eavesdropper’s
channel is a fading channel. We use an independent Gaussian codebook on each
parallel channel.

Consider a particular sub-channel where the intended receivers experiences a gain
of a (i.e. |h|2 = a). Generate an i.i.d. Gaussian wiretap codebook [27] with power Pa

and rate RI(a, Pa). The power Pa is selected to satisfy the average power constraint
E[Pa] = P . The achievable rate is:

RI(a, Pa) = I(x ; yr) − I(x ; ye, he)

=
{
log(1 + aPa) −E[log(1 + |he|2Pa)]

}
.

(3.15)

From the expression (3.15), it is clear that our achievable rate RI(a, Pa) is in-
creasing in a. It is possible to show that if a is fixed and greater than T � exp(−γ),
where γ = 0.5772 is the Euler’s constant, the supremum of RI(a, Pa) is obtained in
the limit Pa → ∞. On the other hand if a < T , then supPa>0R

I(a, Pa) = 0. Thus for
the proposed scheme, the transmitter will not transmit whenever a < T .

The expression (3.6b) in Proposition 3 follows by taking expectation with respect
to the fading states.
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Synthetic Noise Transmission

It is possible to improve upon the proposed rate in (3.15) by transmitting artificial
noise in addition to the intended codeword. We split the available power Pa into
two parts. Generate an i.i.d. Gaussian wiretap codebook with power Pu. Before
transmission of a codeword un, generate an i.i.d Gaussian noise sequence vn with
power Pv, independent of everything else and not known to the receiver. Our choice
of the powers satisfy Pu +Pv = Pa. We transmit xn = un + vn. The received symbols
at the intended receiver and eavesdropper are

y(i) = hu(i) + hv (i) + z(i)

ye(i) = he(i)u(i) + he(i)v(i) + z(i)
(3.16)

Our expression for the achievable rate is given by,

RII(a, Pa) = I(u; ur) − I(u; ye, he)

=

{
log

(
1 +

aPu

1 + aPv

)
−E

[
log

(
1 +

|he|2Pu

1 + |he|2Pv

)]}
(3.17)

We optimize over the choice of Pu and Pv. It can be shown that for any a > 0,
we have that supPa

RII(a, Pa) > 0. Thus secret communication is possible for every
choice of a > 0, provided the available power is sufficiently large. Note that the gain
from artificial noise should not be very surprising. As seen in (3.17), the artificial
noise gets amplified by the channel gain of the receivers and hence there is a net
gain if the channel gain to the intended receiver is small. The optimal value of Pv

is positive only if a < 1. Thus if the channel gain of the intended receiver is greater
than one, our scheme reduces to the previous one in (3.15).

Numerical evaluation in the high SNR limit yields

lim
P→∞

R−(P ) = 0.7089 bits/symbol,

lim
P→∞

R−
SN(P ) = 0.7479 bits/symbol.

(3.18)

As a final remark, we note that even though our proposed scheme uses an inde-
pendent codeword for each parallel channel, this is not necessary. In particular, the
rate can also be obtained by using a single Gaussian wiretap codebook generated
i.i.d. CN (0, 1) and scaling each transmitted symbol by the transmit power Pa de-
pending on the channel state. This reduces the complexity of encoding and decoding
significantly.

3.3.2 Single User: Upper Bound

Our upper bounding technique follows closely [20], where a similar setup for large
coherence periods is studied. The derivation below is provided for completeness.

First note that the joint distribution of the noise variables (z(t), ze(t)) is selected
so that if |he(t)| ≤ |h(t)| we have the Markov chain x(t) → y(t) → ye(t); otherwise
we have the chain x(t) → ye(t) → y(t). We show that for any sequence of length n,
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rate R codes as in Def. 8 the upper bound (3.12a) holds. Recall that the encoding
function has the form

x(t) = ft(w , h
t), t = 1, 2, . . . , n, (3.19)

and for every ε > 0, and sufficiently large n, we have, via Fano’s inequality and the
secrecy condition,

1

n
H(w |hn, yn) ≤ ε (3.20)

1

n
I(w ; yn

e , h
n
e |hn) ≤ ε. (3.21)

An upper bound on the rate is as follows,

nR = H(w |hn)

≤ I(w ; yn|hn) − I(w ; yn
e , h

n
e |hn) + 2nε (3.22)

≤ I(xn; yn|hn, hn
e , y

n
e ) + 2nε (3.23)

= h(yn|hn, hn
e , y

n
e ) − h(yn|hn, hn

e , y
n
e , x

n) + 2nε

= h(yn|hn, hn
e , y

n
e ) −

n∑
t=1

h(y(t)|h(t), he(t), ye(t), x(t)) + 2nε (3.24)

≤ h(yn|hn, hn
e , y

n
e ) −

n∑
t=1

h(y(t)|ht, he(t), ye(t), x(t)) + 2nε

≤
n∑

t=1

I(x(t); y(t)|ye(t), h
t, he(t)) + 2nε (3.25)

where (3.22) follows by substituting (3.20) and (3.21), (3.23) follows from the Markov
chain w → (xn, yn

e , h
n, hn

e ) → yn, where (3.24) follows from the fact that the channel
is memoryless.

From the capacity of the Gaussian wiretap channel [27], we have that,

I(x(t); y(t)|ye(t), h
t, he(t)) ≤ Eht,he(t)

[{
log

1 + |h(t)|2E[|x(t)|2]
1 + |he(t)|2E[|x(t)|2]

}+
]

(3.26)

with equality if x(t) is conditionally Gaussian given (ht, he(t)). Since a Gaussian
distribution depends only on its mean and variance and x(t) is independent of he(t),
we can write without loss of generality2 that

x(t) ∼ CN
(
0,
√
ρt(ht)

)
, (3.27)

for some sequence of functions ρt(·) that satisfy the average power constraint 1
n

∑n
t=1 E[ρt(h

t)] ≤

2Analogous approach is taken in [4, Section IV, Proposition 3] for establishing the capacity of
fading channels with side information at the transmitter.
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P . With this substitution, we have from (3.25) that

nR ≤
n∑

t=1

Eht,he(t)

[{
log

1 + |h(t)|2ρt(h
t)

1 + |he(t)|2ρt(ht)

}+
]

+ 2nε. (3.28)

As shown below, that the right hand side in (3.28) is maximized, for each t, by a
function γt(·) that only depends on ht via h(t). The upper bound expression in (3.12a)
then follows, since from (3.28),

nR − 2nε ≤
n∑

t=1

Eh,he

[{
log

1 + |h|2γt(h)

1 + |he|2γt(h)

}+
]

≤ nEh,he

[{
log

1 + |h|2 1
n

∑n
t=1 γt(h)

1 + |he|2 1
n

∑n
t=1 γt(h)

}+
]

(3.29)

= nEh,he

[{
log

1 + |h|2γ(h)

1 + |he|2γ(h)

}+
]
, (3.30)

where (3.29) follows from the fact {log(1+ax)/(1+bx)}+ is concave in x > 0 for fixed
a and b, so Jensen’s inequality can be applied and where (3.30) follows by defining
γ(h) = 1

n

∑n
t=1 γt(h). Note that the power constraint E[γ(h)] ≤ P naturally follows

from the definition of γ(·).
It remains to establish the existence of γt(·) as we now do.

In particular, for any sequence of functions ρt(·), we define γt(·) according to,

γt(h(t)) � Eht−1 [ρt(h
t)|h(t)],

and show below that each term in the summation in (3.28) only increases if we replace
ρt(·) by γt(·).

Eht,he(t)

[{
log

1 + |h(t)|2ρt(h
t)

1 + |he(t)|2ρt(ht)

}+
]

(3.31)

= Eh(t),he(t)

[
Eht−1

[{
log

1+|h(t)|2ρt(h
t)

1+|he(t)|2ρt(ht)

}+]]

≤ Eh(t),he(t)

[{
log

1 + |h(t)|2Eht−1 [ρt(h
t)|h(t)]

1 + |he(t)|2Eht−1 [ρt(ht)|h(t)]

}+
]

(3.32)

= Eh(t),he(t)

[{
log

1 + |h(t)|2γt(h(t))

1 + |he(t)|2γt(h(t))

}+
]

(3.33)

= Eh,he

[{
log

1 + |h|2γt(h)

1 + |he|2γt(h)

}+
]
, (3.34)

where (3.32) follows from Jensen’s inequality. This completes the proof.
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Finally, the high SNR upper bound in (3.7b) follows by noting that for each P ≥ 0,
we have, {

log
1 + P |h|2
1 + P |he|2

}+

≤
{

log
|h|2
|he|2

}+

.

3.4 Common Message

We establish, in order, the upper and lower capacity bounds in (3.8).

3.4.1 Upper Bound

To obtain our upper bound, suppose that we only need to transmit the message to
receiver k. An upper bound on the secrecy capacity for this single-user channel is
obtained via Proposition 3.

R̄+(P ) ≤ max
ρ(hk):

E[ρ(hk)]≤P

E

[{
log

(
1 + |hk|2ρ(hk)

1 + |he|2ρ(hk)

)}+
]
, (3.35)

and since k is arbitrary, we tighten the upper bound (3.35) by minimizing over k,
yielding (3.9b).

3.4.2 Lower Bound

Next, we establish the lower bound (3.9a) by considering the following probabilistic
extension of the parallel broadcast channel [29]. At each time, only one of the sub-
channels operates, and subchannel m is selected with a probability pm, independent
of the selection at all other times. Also, suppose that there is a total power constraint
P on the input.

In this case, a straightforward extension of Proposition 2 provides the following
achievable rate

R̄K,M(P ) � max min
k∈{1,...,K}

M∑
m=1

pm {I(um; ykm) − I(um; yem)}+ , (3.36)

where u1, u2, . . . , uM are auxiliary random variables and the maximum is over the
product distribution p(u1)p(u2) . . . p(uM) and the stochastic mappings xm = fm(um)
that satisfy

∑M
m=1 pmE[x2

m] ≤ P .

To simplify the exposition, we focus on the case of K = 2 receivers. The extension
to K > 2 receivers is analogous and straightforward.

To start, we fix a threshold T > 0 and decompose the system into four states as
shown in Fig. 3-3. The transmission takes place over a block of length n, and we
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S4

Transmitter

|H1|2 ≥ T

|H2|2 ≥ T

S1

|H1|2 ≥ T
|H2|2 ≥ T|H2|2 < T

|H1|2 < T

Transmitter Transmitter Transmitter

|H1|2 < T

|H2|2 < T

S2
S3

Figure 3-3: Decomposition of the system with K = 2 receivers into four states, as
a function of their channel gains relative to a threshold T . The darkly and lightly
shaded circles, respectively, indicate that a channel gain is, respectively, below and
above the threshold.

classify t = 1, 2, . . . , n according to

S1 =
{
t ∈ {1, n}

∣∣ |h1(t)|2 ≥ T, |h2(t)|2 ≥ T
}

S2 =
{
t ∈ {1, n}

∣∣ |h1(t)|2 ≥ T, |h2(t)|2 < T
}

S3 =
{
t ∈ {1, n}

∣∣ |h1(t)|2 < T, |h2(t)|2 ≥ T
}

S4 =
{
t ∈ {1, n}

∣∣ |h1(t)|2 < T, |h2(t)|2 < T
}
.

(3.37)

The resulting channel is a probabilistic parallel channel with probabilities of the four
channels are then given by

p(S1) = Pr
(
|h1|2 ≥ T, |h2|2 ≥ T

)
p(S2) = Pr

(
|h1|2 ≥ T, |h2|2 < T

)
p(S3) = Pr

(
|h1|2 < T, |h2|2 ≥ T

)
p(S4) = Pr

(
|h1|2 < T, |h2|2 < T

)
.

In turn, with xm = um ∼ CN (0, P ) in (3.36) the achievable rate expression is

R̄−(P ) = min
k∈{1,2}

{
Pr(|hk|2 ≥ T )E

[
log

(
1 + |hk|2P
1 + |he|2P

) ∣∣∣∣ |hk|2 ≥ T

]}
. (3.38)

Finally, optimizing (3.38) over the threshold, we obtain (3.9a) as follows (for the
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case K = 2):

R̄−(P ) = max
T>0

min
k∈{1,2}

{
Pr(|hk|2 ≥ T )E

[
log

(
1 + |hk|2P
1 + |he|2P

) ∣∣∣∣ |hk|2 ≥ T

]}

= max
T>0

min
k∈{1,2}

{∫ ∞

T

log

(
1 + xP

exp{Ehe [log(1 + |he|2P )]}

)
pk(x) dx

}

≥ min
k∈{1,2}

∫ ∞

T ∗
log

(
1 + xP

exp{Ehe [log(1 + |he|2P )]}

)
pk(x) dx (3.39)

= min
k∈{1,2}

Ehk

[{
log

(
1 + |hk|2P

exp{Ehe [log(1 + |he|2P )]}

)}+
]
, (3.40)

where T ∗ in (3.39) is obtained via

log(1 + T ∗P ) − Ehe [log(1 + |he|2P ] = 0.

For K > 2 receivers, we use the straightforward generalization of this scheme to
a construction with 2K states, where each state specifies the subset of receivers that
are above the threshold T ∗.

3.5 Independent Messages

In this section we establish the upper and lower bounds in Proposition 4.

3.5.1 Upper Bound

The upper bound is based on introducing a single-user genie-aided channel i.e., we
consider the following channel with one receiver and one eavesdropper:

y(t) = hmax(t)x(t) + z(t)

ye(t) = he(t)x(t) + ze(t).
(3.41)

Following the reasoning analogous to section 2.2.3), we note that the sum-capacity
of the channel (3.1) is upper bounded by the secrecy capacity of the genie-aided-
channel (3.41). Finally (3.12a) follows via the single user upper bound in Prop. 3,
(see also [20]).

3.5.2 Lower Bound

The lower bound (3.12b) is achieved by a scheme that, at each time, transmits only
to the receiver with the best instantaneous channel gain. Accordingly the sum rate
is given by the achievable rate for the single user channel (3.41), and the expres-
sion (3.12b) follows via the lower bound in Prop. 3.
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3.5.3 Scaling Laws

We now show that the upper and lower bounds on the sum secrecy capacity coincide
as the number of users goes to infinity and obtain the capacity in Theorem 6.

Letting ρ∗(hmax) denote the power allocation that maximizes R+
K(P ) in (3.12a),

we obtain

R+
K(P ) −R−

K(P ) (3.42)

≤ E

[{
log

(
1 + |hmax|2ρ∗(hmax)

1 + |he|2ρ∗(hmax)

)}+
]
−E

[
log

(
1 + |hmax|2ρ(hmax)

1 + |he|2ρ(hmax)

)]
(3.43)

= Pr(|he|2 ≥ |hmax|2)E
[
log

1 + |he|2ρ∗(hmax)

1 + |hmax|2ρ∗(hmax)

∣∣∣∣∣ |he|2 ≥ |hmax|2
]

≤ Pr(|he|2 ≥ |hmax|2)E
[
log

|he|2
|hmax|2

∣∣∣∣ |he|2 ≥ |hmax|2
]

(3.44)

≤ 2 log 2

K + 1
, (3.45)

where (6.50) follows from substituting the bounds in Proposition 4, where (3.44)
follows from the fact that log((1 + |he|2a)/(1 + |hmax|2a)) is increasing in a for |he|2 ≥
|hmax|2, and where (3.45) follows from the fact that Pr(|he|2 ≥ |hmax|2) = 1/(1 +K),
since we assumed the channel coefficients to be i.i.d., and from the following “helper”
lemma.

Lemma 3 If h1, h2, . . . , hK , he are i.i.d. unit-mean exponentials, then for K ≥ 2 we
have

E

[
log

|he|2
|hmax|2

∣∣∣∣∣ |he|2 ≥ |hmax|2
]
≤ 2 log 2 (3.46)

A proof immediately follows.

Proof. [Proof of Lemma 3] First, we use the following:

Fact 5 ( [12]) Let v1, v2, . . . , vK , vK+1 be i.i.d. exponentially distributed random vari-
ables with mean λ, and let vmax(K + 1) and vmax(K) respectively denote the largest and
second-largest of these random variables. Then the joint distribution of (vmax(K), vmax(K + 1))
satisfies

vmax(K + 1) = vmax(K) + y , (3.47)

where y is an exponentially distributed random variable with mean λ that is indepen-
dent of vmax(K).
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Proceeding, we have

E

[
log

|he|2
|hmax|2

∣∣∣∣∣ |he|2 ≥ |hmax|2
]

(3.48)

= E

[
log

|hmax|2 + y

|hmax|2

]
(3.49)

≤ E

[
y

|hmax|2

]
(3.50)

= E[y ]E

[
1

|hmax|2

]
(3.51)

= E

[
1

|hmax|2

]
, (3.52)

where (3.50) follows from the identity log(1 + x) ≤ x for x > 0, where (3.51) follows
from the independence of y and hmax, and where (3.52) from the fact that E[y ] = 1.
Since |hmax|2 ≥ max(|h1|2, |h2|2) we obtain

E

[
1

|hmax|2

]
≤ E

[
1

max(|h1|2, |h2|2)

]
= 2 log 2,

whence (3.46)

3.6 Conclusions

In this chapter we developed some techniques for secure communication over fading
channels. The basic strategy was to map the fading channel into a set of parallel
independent channels and then code across these channels. The transmission of a
common message to several receivers requires us to simultaneously adapt the transmit
power to multiple receivers, and this creates a tension if the receivers experience
independent fading. It was shown that one can achieve a rate, independently of
the number intended receiver, in this scenario — thus establishing that the secrecy
capacity does not vanish with the number of receivers. For the case of a independent
messages, we showed that an opportunistic transmission scheme achieves the sum-
secrecy-capacity in the limit of large number of receivers.
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Chapter 4

Multiple Antennas — MISOME
Channel

In the present and the next chapter we study the gains from multiple antennas for
confidentiality of data at the physical layer. As in the preceding chapters, these gains
will be quantified within the framework of the wiretap channel. Multiple antennas
have been an active area of research in the last decade or so. The primary goal has
been to improve the throughput and reliability at the physical layer. In contrast we
develop insights into the gains from multiple antennas for security at the physical
layer.

In the present chapter, we restrict our attention to the case when the sender and
eavesdropper have multiple antennas, but the intended receiver has a single antenna.
We refer to this configuration as the multi-input, single-output, multi-eavesdropper
(MISOME) case. It is worth emphasizing that the multiple eavesdropper antennas
can correspond to a physical multiple-element antenna array at a single eavesdrop-
per, a collection of geographically dispersed but perfectly colluding single-antenna
eavesdroppers, or related variations. The MIMOME case will be treated in the next
chapter. For the MISOME case, the secrecy capacity can be expressed in a closed
form and it is analytically tractable. Hence it is worth treating this case separately
from the general MIMOME case.

We first develop the secrecy capacity when the channel gains are fixed and known
to all the terminals. Note that the multiple antenna wiretap channel is a non-degraded
broadcast channel. A characterization of the secrecy capacity for non-degraded broad-
cast channels, when the channel alphabets are discrete and memoryless is provided
in [8] as discussed in Chapter 1. However their characterization is not computable
when the channel inputs are continuous valued, as is the case with multi-antenna
channels. Our approach is to provide a new upper bound on the secrecy capacity for
the wiretap channel and to show that this bound is in fact the true capacity. Our
result thus indirectly establishes the optimum choice of auxiliary random variable in
the secrecy capacity expression of [8].

While the capacity achieving scheme generally requires that the sender and the
intended receiver have knowledge of the eavesdropper’s channel (and thus number of
antennas as well)—which is often not practical—we futher show that performance is
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not strongly sensitive to this knowledge. Specifically, we show that a simple masked
beamforming scheme described in [41, 18] that does not require knowledge of the
eavesdropper’s channel is close to optimal in the high SNR regime.

In addition, we examine the degree to which the eavesdropper can drive the secrecy
capacity of the channel to zero, thereby effectively blocking secure communication
between sender and (intended) receiver. In particular, for Rayleigh fading in the
large antenna array limit, we use random matrix theory to characterize the secrecy
capacity (and the rate achievable by masked beamforming) as a function of the ratio
of the number of antennas at the eavesdropper to that at the sender. Among other
results in this scenario, we show that 1) to defeat the security in the transmission it is
sufficient for the eavesdropper to use at least twice as many antennas as the sender;
and 2) an eavesdropper with significantly fewer antennas than the transmitter is not
particularly effective.

Our results extend to the case of time-varying channels. We focus on the case
of fast (ergodic, Rayleigh) fading, where the message is transmitted over a block
that is long compared to the coherence time of the fading. In our model the state
of the channel to the receiver is known by all three parties (sender, receiver, and
eavesdropper), but the state of the channel to the eavesdropper is known only to the
eavesdropper. Using techniques from the previous chapter, we develop upper and
lower bounds on the secrecy capacity both for finitely many antennas and in the large
antenna limit.

4.1 Preliminaries: Generalized Eigenvalues

Many of our results arise out of generalized eigenvalue analysis. We summarize the
properties of generalized eigenvalues and eigenvectors we require in the sequel. For
more extensive developments of the topic, see, e.g., [19, 1].

Definition 9 (Generalized eigenvalues) For a Hermitian matrix A ∈ Cn×n and
positive definite matrix B ∈ Cn×n, we refer to (λ,ψ) as a generalized eigenvalue-
eigenvector pair of (A,B) if (λ,ψ) satisfy

Aψ = λBψ. (4.1)

Since B in Definition 9 is invertible, first note that generalized eigenvalues and
eigenvectors can be readily expressed in terms of regular ones. Specifically,

Fact 6 The generalized eigenvalues and eigenvectors of the pair (A,B) are the regular
eigenvalues and eigenvectors of the matrix B−1A.

Other characterizations reveal more useful properties for our development. For
example, we have the following:

Fact 7 (Variational Characterization) The generalized eigenvectors of (A,B) are
the stationary point solution to a particular Rayleigh quotient. Specifically, the largest

60



generalized eigenvalue is the maximum of the Rayleigh quotient1

λmax(A,B) = max
ψ∈Cn

ψ†Aψ

ψ†Bψ
, (4.2)

and the optimum is attained by the eigenvector corresponding to λmax(A,B).

The case when A has rank one is of special interest to us. In this case, the
generalized eigenvalue admits a particularly simple expression:

Fact 8 (Quadratic Form) When A in Definition 9 has rank one, i.e., A = aa† for
some a ∈ Cn, then

λmax(aa
†,B) = a†B−1a. (4.3)

4.2 Channel and System Model

The MISOME channel and system model is as follows. We use nt and ne to denote the
number of sender and eavesdropper antennas, respectively; the (intended) receiver has
a single antenna. The signals observed at the receiver and eavesdropper, respectively,
are, for t = 1, 2, . . .,

yr(t) = h†
rx(t) + zr(t)

ye(t) = Hex(t) + ze(t),
(4.4)

where x(t) ∈ Cnt is the transmitted signal vector, hr ∈ Cnt and He ∈ Cne×nt are
complex channel gains, and zr(t) and ze(t) are independent identically-distributed
(i.i.d.) circularly-symmetric complex-valued Gaussian noises: zr(t) ∼ CN (0, 1) and
ze(t) ∼ CN (0, I). Moreover, the noises are independent, and the input satisfies an
average power constraint of P , i.e.,

E

[
1

n

n∑
t=1

‖x(t)‖2

]
≤ P. (4.5)

Finally, except when otherwise indicated, all channel gains are fixed throughout the
entire transmission period, and are known to all the terminals. Communication takes
place at a rate R in bits per channel use over a transmission interval of length n.
Specifically, a (2nR, n) code for the channel consists of a message w uniformly dis-
tributed over the index set Wn = {1, 2, . . . , 2nR}, an encoder μn : Wn → Cnt×n that
maps the message w to the transmitted (vector) sequence {x(t)}n

t=1, and a decoding
function νn : Cn → Wn that maps the received sequence {yr(t)}n

t=1 to a message es-
timate ŵ . The error event is En = {νn(μn(w)) �= w}, and the amount of information
obtained by the eavesdropper from the transmission is measured via the equivocation
I(w ; yn

e ).

1Throughout the paper we use λmax to denote the largest eigenvalue. Whether this is a regular
or generalized eigenvalue will be clear from context, and when there is a need to be explicit, the
relevant matrix or matrices will be indicated as arguments.
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Definition 10 (Secrecy Capacity) A secrecy rate R is achievable if there exists a
sequence of (2nR, n) codes such that Pr(En) → 0 and I(w ; yn

e )/n→ 0 as n→ ∞. The
secrecy capacity is the supremum of all achievable secrecy-rates.

4.3 Main Results

The MISOME wiretap channel is a nondegraded broadcast channel. In Csiszár and
Körner [8], the secrecy capacity of the nondegraded discrete memoryless broadcast
channel pyr,ye|x is expressed in the form

C = max
pu,px|u

I(u; yr) − I(u; ye), (4.6)

where u is an auxiliary random variable over a certain alphabet that satisfies the
Markov relation u ↔ x ↔ (yr, ye). Moreover, the secrecy capacity (5.6) readily
extends to the continuous alphabet case with a power constraint, so it also gives a
characterization of the MISOME channel capacity.

Rather than attempting to solve for the optimal choice of u and px |u in (5.6)
directly to evaluate this capacity,2 we consider an indirect approach based on a useful
upper bound as the converse, which we describe next.

4.3.1 Upper Bound on Achievable Rates

A key result is the following upper bound, which we derive in Section 6.4.

Theorem 7 An upper bound on the secrecy capacity for the MISOME channel model
is

R+ = min
Kφ∈Kφ

max
KP∈KP

R+(KP ,Kφ), (4.7)

where R+(KP ,Kφ) = I(x; yr|ye) with x ∼ CN (0,KP ) and

KP �
{

KP

∣∣∣∣∣ KP � 0, tr(KP ) ≤ P

}
, (4.8)

and where [
zr

ze

]
∼ CN (0,Kφ) (4.9)

2The direct approach is explored in, e.g., [30] and [45], where the difficulty of performing this
optimization is reported even when restricting px|u to be singular (a deterministic mapping) and/or
the input distribution to be Gaussian.
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with

Kφ �
{

Kφ

∣∣∣∣∣ Kφ =

[
1 φ†

φ I

]
, Kφ � 0

}

=

{
Kφ

∣∣∣∣∣ Kφ =

[
1 φ†

φ I

]
, ‖φ‖ ≤ 1

}
.

(4.10)

To obtain this bound, we consider a genie-aided channel in which the eavesdropper
observes ye but the receiver observes both yr and ye . Such a channel clearly has a
capacity larger than the original channel. Moreover, since it is a degraded broadcast
channel, the secrecy capacity of the genie-aided channel can be easily derived and
is given by (cf. [53]) max I(x; yr|ye) where the maximum is over the choice of input
distributions. As we will see, it is straightforward to establish that the maximizing
input distribution is Gaussian (in contrast to the original channel).

Next, while the secrecy capacity of the original channel depends only on the
marginal distributions pyr|x and pye|x (see, e.g., [8]), mutual information I(x; yr|ye)
for the genie-aided channel depends on the joint distribution pyr,ye|x. Accordingly we
obtain the tightest such upper bound by finding the joint distribution (having the
required marginal distributions), whence (4.7).

The optimization (4.7) can be carried out analytically, yielding an explicit expres-
sion, as we now develop.

4.3.2 MISOME Secrecy Capacity

The upper bound described in the preceding section is achievable, yielding the MIS-
OME channel capacity. Specifically, we have the following theorem, which we prove
in Section 4.5.1.

Theorem 8 The secrecy capacity of the channel (4.4) is

C(P ) =
{
log λmax

(
I + Phrh

†
r , I + PH†

eHe

)}+
, (4.11)

with λmax denoting the largest generalized eigenvalue of its argument pair. Further-
more, the capacity is obtained by beamforming (i.e., signaling with rank one covari-
ance) along the direction ψmax of the3 generalized eigenvector corresponding to λmax

with an encoding of the message using a code for the scalar Gaussian wiretap channel.

We emphasize that the beamforming direction in Theorem 8 for achieving capacity
will in general depend on all of the target receiver’s channel hr, the eavesdropper’s
channel He, and the SNR (P ).

In the high SNR regime, the MISOME capacity (4.11) exhibits one of two possible
behaviors, corresponding to whether

lim
P→∞

C(P ) =
{
log λmax

(
hrh

†
r ,H

†
eHe

)}+
, (4.12)

3If there is more than one generalized eigenvector for λmax, we choose any one of them.
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is finite or infinite, which depends on whether or not hr has a component in the
null space of He. Specifically, we have the following corollary, which we prove in
Section 4.5.2.

Corollary 4 The high SNR asymptote of the secrecy capacity (4.11) takes the form

lim
P→∞

C(P ) = {log λmax(hrh
†
r,H

†
eHe)}+<∞ if H⊥

e hr =0, (4.13a)

lim
P→∞

[C(P ) − logP ] = log ‖H⊥
e hr‖2 if H⊥

e hr �= 0, (4.13b)

where H⊥
e denotes the projection matrix onto the null space of He.

4

This behavior can be understood rather intuitively. In particular, when H⊥
e hr = 0,

as is typically the case when the eavesdropper uses enough antennas (ne ≥ nt) or the
intended receiver has an otherwise unfortunate channel, the secrecy capacity is SNR-
limited. In essence, while more transmit power is advantageous to communication
to the intended receiver, it is also advantageous to the eavesdropper, resulting in
diminishing returns.

By contrast, when H⊥
e hr �= 0, as is typically the case when, e.g., the eavesdropper

uses insufficiently many antennas (ne < nt) unless the eavesdropper has an otherwise
unfortunate channel, the transmitter is able to steer a null to the eavesdropper without
simultaneously nulling the receiver and thus capacity grows by 1 b/s/Hz with every
3 dB increase in transmit power as it would if there were no eavesdropper to contend
with.

The MISOME capacity (4.11) is also readily specialized to the low SNR regime,
as we develop in Section 4.5.3, and takes the following form.

Corollary 5 The low SNR asymptote of the secrecy capacity is

lim
P→0

C(P )

P
=

1

ln 2
{λmax(hrh

†
r − H†

eHe)}+. (4.14)

In this low SNR regime, the direction of optimal beamforming vector approaches
the (regular) eigenvector corresponding to the largest (regular) eigenvalue of hrh

†
r −

H†
eHe. Note that the optimal direction is in general not along hr. Thus, ignoring the

eavesdropper is in general not an optimal strategy even at low SNR.

4.3.3 Eavesdropper-Ignorant Coding: Masked Beamforming

In our basic model the channel gains are fixed and known to all the terminals. Our
capacity-achieving scheme in Theorem 8 uses the knowledge of He for selecting the
beamforming direction. However, in many applications it may be difficult to know the
eavesdropper’s channel. Accordingly, in this section we analyze a simple alternative
scheme that uses only knowledge of hr in choosing the transmit directions, yet achieves
near-optimal performance in the high SNR regime.

4That is, the columns of H⊥
e constitute an orthogonal basis for the null space of He.
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The scheme we analyze is a masked beamforming scheme described in [41, 18].
In this scheme, the transmitter signals isotropically (i.e., with a covariance that is
a scaled identity matrix), and as such can be naturally viewed as a “secure space-
time code.” More specifically, it simultaneously transmits the message (encoded
using a scalar Gaussian wiretap code) in the direction corresponding to the intended
receiver’s channel hr while transmitting synthesized spatio-temporal white noise in
the orthogonal subspace (i.e., all other directions).

The performance of masked beamforming is given by the following proposition,
which is proved in Section 4.6.1.

Proposition 5 (Masked Beamforming Secrecy Rate) A rate achievable by the
masked beamforming scheme for the MISOME channel is

RMB(P ) =

{
log λmax

(
P

nt
hrh

†
r , I+

P

nt
H†

eHe

)
+log

(
1+

nt

P‖hr‖2

)}+

. (4.15)

The rate (4.15) is, in general, suboptimal. We characterize the loss with respect
to the capacity achieving scheme below.

Theorem 9 The rate RMB(P ) achievable by masked beamforming scheme for the
MISOME case [cf. (4.15)] satisfies

lim
P→∞

[
C

(
P

nt

)
− RMB(P )

]
= 0. (4.16)

From the relation in (4.16) we note that, in the high SNR regime, the masked
beamforming scheme achieves a rate of C(P/nt), where nt is the number of trans-
mit antennas. Combining (4.16) with (4.13), we see that the asymptotic masked
beamforming loss is at most lognt b/s/Hz, or equivalently 10 log10 nt dB in SNR.
Specifically,

lim
P→∞

[C(P ) − RMB(P )] =

{
log nt, H⊥

e hr �= 0

0, H⊥
e hr = 0.

(4.17)

That at least some loss (if vanishing) is associated with the masked beamforming
scheme is expected, since the capacity-achieving scheme performs beamforming to
concentrate the transmission along the optimal direction, whereas the masked beam-
forming scheme uses isotropic inputs.

As one final comment, note that although the covariance structure of the masked
beamforming transmission does not depend on the eavesdropper’s channel, the rate
of the base (scalar Gaussian wiretap) code does, as (4.15) reflects. In practice, the
selection of this rate determines an insecurity zone around the sender, whereby the
transmission is secure from eavesdroppers outside this zone, but insecure from ones
inside.
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4.3.4 Example

In this section, we illustrate the preceding results for a typical MISOME channel. In
our example, there are nt = 2 transmit antennas, and ne = 2 eavesdropper antennas.
The channel to the receiver is

hr =
[
0.0991 + j0.8676 1.0814 − j1.1281

]T
,

while the channel to the eavesdropper is

He,1 =

[
0.3880 + j1.2024 −0.9825 + j0.5914
0.4709 − j0.3073 0.6815 − j0.2125

]
, (4.18)

where j =
√
−1.

Fig. 4-1 depicts communication rate as a function of SNR. The upper and lower
solid curves depict the secrecy capacity (4.11) when the eavesdropper is using one
or both its antennas, respectively.5 As the curves reflect, when the eavesdropper has
only a single antenna, the transmitter can securely communicate at any desired rate
to its intended receiver by using enough power. However, by using both its antennas,
the eavesdropper caps the rate at which the transmitter can communicate securely
regardless of how much power it has available. Note that the lower and upper curves
are representative of the cases where H⊥

e hr is, and is not 0, respectively.

Fig. 4-1 also shows other curves of interest. In particular, using dotted curves
we superimpose the secrecy capacity high-SNR asymptotes as given by (4.13). As is
apparent, these asymptotes can be quite accurate approximations even for moderate
values of SNR. Finally, using dashed curves we show the rate (4.15) achievable by the
masked beamforming coding scheme, which doesn’t use knowledge of the eavesdropper
channel. Consistent with (4.17), the loss in performance at high SNR approaches 3
dB when the eavesdropper uses only one of its antennas, and 0 dB when it uses both.
Again, these are good estimates of the performance loss even at moderate SNR. Thus
the penalty for ignorance of the eavesdropper’s channel can be quite small in practice.

4.3.5 Scaling Laws in the Large System Limit

Our analysis in Section 4.3.2 of the scaling behavior of capacity with SNR in the
high SNR limit with a fixed number of antennas in the system yielded several useful
insights into secure space-time coding systems. In this section, we develop equally
valuable insights from a complementary scaling. In particular, we consider the scaling
behavior of capacity with the number of antennas in the large system limit at a fixed
SNR.

One convenient feature of such analysis is that for many large ensembles of channel
gains, almost all randomly drawn realizations produce the same capacity asymptotes.
For our analysis, we restrict our attention to an ensemble corresponding to Rayleigh

5When a single eavesdropper antenna is in use, the relevant channel corresponds to the first row
of (4.18).
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Figure 4-1: Performance over an example MISOME channel with nt = 2 transmit
antennas. The successively lower solid curves give the secrecy capacity for ne = 1
and ne = 2 eavesdropper antennas, respectively and the dotted curves indicat the
corresponding high-SNR asymptote. The dashed curves give the corresponding rates
achievable by masked beamforming, which does not require the transmitter to have
knowledge of the eavesdropper’s channel.
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fading in which hr and He are independent, and each has i.i.d. CN (0, 1) entries. The
realization from the ensemble is known to all terminals prior to communication.

In anticipation of our analysis, we make the dependency of secrecy rates on the
number of transmit and eavesdropper antennas explicit in our notation (but leave
the dependency on the realization of hr and He implicit). Specifically, we now use
C(P, nt, ne) to denote the secrecy capacity, and RMB(P, nt, ne) to denote the rate of
the masked beamforming scheme. With this notation, the scaled rates of interest are

C̃(γ, β) = lim
nt→∞

C (P =γ/nt, nt, ne =βnt) , (4.19a)

and
R̃MB(γ, β) = lim

nt→∞
RMB(P =γ, nt, ne =βnt). (4.19b)

Our choice of scalings ensures that the C̃(γ, β) and R̃MB(γ, β) are not degenerate.
In particular, note that the capacity scaling (4.19a) involves an SNR normalization.
In particular, the transmitted power P is reduced as the number of transmitter an-
tennas nt grows so as to keep the received SNR remains fixed (at specified value γ)
independent of nt. However, the scaling (4.19b) is not SNR normalized in this way.
This is because the masked beamforming already suffers a nominal factor of nt SNR
loss [cf. (4.16)] relative to a capacity-achieving system.

In what follows, we do not attempt an exact evaluation of the secrecy rates for
our chosen scalings. Rather we find compact lower and upper bounds that are tight
in the high SNR limit.

We begin with our lower bound, which is derived in Section 4.7.2.

Theorem 10 (Scaling Laws) The asymptotic secrecy capacity satisfies

C̃(γ, β)
a.s.
≥ {log ξ(γ, β)}+ , (4.20)

where

ξ(γ,β) = γ − 1

4

[√
1+γ

(
1+

√
β
)2

−
√

1+γ
(
1−

√
β
)2
]2

. (4.21)

Furthermore, the same bound holds for the corresponding asymptotic masked beam-
forming rate, i.e.,

R̃MB(γ, β)
a.s.

≥ {log ξ(γ, β)}+ . (4.22)

Since the secrecy rates increase monotonically with SNR, the infinite-SNR rates
constitute a useful upper bound. As derived in Section 4.7.3, this bound is as follows.
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Theorem 11 The asymptotic secrecy capacity satisfies

C̃(γ, β) ≤ lim
nt→∞

lim
P→∞

C(P, nt, βnt)

a.s.
= C̃(∞, β) �

⎧⎪⎨
⎪⎩

0 β ≥ 2

− log(β − 1) 1 < β < 2

∞ β ≤ 1.

(4.23)

Furthermore, the right hand side of (4.23) is also an upper bound on R̃MB(γ, β), i.e.,

R̃MB(γ, β) ≤ lim
nt→∞

lim
P→∞

RMB(P, nt, βnt)

a.s.
= C̃(∞, β) (4.24)

Note that it is straightforward to verify that the lower bound (4.20) is tight at
high SNR, i.e., that, for all β,

{log ξ(∞, β)}+ = C̃(∞, β). (4.25)

The same argment confirms the corresponding behavior for masked beamforming.

Our lower and upper bounds of Theorem 10 and Theorem 11, respectively, are
depicted in Fig. 4-2. In particular, we plot rate as a function of the antenna ratio β
for various values of the SNR γ.

As Fig. 4-2 reflects, there are essentially three main regions of behavior, the bound-
aries between which are increasingly sharp with increasing SNR. First, for β < 1 the
eavesdropper has proportionally fewer antennas than the sender, and thus is effec-
tively thrwarted. It is in this regime that the transmitter can steer a null to the
eavesdropper and achieve any desired rate to the receiver by using enough power.

Second, for 1 ≤ β < 2 the eavesdropper has proportionally more antennas than
the sender, and thus can cap the secure rate achievable to the receiver regardless of
how much power the transmitter has available. For instance, when the transmitter
has 50% more antennas than the eavesdropper (β = 1.5), the sender is constrained to
a maximum secure rate no more than 1 b/s/Hz. Moreover, if the sender is sufficiently
limited in power that the received SNR is at most, say, 10 dB, the maximum rate is
less than 1/2 b/s/Hz.

We emphasize that these results imply the eavesdropper is at a substantial disad-
vantage compared to the intended receiver when the number of tranmitter antennas
is chosen to be large. Indeed, the intended receiver needs only a single antenna to
decode the message, while the eavesdropper needs a large number of antennas to
constrain the transmission.

Finally, for β ≥ 2 the eavesdropper is able to entirely prevent secure communica-
tion (drive the secrecy capacity to zero) even if the transmitter has unlimited power
available. Useful intuition for this phenomenon is obtained from consideration of the
masked beamforming scheme, in which the sender transmits the signal of interest
in the direction of hr and synthesized noise in the nt − 1 directions orthogonal to
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Figure 4-2: Secrecy capacity bounds in the large system limit. The solid red curve
is the high SNR secrecy capacity, which is an upper bound on the for finite SNR.
The progressively lower dashed curves are lower bounds on the asymptotic secrecy
capacity (and masked beamforming secrecy rate). The channel realizations are fixed
but drawn at random according to Gaussian distribution.
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hr. With such a transmission, the intended receiver experiences a channel gain of
‖hr‖2P/nt. In the high SNR regime, the eavesdropper must cancel the synthesized
noise, which requires at least nt − 1 receive antennas. Moreover, after canceling the
noise it must have the “beamforming gain” of nt so its channel quality is of the same
order as that of the intended receiver. This requires having at least nt more antennas.
Thus at least 2nt−1 antennas are required by the eavesdropper to guarantee success-
ful interception of the transmission irrespective of the power used, which corresponds
to β ≥ 2 as nt → ∞.

4.3.6 Capacity Bounds in Fading

Thus far we have focused on the scenarios where the receiver and eavesdropper chan-
nels are fixed for the duration n of the message transmission. In this section, we
briefly turn our attention to the case of time-varying channels—specifically, the case
of fast fading where there are many channel fluctuations during the course of trans-
mission. In particular, we consider a model in which hr(t) and He(t) are temporally
and spatially i.i.d. sequences that are independent of one another and have CN (0, 1)
elements, corresponding to Rayleigh fading.

In our model, hr(t) is known (in a causal manner) to all the three terminals, but
only the eavesdropper has knowledge of He(t). Accordingly, the channel model is, for
t = 1, 2, . . .,

yr(t) = h†
r(t)x(t) + zr(t)

ye(t) = He(t)x(t) + ze(t).
(4.26)

The definition of the secrecy rate and capacity is as in Definition 10, with the
exception that the equivocation I(w ; yn

e ) is replaced with I(w ; yn
e ,H

n
e |hn

r ), which takes
into account the channel state information at the different terminals.

For this model we have the following nontrivial upper and lower bounds on the
secrecy capacity, which are developed in Section 4.8. The upper bound is developed
via the same genie-aided channel analysis used in the proof of Theorem 8, but with
modifications to account for the presence of fading. The lower bound is achieved by
the adaptive version of masked beamforming described in [41].

Theorem 12 The secrecy capacity for the MISOME fast fading channel (4.26) is
bounded by

CFF(P, nt, ne) ≥ max
ρ(·)∈PFF

E [RFF,−(hr,He, ρ(·))] , (4.27a)

CFF(P, nt, ne) ≤ max
ρ(·)∈PFF

E [RFF,+(hr,He, ρ(·))] , (4.27b)

where PFF is the set of all valid power allocations, i.e.,

PFF =
{
ρ(·)

∣∣ ρ(·) ≥ 0, E[ρ(hr)] ≤ P
}
, (4.28)
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and

RFF,−(hr,He, ρ(·)) � log

(
ρ(hr)

nt
h†

r

[
I +

ρ(hr)

nt
H†

eHe

]−1

hr

)
+ log

(
1 +

nt

ρ(hr)‖hr‖2

)
.

(4.29a)

RFF,+(hr,He, ρ(·)) �
{
log λmax(I + ρ(hr)hrh

†
r , I + ρ(hr)H

†
eHe)

}+
, (4.29b)

In general, our upper and lower bounds do not coincide. Indeed, even in the case
of single antennas at all terminals (nt = ne = 1), the secrecy capacity for the fading
channel is unknown, except in the case of large coherence period [20].

However, based on our scaling analysis in Section 4.3.5, there is one regime in
which the capacity can be calculated: in the limit of both high SNR and a large
system. Indeed, since (4.22) and (4.23) hold for almost every channel realization, we
have the following proposition, whose proof is provided in Section 4.8.3.

Proposition 6 The secrecy capacity of the fast fading channel satisfies

lim
nt→∞

CFF(P =γ, nt, ne =βnt)≥{log ξ(γ, β)}+ , (4.30)

where ξ(·, ·) is as defined in (4.21), and

lim
nt→∞

CFF(P =γ, nt, ne =βnt)≤C̃(∞, β) (4.31)

with the C̃(∞, β) as given in (4.23).

Finally, via (4.25) we see that (4.30) and (4.31) converge as γ → ∞.

This concludes our statement of the main results. The following sections are
devoted to the proofs of these results and some further discussion.

4.4 Upper Bound Derivation

In this section we prove Theorem 7. We begin with the following lemma, which
establishes that the capacity of genie-aided channel is an upper bound on the channel
of interest. A proof is provided in Appendix B, and closely follows the general converse
of Wyner [53], but differs in that the latter was for discrete channels and thus did not
incorporate a power constraint.

Lemma 4 An upper bound on the secrecy capacity of the MISOME wiretap channel
is

C ≤ max
px∈P

I(x; yr|ye), (4.32)

where P is the set of all probability distributions that satisfy E[‖x‖2] ≤ P .
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Among all such bounds, we can choose that corresponding to the noises (zr, ze)
being jointly Gaussian (they are already constrained to be marginally Gaussian) with
a covariance making the bound as small as possible. Then, provided the maximizing
distribution in (4.32) is Gaussian, we can express the final bound in the form (4.7)

It thus remains only to show that the maximizing distribution is Gaussian.

Lemma 5 For each Kφ ∈ Kφ, the distribution px maximizing I(x; yr|ye) is Gaussian.

Proof. Since
I(x; yr|ye) = h(yr|ye) − h(zr|ze),

and the second term does not depend on px, it suffices to establish that h(yr|ye) is
maximized when x is Gaussian.

To this end, let αLMMSEye denote the linear minimum mean-square error (MMSE)
estimator of yr from ye, and λLMMSE the corresponding mean-square estimation error.
Recall that

αLMMSE = (h†
rKPH†

e + φ†)(I + HeKPH†
e)

−1, (4.33)

λLMMSE = 1 + h†
rKPhr

− (h†
rKPH†

e+φ
†)(I+HeKPH†

e)
−1(φ+HeKPhr) (4.34)

depend on the input and noise distributions only through their (joint) second-moment
characterization, i.e.,

KP = cov x, Kφ =

[
1 φ†

φ I

]
= cov

[
zr

ze

]
. (4.35)

Proceeding, we have

h(yr|ye) = h(yr −αLMMSEye|ye) (4.36)

≤ h(yr −αLMMSEye) (4.37)

≤ log 2πeλLMMSE, (4.38)

where (4.36) holds because adding a constant doesn’t change entropy, (4.37) holds
because conditioning only reduces differential entropy, and (4.38) is the maximum
entropy bound on differential entropy expressed in terms of

var e = λLMMSE, (4.39)

where e is the estimation error

e = (yr −αLMMSEye) . (4.40)

It remains only to verify that the above inequalities are tight for a Gaussian
distribution. To see this, note that (4.37) holds with equality when x is Gaussian (and
thus (yr, ye) are jointly Gaussian) since in this case e is the (unconstrained) MMSE
estimation error and is therefore independent of the “data” ye. Furthermore, note

73



that in this case (4.38) holds with equality since the Gaussian distribution maximizes
differential entropy subject to a variance constraint.

4.5 MISOME Secrecy Capacity Derivation

In this section we derive the MISOME capacity and its high and low SNR asymptotes.

4.5.1 Proof of Theorem 8

Achievability of (4.11) follows from evaluating (5.6) with the particular choices

u ∼ CN (0, P ), x = ψmaxu, (4.41)

where ψmax is as defined in Theorem 8. With this choice of parameters,

I(u;yr) − I(u; ye)

= I(x; yr) − I(x; ye), (4.42)

= log
(
1 + P |h†

rψmax|2
)
− log

(
1 + P‖Heψmax‖2

)
(4.43)

= log
ψ†

max(I + Phrh
†
r)ψmax

ψ†
max(I + PH†

eHe)ψmax

= log λmax(I + Phrh
†
r, I + PH†

eHe), (4.44)

where (4.42) follows from the fact that x is a deterministic function of u, (4.43)
follows from the choice of x and u in (4.41), and (4.44) follows from the variational
characterization of generalized eigenvalues (4.2).

We next show a converse—that rates greater than (4.11) are not achievable using
our upper bound. Specifically, we show that (4.11) corresponds to our upper bound
expression (4.7) in Theorem 7.

It suffices to show that a particular choice of φ that is admissible (i.e., such that
Kφ ∈ Kφ) minimizes (4.7). We can do this by showing that

max
KP∈KP

R+(KP ,Kφ) (4.45)

with the chosen φ corresponds to (4.11).

Since only the first term on the right hand side of

R+(KP ,Kφ) = I(x; yr|ye) = h(yr|ye) − h(zr|ze)

depends on KP , we can restrict our attention to maximizing this first term with
respect to KP .

Proceeding, exploiting that all variables are jointly Gaussian, we express this first
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term in the form of the optimization

h(yr|ye) = min
θ∈Cne

h(yr − θ†ye) (4.46)

= min
θ∈Cne

h((hr − H†
eθ)

†x + zr − θ†ze)

= min
θ∈Cne

log
[
(hr −H†

eθ)
†KP (hr − H†

eθ)

+ 1 + ‖θ‖2 − 2 Re{θ†φ}
]
,

and bound its maximum over KP according to

max
KP∈KP

h(yr|ye)

= max
KP∈KP

min
θ∈Cne

log
[
(hr − H†

eθ)
†KP (hr −H†

eθ)

+ 1 + ‖θ‖2 − 2 Re{θ†φ}
]

≤ min
θ∈Cne

max
KP∈KP

log
[
(hr −H†

eθ)†KP (hr − H†
eθ)

+ 1 + ‖θ‖2 − 2 Re{θ†φ}
]

= min
θ∈Cne

log
[
P‖hr−H†

eθ‖2+1+‖θ‖2−2 Re{θ†φ}
]
, (4.47)

where (4.47) follows by observing that a rank one KP maximizes the quadratic form
(hr − H†

eθ)
†KP (hr −H†

eθ).

Note that directly verifying that rank one covariance maximizes the term h(yr|ye)
appears difficult. The above elegant derivation between (4.46) and (4.47) was sug-
gested to us by Yonina C. Eldar and Ami Wiesel. In the literature, this line of
reasoning has been used in deriving an extremal characterization of the Schur com-
plement of a matrix (see e.g., [35, Chapter 20],[28]).

We now separately consider the cases λmax > 1 and λmax ≤ 1.

Case: λmax > 1

We show that the choice

φ =
Heψmax

h†
rψmax

(4.48)

in (4.45) yields (4.11), i.e., log λmax.

We begin by noting that since λmax > 1, the variational characterization (4.2)
establishes that ‖φ‖ < 1 and thus Kφ ∈ Kφ as defined in (5.4).

Then, provided that, with φ as given in (4.48), the right hand side of (4.47)
evaluates to

min
θ∈Cne

log
[
P‖hr−H†

eθ‖2+1+‖θ‖2−2 Re{θ†φ}
]

= log
(
λmax · (1 − ‖φ‖2)

)
, (4.49)

75



we have

R+ ≤ max
KP∈KP

R+(KP , Kφ)

= max
KP∈KP

h(yr|ye) − h(zr|ze)

≤ log(λmax · (1 − ‖φ‖2)) − log(1 − ‖φ‖2)

= log(λmax),

i.e., (4.11), as required. Verifying (4.49) with (4.48) is a straightforward computation,
the details of which are provided in Appendix B.1.

Case: λmax ≤ 1, He full column rank

We show that the choice
φ = He(H

†
eHe)

−1hr (4.50)

in (4.45) yields (4.11), i.e., zero.

To verify that ‖φ‖ ≤ 1, first note that since λmax ≤ 1, it follows from (4.2) that

λmax(I + Phrh
†
r, I + PH†

eHe) ≤ 1 ⇔ λmax(hrh
†
r,H

†
eHe) ≤ 1, (4.51)

so that for any choice of ψ,

ψ†hrh
†
rψ ≤ ψ†H†

eHeψ. (4.52)

Choosing ψ = (H†
eHe)

−1hr in (4.52) yields ‖φ‖2 ≤ ‖φ‖, i.e., ‖φ‖ ≤ 1, as required.

Next, note that (4.47) is further upper bounded by choosing any particular choice
of θ. Choosing θ = φ yields

R+ ≤ log

(
P‖hr −H†

eφ‖2

1 − ‖φ‖2
+ 1

)
(4.53)

which with the choice (4.50) for φ is zero.

Case: λmax ≤ 1, He not full column rank

Consider a new MISOME channel with n′
t < nt transmit antennas, where n′

t is the
column rank of He, where the intended receiver and eavesdropper channel gains are
given by

gr = Q†hr, Ge = HeQ, (4.54)

and where Q is a matrix whose columns constitute an orthogonal basis for the column
space of H†

e, so that in this new channel Ge has full rank.

Then provided the new channel (4.54) has the same capacity as the original chan-
nel, it follows by the analysis of the previous case that the capacity of both channels
is zero. Thus it remains only to show the following.
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Claim 1 The MISOME channel (gr,Ge) corresponding to (4.54) has the same se-
crecy capacity as that corresponding to (hr,He).

Proof. First we show that the new channel capacity is no larger than the original
one. In particular, we have

λmax(I + Pgrg
†
r ,I + PG†

eGe)

= max
{ψ′:‖ψ′‖=1}

{
1 + P |g†

rψ
′|2

1 + P‖Geψ
′‖2

}
(4.55)

= max
{ψ′:‖ψ′‖=1}

1 + P |h†
rQψ

′|2
1 + P‖HeQψ

′‖2
(4.56)

= max
{ψ:ψ=Qψ′,‖ψ‖=1}

1 + P |h†
rψ|2

1 + P‖Heψ‖2
(4.57)

≤ max
{ψ:‖ψ‖=1}

{
1 + P |h†

rψ|2
1 + P‖Heψ‖2

}
(4.58)

= λmax(I + Phrh
†
r , I + PH†

eHe), (4.59)

where to obtain (4.55) we have used (4.2) for the new channel, to obtain (4.56) we
have used (4.54), to obtain (4.57) we have used that Q†Q = I, to obtain (4.58) we
have used that we are maximizing over a larger set, and to obtain (4.59) we have used
(4.2) for the original channel. Thus,{

λmax(I + Pgrg
†
r , I + PG†

eGe)
}+ ≤

{
λmax(I + Phrh

†
r, I + PH†

eHe)
}+

, (4.60)

Next, we show the new channel capacity is no smaller than the original one. To
begin, note that

Null(He) ⊆ Null(h†
r), (4.61)

since if Null(He) � Null(h†
r), then λmax(hrh

†
r ,H

†
eHe) = ∞, which would violate (4.51).

Proceeding, every x ∈ Cnt can we written as

x = Qx′ + x̃, (4.62)

where Hex̃ = 0 and thus, via (4.61), h†
rx̃ = 0 as well. Hence, we have that h†

rx = g†
rx

′,
Hex = Gex

′, and ‖x′‖2 ≤ ‖x‖2, so any rate achieved by px on the channel (hr,He)
is also achieved by px′ on the channel (gr,Ge), with px′ derived from px via (4.62),
whence{

λmax(I + Pgrg
†
r , I + PG†

eGe)
}+ ≥

{
λmax(I + Phrh

†
r , I + PH†

eHe)
}+

. (4.63)

Combining (4.63) and (4.60) establishes our claim.
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4.5.2 High SNR Analysis

We restrict our attention to the case λmax > 1 where the capacity is nonzero. In this
case, since, via (4.2),

λmax(I + Phrh
†
r , I + PH†

eHe) =
1 + P |h†

rψmax(P )|2
1 + P‖Heψmax(P )‖2

> 1, (4.64)

where

ψmax(P ) � arg max
{ψ:‖ψ‖=1}

1 + P |h†
rψ|2

1 + P‖Heψ‖2
, (4.65)

we have
|h†

rψmax(P )| > ‖Heψmax(P )‖ (4.66)

for all P > 0.

To obtain an upper bound note that, for all P > 0,

λmax(I + Phrh
†
r ,I + PH†

eHe)

≤ |h†
rψmax(P )|2

‖Heψmax(P )‖2
(4.67)

≤ λmax(hrh
†
r ,H

†
eHe), (4.68)

where (4.67) follows from the Rayleigh quotient expansion (4.64) and the fact that,
due to (4.66), the right hand side of (4.64) is increasing in P , and where (4.68) follows
from (4.2). Thus, since the right hand side of (4.68) is independent of P we have

lim
P→∞

λmax(I + Phrh
†
r , I + PH†

eHe) ≤ λmax(hrh
†
r,H

†
eHe). (4.69)

Next, defining

ψmax(∞) � arg max
ψ

|h†
rψ|2

‖Heψ‖2
, (4.70)

we have the lower bound

lim
P→∞

λmax(I + Phrh
†
r ,I + PH†

eHe)

≥ lim
P→∞

1/P + |h†
rψmax(∞)|2

1/P + ‖Heψmax(∞)‖2
(4.71)

= λmax(hrh
†
r,H

†
eHe) (4.72)

where (4.71) follows from (4.2) and (4.72) follows from (4.70).

Since (4.69) and (4.72) coincide we obtain (4.12). Thus, to obtain the remainder
of (4.13a) we need only verify the following.

Claim 2 The high SNR capacity is finite, i.e., λmax(hrh
†
r ,H

†
eHe) <∞, when H⊥

e hr =
0.
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Proof. We argue by contradiction. Suppose λmax(hrh
†
r ,H

†
eHe) = ∞. Then there

must exist a sequence ψk such that ‖Heψk‖ > 0 for each k = 1, 2, . . . , but ‖Heψk‖ →
0 as k → ∞. But then the hypothesis cannot be true, because, as we now show,
|h†

rψ|2/‖Heψ‖2, when viewed as a function of ψ, is bounded whenever the denomi-
nator is nonzero.

Let ψ be any vector such that ‖Heψ‖ � δ > 0. It suffices to show that

|h†
rψ|2

‖Heψ‖2
≤ ‖hr‖2

σ2
, (4.73)

where σ2 is the smallest nonzero singular value of He.

To verify (4.73), we first express ψ in the form

ψ = cψ′ + dψ̃, (4.74)

where ψ′ and ψ̃ are unit vectors, c and d are real and nonnegative, dψ̃ is the projection
of ψ onto the null space of He, and cψ′ is the projection of ψ onto the orthogonal
complement of this null space.

Next, we note that δ = ‖Heψ‖ = c‖Heψ
′‖ ≥ cσ, whence

c ≤ δ

σ
. (4.75)

But since H⊥
e hr = 0 it follows that h†

rψ̃ = 0, so

|h†
rψ|2 = c2|h†

rψ
′|2 ≤ c2‖hr‖2 ≤ δ2

σ2
‖hr‖2, (4.76)

where the first inequality follows from the Cauchy-Schwarz inequality, and the second
inequality is a simple substitution from (4.75). Dividing through by ‖Heψ‖2 = δ2 in
(4.76) yields (4.73).

We now develop (4.13b) for the case where H⊥
e hr �= 0.

First, defining
S∞ = {ψ : ‖ψ‖ = 1, ‖Heψ‖ = 0} (4.77)

we obtain the lower bound

1

P
λmax(I + Phrh

†
r , I + PH†

eHe)

≥ max
ψ∈S∞

1/P + |h†
rψ|2

1 + P‖Heψ‖2

= max
ψ∈S∞

1

P
+ |h†

rψ|2 (4.78)

=
1

P
+ ‖H⊥

e hr‖2, (4.79)
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where to obtain (4.79) we have used,

max
{ψ:‖ψ‖=1,Heψ=0}

∣∣h†
rψ

∣∣2 =
∥∥H⊥

e hr

∥∥2
. (4.80)

Next we develop an upper bound. We first establish the following.

Claim 3 If H⊥
e hr �= 0 then there is a function ε(P ) such that ε(P ) → 0 as P → ∞,

and
‖Heψmax(P )‖ ≤ ε(P ).

Proof. We have

1 + P‖hr‖2

1 + P‖Heψmax(P )‖2
≥ 1 + P |h†

rψmax(P )|2
1 + P‖Heψmax(P )‖2

(4.81)

≥ max
{ψ:Heψ=0,‖ψ‖=1}

1 + P |h†
rψ|2

1 + P‖Heψ‖2
(4.82)

= max
{ψ:Heψ=0,‖ψ‖=1}

(
1 + P |h†

rψ|2
)

= 1 + P‖H⊥
e hr‖2 (4.83)

where to obtain (4.81) we have used the Cauchy-Schwarz inequality |h†
rψmax(P )|2 ≤

‖hr‖2, to obtain (4.82) we have used (4.65), and to obtain (4.83) we have used (4.80).

Rearranging (4.83) then gives

‖Heψmax(P )‖2 ≤ 1

P

(
1 + P‖hr‖2

1 + P‖H⊥
e hr‖2

− 1

)
� ε2(P ).

as desired.

Thus with SP = {ψ : ‖ψ‖ = 1, ‖Heψ‖ ≤ ε(P )} we have

1

P
λmax(I + Phrh

†
r , I + PH†

eHe)

= max
ψ∈SP

1/P + |h†
rψ|2

1 + P‖Heψ‖2
(4.84)

≤ max
ψ∈SP

1

P
+ |h†

rψ|2, (4.85)

where (4.84) follows from (4.2) and Claim 3 that the maximizing ψmax lies in SP .

Now, as we will show,

max
ψ∈SP

|h†
rψ|2 ≤ ‖H⊥

e hr‖2 +
ε2(P )

σ2
‖hr‖2. (4.86)
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so using (4.86) in (4.85) we obtain

1

P
λmax(I+Phrh

†
r , I + PH†

eHe)

≤ ‖H⊥
e hr‖2 +

ε2(P )

σ2
‖hr‖2 +

1

P
(4.87)

Finally, combining (4.87) and (4.79) we obtain

lim
P→∞

1

P
λmax(I + Phrh

†
r, I + PH†

eHe) = ‖H⊥
e hr‖2,

whence (4.13b).

Thus, it remains only to verify (4.86), which we do now.

We start by expressing ψ ∈ SP in the form [cf. (4.74)]

ψ = cψ′ + dψ̃, (4.88)

where ψ′ and ψ̃ are unit vectors, c, d are real valued scalars in [0, 1], dψ̃ is the
projection of ψ onto the null space of He, and cψ′ is the projection of ψ onto the
orthogonal complement of this null space.

With these definitions we have,

ε(P ) ≥ ‖Heψ‖ = c‖Heψ
′‖ ≥ cσ (4.89)

since Heψ̃ = 0 and ‖Heψ
′‖ ≥ σ.

Finally,

|h†
rψ|2 = |dh†

rψ̃ + ch†
rψ

′|2 (4.90)

= d2|h†
rψ̃|2 + c2|h†

rψ
′|2 (4.91)

≤ |h†
rψ̃|2 +

ε(P )2

σ2
|h†

rψ
′|2 (4.92)

≤ |h†
rψ̃|2 +

ε(P )2

σ2
‖hr‖2 (4.93)

≤ ‖H⊥
e hr‖2 +

ε(P )2

σ2
‖hr‖2, (4.94)

where (4.90) follows from substituting (4.88), (4.91) follows from the fact that ψ′ and
ψ̃ are orthogonal, (4.92) follows from using (4.89) to bound c2, and (4.94) follows
from the fact that Heψ̃ = 0 and (4.80).
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4.5.3 Low SNR Analysis

We consider the limit P → 0. In the following steps, the order notation O(P ) means
that O(P )/P → 0 as P → 0.

λmax(I + Phrh
†
r , I + PH†

eHe) (4.95)

= λmax

(
(I + PH†

eHe)
−1(I + Phrh

†
r)
)

(4.96)

= λmax

(
(I − PH†

eHe + O(P ))(I + Phrh
†
r)
)

(4.97)

= λmax

(
(I − PH†

eHe)(I + Phrh
†
r)
)

+ O(P ) (4.98)

= λmax

(
I + P (hrh

†
r − H†

eHe)
)

+ O(P ) (4.99)

= 1 + Pλmax(hrh
†
r −H†

eHe) + O(P ), (4.100)

where (4.96) follows from the definition of generalized eigenvalue, (4.97) follows from
the Taylor series expansion of (I + PH†

eHe)
−1, where we have assumed that P is

sufficiently small so that all eigenvalues of PH†
eHe are less than unity, (4.98) and

(4.99) follow from the continuity of the eigenvalue function in its arguments and
(4.100) follows from the property of eigenvalue function that λ(I + A) = 1 + λ(A).

In turn, we have,

C(P )

P
=

log(1 + Pλmax(hrh
†
r −H†

eHe) + O(P ))

P
(4.101)

=
λmax(hrh

†
r − H†

eHe)

ln 2
+

O(P )

P
, (4.102)

where to obtain (4.101) we have used (4.100) in (4.11), and to obtain (4.102) we have
used Taylor Series expansion of the ln(·) function.

Finally, taking the limit P → 0 in (4.102) yields (4.14) as desired.

4.6 Masked Beamforming Scheme Analysis

From Csiszár-Körner [8], secrecy rate R = I(u; yr) − I(u; ye) is achievable for any
choice of pu and px|u that satisfy the power constraint E[|x |2] ≤ P . While a capacity-
achieving scheme corresponds to maximizing this rate over the choice of pu and px|u
(cf. (5.6)), the masked beamforming scheme corresponds to different (suboptimal)
choice of these distributions. In particular, we choose

pu = CN (0, P̃ ) and px|u = CN (uh̃r, P̃ (I − h̃rh̃
†
r), (4.103)

where we have chosen the convenient normalizations

P̃ =
P

nt
(4.104)
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and

h̃r =
hr

‖hr‖
. (4.105)

In this form, the secrecy rate of masked beamforming is readily obtained, as we
now show

4.6.1 Rate Analysis

With pu and px|u as in (4.103), we evaluate (5.6). To this end, first we have

I(u; yr) = log(1 + P̃‖hr‖2) (4.106)

Then, to evaluate I(u; ye), note that

h(ye) = log det(I + P̃HeH
†
e)

h(ye|u) = log det(I + P̃He(I − h̃rh̃
†
r)H

†
e)

so

I(u;ye)

= h(ye) − h(ye|u)

= log det(I+P̃HeH
†
e)−log det(I + P̃He(I−h̃rh̃

†
r)H

†
e)

= log det(I+P̃H†
eHe)−log det(I + P̃ (I−h̃rh̃

†
r)H

†
eHe)

= log det(I + P̃H†
eHe)

− log det(I + P̃H†
eHe−P̃ h̃rh̃

†
rH

†
eHe)

= − log det
(
I − P̃ h̃rh̃

†
rH

†
eHe(I + P̃H†

eHe)
−1
)

= − log
(
1 − P̃ h̃†

rH
†
eHe(I + P̃H†

eHe)
−1h̃r

)
= − log

(
h̃†

r(I + P̃H†
eHe)

−1h̃r

)
, (4.107)

where we have repeatedly used the matrix identity det(I +AB) = det(I +BA) valid
for any A and B with compatible dimensions.

Thus, combining (4.106) and (4.107) we obtain (4.15) as desired:

RMB(P )

= I(u; yr) − I(u; ye)

= log(1 + P̃‖hr‖2) + log(h̃†
r(I + P̃H†

eHe)
−1h̃r)

= log

(
1+

1

P̃‖hr‖2

)
+ log(P̃h†

r(I + P̃H†
eHe)

−1hr)

= log

(
1+

1

P̃‖hr‖2

)
+ log(λmax(P̃hrh

†
r, I+P̃H†

eHe)),
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where to obtain the last equality we have used the special form (4.3) for the largest
generalized eigenvalue.

4.6.2 Comparison with capacity achieving scheme

In this section we provide a proof of Theorem 9 First, from Theorem 8 and Proposi-
tion 5 we have, with again P̃ as in (4.104) for convenience,

C

(
P

nt

)
− RMB(P ) ≤ log

λmax(I + P̃hrh
†
r , I + P̃H†

eHe)

λmax(P̃hrh
†
r , I + P̃H†

eHe)
. (4.108)

Next, with ψmax denoting the generalized eigenvector corresponding to λmax(I +
P̃hrh

†
r , I + P̃H†

eHe), we have

λmax(I + P̃hrh
†
r , I + P̃H†

eHe) =
1 + P̃ |h†

rψmax|2

1 + P̃‖Heψmax‖2
(4.109)

λmax(P̃hrh
†
r , I + P̃H†

eHe) ≥
P̃ |h†

rψmax|2

1 + P̃‖Heψmax‖2
(4.110)

(4.111)

Finally, substituting (4.109) and (4.110) into (4.108), we obtain

0 ≤ C

(
P

nt

)
− RMB(P ) ≤ log

(
1 +

nt

P |h†
rψmax|2

)
, (4.112)

the right hand side of which approaches zero as P → ∞, whence (4.16) as desired.

4.7 Scaling Laws Development

We begin by summarizing a few well-known results from random matrix theory that
will be useful in our scaling laws; for further details, see, e.g., [50].

4.7.1 Some Random Matrix Properties

Three basic facts will suffice for our purposes.

Fact 9 Suppose that v is a random length-n complex vector with independent, zero-
mean, variance-1/n elements, and that B is a random n × n complex positive semi-
definite matrix distributed independently of v. Then if the spectrum of B converges
we have

lim
n→∞

v†(I + γB)−1v
a.s.
= ηB(γ), (4.113)

where ηB(γ) is the η-transform [50] of the matrix B.

Of particular interest to us is the η-transform of a special class of matrices below.
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Fact 10 Suppose that H ∈ CK×N is random matrix whose entries are i.i.d. with
variance 1/N . As K,N → ∞ with the ratio K/N � β fixed, the η-transform of
B = H†H is given by

ηH†H(γ) =
ξ(γ, β)

γ
, (4.114)

where ξ(·, ·) is as defined in (4.21).

The distribution of generalized eigenvalues of the pair (hrh†
r,H

†
eHe) is also known [21,

40]. For our purposes, the following is sufficient.

Fact 11 Suppose that hr and He have i.i.d. CN (0, 1) entries, and ne > nt. Then

λmax(hrh
†
r,H

†
eHe) ∼

2nt

2ne − 2nt + 1
F2nt,2ne−2nt+1, (4.115)

where F2nt,2ne−2nt+1 is the F-distribution with 2nt and 2ne−2nt+1 degrees of freedom,
i.e.,

F2nt,2ne−2nt+1
d
=

v1/(2nt)

v2/(2ne − 2nt + 1)
, (4.116)

where
d
= denote equality in distribution, and where v1 and v2 are independent chi-

squared random variables with 2nt and 2ne − 2nt + 1 degrees of freedom, respectively.

Using Fact 11 it follows that with β = ne/nt fixed,

lim
nt→∞

λmax(hrh
†
r,H

†
eHe)

a.s.
=

1

β − 1
, when β > 1. (4.117)

Indeed, from the strong law of large numbers we have that the random variables v1

and v2 in (4.116) satisfy, for β > 1,

lim
nt→∞

v1

2nt

a.s.
= 1, and lim

nt→∞
v2

2nt(β − 1) + 1
a.s.
= 1 (4.118)

Combining (4.118) with (4.116) yields (4.117).

4.7.2 Asymptotic rate analysis

We provide a proof of Theorem 10. First, from Theorem 8 we have that

C(P, nt, ne) =
{
log λmax(I + Phrh

†
r, I + PH†

eHe)
}+

≥
{
log λmax(Phrh

†
r , I + PH†

eHe)
}+

=
{
log

(
Ph†

r(I + PH†
eHe)

−1hr

)}+
, (4.119)

where (4.119) follows from the quadratic form representation (4.3) of the generalized
eigenvalue.
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Rewriting (4.119) using the notation

h̃r =
1√
nt

hr, and H̃e =
1√
nt

He, (4.120)

we then obtain (4.20) as desired:

C̃(γ, β) = C(γ/nt, nt, βnt)

≥
{

log
(
γh̃r(I + γH̃†

eH̃e)
−1h̃r

)}+

a.s.−→ {log ξ(γ, β)}+ as nt → ∞, (4.121)

where to obtain (4.121) we have applied (4.113) and (4.114).
The derivation of the scaling law (4.22) for the masked beamforming scheme is

analogous. Indeed, from Proposition 5 we have

RMB(γ, nt, βnt) ≥
{

log λmax(γh̃rh̃
†
r , I + γH̃†

eH̃e)
}+

=
{

log
(
γh̃†

r(I + γH̃†
eH̃e)

−1h̃r

)}+

a.s.−→ {log ξ(γ, β)}+ as nt → ∞,

where as above the last line comes from applying (4.113) and (4.114).

4.7.3 High SNR Scaling analysis

We provide a proof of Theorem 11
When β < 1 (i.e., ne < nt), we have H⊥

e hr �= 0 almost surely, so (4.13b) holds,
i.e.,

lim
P→∞

C(P ) = ∞ (4.122)

as (4.23) reflects.
When β ≥ 1 (i.e., ne > nt) H†

eHe is nonsingular almost surely, (4.13a) holds, i.e.,

lim
P→∞

C(P ) =
{
log λ(hrh

†
r ,H

†
eHe)

}+
.

Taking the limit ne, nt → ∞ with ne/nt = β fixed, and using (4.117), we obtain

lim
nt→∞

lim
P→∞

C(P ) = {− log(β − 1)}+

as (4.23) asserts.
Furthermore, via (4.16) we have that

lim
P→∞

RMB(P ) =
{
log λ(hrh

†
r ,H

†
eHe)

}+
= lim

P→∞
C(P ),

whence (4.24).
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4.8 Fading Channel Analysis

We prove the lower and upper bounds of Theorem 12 separately.

4.8.1 Proof of Lower bound

We establish (4.27a) in this section. By viewing the fading channel as a set of parallel
channels indexed by the channel gain hr of the intended receiver6 and the eavesdrop-
per’s observation as (ye,He), the rate

R = I(u; yr | hr) − I(u; ye,He | hr). (4.123)

is achievable for any choice of pu|hr and px|u,hr that satisfies the power constraint
E[ρ(hr)] ≤ P . We choose distributions corresponding to an adaptive version of
masked beamforming, i.e., [cf. (4.103)]

pu|hr = CN (0, ρ̃(hr)), px|u,hr = CN
(
uh̃r, ρ̃(hr)(I − h̃rh̃

†
r)
)
, (4.124)

where we have chosen the convenient normalizations [cf. (4.104) and (4.105)]

ρ̃(hr) � ρ(hr)

nt
(4.125)

and

h̃r =
hr

‖hr‖
. (4.126)

Evaluating (4.123) with the distributions (4.124) yields (4.27a) with (4.29a):

I(u;yr | hr) − I(u; ye,He | hr) (4.127)

= E[log(1 + ρ̃(hr)‖hr‖2)]

+ E[log(h̃†
r(I + ρ̃(hr)H

†
eHe)

−1h̃r)] (4.128)

= E

[
log

(
1 +

1

ρ̃(hr)‖hr‖2

)]
+ E

[
log

(
ρ̃(hr)h

†
r(I + ρ̃(hr)H

†
eHe)

−1hr

)]
, (4.129)

where the steps leading to (4.128) are analogous to those used in Section 4.6.1 for the
nonfading case and hence have been omitted.

6Since the fading coefficients are continuous valued, one has to discretize these coefficients before
mapping to parallel channels. By choosing appropriately fine quantization levels one can approach
the rate as closely as possible. See e.g., [23] for a discussion.
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4.8.2 Proof of upper bound

We provide a proof of (4.27b). Suppose that there is a sequence of (2nR, n) codes
such that for a sequence εn (with εn → 0 as n→ ∞),

1

n
H(w) − 1

n
H(w |yn

e ,H
n
e , h

n
r ) ≤ εn,

Pr(ŵ �= w) ≤ εn.
(4.130)

An auxiliary channel

We now introduce another channel for which the noise vaiables zr(t) and ze(t) are
correlated, but the conditions in (4.130) still hold. Hence any rate achievable on the
original channel is also achievable on this new channel. In what follows, we will upper
bound the rate achievable for this new channel instead of the original channel.

We begin by introducing some notation. Let,

ρt(h
t
r) � E

[
‖x(t)‖2

∣∣ ht
r = ht

r

]
(4.131)

denote the transmitted power at time t, when the channel realization of the intended
receiver from time 1 to t is ht

r. Note that ρt(·) satisfies the long term average power
constraint i.e.,

Ehn
r

[
1

n

n∑
t=1

ρt(h
t
r)

]
≤ P. (4.132)

Next, let, phr and pHe denote the density functions of hr and He, respectively,
and let pzr and pze denote the density function of the noise random variables in our
channel model (4.26).

Observe that the constraints in (4.130) (and hence the capacity) depend only
on the distributions pzn

e ,hn
r ,Hn

e
(zn

e ,h
n
r ,H

n
e ) and pzn

r ,hn
r
(zn

r ,h
n
r ). Furthermore since the

channel model (4.26) is memoryless and (hr,He) are i.i.d. and mutually independent,
we have

pzn
e ,hn

r ,Hn
e
(zn

e ,h
n
r ,H

n
e ) =

n∏
t=1

pze(ze(t))phr(hr(t))pHe(He(t)), (4.133)

pzn
r ,hn

r
(zn

r ,h
n
r ) =

n∏
t=1

pzr(zr(t))phr(hr(t)). (4.134)

Let Pt denote the set of conditional-joint distributions pzr(t),ze(t)|hn
r ,Hn

e
with fixed

conditional-marginals, i.e.,

Pt =
{
pzr(t),ze(t)|hn

r ,Hn
e
(zr, ze | hn

r ,H
n
e )

∣∣
pzr(t)|hn

r ,Hn
e
(zr | hn

r ,H
n
e ) = pzr(zr), pze(t)|hn

r ,Hn
e
(ze | hn

r ,H
n
e ) = pze(ze)

}
. (4.135)

Suppose that for each t = 1, 2, . . . , n we select a distribution pzr(t),ze(t)|hn
r ,Hn

e
∈ Pt
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and consider a channel with distribution

pzn
r ,zn

e ,hn
r ,Hn

e
(zn

r , z
n
e ,h

n
r ,H

n
e ) =

n∏
t=1

pzr(t),ze(t)|hn
r ,Hn

e
(zr(t),ze(t)|hn

r ,H
n
e)phr(hr(t))pHe(He(t)). (4.136)

This new channel distribution has noise variables (zr(t), ze(t)) correlated, where the
correlation is possibly time-dependent, but from (4.135) and (4.136), note that zn

r

and zn
e are marginally Gaussian and i.i.d., and satisfy (4.133) and (4.134). Hence the

conditions in (4.130) are satisfied for this channel and the rate R is achievable.
In the sequel we select pzr(t),ze(t)|hn

r ,Hn
e
(zr, ze | hn

r ,H
n
e ) to be the worst case noise

distribution for the Gaussian channel with gains hr(t), and, He(t), and power of ρt(h
t
r)

in Theorem 8 i.e., if ψt is the eigenvector corresponding to the largest generalized
eigenvalue λmax(I + ρt(h

t
r)hr(t)hr(t)

†, I + ρt(h
t
r)H

†
e(t)He(t)),

pzr(t),ze(t)|hn
r ,Hn

e
= CN

(
0,

[
1 φ†

t

φt I

])
, where (4.137)

φt =

{
1

h†
r (t)ψt

(He(t)ψt), λmax ≥ 1,

Ge(t)(G
†
e(t)Ge(t))

−1gr(t), λmax < 1,

and where Ge(t) and gr(t) are related to He(t) and hr(t) as in (4.54). Our choice of
pzr(t),ze(t)|hn

r ,Hn
e

is such that (zr(t), ze(t)) only depend on the (He(t), hr(t), ρt(h
t
r)) i.e.,

(Hn
e , h

n
r ) → (ρ(ht

r), hr(t),He(t)) → (zr(t), ze(t)) (4.138)

forms a Markov chain.
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Upper bound on the auxiliary channel

We now upper bound the secrecy rate for the channel (4.136). Note that this also
upper bounds the rate on the original channel.

From Fano’s inequality, that there exists a sequence ε′n such that ε′n → 0 as
n→ ∞, and,

1

n
H(w |yn

r , h
n
r ) ≤ ε′n.

nR = H(w) = I(w ; yn
r | hn

r ) + nε′n
= I(w ; yn

r | hn
r ) − I(w ; yn

e ,H
n
e | hn

r ) + n(εn + ε′n) (4.139)

≤ I(w ; yn
r | hn

r ,H
n
e , y

n
e ) + n(εn + ε′n)

≤ I(xn; yn
r | hn

r ,H
n
e , y

n
e ) + n(εn + ε′n) (4.140)

≤
n∑

t=1

I(x(t); yr(t) | Hn
e , h

n
r , ye(t)) + n(εn + ε′n), (4.141)

where (4.139) follows from the secrecy condition (c.f. (4.130)), and (4.140) follows
from the Markov relation w ↔ (xn, yn

e , h
n
r ,H

n
e ) ↔ yn

r , and (4.141) holds because for
the channel (4.136) we have

h(yn
r |yn

e ,H
n
e , h

n
r , x

n) =
n∑

t=1

h(yr(t)|ye(t), h
n
r ,H

n
e , x(t)).

We next upper bound the term I(x(t); yr(t) | ye(t),Hn
e , h

n
r ) in (4.141) for each

t = 1, 2, . . . , n.

I(x(t); yr(t) | ye(t),H
n
e , h

n
r )

≤ I(x(t); yr(t) | ye(t),He(t), hr(t), ρt(h
t
r)) (4.142)

≤ E[{logλmax(I + ρt(h
t
r)hr(t)h

†
r(t), I + ρt(h

t
r)H

†
e(t)He(t))}+], (4.143)

where (4.142) follows from the fact that (c.f. (4.138)),

(Hn
e , h

n
r ) → (x(t), ρt(h

t
r), hr(t),He(t)) → (yr(t), ye(t))

forms a Markov chain and (4.143) follows since our choice of the noise distribution
in (4.137) is the worst case noise in (4.7) for the Gaussian channel with gains hr(t),
He(t) and power ρt(h

t
r), hence the derivation in Theorem 8 applies.
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Substituting (4.143) into (4.141) we have,

nR− n(εn + ε′n) (4.144)

=
n∑

t=1

EHe(t),ht
r

[{
log λmax(I + ρt(h

t
r)hr(t)h

†
r(t), I + ρt(h

t
r)H

†
e(t)He(t))

}+]
(4.145)

≤
n∑

t=1

EHe(t),hr(t)

[{
log λmax(I + Eht−1

r
[ρt(h

t
r)]hr(t)h

†
r(t), I + Eht−1

r
[ρt(h

t
r)]H

†
e(t)He(t))

}+]
(4.146)

=
n∑

t=1

EHe(t),hr(t)

[{
log λmax(I + ρ̂t(hr(t))hr(t)h

†
r(t), I + ρ̂t(hr(t))H

†
e(t)He(t))

}+]
(4.147)

=

n∑
t=1

EHe,hr[{log λmax(I + ρ̂t(hr)hrh
†
r, I + ρ̂t(hr)H

†
eHe)}+] (4.148)

≤ nEHe,hr

[{
log λmax(I +

n∑
t=1

1

n
ρ̂t(hr)hrh

†
r, I +

n∑
t=1

1

n
ρ̂t(hr)H

†
eHe)

}+]
(4.149)

= nEHe,hr[{log λmax(I + ρ(hr)hrh
†
r, I + ρ(hr)H

†
eHe)}+] (4.150)

where (4.146) and (4.149) follow from Jensen’s inequality since C(P ) = {log λmax(I+
Phrh†

r, I + PH†
eHe)}+ is a capacity and therefore concave in P , (4.147) follows by

defining
ρ̂t(hr) = Eht−1

r
[ρt(h

t
r)], (4.151)

(4.148) follows from the fact that the distribution of both hr and He does not depend
on t, and (4.150) follows by defining ρ(hr) = 1

n

∑n
t=1 ρ̂t(hr).

To complete the proof, note that

Ehr [ρ(hr)] =
1

n

n∑
t=1

Ehr [ρ̂t(hr)]

=
1

n

n∑
t=1

Eht
r
[ρt(h

t
r)] (4.152)

=
1

n

n∑
t=1

Ehn
r
[ρt(h

t
r)] ≤ P, (4.153)

where (4.152) follows from (4.151) and the fact that the channel gains are i.i.d.,
and (4.153) follows from (4.132).

4.8.3 Proof of Proposition 6

The proof is immediate from Theorems 10, 11 and 12.
For the lower bound, we only consider the case when log ξ(P, β) > 0, since oth-

erwise the rate is zero. We select ρ(hr) = P to be fixed for each hr. Then we have
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from Theorem 10 that

RFF,−(hr,He, P )
a.s.−→ log ξ(P, β).

Finally since almost-sure convergence implies convergence in expectation,

lim
nt→∞

E[RFF,−(hr,He, P )] = log ξ(P, β),

which establishes the lower bound (4.30). For the upper bound, since

RFF,+(hr,He, P ) =
{
logλmax(I+Phrh

†
r,I+ PH†

eHe)
}+

,

we have from Theorem 11 that

lim
nt→∞

RFF,+(hr,He, P )
a.s.
≤ C̃(∞, β), (4.154)

and hence

lim
nt→∞

CFF (P = γ, nt, ne = βnt) ≤ lim
nt→∞

E[RFF,+(hr,He, γ)]

≤ C̃(∞, β),

where we again use the fact that almost sure convergence implies convergence in
expectation.

4.9 Concluding Remarks

The present chapter characterizes the key performance characteristics and tradeoffs
inherent in communication over the MISOME channel. In the next chapter, we
will see analogous results for the general MIMOME channel. However, unlike the
MISOME channel, we do not have a closed form solution for the secrecy capacity for
the MIMOME channel, so it is less amenable to analysis.

92



Chapter 5

MIMOME Channel

In this chapter, we study the case when all the three terminals — the sender, the
receiver and the eavesdropper have multiple antennas and establish the secrecy ca-
pacity. Our approach to establish the secrecy capacity is analogous to the MISOME
case. We start with the upper bound established in the previous chapter and show
that it is tight for the MIMOME channel. Unlike the MISOME channel however,
the secrecy capacity does not admit a closed form expression. So it is expressed as a
solution to an optimization problem that can be computed numerically.

We further study the capacity in the high signal-to-noise-ratio (SNR) regime. In
this regime, to achieve the capacity, it suffices to simultaneously diagonalize both the
channel matrices, using the generalized singular value decomposition, and use inde-
pendent codebooks across the resulting parallel channels. A necessary and sufficient
condition under which capacity is zero is also provided.

In addition to the capacity achieving scheme, a synthetic noise transmission
scheme is analyzed. This scheme is semi-blind — it selects the transmit directions
only based on the channel of the legitimate receiver, but needs the knowledge of the
eavesdropper’s channel for selecting the rate.

Finally, we study the scaling laws for the zero capacity condition. Suppose there
are a total of T � 1 antennas that need to be allocated between the sender and the
receiver. It is well known that the optimal allocation that maximizes both the rate
and the diversity is to set nt = nr = 1

2
T . However from a secrecy point of view this

allocation may not be optimal. Indeed, we show that the optimal allocation (for the
zero capacity condition) is nt = 2

3
T and nr = 1

3
T .

5.1 Channel Model

We denote the number of antennas at the sender, the receiver and the eavesdropper
by nt, nr and ne respectively.

yr(t) = Hrx(t) + zr(t)

ye(t) = Hex(t) + ze(t),
(5.1)
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where Hr ∈ Cnr×nt and He ∈ Cne×nt are channel matrices associated with the receiver
and the eavesdropper. The channel matrices are fixed for the entire transmission
period and known to all the three terminals. The additive noise zr(t) and ze(t)
are circularly-symmetric and complex-valued Gaussian random variables. The input
satisfies a power constraint E

[
1
n

∑n
t=1 ||x(t)||2

]
≤ P.

The definition for the secrecy capacity is analogous to the case of the MISOME
channel in the previous chapter and will be omitted.

5.2 Main Results

We summarize the main results in this chapter in this section.

5.2.1 Secrecy Capacity of the MIMOME Channel

The secrecy capacity of the MIMOME channel is stated in the theorem below.

Theorem 13 The secrecy capacity of the MIMOME wiretap channel is

C = min
KΦ∈KΦ

max
KP∈KP

R+(KP,KΦ), (5.2)

where R+(KP,KΦ) = I(x; yr | ye) with x ∼ CN (0,KP) and

KP �
{

KP

∣∣∣∣∣ KP � 0, tr(KP) ≤ P

}
, (5.3)

and where [z†r , z
†
e]
† ∼ CN (0,KΦ), with

KΦ �
{

KΦ

∣∣∣∣∣ KΦ =

[
Inr Φ

Φ† Ine

]
, KΦ � 0

}

=

{
KΦ

∣∣∣∣∣ KΦ =

[
Inr Φ

Φ† Ine

]
, σmax(Φ) ≤ 1

}
.

(5.4)

Furthermore, the minimax problem in (5.2) has a saddle point solution (K̄P, K̄Φ) and
the secrecy capacity can also be expressed as,

C = R+(K̄P, K̄Φ) = log
det(I + HrK̄PH

†
r)

det(I + HeK̄PH
†
e)
. (5.5)
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Connection with Csiszár and Körner Capacity

A characterization of the secrecy capacity for the non-degraded discrete memoryless
broadcast channel pyr,ye|x is provided by Csiszár and Körner [8],

C = max
pu,px|u

I(u; yr) − I(u; ye), (5.6)

where u is an auxiliary random variable (over a certain alphabet with bounded car-
dinality) that satisfies u → x → (yr, ye). As remarked in [8], the secrecy capacity
(5.6) can be extended in principle to incorporate continuous-valued inputs. However,
directly identifying the optimal u for the MIMOME case is not straightforward.

Theorem 13 indirectly establishes an optimal choice of u in (5.6). Suppose that
(K̄P, K̄Φ) is a saddle point solution to the minimax problem in (5.2). From (5.5) we
have

R+(K̄P, K̄Φ) = R−(K̄P), (5.7)

where

R−(K̄P) � log
det(I + HrK̄PH

†
r)

det(I + HeK̄PH
†
e)

is the achievable rate obtained by evaluating (5.6) for u = x ∼ CN (0, K̄P). This
choice of pu, px|u thus maximizes (5.6). Furthermore note that

K̄P ∈ arg max
KP∈KP

log
det(I + HrKPH

†
r)

det(I + HeKPH
†
e)

(5.8)

where the set KP is defined in (5.3). Unlike the minimax problem (5.2) the maximiza-
tion problem (5.8) is not a convex optimization problem since the objective function
is not a concave function of KP. Even if one verifies that K̄P satisfies the optimality
conditions associated with (5.8), this will only establish that K̄P is a locally optimal
solution. The capacity expression (5.2) provides a convex reformulation of (5.8) and
establishes that K̄P is a globally optimal solution in (5.8).1

Structure of the optimal solution

The saddle point solution (K̄P, K̄Φ) satisfies a certain necessary condition that admits
an intuitive interpretation. In particular, in the proof of Theorem 13, we show the
following: Let S be any matrix that has a full column rank matrix and satisfies K̄P =
SS† and let Φ̄ be the cross-covariance matrix between the noise random variables
in (5.2), (c.f. (5.4)), then

HeS = Φ̄
†
HrS. (5.9)

Note that Φ̄ is a contraction matrix i.e., all its singular values are less than or equal
to unity. The column space of S is the subspace in which the sender transmits

1The “high SNR” case of this problem i.e., maxK∈K∞ log det(HrKH†
r )

det(HeKH†
e)

is known as the multiple-
discriminant-function in multivariate statistics and is well-studied; see, e.g., [51].
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Figure 5-1: Simultaneous diagonalization via the GSVD transform. The left figure
show the original channel model with 2 × 2 channel matrices Hr and He. The right
figure shows the GSVD transform applied to the channel matrices i.e., Hr = ΨrΣrΩ

−1

and He = ΨeΣeΩ
−1, where Ψr and Ψe are unitary matrices and Σr and Σe are

diagonal matrices.

information. So (5.9) states that no information is transmitted along any direction
where the eavesdropper observes a stronger signal than the intended receiver. The
effective channel of the eavesdropper, HeS, is a degraded version of the effective
channel of the intended receiver, HrS even though the channel matrices may not be
ordered a-priori. This condition explains why the genie upper bound, which provides
ye to the legitimate receiver (c.f. Lemma 7) does not increase the capacity of the
fictitious channel.

5.2.2 Capacity analysis in the High SNR Regime

While the capacity expression in Theorem 13 can be computed numerically, it does not
admit a closed form solution. In this section, we develop a closed form expression for
the capacity in the high signal-to-noise-ratio (SNR) regime, in terms of the generalized
singular values of the channel matrices Hr and He. The main message here is that
in the high SNR regime, an optimal scheme involves simultaneously diagonalizing
the channel matrices Hr and He using the generalized singular value decomposition
(GSVD) transform. This creates a set of parallel channels independent channels
between the sender and the receivers, and it suffices to use independent Gaussian
codebooks across these channels. This architecture for the case of 2 × 2 × 2 channel
is shown in Fig. 5-1.

The high-SNR secrecy capacity is stated below.

Theorem 14 Let, σ1 ≤ σ2 ≤ . . . ≤ σs, be the generalized singular values of the
channel matrices Hr and He as defined in (5.52). The high SNR secrecy capacity is
given as follows. If

Null(He) ∩ Null(Hr)
⊥ = {·} (5.10)

then
lim

P→∞
C(P ) =

∑
j:σj≥1

log σ2
j , (5.11)
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else,

C(P )=
∑

j:σj≥1

log σ2
j + log det

(
I +

P

p
HrH

⊥
e H†

r

)
− oP (1), (5.12)

where p is defined via (5.50), and oP (1) → 0 as P → ∞, and H⊥
e ∈ Cnt×nt is the

projection matrix (see (5.59)) onto the null space of He.

We also consider a sub-optimal synthetic noise transmission strategy analogous
to the masked beamforming strategy described in the previous section. Note that for
this strategy the allocated rate depends on both (Hr,He), so the scheme is only semi-
blind. For simplicity we focus on the case when rank(Hr) = nr and rank(He) = nt.

Corollary 6 In the high SNR regime the rate expression (5.102), can be expressed
in terms of the generalized singular values of (Hr,He). In particular,

lim
P→∞

RSN(P ) =

nt∑
j=1

log σ2
j (5.13)

It is interesting to compare the expression (5.13) with the high SNR capacity ex-
pression (5.11). While the capacity expression involves summation over only those
generalized singular values that exceed unity, the synthetic noise transmission scheme
involves summation over all the singular values and hence is sub-optimal. Rather sur-
prisingly, both the capacity achieving scheme and the synthetic noise scheme can be
characterized using just the generalized singular values of (Hr,He) in the high SNR
regime.

5.2.3 Zero Capacity Condition and Scaling Laws

The conditions on Hr and He for which the secrecy capacity is zero have a simple
form.

Lemma 6 The secrecy capacity of the MIMOME channel is zero if and only if

σmax(Hr,He) � sup
v∈Cnt

||Hrv||
||Hev||

≤ 1. (5.14)

Analysis of the zero-capacity condition in the limit of large number of antennas
provides some useful insights we develop below.

Corollary 7 Suppose that Hr and He have i.i.d. CN(0, 1) entries. Suppose that
nr, ne, nt → ∞, while keeping nr/ne = γ and nt/ne = β fixed. The secrecy capacity2

2We assume that the channels are sampled once, then stay fixed for the entire period of trans-
mission, and are revealed to all the terminals.
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Figure 5-2: Zero-capacity condition in the (γ, β) plane. The capacity is zero for any
point below the curve, i.e., the eavesdropper has sufficiently many antennas to get
non-vanishing fraction of the message, even when the sender and receiver fully exploit
the knowledge of He.
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Figure 5-3: The minimum number of eavesdropping antennas per sender plus receiver
antenna for the secrecy capacity to be zero, plotted as a function of nr/nt.

C(Hr,He) converges almost surely to zero if and only if 0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1, and

γ ≤ (1 −
√

2β)2. (5.15)

Figs. 5-2 and 5-3 provide further insight into the asymptotic analysis for the capacity
achieving scheme. In Fig. 5-2, we show the values of (γ, β) where the secrecy rate is
zero. If the eavesdropper increases its antennas at a sufficiently high rate so that the
point (γ, β) lies below the solid curve, then secrecy capacity is zero. The MISOME
case corresponds to the vertical intercept of this plot. The secrecy capacity is zero,
if β ≤ 1/2, i.e., the eavesdropper has at least twice the number of antennas as the
sender. The single transmit antenna (SIMOME) case corresponds to the horizontal
intercept. In this case the secrecy capacity is zero if γ ≤ 1, i.e., the eavesdropper has
more antennas than the receiver.
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In Fig. 5-3, we consider the scenario where a total of T � 1 antennas are di-
vided between the sender and the receiver. The horizontal axis plots the ratio nr/nt,
while the vertical axis plots the minimum number of antennas at the eavesdropper
(normalized by T ) for the secrecy capacity to be zero. We note that the optimal al-
location of antennas, that maximizes the number of eavesdropper antennas happens
at nr/nt = 1/2. This can be explicitly obtained from the following minimization

minimize β + γ

subject to, γ ≥ (1 −
√

2β)2, β ≥ 0, γ ≥ 0.
(5.16)

The optimal solution can be easily verified to be (β∗, γ∗) = (2/9, 1/9). In this
case, the eavesdropper needs ≈ 3T antennas for the secrecy capacity to be zero.
We remark that the objective function in (5.16) is not sensitive to variations in the
optimal solution. If fact even if we allocate equal number of antennas to the sender

and the receiver, the eavesdropper needs (3+2
√

2)
2

T ≈ 2.9142 × T antennas for the
secrecy capacity to be zero.

5.3 Derivation of the Secrecy Capacity

Our proof involves two main parts. First we note that the right hand side in (5.2) is
an upper bound on the secrecy capacity. Then we examine the optimality conditions
associated with the saddle point solution to establish (5.7), which completes the proof
since

C ≤ R+(K̄P, K̄Φ) = R−(K̄P) ≤ C.

We begin with an upper bound on the secrecy capacity of the multi-antenna
wiretap established in the previous chapter.

Lemma 7 An upper bound on the secrecy capacity is given by

C(P ) ≤ RUB(P ) = min
KΦ∈KΦ

max
KP∈KP

R+(KP,KΦ), (5.17)

where
R+(KP,KΦ) � I(x; yr | ye) (5.18)

is the conditional mutual information expression evaluated with x ∼ CN (0,KP), and
[z†r , z

†
e]
† ∼ CN (0,KΦ), and the domain sets KP and KΦ are defined via (5.3) and (5.4)

respectively.

It remains to establish that this upper bound expression satisfies (5.7), which we
do in the remainder of this section. We divide the proof into several steps, which are
outlined in Fig. 5-4.

Lemma 8 (Existence of a saddle point solution) The function R+(KP,KΦ) in (5.18)
has the following properties:
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Saddle Point: (K̄P, K̄Φ)

K̄Φ ∈ arg min
KΦ

R+(K̄P,KΦ)

K̄P ∈ arg max
KP

R+(KP, K̄Φ)

K̄P ∈ arg max
KP

h(yr − Θ̄ye)

Φ̄†HrS = HeS ⇒ R+(K̄P, K̄Φ) = R−(K̄P)

Figure 5-4: Key steps in the Proof of Theorem 1. The existence of a saddle point
(K̄P, K̄Φ) is first established. Thereafter the KKT conditions associated with the
minimax expressions are used to simplify the saddle value and show that it matches
the lower bound.

1. For each fixed KΦ ∈ KΦ, the function R+(·,KΦ) is concave (∩) in the variable
KP ∈ KP.

2. For each fixed KP ∈ KP, the function R+(KP, ·) is convex (∪) in the variable
KΦ ∈ KΦ.

3. There exists a saddle point solution to (5.17) i.e., ∃K̄P ∈ KP and ∃K̄Φ ∈ KΦ,
such that

R+(KP, K̄Φ) ≤ R+(K̄P, K̄Φ) ≤ R+(K̄P,KΦ) (5.19)

holds for each KP ∈ KP, and each KΦ ∈ KΦ.

Proof.
To establish 1) above, with a slight abuse in notation, let us define R+(px,KΦ) =

I(x; yr|ye), to be the conditional mutual information evaluated when the noise random
variables are jointly Gaussian random variables with a covariance KΦ, and with input
distribution of px. As before, R+(Q,KΦ) denotes the conditional mutual information,
evaluated when the noise random variables are jointly Gaussian with covariance KΦ

and the input distribution is Gaussian with a covariance Q. Let p1
x = CN (0,Q1),

p2
x = CN (0,Q2) and pθ

x = θp1
x + (1 − θ)p2

x, Qθ = θQ1 + (1 − θ)Q2, for some θ ∈ [0, 1]
and pG

x = CN (0,Qθ). It suffices to show that

R+(Qθ,KΦ) ≥ θR+(Q1,KΦ) + (1 − θ)R+(Q2,KΦ),
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which we do below:

R+(Qθ,KΦ) = R+(pG
x ,KΦ)

≥ R+(pθ
x,KΦ) (5.20)

≥ θR+(p1
x,KΦ) + (1 − θ)R+(p2

x,KΦ) (5.21)

= θR+(Q1,KΦ) + (1 − θ)R+(Q2,KΦ),

where (5.20) follows from the fact that, as shown in Appendix C.1, a Gaussian distrib-
ution maximizes function R+(pθ

x,KΦ), among all distributions with a fixed covariance,
and (5.21) from the fact that for each fixed pyr,ye|x, the function I(x; yr|ye) is a concave
function in the input distribution (see e.g., [23, Appendix I]).

To establish the 2), we note that for each x ∼ CN (0,KP), the function I(x; yr, ye)
is convex in the noise covariance KΦ (see e.g., [13, Lemma II-3, pg. 3076] for an
information theoretic proof).

The existence of a saddle point (K̄P, K̄Φ) as stated in 3) follows from 1) and 2)
and the fact that the domain sets KP and KΦ are convex and compact.

In the sequel, let (K̄P, K̄Φ) denote a saddle point solution in (5.17), and define Φ̄
and Θ̄ via,

K̄Φ =

[
Inr Φ̄

Φ̄
†

Ine

]
, (5.22)

Θ̄ = (HrK̄PH
†
e + Φ̄)(I + HeK̄PH

†
e)

−1. (5.23)

Lemma 9 (Properties of saddle-point) The saddle point solution (K̄P, K̄Φ) to (5.17)
satisfies the following

1.
(Hr − Θ̄He)K̄P(Φ̄

†
Hr −He)

† = 0 (5.24)

2. Suppose that S is a full rank square root matrix of K̄P, i.e., K̄P = SS† and S
has a full column rank. Then provided Hr − Θ̄He �= 0, the matrix

M = (Hr − Θ̄He)S (5.25)

has a full column rank3.

Proof. The conditions 1) and 2) are established by examining the optimality condi-
tions satisfied by the saddle-point in (5.17) i.e.,

K̄Φ ∈ arg min
KΦ∈KΦ

R+(K̄P,KΦ) (5.26)

and
K̄P ∈ arg max

KP∈KP

R+(KP, K̄Φ). (5.27)

3A matrix M has a full column rank if, for any vector a, Ma = 0 if and only if a = 0.
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We first consider the optimality condition in (5.26) and establish (5.24). The deriva-
tion is most direct when K̄Φ is non-singular. The extension to the case when K̄Φ is
singular is provided in Appendix C.3. The Lagrangian associated with the minimiza-
tion (5.26) is

LΦ(KΦ,Υ) = R+(K̄P,KΦ) + tr(ΥKΦ), (5.28)

where the dual variable

Υ =

[ nr ne

nr Υ1 0
ne 0 Υ2

]
(5.29)

is a block diagonal matrix corresponding to the constraint that the noise covariance
KΦ must have identity matrices on its diagonal. The associated Kuhn-Tucker (KKT)
conditions yield

∇KΦ
LΦ(KΦ,Υ)

∣∣
K̄Φ

=∇KΦ
R+(K̄P,KΦ)

∣∣
K̄Φ

+ Υ = 0,
(5.30)

where,

∇KΦ
R+(K̄P,KΦ)

∣∣
K̄Φ

(5.31)

= ∇KΦ

[
log det(KΦ + HtK̄PH

†
t)−log det(KΦ)

]∣∣∣∣
K̄Φ

= (K̄Φ + HtK̄PH
†
t)

−1 − K̄−1
Φ (5.32)

and where we have used

Ht =

[
Hr

He

]
. (5.33)

Substituting (5.32) in (5.30), and simplifying, we obtain,

HtK̄PH
†
t = K̄ΦΥ(K̄Φ + HtK̄PH

†
t), (5.34)

and the relation in (5.24) follows from (5.34) through a straightforward computation
as shown in Appendix C.2.

To establish 2) above, we use the optimality condition associated with K̄P i.e., (5.27)
As in establishing 1), the proof is most direct when K̄Φ is non-singular. Hence this
case is treated first, while the case when K̄Φ is singular is treated in Appendix C.6.

K̄P ∈ arg max
KP∈KP

R+(KP, K̄Φ)

= arg max
KP∈KP

h(yr | ye)

= arg max
KP∈KP

h (yr − Θ(KP)ye) , (5.35)

where Θ(KP) = (HrKPH
†
e +Φ̄)(HeKPH

†
e +I)−1 is the linear minimum mean squared

estimation coefficient of yr given ye. Directly working with the Kuhn-Tucker condi-
tions associated with (5.35) appears difficult. Nevertheless it turns out that we can
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replace the objecive function above, with a simpler objective function as described
below. First, note that since K̄P is an optimum solution to (5.35), in general

arg max
KP∈KP

h
(
yr − Θ̄ye

)
≥ arg max

KP∈KP

h (yr − Θ(KP)ye) (5.36)

holds, since substituting KP = K̄P in the objective function on the left hand side,
attains the maximum on the right hand side. Somewhat surprisingly, it turns out
that the inequality above is in fact an equality, i.e., the left hand side also attains the
maximum when KP = K̄P. This observation is stated formally below, and allows us
to replace the objective function in (5.35) with a simpler objective function on the
left hand side in (5.36).

Claim 4 Suppose that K̄Φ � 0 and define

H(KP) � h(yr − Θ̄ye). (5.37)

Then,
K̄P ∈ arg max

KP∈KP

H(KP). (5.38)

The proof involves showing that K̄P, satisfies the Kuhn-Tucker conditions which we
do in Appendix C.4.

Finally, to establish 2), we note that,

K̄P ∈ arg max
KP∈KP

H(KP) (5.39)

= arg max
KP∈KP

log det(I+J− 1
2 (Hr−Θ̄He)KP(Hr−Θ̄He)

†J− 1
2 ), (5.40)

where
J � I + Θ̄Θ̄

† − Θ̄Φ̄
† − Φ̄Θ̄

† � 0

is an invertible matrix. We can interpret (5.40) as stating that K̄P is an optimal input

covariance for a MIMO channel with white noise and matrix Heff � J− 1
2 (Hr − Θ̄He).

The fact that HeffS is a full rank matrix, then a consequence of the so called “water-
filling” conditions. The proof is provided in Appendix C.5.

The conditions in Lemma 9 can be used in turn to establish the tightness of the
upper bound in (5.17).

Lemma 10 The saddle value in (5.17) can be expressed as follows,

RUB(P ) =

{
0, (Hr − Θ̄He) = 0,

R−(K̄P), otherwise,
(5.41)

where,
R−(K̄P) � log det(I + HrK̄PH

†
r) − log det(I + HeK̄PH

†
e). (5.42)
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Proof. The proof is most direct when we assume that the saddle point solution is such
that K̄Φ � 0 i.e., when ||Φ||2 < 1. The extension when K̄Φ is singular is provided in
Appendix C.7.

First consider the case when Hr − Θ̄He = 0. From (5.23), it follows that Θ̄ = Φ̄,
using which one can establish the first part in (5.41):

R+(K̄P, K̄Φ) = I(x; yr|ye) (5.43)

= h(yr|ye) − h(zr|ze)

= h(yr − Θ̄ye) − h(zr − Φ̄ze) (5.44)

= h(zr − Θ̄ze) − h(zr − Φ̄ze) (5.45)

= 0,

where (5.44) follows from the fact that Θ̄ in (5.23) is the linear minimum mean
squared estimation (LMMSE) coefficient in estimation yr given ye and Φ̄ is the
LMMSE coefficient in estimating zr given ze and (5.45) follows via the relation
Hr = Θ̄He, so that, yr − Θ̄ye = zr − Θ̄ze.

When Hr − Θ̄He �= 0, combining parts (1) and (2) in Lemma 9, it follows that,

Φ̄
†
HrS = HeS, (5.46)

which can be used to establish the second case in (5.41) as we now do. In particular,
we show that

ΔR � = R+(K̄P, K̄Φ) −R−(K̄P)

= I(x; yr|ye) − {I(x; yr) − I(x; ye)}
= I(x; ye|yr)

= h(ye|yr) − h(ze|zr),

equals zero. Indeed,

h(ye | yr)

= log det(I + HeK̄PH
†
e−

(HeK̄PH
†
r + Φ̄

†
)(HrK̄PH

†
r + I)−1(HrK̄PH

†
e + Φ̄))

= log det(I + HeK̄PH
†
e − Φ̄

†
(HrK̄PH

†
r + I)Φ̄)

= log det(I− Φ̄
†
Φ̄) = h(ze | zr), (5.47)

where we have used the relation (5.46) in simplifying (5.47). This establishes the
second half of (5.41).

The proof of Theorem 13 is a direct consequence of Lemma 10. IfR+(K̄P, K̄Φ) = 0,
the capacity is zero, otherwise R+(K̄P, K̄Φ) = R−(K̄P), and the latter expression is an
achievable rate as can be seen by setting pu = px = CN (0, K̄P) in the Csiszár-Körner
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expression (5.6).

5.4 GSVD transform and High SNR Capacity

We begin with a definition of the generalized singular value decomposition [43, 34].

Definition 11 (GSVD Transform) Given two matrices Hr ∈ Cnr×nt and He ∈
Cne×nt, there exist unitary matrices Ψr ∈ Cnr×nr , Ψe ∈ Cne×ne and Ψt ∈ Cnt×nt, a
non-singular, lower triangular matrix Ω ∈ Ck×k, and two matrices Σr ∈ Rnr×k and
Σe ∈ Rne×k, such that

Ψ†
rHrΨt = Σr

[
Ω−1, 0k×nt−k

]
, (5.48a)

Ψ†
eHeΨt = Σe

[
Ω−1, 0k×nt−k

]
, (5.48b)

where the matrices Σr and Σe have the following structure,

Σr =

⎡
⎣

k−p−s s p

nr−p−s 0
s Dr

p I

⎤
⎦, (5.49a)

Σe =

⎡
⎣

k−p−s s p

k−p−s I
s De

ne+p−k 0

⎤
⎦, (5.49b)

and the constants

k = rank

([
Hr

He

])
, p = dim

(
Null(He)

⋂
Null(Hr)

⊥
)
, (5.50)

and s depend on the matrices Hr and He. The matrices

Dr = diag{r1, . . . , rs}, De = diag{e1, . . . , es}, (5.51)

are diagonal matrices with strictly positive entries, and the generalized singular values
are given by

σi =
ri

ei

, i = 1, 2, . . . , s. (5.52)

We provide a few properties of the GSVD-transform that are used in the sequel.

1. The GSVD transform provides a characterization of the null space of He. Let

Ψt = [ψ1, . . . , ψnt ], (5.53)

where Ψt is defined via (5.48). Then

Sn = Null(He)
⋂

Null(Hr) = span{ψk+1, . . . , ψnt} (5.54a)
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Sz = Null(He)
⋂

Null(Hr)
⊥ = span{ψk−p+1, . . . , ψk} (5.54b)

Indeed, it can be readily verified from (5.48) that

Hrψj = Heψj = 0, j = k + 1, . . . , nt, (5.55)

which establishes (5.54a). To establish (5.54b), we will show that for each j
such that k−p+1 ≤ j ≤ k, Heψj = 0 and {Hrψj} are linearly independent. It
suffices to show that the last p columns of ΣrΩ

−1 are linearly independent and
the last p columns of ΣeΩ

−1 are zero. Note that since Ω−1 in (5.48) is a lower
triangular matrix, we can express it as

Ω−1 =

⎡
⎣

k−p−s s p

k−p−s Ω−1
1

s T21 Ω−1
2

p T31 T32 Ω−1
3

⎤
⎦. (5.56)

By direct block multiplication with (5.49a) and (5.49b), we have,

ΣrΩ
−1 =

⎡
⎣

k−s−p s p

nr−s−p 0
s DrT21 DrΩ

−1
2

p T31 T32 Ω−1
3

⎤
⎦ (5.57a)

ΣeΩ
−1 =

⎡
⎣

k−s−p s p

k−p−s Ω−1
1

s DeT21 DeΩ
−1
2

ne+p−k 0

⎤
⎦ (5.57b)

Since Ω3 is invertible, the last p columns of ΣrΩ
−1 are linearly independent and

clearly the last p columns of ΣeΩ
−1 are zero establishing (5.54b).

Furthermore,
Null(He) = span{ψk−p+1, . . . , ψnt}. (5.58)

Hence if Ψne = [ψk−p+1, . . . , ψnt ], then the projection matrix on to the Null(He),

H⊥
e = ΨneΨ

†
ne. (5.59)

Also from (5.48) and (5.57a), note that

HrΨne = Ψr

⎧⎪⎪⎨
⎪⎪⎩

[ p nt−k

nr−p 0
p Ω−1

3 0

]⎫⎪⎪⎬
⎪⎪⎭ , (5.60)
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and hence,

HrH
⊥
e H†

r = Ψr

⎧⎪⎪⎨
⎪⎪⎩

[ nr−p p

nr−p 0

p Ω−1
3 Ω−†

3

]⎫⎪⎪⎬
⎪⎪⎭Ψ†

r , (5.61)

denotes the projection of Hr onto the null space of He.

2. The GSVD definition simplifies considerably when the matrix He has a full
column rank. In this case note from (5.50) that p = 0 and k = nt. Defining,
A = ΨtΩ, we note from (5.48) that

Ψ†
rHrA = Σr, Ψ†

eHeA = Σe, (5.62)

where Σr and Σe have the form:

Σr =

[ nt−s s

nr−s 0
s Dr

]
,Σe =

⎡
⎣

nt−s s

nt−s I
s De

ne−nt 0

⎤
⎦, (5.63)

and Dr and De are diagonal matrices with positive entries (c.f. (5.51)).

Also if H‡
e denotes the Moore-Penrose pseudo-inverse of He,

H‡
e = A

⎧⎪⎪⎨
⎪⎪⎩

[ nt−s s ne−nt

nt−s I 0 0
s 0 D−1

e 0

]⎫⎪⎪⎬
⎪⎪⎭Ψ†

e (5.64)

and H‡
eHe = I. From (5.62), (5.63) and (5.64),

HrH
‡
e = Ψr

⎧⎪⎪⎨
⎪⎪⎩

[ nt−s s ne−nt

nr−s 0 0 0
s 0 DrD

−1
e 0

]⎫⎪⎪⎬
⎪⎪⎭Ψ†

e, (5.65)

i.e., the generalized singular values of (Hr, He) in (5.52) are also the (ordinary)
singular values of HrH

‡
e.

5.4.1 Derivation of the High SNR Capacity Expression

For simplicity we first consider the case when He has a full column rank. In this case,
it is clear that the condition in (5.10) is satisfied and accordingly we establish (5.11).

The achievability part follows by simultaneously diagonalizing the channel ma-
trices Hr and He using the GSVD transform. This reduces the system into a set
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of parallel independent channels and independent codebooks are used across these
channels. More specifically, recall that in the case of interest, the transform is given
in (5.62). Let σ1 ≤ σ2 ≤ . . . ≤ σs be the ordered set of singular values and suppose
that σi > 1 for i ≥ ν. We select the following choices for x and u in the Csiszár and
Körner expression (5.6)

x = A

[
0nt−s

u

]
, u = [0, . . . , 0, uν , uν+1, . . . , us], (5.66)

and the random variables ui are sampled i.i.d. according to CN (0, αP ). Here α =
1

ntσmax(A)
is selected so that the average power constraint is satisfied. Substitut-

ing (5.66) and (5.62) into the channel model (5.1) yields,

yr = Ψr

[
0nt−s

Dru

]
+ zr, ye = Ψe

⎡
⎣ 0nt−s

Deu
0ne−nt

⎤
⎦ + ze. (5.67)

Since Ψr and Ψe are unitary, and Dr and De are diagonal, the system of equa-
tions (5.67) indeed represents a parallel channel model. See Fig. 5-1 for an illustra-
tion of the 2-2-2 case. The achievable rate obtained by substituting (5.67) and (5.66)
into (5.6), is

R = I(u; yr) − I(u; ye) (5.68)

=
nt∑

j=ν

log
1 + αPr2

j

1 + αPe2j

=
∑

j:σj>1

log σ2
j − oP (1), (5.69)

where oP (1) → 0 as P → ∞.

For the converse we begin with a more convenient upper bound expression to the
secrecy capacity (5.17),

RUB = min
Φ:||Φ||2≤1
Θ∈Cnr×nt

max
K̄P∈KP

R++(KP,Θ,Φ)

R++ = log
det(HeffKPH

†
eff + I + ΘΘ† −ΘΦ† − ΦΘ†)

det(I − ΦΦ†)
,

Heff = Hr − ΘHe.

(5.70)

This expression, as an upper bound, was suggested to us by Y. Eldar and A. Wiesel
and was first used in establishing the secrecy capacity of the MISOME channel in [25].
To establish (5.70), first note that the objective function R+(KP,KΦ) in (5.17) can
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be upper bounded as follows:

R+(KP,KΦ)

= I(x; yr|ye)

= h(yr|ye) − h(zr|ze)

= h(yr|ye) − log det(I − ΦΦ†)

= min
Θ

h(yr −Θye) − log det(I− ΦΦ†)

= min
Θ

R++(KP,Θ,Φ).

Thus, we have from (5.17) that

R+(P ) = min
KΦ

max
KP

R+(KP,KΦ) (5.71)

= min
KΦ

max
KP

min
Θ

R++(KP,Θ,Φ) (5.72)

≤ min
KΦ

min
Θ

max
KP

R++(KP,Θ,Φ), (5.73)

as required.

To establish the capacity, we show that the upper bound in (5.70) above, reduces
to the capacity expression (5.11), for a specific choice of Θ and Φ as stated below.

Our choice of parameters in the minimization of (5.70) is as follows

Θ = HrH
‡
e, Φ = Ψr

⎧⎪⎪⎨
⎪⎪⎩

[ nt−s s ne−nt

nr−s 0 0 0
s 0 Δ 0

]⎫⎪⎪⎬
⎪⎪⎭Ψ†

e, (5.74)

where,

Δ = diag{δ1, δ2, . . . , δs}, δi = min

(
σi,

1

σi

)
, (5.75)

and H‡
e denotes the Moore-Penrose pesudo-inverse of He (c.f. 5.64). Note that with

these choice of parameters, Heff = 0. So the maximization over KP in (5.70) is
not effective. Simplifying (5.70) with these choice of parameters the upper bound
expression reduces to

R++ ≤ log
det(I + (DrD

−1
e )2 − 2DrD

−1
e Δ)

det(I − Δ2)
=

∑
j:σj>1

log σ2
j .

as in (5.11).

When He does not have a full column rank, the capacity result in (5.12) will now
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be established. To show the achievability, we identify the subspaces

Sz = Null(He)
⋂

Null(Hr)
⊥ = span{ψk−p+1, . . . , ψk}

Ss =Null(He)
⊥⋂Null(Hr)

⊥=span{ψk−p−s+1, . . . , ψk−p}.
(5.76)

We will use most of the power for transmission in the subspace Sz and a small fraction
of power for transmissoin in the subspace Ss. More specifically, by selecting,

x = Ψt

⎡
⎢⎢⎣
0k−p−s

Ω2u
v

0nt−k

⎤
⎥⎥⎦ , (5.77)

we have,

yr = Ψr

⎡
⎣ 0nr−p−s

Dru
T32Ω

−1
2 u + Ω−1

3 v

⎤
⎦ + zr,

ye = Ψe

⎡
⎣ 0k−p−s

Deu
0ne+p−k

⎤
⎦ + ze.

(5.78)

In (5.77), we select v = [v1, v2, . . . , vp]
T to be a vector of i.i.d. Gaussian random

variables with a distribution CN
(
0, P−√

P
p

)
and u = [0, . . . , 0, uν , . . . , us]

T to be a

vector of independent Gausian random variables. Here ν is the smallest integer such
that σj > 1 for all j ≥ ν and σj ≤ 1 otherwise. Each uj ∼ CN (0, α

√
P ), where

α = 1
ntσmax(Ω2)

, is chosen to meet the power constraint.

An achievable rate for this choice of parameters is

R = I(u, v; yr) − I(u, v; ye) (5.79)

= I(u; yr) − I(u; ye) + I(v; yr|u), (5.80)

where the last step follows from the fact that v is independent of (ye, u) (c.f. (5.78)).
Following (5.69), we have that

I(u; yr) − I(u; ye) =
∑

j:σj>1

log σ2
j − oP (1) (5.81)
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and

I(v; yr|u) = log det

(
I +

P −
√
P

p
Ω−1

3 Ω−†
3

)
(5.82)

= log det

(
I +

P

p
Ω−1

3 Ω−†
3

)
− oP (1) (5.83)

= log det

(
I +

P

p
HrH

⊥
e H†

r

)
− oP (1), (5.84)

where (5.83) follows from the fact that log(1 + x) is a continuous function of x and
log det(I + X) =

∑
log(1 + λi(X)) and the last step follows from (5.61).

To establish the upper bound, use the following choices for Θ and Φ in (5.70).

Θ = Ψr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣

k−s−p s ne+p−k

nr−s−p 0
s DrD

−1
e

p F31 F32 0

⎤
⎦
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Ψ†
e, (5.85)

and

Φ = Ψr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣

k−s−p s ne+p−k

nr−s−p 0
s Δ
p 0

⎤
⎦
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Ψ†
e (5.86)

where Δ is defined in (5.75), and the matrices

F32 = T32Ω2D
−1
e

F31 = (T31 − F32DeT21)Ω1

(5.87)

are selected such that

Hr − ΘHe

= Ψr([ΣrΩ
−1, 0nr×nt−k]

− Ψ†
rΘΨe[ΣeΩ

−1, 0ne×nt−k])Ψ
†
t (5.88)

= Ψr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣

k−p−s s p nt−k

nr−s−p 0
s 0
p Ω−1

3 0

⎤
⎦
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Ψ†
t. (5.89)
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I + HeffΘH†
eff + ΘΘ† − ΘΦ† − ΦΘ†

= Ψr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣

nr−s−p s p

nr−s−p I

s I + (DrD
−1
e )2 − 2DrD

−1
e Δ (DrD

−1
e − Δ)F†

32

p F32(DrD
−1
e − Δ) I + F31F

†
31 + F32F

†
32 + Ω−1

3 QΩ−†
3

⎤
⎦
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Ψ†
r

(5.92)

The upper bound expression (5.70) can now be simplified as follows.

HeffKPH
†
eff = (Hr −ΘHe)KP(Hr −ΘHe)

†

= Ψr

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎣

nr−p−s s p

nr−p−s 0
s 0

p Ω−1
3 QΩ−†

3

⎤
⎦
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Ψ†
r , (5.90)

where Q is related to KP by,

Ψ†
tKPΨt =

⎡
⎢⎢⎣

k−p−s s p nt−k

k−p−s � � � �
s � � � �
p � � Q �

nt−k � � � �

⎤
⎥⎥⎦ (5.91)

and satisfies tr(Q) ≤ P . From (5.90), (5.86) and (5.85), we have that the numerator
in the upper bound expression (5.70) simplifies as in (5.92).

Using (5.92) and the Hardamard inequality, we have

log det(I + HeffΘH†
eff + ΘΘ† −ΘΦ† − ΦΘ†)

≤ log det(I + (DrD
−1
e )2 − 2DrD

−1
e Δ)

+ log det(I + F31F
†
31 + F32F

†
32 + Ω−1

3 QΩ−†
3 )

(5.93)

Substituting this relation in (5.70), the upper bound reduces to,

R+(P ) ≤ log
det(I + (DrD

−1
e )2 − 2DrD

−1
e Δ)

det(I − Δ2)

+ max
Q�0:

tr(Q)≤P

log det(I + F31F
†
31 + F32F

†
32 + Ω−1

3 QΩ−†
3 )

(5.94)
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Substituting for Dr and De from (5.51) and for Δ from (5.75), we have that

log
det(I + (DrD

−1
e )2 − 2DrD

−1
e Δ)

det(I −Δ2)
=

∑
j:σj>1

log σ2
j . (5.95)

It remains to establish that

max
Q�0:

tr(Q)≤P

log det(I + F31F
†
31 + F32F

†
32 + Ω−1

3 QΩ−†
3 )

≤ log det

(
I +

P

p
HrH

⊥
e H†

r

)
+ oP (1),

(5.96)

which we now do.

Let
γ = σmax(F31F

†
31 + F32F

†
32), (5.97)

denote the largest singular value of the matrix F31F
†
31 + F32F

†
32. Since log-det is

increasing on the cone of positive semidefinite matrices, we have that,

max
Q�0:

tr(Q)≤P

log det(I + F31F
†
31 + F32F

†
32 + Ω−1

3 QΩ−†
3 )

≤ max
Q�0:

tr(Q)≤P

log det((1 + γ)I + Ω−1
3 QΩ−†

3 ) (5.98)

= log det

(
(1 + γ)I +

P

p
Ω−1

3 Ω−†
3

)
+ oP (1) (5.99)

= log det

(
I +

P

p
Ω−1

3 Ω−†
3

)
+ oP (1)

= log det

(
I +

P

p
HrH

⊥
e H†

r

)
+ oP (1) (5.100)

where (5.98) follows from the fact that F31F
†
31 +F32F

†
32 � γI, and (5.99) follows from

the fact that water-filling provides a vanishingly small gain over flat power allocation
when the channel matrix has a full rank (see e.g., [36]) and (5.100) follows via (5.61).

5.4.2 Synthetic noise transmission strategy

The transmission scheme is based on a particular choice of (x, u) in the binning
scheme (5.6). Let b1, . . . , bnt be independent Gaussian random variables sampled
according to CN (0, Pt), where Pt = P

nt
. Let Hr = UΛV†

r , be the compact SVD of
Hr. Since rank(Hr) = nr, note that U ∈ Cnr×nr is a unitary matrix and Λ ∈ Cnr×nr

is a diagonal matrix. Let V = [v1, . . . ,vnr ] ∈ Cnt×nr and let {vj}nt
j=1 constitute an
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orthogonal basis in Cnt . Our choice of parameters is,

x =

nt∑
j=1

bjvj, u = (b1, . . . , bnr). (5.101)

Here the symbols in u are the information bearing symbols from a corresponding
codeword, while the symbols (bnr+1, . . . , bnt) are synthetic noise symbols transmitted
in the null space of the legitimate receiver’s channel in order to confuse a potential
eavesdropper. We first show, via straightforward computation, that this choice of
parameters, results in a rate of

RSN(P ) = log det
(
I + εtΛ

−2
)

+ log det(Hr(εtI + H†
eHe)

−1H†
r).

(5.102)

where εt = 1
Pt

. First note that

I(u; ye) = log det(I + PtHrH
†
r)

= log det(I + PtΛ
2) (5.103)

In the following, let Vn = [vnr+1, . . . ,vnt ] denote the vectors in the null space of Hr.

I(u; ye) = h(ye) − h(ye|u)

= log det(I + PtHeH
†
e) − log det(I + PtHeVnV

†
nH

†
e)

= log det(I + PtHeH
†
e) − log det(I + PtHe(I − VV†)H†

e)

= log det(I + PtH
†
rHr) − log det(I + Pt(I − VV†)H†

eHe)

= − log det(I − Pt(I + PtH
†
eHe)

−1(VV†H†
eHe))

= − log det(I − PtV
†H†

eHe(I + PtH
†
eHe)

−1V))

= − log det(V†(I + PtH
†
eHe)

−1V)

Where we have repeatedly used the fact that det(I+AB) = det(I+BA) for any two
matrices A and B of compatible dimensions.

RSN(P ) = log det(I + PtΛ
2) + log det(V†(I + PtH

†
eHe)

−1V).

Since U and Λ are square and invertible,

RSN(P )

= log det(I + εtΛ
−2)

+ log det(UΛV†(εtI + H†
eHe)

−1VΛU†)

= log det(I + εtΛ
−2) + log det(Hr(εtI + H†

eHe)
−1H†

r),

as required.

We now establish (5.13). First we use the following facts
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Fact 12 (Taylor Series Expansion [44]) Let M be an invertible matrix. Then

(εI + M)−1 = M−1 +O(ε), (5.104)

where O(ε) represents a function that goes to zero as ε→ 0.

Fact 13 Suppose that Hr and He be the channel matrices as in (5.1), and suppose
that rank(Hr) = nr and rank(He) = nt and nr ≤ nt ≤ ne. Let σ1, σ2 . . . , σs denote
the generalized singular values of (Hr,He) (c.f. (5.52)). Then

det
(
Hr(H

†
eHe)

−1H†
r

)
=

s∏
j=1

σ2
j (5.105)

The proof follows by direct substitution of the GSVD expansion (5.48) and will be
omitted.

Finally, to establish (5.13), we take the limit εt → 0 in (5.102)

RSN(P ) = log det
(
I + εtΛ

−2
)

+ log det(Hr(εtI + H†
eHe)

−1H†
r)

= log det(Hr((H
†
eHe)

−1 +O(εt))H
†
r) +O(εt) (5.106)

= log det(Hr(H
†
eHe)

−1H†
r)

+ log det(I + (H†
eHe)

−1/2O(ε)(H†
eHe)

−†/2)

=

s∑
j=1

log σ2
j +O(εt). (5.107)

where we use Facts 12 and 13 above in (5.106) and (5.107) above and the fact that
log det(I + X) =

∑
j log(1 + λj(X)) is continuous in the entries of X.

5.5 Zero-Capacity Condition and Scaling Laws

We first establish the zero capacity condition in Lemma 6

Proof. When Null(Hr)
⊥⋂

Null(He) �= {}, clearly, σmax(Hr,He) = ∞. Otherwise,
it is known (see e.g., [19]) that σmax(·) is the largest generalized singular value of
(Hr,He) as defined in (5.52).

To establish that the capacity is zero, whenever σmax(Hr,He) ≤ 1, it suffices to
consider the high SNR secrecy capacity in (5.11) in Theorem 14, which is clearly zero
whenever σmax() ≤ 1.

If σmax > 1, let v there exists a vector v such that ||Hrv|| > ||Hev||. Select
x = u ∼ CN (0, Pvv†) in (5.6). Clearly C(P ) ≥ R−(P ) > 0 for all P > 0.

For our scaling analysis, we use the following convergence property of the largest
generalized singular value for Gaussian matrices.
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Fact 14 ( [47, 3]) Suppose that Hr and He have i.i.d. CN (0, 1) entries. Let nr, ne, nt →
∞, while keeping nr/ne = γ and nt/ne = β fixed. If β < 1, then the largest generalized
singular value of (Hr,He) converges almost surely to

σmax(Hr,He)
a.s.→ γ

⎡
⎢⎢⎣

1 +

√
1 − (1 − β)

(
1 − β

γ

)
1 − β

⎤
⎥⎥⎦

2

. (5.108)

By combining Lemma 6 and Fact 14, one can deduces the zero-capacity condition
in Corollary 7.

5.6 Conclusion

We establish the secrecy capacity of the MIMOME channel as a saddle point solu-
tion to a minimax problem. Our capacity result establishes that a Gaussian input
maximizes the secrecy capacity expression by Csiszár and Körner for the MIMOME
channel. Our proof uses upper bounding ideas from the MIMO broadcast channel
literature and the analysis of optimality conditions provides insight into the struc-
ture of the optimal solution. Next, we develop an explicit expression for the secrecy
capacity in the high SNR regime in terms of the generalized singular value decompo-
sition (GSVD) and show that in this case, an optimal scheme involves simultaneous
diagonalization of the channel matrices to create a set of independent parallel channel
and using independent codebooks across these channels. We also study a synthetic
noise transmission scheme that is “semi-blind” as it selects the transmit directions
based on the legitimate receiver’s channel only and compare its performance with the
capacity achieving scheme. Finally, we study the conditions under which the secrecy
capacity is zero and study its scaling laws in the limit of many antennas.
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Chapter 6

Secret-key generation with sources
and channels

So far this thesis has focussed on variations of the wiretap channel model. As we
discussed in the introductin, a related approach for generating secret keys between
two terminals using correlated sources has been studied by Maurer [37] and Ahlswede
and Csiszar [2]. As shows in Fig. 6-1, the two legitimate terminals, observe a pair of
correlated sources (uN , vN) and through public discussion on the noiseless channel,
distill a common secret key that must be concealed from the eavesdropper. In this
chapter we extend their results to the case when the underlying channel is not a
noiseless bit-pipe but rather a wiretap channel, see Fig. 6-2. Note that there are two
types of uncertainties at the eavesdropper — correlated sources and wiretap channel.
We develop insights into efficient code designs for secret-key generation in this joint
source-channel setup.

6.1 Source-Channel Model

The channel from sender to receiver and wiretapper is a discrete-memoryless-channel
(DMC), p(y , z |x). The sender and intended receiver observe discrete-memoryless-

A B

N o i s e l e s s  C h a n n e l

W i r e t a p p e r

F

uN
vN

K K̂

Figure 6-1: The problem of secret key generation using correlated sources. Terminals
A and B observe a pair
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E n c .

d e c

 w. t .

uN

vN

p(y , z |x)
xn

yn

zn

Figure 6-2: Wiretap channel model with Correlated sources

multiple-source (DMMS) p(u, v) of length N and communicate over n uses of the
DMC

A (n,N) secrecy code for this setup consists of a (possibly stochastic) function1

fn : UN → X n, that maps the observed source sequence to the channel output, and
two key generation functions Kn = Kn(UN ,X n) and Ln = Ln(VN ,Yn). A secret-key
rate R is achievable with bandwidth expansion factor β if there exists a sequence of
(n, βn) codes, such that for a sequence εn that approaches zero as n → ∞, we have
(i) Pr(Kn �= Ln) ≤ εn (ii) 1

n
H(Kn) ≥ R − εn (iii) 1

n
I(Kn; zn) ≤ εn. The secret-key-

capacity is the supremum of all achievable rates.

For some of our results, we will also consider the case when the wiretapper observes
a side information sequence wN sampled i.i.d. pw(). In this case, the secrecy condition
in (iii) above is replaced with

1

n
I(Kn; zn,wN) ≤ εn (6.1)

6.2 Statement of Main Result

Lemma 11 Suppose that t is a random variable such that t → u → v , and a and
b are random variables such that b → a → x → (y , z) holds and I(y ; b) ≤ I(z ; b).
Further define,

Rch = I(a; y), (6.2a)

R−
eq = I(a; y |b)− I(a; z |b) (6.2b)

Rs = I(t; v), (6.2c)

Rwz = I(t; u) − I(t; v). (6.2d)

Suppose that the random variables t, a and b satisfy

βRwz ≤ Rch, (6.3)

1The alphabets associated with random variables will be denoted by calligraph letters. Random
variables are denoted by sans-serif font, while their realizations are denoted by standard font. A
length n sequence is denoted by xn.
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then

R−
key = βRs +R−

eq, (6.4)

is an achievable secret-key rate.

Lemma 12 An upper bound on the secret-key rate is given by,

R+
key = sup

{(x ,t)}

{
βRs +R+

eq

}
, (6.5)

where the supremum is over all distributions over the random variables (x , t) that
satisfy t → u → w , the cardinality of t is at-most the cardinality of u plus one, and

I(x ; y) ≥ βRwz. (6.6)

The quantities Rs and Rwz are defined in (6.2c) and (6.2d) respectively and

R+
eq = I(x ; y | z). (6.7)

Furthermore, it suffices to consider only those distributions where (x , t) are indepen-
dent.

6.2.1 Reversely degraded parallel independent channels

Our bounds coincide the the case of reversely degraded parallel independent channels.
Consider M parallel independent channels, where channel i for 1 ≤ i ≤ M has
transistion probability pyi,zi|xi

such that either xi → yi → zi or xi → zi → yi holds.

Corollary 8 The secret-key-capacity for the reversely degraded parallel independent
channels is given by

Ckey = max
{(x1,...,xM ,t)}

{
βI(v ; t) +

M∑
i=1

I(xi; yi|zi)

}
, (6.8)

where the random variables (x1, . . . , xM , t) are mutually independent, t → u → v , and

M∑
i=1

I(xi; yi) ≥ β{I(u; t) − I(v ; t)} (6.9)

A Gaussian reversely degraded parallel channel has yi = xi + nr,i and zi = xi +
ne,i where nr,i and ne,i have variances equal to N (0, σ2

r,i) and N (0, σ2
e,i) respectively.

Furthermore, if xi → yi → zi holds, then yi = xi + nr,i and zi = yi + Δne,i else, if
xi → zi → yi then zi = xi + ne,i and yi = zi + Δnr,i holds, where the random variables
Δn are defined as the difference between the two noise variables. We assume that the
input satisfies a sum power constraint i.e.,

∑n
i=1E[x2

i ] ≤ P . Furthermore we assume
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that u and v are jointly Gaussian (scalar valued) random variables, and without loss
of generality we assume that u ∼ N (0, 1) and v = u + s, where s ∼ N (0, S) is
independent of u.

Corollary 9 The secret-key capacity for the case of Gaussian parallel channels and
Gaussian sources, as described above, is obtained by optimizing (6.8) and (6.9) over
independent Gaussian distributions i.e., we can select xi ∼ N (0, Pi) and u = t + d ,
for some d ∼ N (0, D), independent of t and

∑n
i=1 Pi ≤ P , Pi ≥ 0, and 0 < D ≤ 1,

CG
key = max

{Pi}M
i=1,D

⎧⎪⎪⎨
⎪⎪⎩
β

2
log

(
1 + S

D + S

)
+

∑
i:1≤i≤M
σr,i≤σe,i

1

2
log

(
1 + Pi/σ

2
r,i

1 + Pi/σ2
e,i

)⎫⎪⎪⎬
⎪⎪⎭ , (6.10)

where D,P1, . . . , PM also satisfy the following relation:

M∑
i=1

1

2
log

(
1 +

Pi

σ2
r,i

)
≥ 1

2
log

(
1

D

)
− 1

2
log

(
1 + S

D + S

)
(6.11)

A few remarks follow. Note that the secret-key capacity expression (6.8) exploits
both the source and channel uncertainties at the wiretapper. By setting either un-
certainty to zero, one can recover known results. I(u; v) = 0, i.e., there is no secrecy
from the source, then the secret-key-rate equals the wiretap capacity [53]. If instead,
x → z → y , i.e., there is no secrecy from the channel, then our result essentially
reduces to the result by Narayan and Csiszar [10], that consider the case when the
channel is a noiseless bit-pipe with finite rate.

In general, the setup of wiretap channel involves a tradeoff between information
rate and equivocation. The secret-key generation setup provides an operational signif-
icance to this tradeoff. Note that the capacity expression (6.8) in Corollary 8 involves
two terms. The first term βI(t; v) is the contribution from the correlated sources.
In general, this quantity increases by increasing the information rate I(x ; y) as seen
from (6.9). The second term, I(x ; y |z) is the equivocation term and increasing this
term, often comes at the expense of the information rate. Maximizing the secret-key
rate, involves operating on a certain point on the rate-equivocation curve and thus
provides an operational significance to the rate equivocation tradeoff.

Example

It is instructive to illustrate this tradeoff by a numerical example. Consider two
parallel channels,

y1 = a1x + nr,1, z1 = b1x + ne,2

y2 = a2x + nr,2, z2 = y2

(6.12)

where a1 = 1, a2 = 2, and b1 = 0.5. Furthermore, u ∼ N (0, 1) and v = u + s, where
s ∼ N (0, 1) is independent of u. The noise rv’s are all CN (0, 1) and appropriately
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Figure 6-3: Tradeoff inherent in the secret-key-capacity formulation. The solid curve
is the rate equivocation region for the parallel Gaussian channel (6.12). The dotted
curve represents the quantity I(t; v) as a function of the rate, while the dashed curve
is the secret-key rate, which is the sum of the other two curves. The secret-key rate
is maximized at a point between the maximum equivocation and maximum rate.

correlated so that the users are degraded on each channel. A total power constraint
P = 1 is selected and the bandwidth expansion factor β equals unity.

In this example, the optimization in Corollary 9, takes the form:

Ckey = max
P1,P2,D

Req(P1, P2) +RΔ(D), (6.13)

such that, (6.14)

RΔ(D) =
1

2
log

2

1 +D
≤ R(P1, P2), (6.15)

P1 + P2 ≤ P (6.16)

where

R(P1, P2) =
1

2

(
log

(
1 + a2

1P1

)
+ log(1 + a2

2P2)
)
, (6.17)

and

Req(P1, P2) =
1

2

(
log(1 + a2

1P1) − log(1 + b21P1)
)

(6.18)

denote the rate and equivocation respectively.
First note that this example captures the inherent tradeoff between information

rate and equivocation. To maximize the information rate, one maximizes R(P1, P2)
and this involves in general allocating power over both the sub-channels. To max-
imize equivocation, one must allocate all the power on the first sub-channel. The
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second sub-channel is useless from the secrey point of view as y2 = z2. Figure 6-2
illustrates the (fundamental) tradeoff between rate and equivocation for this channel,
which is obtained as we vary power allocation between the two sub-channels. The
power allocation that maximizes the equivocation is P1 = 1 and P2 = 0 while the
power allocation that maximizes the Shannn capacity is obtained by the water-filling
equations (see e.g., [6]). On the other hand, the source-term I(t; v) monotonically
increases with the rate, as shown in the figure. The optimal operating point that
maximizes the secret-key capacity (c.f. (6.14)) is also illustrated in the figure.

6.2.2 Side information at the wiretapper

So far, we have focussed on the case when there is no side information at the wire-
tapper. This assumption is valid for certain application such as biometrics, when
the correlated sources constitute successive measurements of a person’s biometric. In
other applications, such as sensor networks, it is more realistic to assume that the
wiretapper also has access to a side information sequence.

We consider the setup described in Fig. 6-2, but with a modification that the
wiretapper observes a source sequence wN , obtained by N− independent samples of
a random variable w . In this case the secrecy condition takes the form in (6.1). We
only consider the case when the sources and channels satisfy a degradedness condition.

Lemma 13 Suppose that the random variables (u, v ,w) satisfy the degradedness con-
dition u → v → w and the broadcast channel is also degraded i.e., x → y → z. Then,
the secret-key-capacity is given by

Ckey = max
(x ,t)

{β(I(t; v) − I(t; w)) + I(x ; y |z)} , (6.19)

where the maximization is over all random variabes (t, x) that are mutually indepen-
dent, t → u → v → w and

I(x ; y) ≥ β(I(v ; t) − I(u; t)) (6.20)

holds. Furthermore, it suffices to optimize over random variables t whose cardinality
does not exceed that of u plus two.

6.3 Achievability: Coding Theorem

We demonstrate the coding theorem in the special case when a = x and b = 0 in
Lemma 11. Accordingly we have that (6.2a) and (6.2b) reduce to

Rch = I(x ; y) (6.21a)

R−
eq = I(x ; y)− I(x ; z) (6.21b)

The more general case, can be incorporated by introducing an auxiliary channel
a → x and superposition coding [9]. Furthermore, in our discussion below we will
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2N(I(t;u)−I(t;v)) bins

2N(t;v) cws/bin

Figure 6-4: Source-Channel Code Design for secret-key distillation problem. The
source sequence uN is mapped to a codeword in a Wyner-Ziv codebook. This code-
word determines the secret-key via the secret-key codebook. The bin index of the
codeword constitutes a message in the wiretap codebook.

assume that the distributions pt|u and px are selected such that, for a sufficiently small
but fixed δ > 0, we have

βRwz = Rch − 3δ. (6.22)

We note that the optimization over the joint distributions in Lemma 11 is over the
region βRwz ≤ Rch. If the joint distributions satisfy that βRwz = α(Rch − 3δ) for
some α < 1, one can use the code construction below for a bock-length αn and then
transmit an independent message at rate R−

eq using a perfect-secrecy wiretap-code.
This provides a rate of

α

(
β

α
Rwz +R−

eq

)
+ (1 − α)R−

eq = R−
eq + βRwz,

as required.

6.3.1 Codebook Construction

Our codebook construction is as shown in the Fig. 6-4.
It consists of three codebooks: Wyner-Ziv codebook, secret-key codebook and a

wiretap codebook that are constructed via a random coding construction. In our
discussion below we will be using the notion of strong typicality. Given a random
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Figure 6-5: Equivocation at the eavesdropper through the source-channel codebook.

variable t, the set of all sequences of length N and type that coincides with the
distribution pt is denoted by TN

t . The set of all sequences whose emperical type is in
an ε-shell of pt is denoted by TN

t,ε. The set of jointly typical sequences are defined in
an analogous manner. Given a sequence uN of type TN

u , the set of all sequences vN

that have a joint type of pu,v () is denoted by TN
u,v (u

N). We will be using the following
properties of typical sequences

|TN
t,ε| = exp(N(H(t) + oε(1))) (6.23a)

Pr(tN = tN ) = exp(−N(H(t) + oε(1))), ∀ tN ∈ TN
t,ε (6.23b)

Pr(tN ∈ TN
t,ε) ≥ 1 − oε(1), (6.23c)

where oε(1) is a term that approaches zero as N → ∞ and ε → 0.

For fixed, but sufficiently small constants δ > 0 and η = δ/β > 0, let,

MWZ = exp(N(Rs − η)) (6.24a)

NWZ = exp(N(Rwz + 2η)) (6.24b)

MSK = exp(n(I(x ; z) − δ)) (6.24c)

NSK = exp(n(βRs +R−
eq − δ)) (6.24d)

Substituting (6.2a)-(6.2d) and (6.22) into (6.24a)-(6.24d) we have that

Ntot � MSK ·NSK = MWZ ·NWZ = exp(N(I(t; u) + η)) (6.25)

We construct the Wyner-Ziv and secret-key codebooks as follows. Randomly
and independently select Ntot sequences from the set of t−typical sequences TN

t .
Denote this set T . Randomly and independently partition this set into the following
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codebooks2:

• Wyner-Ziv codebook with NWZ bins consisting of MWZ sequences. The jth

sequence in bin i is denoted by tN
ij,WZ.

• Secret-key codebook with NSK bins consisting of MSK sequences. The jth se-
quence in bin i is denoted by tN

ij,SK.

We define two functions ΦWZ : T → {1, . . . , NWZ} and ΦSK : T → {1, . . . , NSK}
as follows.

• ΦWZ(tN) = i, if ∃j ∈ [1,MWZ], such that tN = tN
ij,WZ.

• ΦSK(tN) = i, if ∃j ∈ [1,MSK] such that tN = tN
ij,SK.

The channel codebook consists of NWZ = exp(n(Rch − δ)) sequences xn uniformly
and independently selected from the set of x−typical sequences T n

x . The channel
encoding function maps message i into the sequence xn

i , i.e., Φch : {1, . . . , NWZ} → X n

is defined as Φch(i) = xn
i .

6.3.2 Encoding

Given a source sequence uN , the encoder produces a secret-key k and a transmit
sequence xN as shown in Fig. 6-4.

• Find a sequence tN ∈ T such that (uN , tN) ∈ TN
ut,ε. Let E1 be the even that no

such tN exists.

• Compute φ = ΦWZ(tN) and k = ΦSK(tN). Declare k as the secret-key.

• Compute xn
i = Φch(φ), and transmit this sequence over n−uses of the DMC.

6.3.3 Decoding

The main steps of decoding at the legitimate receiver are shown in Fig. 6-4.

• Given a received sequence yn, the sender looks for a unique index i such that
(xn

i , y
n) ∈ T n

xy ,ε. An error event E2 happens if xn
i is not the transmitted code-

word.

• Given the observed source sequence vN , the decoder then searches for a unique
index j ∈ [1,MWZ] such that (tNij,WZ, v

N) ∈ TN
tv ,ε. An error event E3 is declared

if a unique index does not exist.

• The decoder finds indices k̂ and l̂ such that tNij,WZ = tN
k̂l̂,SK

. The secret-key is

declared as k̂.
2As will be apparent in the analysis, the only pairwise independence is required be-

tween the codebooks i.e., ∀tN , t̂N ∈ T , Pr
(
ΦWZ(tN ) = ΦWZ(t̂N )|ΦSK(tN ) = ΦSK(t̂N )

)
=

Pr
(
ΦWZ(tN ) = ΦWZ(t̂N )

)
= 1

NWZ
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6.3.4 Error Probability Analysis

The error event of interest is E = {k �= k̂}. We argue that selecting n → ∞ leads to
Pr(E) → 0.

In particular, note that Pr(E) = Pr(E1 ∪ E2 ∪ E3) ≤ Pr(E1) + Pr(E2) + Pr(E3). We
argue that each of the terms vanishes with n→ ∞.

Recall that E1 is the event that the encoder does not find a sequence in T typical
with uN . Since T has exp(NI(u; t) + η) sequences randomly and uniformly selected
from the set TN

t , we have that Pr(E1) → 0.

Since the number of channel codewords equals NWZ = exp n(I(x ; y) − δ), and
the codewords are selected uniformly at random from the set T n

x ,ε, the error event
Pr(E2) → 0.

Finally, since the number of sequences in each bin satisfiesMWZ = exp(N(I(t; v) − η)),
joint typical decoding guarantees that Pr(E3) → 0.

6.3.5 Secrecy Analysis

In this section, that for the coding scheme discussed above, the equivocation at the
eavesdropper is close (in an asymptotic sense) to Rkey.

First we establish some uniformity properties which will be used in the subsequent
analysis.

Uniformity Properties

In our code construction ΦWZ satisfies some useful properties which will be used in
the sequel.

Lemma 14 The random variable ΦWZ satisfies the following relations

1

n
H(ΦWZ) = βRWZ + oη(1) (6.26a)

1

n
H(tN |ΦWZ) = βI(t; v) + oη(1) (6.26b)

1

n
H(ΦWZ|zn) = I(x ; y)− I(x ; z) + oη(1) (6.26c)

where oη(1) vanishes to zero as we take η → 0 and N → ∞ for each η.

Proof. Relations (6.26a) and (6.26b) can be established by using the properties of
typical sequences (c.f. (6.23a)-(6.23c)).

Let us define the function ΓWZ : T → {1, . . . ,MWZ} to identify the position of the
sequence tN ∈ T in a given bin i.e., ΓWZ(tN

ij,WZ) = j.
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Note that

Pr(ΓWZ = j,ΦWZ = i) ≤
∑

uN∈Tu,t,η(tNij,WZ)

Pr(uN ) (6.27)

=
∑

uN∈Tu,t,η(tNij,WZ)

exp(−N(H(u) + oη(1))) (6.28)

= exp(N(H(u|t) + oη(1))) exp(−N(H(u) + oη(1))) (6.29)

= exp(−N(I(t; u) + oη(1))) (6.30)

where (6.27) follows from the construction of the joint-typicality encoder, (6.28)
from (6.23b) and (6.29) from (6.23a). Marginalizing (6.27), we have that

Pr(ΦWZ = i) =

MWZ∑
j=1

Pr(ΓWZ = j,ΦWZ = i)

≤MWZ exp(−N(I(t; u) + oη(1)))

= exp(−N(I(t; u) − I(t; v) + oη(1)))

= exp(−N(RWZ + oη(1))) (6.31)

Eq. (6.26a) follows from (6.31) and the continuity of the entropy function. Fur-
thermore, we have from (6.30) that

1

N
H(ΦWZ,ΓWZ) = I(t; u) + oη(1). (6.32)

The relation (6.26b) follows by substituting (6.26a), since

1

N
H(tN |ΦWZ) =

1

N
H(ΓWZ|ΦWZ) =

1

N
H(ΓWZ,ΦWZ)− 1

N
H(ΦWZ) = I(t; v)+oη(1).

(6.33)

Relation (6.26c) follows from the secrecy analysis of the channel codebook when
the message is ΦWZ. The details can be found in e.g., [53].

Furthermore the joint construction of the secret-key codebook and Wyner-Ziv
codebook is such that the eavesdropper can decode the sequence tN if it is revealed
the secret-key ΦSK = k in addition to its observed sequence zn. In particular

Lemma 15
1

n
H(tN |zn, k) = oη(1). (6.34)

Proof. We show that there exists a decoding function g : Zn × {1, 2, . . . , NSK} → T
that such that Pr(tN �= g(zn, k)) → 0 as n → ∞. In particular, the decoding
function g(·, ·) searches for the sequences in the bin associated with k in the secret-
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key codebook, whose bin-index in the Wyner-Ziv codebook maps to a sequence xn
i

jointly typical with the received sequence zn. More formally,

• Given zn, the decoder constructs a the set of indices Ix = {i : (xn
i , z

n) ∈ T n
xz ,ε}.

• Given k, it constructs a set of sequences, S =
{
tN
kjSK : ΦWZ(tN

kj,SK) ∈ Ix, 1 ≤ j ≤MSK,
}
.

• If S contains a unique sequence t̂N , it is declared to be the required sequence.
An error event is defined as

J = {t̂N �= tN}
=
{
∃j, 1 ≤ j ≤MSK,ΦWZ(tN

k,j,SK) ∈ Ix, j �= j0
}
, (6.35)

where j0 is the index of the sequence tN in bin k of the secret-key codebook,
i.e., tN

kj0,SK = tN .

We now use the properties of typical sequences (6.23a)-(6.23c) to show that
Pr(J ) → 0 as n → ∞. We begin by defining the event that the sequence tN /∈ S,
which is equivalent to

J0 =
{
ΦWZ(tN

k,j0,SK) /∈ Ix

}
.

From (6.23c) we have that Pr(J0) = oη(1). Furthermore,

Pr(J ) ≤ Pr(J |J c
0 ) + Pr(J0)

≤
MSK∑
j=1

Pr(Jj|J c
0 ) + oη(1), (6.36)

where the event Jj, defined as

Jj =
{
ΦWZ(tN

k,j,SK) ∈ Ix

}
, j = 1, 2, . . .MSK, j �= j0

is the event that the sequence tN
kjSK ∈ S.

To upper bound the event Jj, we will consider the collision event that tN
kj,SK and

tN
kj0,SK belong to the same bins in the in the Wyner-Ziv codebook i.e.,

Jcol,j =
{
ΦWZ(tN

kj,SK) = ΦWZ(tN
kj0,SK)

}
, j = 1, 2, . . . ,Msk, j �= j0.

By the union bound,

Pr(Jj|J c
0 ) ≤ Pr(Jj|J c

0 ∩ J c
col,j) + Pr(Jcol,j|J c

0 ). (6.37)

We bound each of the two terms in (6.37). The first term is conditioned on the
event that the sequences tN

kj,SK and tN
kj0,SK are assigned to independent bins in the

Wyner-Ziv codebook. This event is equivalent to the event that a randomly selected
sequence xN belongs to the typical set Ix. The error event is bounded as [6]

128



Pr(Jj|J c
0 ∩ J c

col,j) ≤ exp(−n(I(x ; z) − 3ε)). (6.38)

The second term in (6.37) is the collision event. Since the code construction
partitions assigns the sequences tN

kj,SK and tN
kj0,SK to independent bins, and channel

error event is independent of this partitioning, we have

Pr(Jj|J c
0 ) = Pr(Jj)

= exp(−n(βRWZ + 2δ))

= exp(−n(βI(x ; y) − δ)) (6.39)

Substituting (6.39) and (6.38) into (6.37), we have

Pr(Jj|J c
0 ) ≤ exp(−n(I(x ; z) − 3ε)) + exp(−n(βI(x ; y) − δ))

≤ exp(−n(I(x ; z) − 4ε)), n ≥ n0, (6.40)

where we use the fact that I(x ; y) > I(x ; z) in the last step so that the required n0

exists.
Finally substituting (6.40) into (6.36) and using relation (6.24c) for MSK, we have

that

Pr(J ) ≤ exp(−n(δ − 4ε)) + oη(1), (6.41)

which vanishes with n, whenever the decoding function selects ε < δ/4.
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Equivocation Analysis

It remains to show that the equivocation rate at the eavesdropper approaches the
secret-key rate as n→ ∞, which we do below.

H(k|zn) = H(k, tN |zn) −H(tN |zn, k)

= H(tN |zn) −H(tN |zn, k) (6.42)

= H(tN ,ΦWZ|zn) −H(tN |zn, k) (6.43)

= H(tN |ΦWZ, z
n) +H(ΦWZ|zn) −H(tN |zn, k)

= H(tN |ΦWZ) +H(ΦWZ|zn) −H(tN |zn, k), (6.44)

= nβI(t; v) + n{I(x ; y) − I(x ; z)} + noη(1) (6.45)

= n(Rkey + oη(1)), (6.46)

where (6.42) and (6.43) follow from the fact that ΦWZ is a deterministic function of tN

and (6.44) follows from the fact that tN → ΦWZ → zn holds for our code construction.
and (6.45) step follows from (6.26b) and (6.26c) in Lemma 14 and Lemma 15.

6.4 Proof of the Upper bound (Lemma 12)

Given a sequence of (n,N) codes that achieve a secret-key-rate Rkey, there exists a
sequence εn, such that εn → 0 as n→ ∞, and

1

n
H(k|yn, vN) ≤ εn (6.47a)

1

n
H(k|zn) ≥ 1

n
H(k) − εn. (6.47b)

We can now upper bound the rate Rkey as follows.

nRkey = H(k)

= H(k|yn, vN) + I(k; yn, vN)

≤ nεn + I(k; yn, vN) − I(k; zn) + I(k; zn) (6.48)

≤ 2nεn + I(k; yn, vN) − I(k; zn) (6.49)

= 2nεn + I(k; yn) − I(k; zn) + I(k; vN |yn)

≤ 2nεn + I(k; yn) − I(k; zn) + I(k, yn; vN) (6.50)

where (6.48) and (6.49) follow from (6.47a) and (6.47b) respectively.
Now, let J be a random variable uniformly distributed over the set {1, 2, . . . , N}

and independent of everything else. Let ti = (k, yn, vN
i+1, u

i−1
1 ) and t = (k, yn, vN

J+1, u
J−1
1 , J),

and vJ be a random variable that conditioned on J = i has the distribution of pvi
.

Note that since v is memoryless, vJ is independent of J and has the same marginal
distribution as v . Also note that t → uJ → vJ holds.
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I(k, yn; vN) =

n∑
i=1

I(k, yn; vi|v i−1
1 )

≤
N∑

i=1

I(k, yn, vn
i+1; vi)

≤
N∑

i=1

I(k, yn, vn
i+1, u

i−1
1 ; vi)

= NI(k, yn, vn
J+1, u

J−1
1 ; vJ |J)

= NI(k, yn, vn
J+1, u

J−1
1 , J ; vJ) − I(J ; vJ)

= NI(t; v) (6.51)

where (6.51) follows from the fact that vJ is independent of J and has the same
marginal distribution as v .

Next, we upper bound I(k; yn) − I(k; zn) as below. Let pxi
denote the channel

input distribution at time i and let pyi,zi
denote the corresponding output distribution.

Let px = 1
n

∑n
i=1 pxi

and let py and pz be defined similarly.

I(k; yn) − I(k; zn) ≤ I(k; yn|zn)

≤ I(xn; yn|zn) (6.52)

≤
n∑

i=1

I(xi; yi|zi) (6.53)

≤ nI(x ; y |z), (6.54)

where (6.52) follows from the Markov condition k → xn → (yn, zn) and (6.53) fol-
lows from the fact that the channel is memoryless and (6.54) follows from Jensen’s
inequality since the term I(x ; y |z) is concave in the distribution px (see e.g., [23,
Appendix-I]).

Combining (6.54) and (6.51) we have that

Rkey ≤ I(x ; y |z) + βI(v ; t), (6.55)

thus establishing the first half of the condition in Lemma 12. It remains to show that
the condition

I(t; u) − I(t; v) ≤ I(x ; y)

is also satisfied. Since uN → xn → yn holds, we have that

nI(x ; y) ≥ I(xn; yn) (6.56)

≥ I(uN ; yn) (6.57)

≥ I(uN ; yn, k) − I(vN ; yn, k) − nεn, (6.58)
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where the last inequality holds, since

I(uN ; k|yn) − I(vN ; yn, k) = −I(vN ; yn) + I(uN ; k|yn) − I(vN ; k|yn)

≤ I(uN ; k|yn) − I(vN ; k|yn)

= H(k|yn, vN) −H(k|yn, uN )

≤ nεn,

where the last step holds via (6.47a) and the fact that H(k|yn, uN ) > 0.

Continuing (6.58), we have

nI(x ; y) ≥ I(uN ; yn, k) − I(vN ; yn, k) − nεn (6.59)

=

N∑
i=1

{I(ui; y
n, k, ui−1

1 vn
i+1) − I(vi; y

n, k, ui−1
1 vn

i+1)} + nεn (6.60)

= N{I(uJ ; yn, k, uJ−1
1 vn

J+1|J) − I(vJ ; yn, k, uJ−1
1 vn

J+1|J) + εn}
= N{I(uJ ; yn, k, uJ−1

1 vn
J+1|J) − I(vJ ; yn, k, uJ−1

1 vn
J+1|J) + εn}

= N{I(uJ ; t) − I(vJ ; t) + I(vJ ; J) − I(uJ ; J) + εn}
= N{I(u; t) − I(v ; t) + εn} (6.61)

where (6.60) follows from the well known chain rule for difference between mutual
information expressions and (6.61) follows from the fact that the random variables
vJ and uJ are independent of J and have the same marginal distribution as v and u
respectively.

The cardinality bound on t is obtained via Caratheordory’s theorem and will not
be presented here.

Finally, since the upper bound expression does not depend on the joint distribution
of (t, x), it suffices to optimize over those distributions where (t, x) are independent.

6.5 Reversely Degraded Channels

6.5.1 Proof of Corollary 8

First we show that the expression is an upper bound on the capacity. From Lemma 12,
we have that

Ckey ≤ max
(x ,t)

I(x ; y |z) + βI(t; v),

where we maximize over those distributions where (x , t) are mutually independent,
t → u → v , and

I(x ; y) ≥ β(I(t; u) − I(t; v)).
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For the reversely degraded parallel independent channels, note that

I(x ; y) ≤
M∑
i=1

I(xi; yi)

I(x ; y |z) ≤
M∑
i=1

I(xi; yi|zi),

with equality when (x1, . . . , xM) are mutually independent. Thus it suffices to take
(x1, . . . , xM) to be mutually independent, which establishes that the proposed expres-
sion is an upper bound on the capacity.

For achievability, we propose a choice of auxiliary random variables (a, b) in
Lemma 11, such that the resulting expression reduces to the capacity. In partic-
ular, assume without loss in generality that for the first P channels we have that
xi → yi → zi and for the remaining channels we have that xi → zi → yi. Let
a = (x1, x2, . . . , xM) and b = (xP+1, . . . , xM) where the random variables {xi} are
mutually independent. It follows from (6.2a) and (6.2b) that

Rch =

M∑
i=1

I(xi; yi) (6.62)

R−
eq =

P∑
i=1

I(xi; yi|zi) =
M∑
i=1

I(xi; yi|zi), (6.63)

where the last equality follows since for xi → zi → yi, we have that I(xi; yi|zi) = 0.
Substituting in (6.4) and (6.3) we recover the capacity expression.

6.5.2 Gaussian Case (Corollary 9)

For the Gaussian case we show that Gaussian codebooks achieve the capacity as in
Corollary 9.

Recall that the capacity expression involves maximizing over random variables
x = (x1, . . . , xM), and t → u → v ,

Ckey =
∑

i

I(xi; yi|zi) + I(t; v) (6.64)

subjected to the constraint that E[
∑M

i=1 x2
i ] ≤ P and∑

i

I(xi; yi) ≥ I(t; u) − I(t; v). (6.65)

Let us first fix the distribution px and upper bound the objective function (6.64).
Let R � 1

β

∑M
i=1 I(xi; yi) and v = u + s, where s ∼ N (0, S) is independent of u. We
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will use the conditional entropy power inequality

exp(h(u + s|t)) ≥ exp(h(u|t)) + exp(h(s)) (6.66)

for any pair of random variables (t, u) independent of s. The equality happens if
(u, t) are jointly Gaussian.

Note that we can express (6.65) as

R+ h(v) − h(u) = h(v |t) − h(u|t) (6.67)

= h(u + s|t) − h(u|t) (6.68)

≥ 1

2
log (exp(h(u|t)) + 2πeS) − h(u|t) (6.69)

Letting

h(u|t)) =
1

2
log 2πeD, (6.70)

we have that

D ≥ S

exp(2(R+ h(v) − h(u))) − 1
(6.71)

The term I(t; v) in the objective function (6.64) can be upper bounded as

I(t; v) = h(v) − h(v |t)
= h(v) − h(u + s|t)
≤ h(v) − log(exp(h(u|s)) + 2πeS) (6.72)

=
1

2
log

1 + S

D + S
(6.73)

where (6.72) follows by the application of the EPI (6.66) and (6.73) follows via (6.70).
Thus the objective function (6.64) can be expressed as

Ckey =
∑

i

I(xi; yi|zi) +
1

2
log

1 + S

D + S
, (6.74)

where D satisfies (6.71).
It remains to show that the optimal x has a Gaussian distribution. Note that the

set of feasible distributions for x is closed and bounded and hence an optimum exists.
Also if px is any optimum distribution, we can increase both R and I(xi; yi|zi) by
replacing px with a Gaussian distribution (see e.g., [24]) with the same second order
moment. Since the objective function is increasing in both these terms, it follows
that a Gaussian px also maximizes the objective function (6.64).
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6.6 Side information at the Wiretapper

We now provide an achievability and a converse for the capacity stated in Lemma 13

6.6.1 Achievability

Our coding scheme is a natural extension of the case when w = 0. We only point
out the main differences. Recall that for the degraded channel case, Rch and R−

eq are
defined as

Rch = I(x ; y)

R−
eq = I(x ; y |z).

Furthermore, we replace Rs in (6.2c) with

Rs = I(t; v) − I(t; w). (6.75)

and the secret-key rate in (6.4) is

RLB = β{I(t; v) − I(t; w)} + I(x ; y |z). (6.76)

The codebook construction, encoding and decoding are analogous to the descrip-
tions in Sections 6.3.1, 6.3.2,and 6.3.3 respectively. The only difference is that the
Secret-Key codebook rate is adjusted to reflect (6.76) i.e., the constant MSK and NSK

in (6.24c) and (6.24d) are replaced with

MSK = exp (n(I(x ; z) + βI(w ; t) − δ)) (6.77)

NSK = exp
(
n(βRs +R−

eq − δ)
)

(6.78)

and Rs is defined in (6.75).

6.6.2 Secrecy Analysis

We show that the equivocation condition at the eavesdropper (6.1) in section ?? holds
for the code construction. This is equivalent to showing that

1

n
H(k|wN , zn) = β(I(t; v) − I(t; w)) + I(x ; y |z) + oη(n), (6.79)

which we will now do.
We first provide an alternate expression for the left hand side in (6.79).

H(k|wN , zn) = H(k, tN |wN , zn) −H(tN |k,wN , zn) (6.80)

= H(tN |wN , zn) −H(tN |k,wN , zn)

= H(tN ,ΦWZ|wN , zn) −H(tN |k,wN , zn) (6.81)

= H(ΦWZ|wN , zn) +H(tN |ΦWZ,w
N) −H(tN |k,wN , zn) (6.82)
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where (6.81) follows from the fact that ΦWZ is a deterministic function of tN , while (6.82)
follows from the fact that tN → (wN ,ΦWZ) → zn forms a Markov chain. The proof
of (6.79) is completed by showing that

1

n
H(ΦWZ|wN , zn) ≥ I(x ; y |z) + oη(1) (6.83a)

1

n
H(tN |ΦWZ,w

N) = β(I(t; v) − I(t; w)) + oη(1) (6.83b)

1

n
H(tN |k,wN , zn) = oη(1). (6.83c)

To interpret (6.83a), recall that ΦWZ is the message to the wiretap codebook. The
equivocation introduced by the wiretap codebook 1

n
H(ΦWZ|zn) equals I(x ; y |z). Eq. (6.83a)

shows that if in addition to zn, the eavesdropper has access to wN , a degraded
source, the equivocation still remains the same. Eq. (6.83b) shows that the knowl-
edge of wN reduces the list of tN sequences in any bin from exp(n(I(t; v))) to
exp(n(I(t; v) − I(t; w))), while (6.83c) shows that for the code construction, the
eavesdropper, if revealed the secret-key, can decode tN with high probability.

To establish (6.83a),

1

n
H(ΦWZ|wN , zn) ≥ 1

n
H(ΦWZ|zn, vN) (6.84)

=
1

n
H(ΦWZ|zn) − 1

n
I(ΦWZ; vN |zn)

≥ I(x ; y |z) + oη(1) − 1

n
I(ΦWZ; vN |zn), (6.85)

≥ I(x ; y |z) + oη(1) − 1

n
I(ΦWZ; vN), (6.86)

where (6.84) follows from the fact that wN → vN → uN → ΦWZ → zn, (6.85) from
Lemma 14 and (6.86) from the fact that vN → ΦWZ → zn so that

1

n
I(ΦWZ; vN |zn) ≤ 1

n
I(ΦWZ; vN). (6.87)

Thus we need to show the following.

Lemma 16
1

n
I(ΦWZ; vN) ≤ oη(1). (6.88)

Proof. From Lemma 14 note that

1

N
H(ΦWZ) = I(t; u) − I(t; v) + oη(1)
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and hence we need to show that

1

N
H(ΦWZ|vN) = I(t; u) − I(t; v) + oη(1)

as we do below.

1

N
H(ΦWZ|vN) =

1

N
H(ΦWZ, t

N |vN) − 1

N
H(tN |vN ,ΦWZ)

=
1

N
H(tN |vN) + oη(1) (6.89)

Where (6.89) follows since each bin has MWZ = exp (N(I(t; v) − η)) sequences, (from
standard joint typicality arguments) we have that

1

N
H(tN |vN ,ΦWZ) = oη(1). (6.90)

Finally
1

N
H(tN |vN) = I(t; u) − I(t; v) + oη(1),

which follows by substituting a = v , b = u and c = t and R = I(t; u) + η, in
Lemma 17 in Appendix D establishes (6.88).

To establish (6.83b), we again use Lemma 17 in Appendix D, with a = w , b = u
and c = t and R = I(t; v)−η. Finally, to establish (6.83c), we construct a decoder as
in section 6.3.5 that searches for a sequence tN

kj such that ΦWZ(tN
kj) ∈ Ix and which is

also jointly typical with wN . Since there are exp{n(I(w ; t) + I(x ; z)− η)} sequences
in the set, we can show along the same lines as in the proof of Lemma 15 that tN can
be decoded with high probability given (k, zn,wN). The details will be omitted.

6.6.3 Converse

Suppose there is a sequences of (n,N) codes that achieves a secret key (k) rate of R,
and β = N/n. Then from Fano’s inequality,

H(k|yn, vN) ≤ nεn, H(k|xn, uN ) ≤ nεn

and from the secrecy constraint.

1

n
I(k; zn,wN) ≤ εn.
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Combining these inequalities, we have that,

nRkey ≤ I(k; yn, vN) − I(k; zn,wN) + 2nεn

≤ I(k; yn, vN | zn,wN) + 2nεn

≤ h(yn | zn) + h(vN | wN) − h(yn | zn,wN , k) − h(vN | yn, zn,wN , k) + 2nεn

≤ h(yn | zn) + h(vN | wN) − h(yn | zn,wN , k, xn) − h(vN | yn, zn,wN , k, ) + 2nεn

= h(yn | zn) + h(vN | wN) − h(yn | zn, xn) − h(vN | yn, zn,wN , k, ) + 2nεn

(6.91)

≤
n∑

i=1

I(xi; yi | zi) + h(vN | wN ) − h(vN |yn,wN , k) + 2nεn (6.92)

≤ nI(x ; y | z) + h(vN | wN ) − h(vN |yn,wN , k) + 2nεn (6.93)

where the (6.91) follows from the fact that (wN , k) → (zn, xn) → yn, and (6.92)
follows from the Markov condition zn → (yn,wn, k) → vN that holds for the degraded
channel, while (6.93) follows from the fact that I(x ; y |z) is a concave function of
pxi

(see e.g., [23, Appendix-I]) and we select px(·) = 1
n

∑n
i=1 pxi

(·). Now, let ti =
(k, un

i+1v
i−1, yn), J be a random variable uniformly distributed over the set [1, 2, . . . n]

and t = (J, k, un
J+1v

J−1, yn) we have that

h(vN |yn,wN , k) =

N∑
i=1

h(vi|v i−1, yn,wN , k)

≥
N∑

i=1

h(vi|v i−1, yn,wN , uN
i+1, k)

=
N∑

i=1

h(vi|v i−1, yn,wi, u
N
i+1, k) (6.94)

= N · h(vJ |t,wJ)

where we have used the fact that (w i−1,wN
i+1) → (v i−1, yn,wi, u

N
i+1, k) → vi which can

be verified as follows

p
(
vi | wi,w

i−1,wN
i+1, v

i−1, uN
i+1, y

n, k
)

=
∑
ui=u

p
(
vi | wi, ui = u,w i−1,wN

i+1, v
i−1, uN

i+1, y
n, k

)
p
(
ui = u | wi,w

i−1,wN
i+1, v

i−1, uN
i+1, y

n, k
)

=
∑
ui=u

p (vi | wi, ui = u) p
(
ui = u | wi, v

i−1, uN
i+1, y

n, k
)

(6.95)

=p
(
vi | wi, v

i−1, uN
i+1, y

n, k
)
,

where (6.95) follows from the fact that since the sequence vN is sampled i.i.d. , we
have that

vi → (ui,wi) → (w i−1,wN
i+1, v

i−1, uN
i+1, y

n, k)
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and since u → v → w , it follows that

ui → (v i−1, uN
i+1, y

n,wi, k) → (w i−1,wN
i+1).

Since, vJ and wJ are both independent of J , we from (6.93) that

Rkey ≤ I(x ; y |z) + βI(t; v |w) + 2εn.

Finally, using the steps between (6.59)-(6.61) as in the converse for the case when
w = 0, we have that

I(x ; y) ≥ β(I(t; u) − I(t; v)), (6.96)

which completes the proof.

6.7 Conclusions

We study a joint-source channel setup for secret-key generation between two ter-
minals. Lower and upper bounds on the secret-key capacity are presented and the
capacity is established when the underlying channel constitutes parallel independent
and reversely degraded channels. When the wiretapper also has access to a corre-
lated source sequence, the secret-key-capacity is established when both the sources
and the channels of the wiretapper are a degraded version of the legitimate receiver.
This setup also provides an operational significance for the operating point on the
rate-equivocation tradeoff for the wiretap channel. This is illustrated in detail with
the example of Gaussian sources and Gaussian parallel channels.

In terms of future work, there can be many fruitful avenues to explore for secret-key
distillation in a joint-source-channel setup. One can consider multi-user extensions
of the secret-key generation problem along the lines of [11] and also consider more
sophisticated channel models such as the compound wiretap channels, MIMO wiretap
channels and wiretap channels with feedback and/or side information. Connections
of this setup to wireless channels, biometric systems and other applications can also
be interesting.
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Chapter 7

Conclusion

This thesis explores the possibility of using ideas from information theory for provid-
ing data confidentiality. The focus of this thesis was on formulating new problems
in information theory based on secrecy constraints. We studied the wiretap channel
model and discussed its extensions to parallel channels, fading channels and multi-
antenna channels. The role of source and channel coding techniques for the secret key
generation was also studied. At the time of the writing of this thesis, there seems to
be growing interest in formulating new multi-user information theory problems with
secrecy constraints. We summarize a few directions of future work below.

7.1 Future Work

7.1.1 Practical code design

The design of practical code construction for the wiretap channel is not explored in
this thesis. While Chapter 1 discusses a scalar code design for the uniform noise
model, it is unclear if this design also extends to other noise models such as the,
Gaussian noise model. A useful regime for practical code construction is the high
signal-to-noise-ratio limit. Are there efficient scalar code constructions in this regime
that achieve near optimal performance?

7.1.2 Equivocation criterion

Throughout this thesis the protocols that we consider measure equivocation level
1
n
H(w |yn

e ) at the eavesdropper. The asymptotically perfect secrecy constraint requires
that the equivocation rate equal the information rate as the block length goes to
infinity.

At what equivocation level should one operate in practice? In general this depends
on the application. If the goal is to use these protocols to transmit secret keys, a
reasonable choice is the perfect secrecy condition. Perhaps in this case, it may be
worth-while to consider even a stronger notions of secrecy as discussed in Chapter 1.
On the other hand if these protocols are used for media content delivery, then clearly
one can have a much smaller level of equivocation and operate close to the channel
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capacity. In Chapter 6 we provided a framework of joint-source-channel coding for
secret-key generation where the the equivocation point of operation lies in between
the Shannon capacity and perfect secrecy. Developing further insights on the optimal
operating point is an interesting area of further research.

7.1.3 Gains from Feedback

An interesting direction of further research is to study gains from feedback. In absence
of feedback, this thesis considers the use of diversity techniques such as multiple
antennas and fading to transmit secret information to legitimate receiver, even when
the eavesdropper has on an average a stronger channel. Feedback provides yet another
mechanism to establish secret keys when the legitimate receiver’s channel is weaker,
but statistically independent, of the eavesdropper.

7.1.4 Gaussian Model

In this thesis, our focus was on the case when both the channels of the legitimate
receiver and the eavesdropper are subjected to Gaussian noise. In many systems,
the noise may not be Gaussian, nevertheless the analysis with Gaussian noise is a
worst case analysis. However it is unclear if the assumption of Gaussian noise for the
eavesdropper’s channel is a robust assumption. Formalizing the worst case model in
a game theoretic setting could provide use insights.

142



Appendix A

Concavity of the conditional
mutual information

We establish Fact 4 i.e., for any random variables x , y , and z the quantity I(x ; y |z)
is concave in p(x).
Proof. Let t be a binary valued random variable such that: if t = 0 the induced
distribution on x is p0(x), i.e., p(y , z , x |t = 0) = p(y , z |x)p0(x), and if t = 1 the
induced distribution on p(x) is p1(x) i.e. p(y , z , x |t = 1) = p(y , z |x)p1(x). Note the
Markov chain t → x → (y , z). To establish the concavity of I(x ; y |z) in p(x) it suffices
to show that

I(x ; y |z , t) ≤ I(x ; y |z). (A.1)

The following chain of inequalities can be verified.

I(x ; y |z , t) − I(x ; y |z) = {I(x ; y , z |t) − I(x ; z |t)} − {I(x ; y , z) − I(x ; z)} (A.2)

= {I(x ; y , z |t) − I(x ; z |t)} − {I(t, x ; y , z) − I(t, x ; z)} (A.3)

= {I(x ; y , z |t) − I(t, x ; y , z)} − {I(x ; z |t) − I(t, x ; z)}
= I(t; z) − I(t; y , z) = −I(t; y |z) ≤ 0.

Equation (A.2) is a consequence of the chain rule for mutual information. Equa-
tion (A.3) follows from the fact that t → x → (y , z) forms a Markov Chain, so that
I(t; z |x) = I(t; y , z |x) = 0.
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Appendix B

Proof of Lemma 4

Suppose there exists a sequence of (2nR, n) codes such that for every ε > 0, and n
sufficiently large we have that

Pr(w �= ŵ) ≤ ε, (B.1)

1

n
I(w ; yn

e ) ≤ ε, (B.2)

1

n

n∑
i=1

E[‖x(i)‖2] ≤ P. (B.3)

We first note that (B.1) implies, from Fano’s inequality,

1

n
I(w ; yn

r ) ≥ R− εF, (B.4)

where εF → 0 as ε→ 0. Combining (B.2) and (B.4), we have for ε′ = ε+ εF:

nR − nε′ ≤ I(w ; yn
r ) − I(w ; yn

e )

≤ I(w ; yn
r , y

n
e ) − I(w ; yn

e ) (B.5)

= I(w ; yn
r |yn

e ) (B.6)

= h(yn
r |yn

e ) − h(yn
r |yn

e ,w)

≤ h(yn
r |yn

e ) − h(yn
r |yn

e ,w , x
n) (B.7)

= h(yn
r |yn

e ) − h(yn
r |yn

e , x
n) (B.8)

=h(yn
r |yn

e ) −
n∑

t=1

h(yr(t)|ye(t), x(t)) (B.9)

≤
n∑

t=1

h(yr(t)|ye(t)) −
n∑

t=1

h(yr(t)|ye(t), x(t))

= nI(x; yr|ye, q) (B.10)

≤ nI(x; yr|ye), (B.11)
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where (B.5) and (B.6) each follow from the chain of mutual information, (B.7) follows
from the fact that conditioning cannot increase differential entropy, (B.8) follows from
the Markov relation w ↔ (xn, yn

e ) ↔ yn
r , and (B.9) follows from the fact the channel is

memoryless. Moreover, (B.10) is obtained by defining a time-sharing random variable
q that takes values uniformly over the index set {1, 2, . . . , n} and defining (x, yr, ye)
to be the tuple of random variables that conditioned on q = t, have the same joint
distribution as (x(t), yr(t), ye(t)). It then follows that for our choice of x and given
(B.3), E[‖x‖2] ≤ P . Finally, (B.11) follows from the fact that I(x; yr|ye) is concave in
px (see, e.g., [23, Appendix I] for a proof), so that Jensen’s inequality can be applied.
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B.1 Derivation of (4.49)

The argument of the logarithm on left hand side of (4.49) is convex in θ, so it is
straightforward to verify that the minimizing θ is

θ = (I + PHeH
†
e)

−1(PHehr + φ). (B.12)

In the sequel, we exploit that by the definition of generalized eigenvalues via (4.1),

(I + Phrh
†
r)ψmax = λmax(I + PH†

eHe)ψmax, (B.13)

or, rearranging,

(
hrh

†
r − λmaxH

†
eHe

)
ψmax =

(λmax − 1)

P
·ψmax. (B.14)

First we obtain a more convenient expression for θ as follows:

θ = (I + PHeH
†
e)

−1

(
PHehr +

1

h†
rψmax

Heψmax

)
(B.15)

= (I + PHeH
†
e)

−1He(Phrh
†
r + I)ψmax

h†
rψmax

= (I + PHeH
†
e)

−1λmaxHe(PH†
eHe + I)ψmax

h†
rψmax

(B.16)

= (I + PHeH
†
e)

−1λmax · (PHeH
†
e + I)Heψmax

h†
rψmax

(B.17)

= λmaxφ, (B.18)

where (B.15) follows from substituting (4.48) into (B.12), and (B.16) follows from
substituting via (B.13).

Next we have that

hr − H†
eθ = hr −

λmax

h†
rψmax

H†
eHeψmax (B.19)

=
(hrh

†
r − λmaxH

†
eHe)ψmax

h†
rψmax

=
(λmax − 1)ψmax

Ph†
rψmax

(B.20)

(B.21)

where (B.19) follows from substituting from (B.18) with (4.48), and (B.20) follows by
substituting (B.14). Thus,

P‖hr − H†
eθ‖2 = (λmax − 1)

[
(λmax − 1)

P |h†
rψmax|2

]
. (B.22)
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To simplify (B.22) further, we exploit that

1 − λmax‖φ‖2 = 1 − λmax
ψ†

maxH
†
eHeψmax

ψ†
maxhrh

†
rψmax

(B.23)

=
ψ†

max(hrh
†
r − λmaxH

†
eHe)ψmax

|h†
rψmax|2

=
(λmax − 1)

P |h†
rψmax|2

, (B.24)

where (B.23) follows by again substituting from (4.48), and (B.24) follows by again
substituting from (B.14). In turn, replacing the term in brackets in (B.22) according
to (B.24) then yields

P‖hr −H†
eθ‖2 = (λmax − 1)(1 − λmax‖φ‖2). (B.25)

Finally, substituting (B.25) then (B.18) into the left hand side of (4.49) yields,
following some minor algebra, the right hand side as desired.
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Appendix C

Appendix to the MIMOME
Capacity derivation

In this appendix we derive several helper lemmas which were used in the derivation
of the MIMOME secrecy capacity.

C.1 Optimality of Gaussian Inputs

We show that a Gaussian input maximizes the conditional mutual information term
I(x; yr|ye) when the noise distribution [z†r , z

†
e]
† ∼ CN (0,KΦ).

Recall that KΦ has the form,

KΦ =

[
Inr Φ

Φ† Ine

]
(C.1)

and KΦ � 0 if and only if ||Φ||2 < 1. In this case we show that among all distributions
px with a covariance of KP, a Gaussian distribution maximizes I(x; yr|ye). Note that

I(x; yr|ye) = h(yr|ye) − h(zr|ze) (C.2)

= h(yr|ye) − log(2πe)nr det(I −ΦΦ†)

≤ log det Λ(KP) − log det(I −ΦΦ†), (C.3)

where

Λ(KP) � I + HrKPH
†
r−

(Φ + HrKPH
†
e)(I + HeKPH

†
e)

−1(Φ† + HeKPH
†
r) (C.4)

is the linear minimum mean squared error in estimating yr given ye and the last
inequality is satisfied with equality if px = CN (0,KP).

When K̄Φ is singular, the expansion (C.2) is not well defined. Nevertheless, we
can circumvent this step by defining an appropriately reduced channel. In particular,
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let

Φ =
[
U1 U2

] [I 0
0 Δ

] [
V†

1

V†
2

]
(C.5)

be the singular value decomposition of Φ, where σmax(Δ) < 1 then we have the
following

Claim 5 Suppose that the singular value decomposition of Φ is given as in (C.5) and
that for the input distribution px, we have that I(x; yr|ye) <∞, then,

U†
1zr

a.s.
= V†

1ze (C.6a)

I(x; yr|ye) = I(x;U†
2yr | ye) (C.6b)

The optimality of Gaussian inputs now follows from this claim, since the term
I(x;U†

2yr | ye) can be expanded in the same manner as (C.2)-(C.3). The proof of
Claim 5 is provided below.

Proof. To establish (C.6a), we simply note that

E[U†
1zrz

†
eV1] = U†

1Φ̄V1 = I,

i.e., the Gaussian random variables U†
1zr and V†

1ze are perfectly correlated. Next
note that

R+(KP, K̄Φ) = I(x; yr|ye)

= I(x;U†
1yr,U

†
2yr|ye) (C.7)

= I(x;U†
2yr,U

†
1yr − V†

1ye|ye)

= I(x;U†
2yr,U

†
1Hrx − V†

1Hex|ye). (C.8)

Since by hypothesis, I(x; yr|ye) < ∞, we have that (U†
1Hr − V†

1He)x = 0, and
I(x; yr|ye) = I(x;U†

2yr | ye), establishing (C.6b).

Finally if px is such that I(x; yr|ye) = ∞, then from (C.8), (U†
1Hr−V†

1He)KP(U†
1Hr−

V†
1He)

† �= 0 and hence the choice of a Gaussian px = CN (0,KP) also results in
I(x; yr|ye) = ∞.

150



C.2 Matrix simplifications for establishing (5.24)

from (5.34)

Substituting for K̄Φ and Ht in (5.34) and carrying out the block matrix multiplication
gives

HrK̄PH
†
r = Υ1(I + HrK̄PH

†
r) + Φ̄Υ2(Φ̄

†
+ HeK̄PH

†
r)

HrK̄PH
†
e = Υ1(Φ̄ + HrK̄PH

†
e) + Φ̄Υ2(I + HeK̄PH

†
e)

HeK̄PH
†
r = Φ̄

†
Υ1(I + HrK̄PH

†
r) + Υ2(Φ̄

†
+ HeK̄PH

†
r)

HeK̄PH
†
e = Φ̄

†
Υ1(Φ̄ + HrK̄PH

†
e) + Υ2(I + HeK̄PH

†
e).

(C.9)

Eliminating Υ1 from the first and third equation above, we have

(Φ̄
†
Hr −He)K̄PH

†
r = (Φ̄

†
Φ̄ − I)Υ2(Φ̄

†
+ HeK̄PH

†
r). (C.10)

Similarly eliminating Υ1 from the second and fourth equations in (C.9) we have

(Φ̄
†
Hr − He)K̄PH

†
e = (Φ̄

†
Φ̄ − I)Υ2(I + HeK̄PH

†
e). (C.11)

Finally, eliminating Υ2 from (C.10) and (C.11) we obtain

(Φ̄
†
Hr − He)K̄PH

†
r

= (Φ̄
†
Hr − He)K̄PH

†
e(I + HeK̄PH

†
e)

−1(Φ̄
†
+ HeK̄PH

†
r)

= (Φ̄
†
Hr − He)K̄PH

†
eΘ̄

†
(C.12)

which reduces to (5.24).

C.3 Derivation of (5.24) when the noise covariance

is singular

Consider the compact singular value decomposition of K̄Φ:

K̄Φ = WΩ̄W†, (C.13)

where W is a matrix with orthogonal columns, i.e., W†W = I and Ω̄ is a non-singular
matrix. We first note that it must also be the case that

Ht = WG, (C.14)

i.e., the column space of Ht is a subspace of the column space of W. If this were
not the case then clearly I(x; yr, ye) = ∞ whenever the covariance matrix KP has a
component in the null space of W which implies that,

max
KP∈KP

R+(KP, K̄Φ) = ∞. (C.15)
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Since (K̄P, K̄Φ) is a saddle point, we must have that R+(K̄P, K̄Φ) ≤ R+(K̄P, I) <∞,
and hence (C.14) must hold. Also note that since

R+(K̄P, K̄Φ) = log det(I + HeK̄PH
†
e)

+ log
det(GK̄PG

† + Ω)

det(Ω)

(C.16)

it follows that Ω̄ in (C.13) is a solution to the following minimization problem,

min
Ω∈KΩ

RΩ(Ω),

RΩ(Ω) = log
det(GK̄PG

† + Ω)

det(Ω)
,

KΩ =

{
Ω

∣∣∣∣∣ WΩW† =

[
Inr Φ
Φ† Ine

]
� 0

}
.

(C.17)

The Kuhn-Tucker conditions for (C.17) yield,

Ω̄
−1 − (GK̄PG

† + Ω̄)−1 = W†ΥW,

⇒ GK̄PG
† = Ω̄W†ΥW(Ω̄ + GK̄PG

†)
(C.18)

where Υ has the block diagonal form in (5.29). Multiplying the left and right and
side of (C.18) with W and W† respectively and using (C.13) and (C.14) we have that

HtK̄PH
†
t = K̄ΦΥ(K̄Φ + HtK̄PH

†
t), (C.19)

establishing (5.34). Finally note that the derivation in Appendix C.2 does not require
the non-singularity assumption on K̄Φ.

C.4 Proof of Claim 4

To establish (5.38) note that since H(·) is a concave function in KP ∈ KP and differ-
entiable over KP, the optimality conditions associated with the Lagrangian

LΘ(KP, λ,Ψ) = H(KP) + tr(ΨKP) − λ(tr(KP) − P ), (C.20)

are both necessary and sufficient. Thus KP is an optimal solution to (5.38) if and
only if there exists a λ ≥ 0 and Ψ � 0 such that

(Hr − Θ̄He)
†[Γ(KP)]−1(Hr − Θ̄He) + Ψ = λI,

tr(ΨKP) = 0, λ(tr(KP) − P ) = 0,
(C.21)
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where Γ(·) is defined via

Γ(KP) � I + Θ̄Θ̄
† − Θ̄Φ̄

† − Φ̄Θ̄
†
+

(Hr − Θ̄He)KP(Hr − Θ̄He)
†. (C.22)

To obtain these parameters note that since (K̄P, K̄Φ) constitutes a saddle point
solution,

K̄P ∈ arg max
KP∈KP

R+(KP, K̄Φ). (C.23)

Since R+(KP, K̄Φ) is differentiable at each KP ∈ KP whenever K̄Φ � 0, K̄P satisfies
the associated KKT conditions — there exists a λ0 ≥ 0 and Ψ0 � 0 such that

∇KP
R(KP, K̄Φ)

∣∣∣∣∣
K̄P

+Ψ0 = λ0I

λ0(tr(K̄P) − P ) = 0, tr(Ψ0K̄P) = 0.

(C.24)

As we show below,

∇KP
R(KP, K̄Φ)

∣∣∣
K̄P

=(Hr − Θ̄He)
†[Λ(K̄P)]−1(Hr − Θ̄He), (C.25)

where

Λ(KP) � I + HrKPH
†
r−

(Φ + HrKPH
†
e)(I + HeKPH

†
e)

−1(Φ† + HeKPH
†
r) (C.26)

Λ(·), satisfies1 Λ(K̄P) = Γ(K̄P). Hence the first condition in (C.24) reduces to

(Hr − Θ̄He)
†[Γ(K̄P)]−1(Hr − Θ̄He) + Ψ0 = λ0I. (C.27)

Comparing (C.24) and (C.27) with (C.21), we note that (K̄P, λ0,Ψ0) satisfy the
conditions in (C.21), thus establishing (5.38).

It thus remains to establish (C.25), which we do below.

∇KP
R+(KP, K̄Φ)

= H†
t(HtKPH

†
t + K̄Φ)−1Ht − H†

e(I + HeKPH
†
e)

−1He.
(C.28)

1To verify this relation, note that Γ(KP) is the variance of yr − Θ̄ye. When KP = K̄P, note that
Θ̄ye is the MMSE estimate of yr given ye and Γ(KP) is the associated MMSE estimation error.
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Substituting for Ht and K̄Φ from (5.33) and (5.22),

(K̄Φ + HtK̄PH
†
t)

−1

=

[
I + HrK̄PH

†
r Φ̄ + HrK̄PH

†
e

Φ̄
†
+ HrK̄PH

†
e I + HeK̄PH

†
e

]−1

=

[
Λ(KP)−1 −Λ(KP)−1Θ̄

−Θ̄
†
Λ(KP)−1 (I+HeK̄PHe)

−1+Θ̄
†
Λ(KP)−1Θ̄

]
,

where we have used the matrix inversion lemma (e.g., [44]), and Λ(K̄P) is defined
in (C.4), and Θ̄ is as defined in (5.23). Substituting into (C.28) and simplifying gives

∇KP
R+(KP, K̄Φ)

∣∣∣∣
K̄P

=H†
t(K̄Φ + HtK̄PH

†
t)

−1Ht −H†
e(I + HeK̄PH

†
e)

−1He

= (Hr − Θ̄He)
†[Λ(K̄P)]−1(Hr − Θ̄He)

as required.

C.5 Full Rank Condition for Optimal Solution

Claim 6 Suppose that K̄Φ � 0 and K̂P be any optimal solution to

K̂P ∈ arg max
KP∈KP

log det(I+J− 1
2 (Hr−Θ̄He)KP(Hr−Θ̄He)

†J− 1
2 ) (C.29)

for some J � 0 and Θ̄ is defined in (5.23). Suppose that SP is a matrix with a full
column rank such that

K̂P = SPS†
P (C.30)

then (Hr − Θ̄He)SP has a full column rank.

Define
Heff � J− 1

2 (Hr − Θ̄He).

It suffices to prove that HeffSP has a full column rank, which we now do.

Let rank(Heff) = ν and let
Heff = AΣB† (C.31)

be the singular value decomposition of Heff where A and B are unitary matrices, and

Σ =

[ ν nt−ν

ν Σ0 0
nr−ν 0 0

]
. (C.32)
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Note that it suffices to show that the matrix

F̂ � B†K̂PB (C.33)

has the form

F̂ =

[ ν nt−ν

ν F0 0
nt−ν 0 0

]
. (C.34)

Since,

K̂P ∈ arg max
KP

log det(I + HeffKPH
†
eff)

= arg max
KP

log det(I + AΣB†KPBΣ†A†)

= arg max
KP

log det(I + ΣB†KPBΣ†), (C.35)

and KP ∈ KP if and only if B†KPB ∈ KP, observe that,

F̂ ∈ arg max
KP

log det(I + ΣFΣ†) (C.36)

= arg max
KP

log det(I + Σ0F0Σ
†
0), (C.37)

where the F is of the form

F =

[ ν nt−ν

ν F0 F1

nt−ν F†
1 F2

]
. (C.38)

We now note that F̂1 = 0 and F̂2 = 0. Indeed if F̂2 �= 0, then tr(F̂2) > 0. This
contradicts the optimality claim in (C.37), since the objective function only depends
on F̂0 and one can strictly increase the objective function by increasing the trace of
F̂0. Finally since F̂ � 0 and F̂2 = 0, it follows that F̂1 = 0.

C.6 Full rank condition when K̄Φ is singular

In this section we establish 2) in Lemma 9 when K̄Φ is singular. We map this case
to another channel when the saddle point noise covariance is non-singular and apply
the results for non-singular noise covariance.

When K̄Φ is singular, we have that Φ̄ has d ≥ 1 singular values equal to unity
and hence we express its SVD in (C.5), where σmax(Δ) < 1.

Following Claim 5 in Appendix C.1 we have that

U†
1zr

a.s.
= V†

1ze (C.39a)

U†
1Hr = V†

1He, (C.39b)
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R+(KP, K̄Φ) = I(x;U†
2yr | ye), ∀ KP ∈ KP. (C.39c)

Thus with Ĥr = U†
2Hr, and ẑr = U†

2zr and

ŷr = U†
2yr = Ĥrx + ẑr, (C.40)

we have from (C.39c), that

K̄P ∈ arg max
KP

I(x; ŷr | ye). (C.41)

Since the associated cross-covariance matrix Φ̂ = E [̂zrz†e] has all its singular values
strictly less than unity, it follows from Claim 4 that

K̄P ∈ arg max
KP

Ĥ(KP) (C.42)

where

Ĥ(KP) = h(ŷr − Θ̂ye),

Θ̂ = U†
2(HrK̄PH

†
e + Φ̄)(I + HeK̄PH

†
e)

−1.

Following the proof of Claim 6 in Appendix C.5 we then have that

(Ĥr − Θ̂He)S = U†
2(Hr − Θ̄He)S

has a full column rank. This in turn implies that (Hr − Θ̄He)S has a full column
rank.

C.7 Proof of Lemma 10 when K̄Φ is singular

When K̄Φ is singular, we assume that the singular value decomposition of Φ̄ is given
in (C.5). First let us consider the case that Hr = Θ̄He and show that R+(K̄P, K̄Φ) =
0. Indeed following claim 5 in Appendix C.1 we have thatR+(K̄P, K̄Φ) = I(x;U†

2yr|ye)
and expanding this expression in the same manner as (5.43)-(5.45), we establish the
desired result.

When Hr − Θ̄He �= 0, we show that the difference between the upper and lower
bounds is zero.

ΔR = R+(K̄P, K̄Φ) − R−(K̄P)

= I(x; ye | yr)

= I(x;V†
2ye | yr), (C.43)

where the last step follows from the fact that U†
1zr

a.s.
= V†

1ze and U†
1Hr = V†

1He
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(c.f. (C.39a), (C.39b)). Next, note that,

h(V†
2ye | yr)

= log det(I + V†
2HeK̄PH

†
eV2 − (V†

2HeK̄PH
†
r + Δ†U†

2)

(I + HrK̄PH
†
r)

−1(HrK̄PH
†
eV2 + U2Δ)) (C.44)

= log det(I + Δ†U†
2HrK̄PH

†
rU2Δ

− Δ†U†
2(I + HrK̄PH

†
r)U2Δ)

= log det(I − Δ†Δ)

= h(V†
2ze | U†

2zr) = h(V†
2ze | zr), (C.45)

where we have used (c.f. (5.46)) that

V†
2Φ̄

†
HrS = V†

2HeS ⇒ Δ†U†
2HrS = V†

2HeS,

in simplifying (C.44) and the equality in (C.45) follows from the fact that U†
1zr is

independent of (U†
2zr,V

†
2ze).
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Appendix D

Conditional Entropy Lemma

Lemma 17 Suppose that the random variables a,b, and c are finite valued with a
joint distribution pa,b,c(·) that satisfies a → b → c For some N ≥ 0 and R > I(c; a)
suppose that a set Cc is selected by drawing exp(NR) sequences {cNi } uniformly and
at random from the set of pc typical sequences TN

c .
Suppose that the pair of length-N sequences (aN , bN) are drawn i.i.d. from the

distribution pa,b and a sequence cNi ∈ Cc is selected such that (cNi , b
N ) ∈ TN

cb,η. Then

1

N
H(cN

i |aN) = R− I(c; a) + oη(1), (D.1)

where the term oη(1) vanishes to zero as N → ∞ and η → 0.

Proof. From (6.23c), for all pair of sequences (aN , bN), except a set of probability
oη(1), we have that (aN , bN) ∈ TN

ab,η. Furthermore, for each such typical pair, since
a → b → c and (bN , cN

i ) ∈ TN
bc,η from the Markov Lemma it follows that (aN , cNi ) ∈

TN
ac,η.

To establish (D.1) it suffices to show that for all sequences aN ∈ TN
a,η, except a set

of size at most oη(1)

Pr(cN = cNi |aN = aN) = exp(−N(R − I(c; a) + oη(1))). (D.2)

The expression in (D.1) follows by due to the continuity of the log() function. To
establish (D.2), we use the fact that

Pr(cN = cNi |aN = aN) =
p(aN |cNi ) Pr(cN = cni )

p(an)(aN)
. (D.3)

From property (6.23b) of typical sequences p(aN ) = exp(−N(H(a)+oη(1))), p(aN |cNi ) =
exp(−N(H(a|a) + oη(1))) and from symmetriy Pr(cN = cNi ) = exp(−NR). Substi-
tuting these quantities in (D.3) establishes (D.2).
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