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Abstract—We consider the problem of transmission over an
unknown time-varying Gaussian channel, whose signal-to-noise
ratio (SNR) is constant within a block but varies arbitrarily
between blocks. For this scenario, we develop efficient automatic
repeat request (ARQ) protocols in the form of low-complexity
rateless codes, which encode a message into a sequence of
incremental redundancy blocks. Following the receipt of each
redundancy block, the receiver feeds back to the transmitter the
SNR experienced by that block, which the encoder makes use
of in structuring subsequent blocks. The resulting architecture,
which involves layered repetition encoding and successive can-
cellation decoding, is capacity-achieving, enabling the message to
be recovered with the minimum possible number of blocks for
the realized channel.

I. INTRODUCTION

This paper considers the problem of efficient communica-
tion over an additive Gaussian noise channel of time-varying
signal-to-noise ratio (SNR). We consider rateless codes for this
channel, whereby a message of finite length is encoded into a
sequence of incremental redundancy blocks. During the trans-
mission of each block, the channel SNR is constant, but varies
arbitrarily from block to block. Channel state information is
available to the encoder only with delay. Specifically, at the
end of the transmission of each incremental redundancy block,
the encoder is informed of the realized SNR for that block.
We stress that our treatment imposes no statistical model on
the channel variation. This work generalizes the constructions
developed in [1] for additive white Gaussian noise (AWGN)
channels of unknown but fixed SNR.
For this channel, we develop an efficient (hybrid) ARQ

protocol (see, e.g., [2] and references therein for relevant re-
cent works). The encoder produces a sequence of redundancy
blocks, but instead of simple ACK/NACK feedback from the
receiver after each block, the receiver feeds back the SNR of
the most recent block. From this information, the transmitter
can determine whether a further redundancy block is required,
and, if so, what form it should take. We remark in advance
that while such a scheme might appear to be sensitive to delay
in the feedback path, in practice, delay issues can be avoided
by a suitable multiplexing strategy of interleaving multiple
transmissions.
Our protocols take the form of low-complexity capacity-

approaching rateless codes for this scenario. In particular,
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we consider layered encoding and successive cancellation
decoding. Moreover, redundancy takes the form of dithered
repetition, which is used in conjunction with minimum mean-
square error (MMSE) combining.
Our construction transforms the time-varying channel into

an equivalent AWGN channel, to which standard base codes
can be applied. We show that with capacity-achieving base
codes, our architecture can be perfect, i.e., capacity-achieving
rateless codes can result for such channels. In particular, for
the case of two redundancy blocks, we show that three layers
are sufficient to obtain a capacity-achieving code for all rates
below a certain threshold.
We further show that for arbitrary numbers of redundancy

blocks, at least asymptotically-perfect rateless codes exist in
the limit of a large number of layers in the construction. Our
existence proof exploits simple symbol-by-symbol random
dithering at the encoder, together with simple maximal ratio
combining (MRC) at the decoder.

II. CHANNEL AND SYSTEM MODEL

The channel of interest takes the form

ym = βmxm + zm, m = 1, 2, . . . , (1)

where the {βm} are a sequence of complex channel gains, xm

is a vector of N input symbols, ym is the vector of channel
output symbols, and zm is a noise vector of N independent,
identically distributed (i.i.d.) complex, circularly-symmetric
Gaussian random variables of (without loss of generality)
unit variance, independent across blocks m = 1, 2, . . . . The
channel input is limited to average power P per symbol. In our
model, the channel gains βm are known a priori at the receiver
but not at the transmitter. The block length N is assumed to
be large, but otherwise plays no important role in the analysis.
The encoder transmits a message w by generating a se-

quence of incremental redundancy blocks x1(w), x2(w), . . . .
The receiver accumulates sufficiently many received blocks y1,
y2, . . . to recover w. Immediately following the transmission
of block xm, the encoder is notified of βm, for m = 1, 2, . . . .
Thus, knowledge of β1, . . . , βm can be used in the construction
of the redundancy block xm+1(w).
A code for such a scenario is parameterized by the ceiling

rate R, which is the (realized) rate of the code if the message
can be decoded from the first incremental redundancy block
alone, and the range M , which is the maximum number of
redundancy blocks generated by the code. A perfect rateless
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code is then one in which capacity is achieved for any number
m = 1, . . . , M of redundancy blocks, i.e., whenever the
(realized) channel gains are such that for some 1 ≤ m ≤ M ,

R =
m∑

m′=1

log
(
1 + P |βm′ |2) , (2)

is effectively satisfied, the message can be recovered (with
high probability).
For values ofm such that the right side of (2) is less than R,

it is convenient to define target channel gains αm+1 required
for successful decoding once block m + 1 is obtained. In
particular, αm+1 is defined via

R = log
(
1 + P |αm+1|2

)
+

m∑
m′=1

log
(
1 + P |βm′ |2) , (3)

whenever |αm| > |βm|.
III. PERFECT RATELESS CODES

The rateless code constructions we pursue are natural gen-
eralizations of those in [1]. First, we choose the range M ,
the ceiling rate R, the number of layers L, and finally the
associated base codebooks C1, . . . ,CL. We assume a priori
that the base codebooks all have equal rate R/L.
Given codewords cl ∈ Cl, l = 1, . . . , L, the redundancy

blocks x1, . . . , xM take the form⎡
⎢⎣

x1

...
xM

⎤
⎥⎦ = G

⎡
⎢⎣

c1

...
cL

⎤
⎥⎦ , (4)

where G is an M × L matrix of complex gains, and where
xm for each m and cl for each l are row vectors of length
N . The power constraint enters by limiting the rows of G to
have squared norm P and by normalizing the codebooks to
have unit power. Note that with this notation, the mth row
of G consists of the weights used in constructing the mth
redundancy block from the L codewords. In the sequel we use
gml to denote the (m, l)th entry of G, and Gm,l to denote the
upper-left m× l submatrix of G. Where needed, we adopt the
convention that Gm,0 = 0.
We emphasize that the mth row of G will in general

be a function of the (realized) channel gains β1, . . . , βm−1.
Specifically, the mth row is designed for the M -block channel
matrix

Bm = diag(β1, . . . , βm−1, αm). (5)

With this construction, each redundancy block contains a
repetition of the codewords used in the earlier blocks, but with
a different complex scaling factor, which can be interpreted as
a “dither.” The code structure may therefore be viewed as a
hybrid of layering and repetition.
In addition to the layered code structure, there is additional

decoding structure, namely that the layered code be succes-
sively decodable. Specifically, to recover the message, we first
decode cL, treating G[cT

1 · · · cT
L−1]

T as (colored) noise, then
decode cL−1, treating G[cT

1 · · · cT
L−1]

T as noise, and so on.

Our aim is to select G so that the code is perfect in
the sense defined in Section II. Both the layered repetition
encoding structure (4) and the successive decoding constraint
impose requirements on G in order to have a perfect code. In
particular, from the encoding structure we require, as in [1],
that the rows of G be orthogonal, while from the decoding
structure, we have the requirement

R

L
= log

det(I + BmGm,lG
†
m,lB

†
m)

det(I + BmGm,l−1G
†
m,l−1B

†
m)

, (6)

for all l = 1, . . . , L and m = 1, . . . , M .
As the simplest example, for the case of M = 2 redundancy

blocks and L = 3 layers these constraints can be met, i.e., a
perfect rateless code is possible, provided R is not too large,
as we now develop.
In this case, we determine our gain matrix

G =
[
g11 g12 g13

g21 g22 g23

]
(7)

as a function of the ceiling rate R, where the second row also
depends in general on the realized channel gain β1 experienced
by the first incremental redundancy block.
As in [1], we may without loss of generality take the first

row and column to be real and nonnegative. Assume, also
without loss of generality, that |α1|2 = 1. Then the first row
of G, which corresponds to the first redundancy block, is
computed exactly as in [1]. In particular, from (6) withm = 1,
it must satisfy

R/3 = log(1 + g2
11) (8)

2R/3 = log(1 + g2
11 + g2

12) (9)

3R/3 = log(1 + g2
11 + g2

12 + g2
13) (10)

together with the power constraint

P = g2
11 + g2

12 + g2
13. (11)

Thus, with x � 2R/6 we have

P = 2R − 1 = x6 − 1 (12)

and

g2
11 = 2R/3 − 1 = x2 − 1, (13)

g2
12 = 2R/3(2R/3 − 1) = x2(x2 − 1), (14)

g2
13 = 22R/3(2R/3 − 1) = x4(x2 − 1). (15)

The derivation now departs from [1]. Recall that β1 is the
realized channel gain for the first block. A second redundancy
block is thus needed when |β1| < |α1|. The minimum required
value of the channel gain |α2|2 necessary for decoding is the
solution to [cf. (3)]

R = log(1 + P |β1|2) + log(1 + P |α2|2), (16)

which is

|α2|2 =
1 − |β1|2

1 + P |β1|2 . (17)
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Using (6) for m = 2 and l = 1 yields

R/3 = log(1 + |β1|2g2
11 + |α2|2g2

21). (18)

Substituting the previously computed expressions (13) and
(17) for g2

11 and |α2|2 and solving for g21 yields

g2
21 = (x2 − 1)(1 + P |β1|2). (19)

As in [1], to solve for the rest of the second row of G we
use (6) with m = l = 2 together with the requirement that
the first and second rows be orthogonal. It is useful at this
stage to switch to polar coordinates, i.e., g22 = |g22|ejθ1 and
g23 = |g23|ejθ2 .
Orthogonality of the first and second rows means that

0 = g11g21 + g12|g22|ejθ1 + g13|g23|ejθ2 . (20)

The three terms in the above expression may be viewed as the
legs of a triangle, so by the law of cosines

2g11g21g12|g22| cos θ1 = g2
13|g23|2−g2

11g
2
21−g2

12|g22|2. (21)
We now use (6) with m = 2 and l = 1, 2 to infer that

22R/3 = x4 = det(I + diag(|β1|2|, |α2|2)G2,2G
†
2,2). (22)

To expand this expression, we compute

G2,2G
†
2,2 =

[
g2
11 + g2

12 g11g21 + g12|g22|e−jθ1

(∗) g2
21 + |g22|2

]
, (23)

where (∗) is the complex conjugate of the upper right entry,
from which we find

det(I + diag{|β1|2|, |α2|2}G2,2G
†
2,2) =

|β1|2|α2|2(g2
11|g22|2 + g2

12g
2
21 − 2g11g21g12|g22| cos θ1)

+ |β1|2(g2
11 + g2

12) + |α2|2(g2
21 + |g22|2) + 1. (24)

Substituting (21) into (24) and using (22) yields

x4 = |β1|2|α2|2
· (g2

11|g22|2 + g2
12g

2
21 − g2

13|g23|2 + g2
11g

2
21 + g2

12|g22|2)
(25)

+ |β1|2(g2
11 + g2

12) + |α2|2(g2
21 + |g22|2) + 1.

(26)

Finally, substituting the expressions for g2
11, g2

12, g2
13, g2

21,
and |α2|2 computed above, using the power constraint

|g23|2 = P − |g22|2 − g2
21, (27)

solving for |g22|2, and simplifying terms, we arrive at

|g22|2 =
x2 − 1

1 + (x6 − 1)|β1|2
·
(
x2 + |β1|2(x10 + x8 − 2x6 + x4 − 2x2 + 1)

− |β1|4(x12 − x10 + x8 − 2x6 + x4 − x2 + 1)
)
. (28)

Evidently, a necessary condition for the existence of a
solution for G is that g2

21 + |g22|2 < P . It can be shown that

the sum of the powers on the first two layers is maximized
when |β1| → 1, and then the necessary condition simplifies to

2R+1 − 22R/3+1 < 2R − 1, (29)

which may be shown to hold for all R < log(2 +
√

5) ≈ 2.08
bits per complex symbol.
The final step, which we omit due to space constraints, is to

apply the triangle inequality to (20) to prove that the required
triangle exists, and thus also the phases θ1 and θ2.
Establishing the existence of perfect rateless codes for larger

values of M and/or L requires more effort. As an alternative,
we next demonstrate that in the limit of a large number of
layers L, asymptotically perfect codes for all values of M
are possible via essentially the same construction, even using
suboptimal encoding and decoding.

IV. ASYMPTOTICALLY PERFECT RATELESS CODES

Our construction is a slight generalization of the correspond-
ing construction in [1]. First, as in Section III we fix M , R,
L, and the associated codebooks Cl, . . . ,CL each of rate R′/L
for some R′ < R to be determined. Using cl(n) and xm(n)
to denote the nth elements of codeword cl and redundancy
block xm, respectively, we have [cf. (4)]⎡

⎢⎣
x1(n)
...

xM (n)

⎤
⎥⎦ = G(n)

⎡
⎢⎣

c1(n)
...

cL(n)

⎤
⎥⎦ (30)

for n = 1, . . . , N . The value of M plays no role in our
development and may be taken arbitrarily large. Moreover,
as before, the power constraint enters by limiting the rows
of G(n) to have a squared norm P and by normalizing the
codebooks to have unit power.

A. Power Allocation

A suitable power allocation for our construction is obtained
as that which is optimum for a slightly different construction,
which we now develop. In this section, different (independent)
codebooks are used for different redundancy blocks, and we
take G(n) to be independent of n, so that G(n) = P, where

P =

⎡
⎢⎣
√

p1,1 . . .
√

p1,L

...
. . .

...√
pM,1 . . .

√
pM,L

⎤
⎥⎦ . (31)

The mutual information in the lth layer of the mth block is
then

Im,l = log (1 + SNRm,l(βm)) . (32)

where

SNRm,l(βm) =
|βm|2pm,l

|βm|2(pm,1 + · · · + pm,l−1) + 1
. (33)

is the associated per-layer SNR experienced during successive
decoding.
We now obtain the elements of P recursively. We proceed

from the first blockm = 1 to blockM , where in each blockm
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we start by determining Pm,1 and proceed up through Pm,L.
By definition of α1, we have

log

(
1 + |α1|2

L∑
l=1

P1,l

)
= R.

Viewing the layering as superposition coding for a multi-
access channel, it is clear that any rate vector is achievable as
long as its sum-rate is R. We may therefore obtain an equal
rate per layer by taking P1,1, . . . , P1,L such that

log(1 + P1,l|α1|2) = R/L, l = 1, . . . , L. (34)

Upon receiving knowledge of |β1| we proceed to determine the
power allocation for blockm = 2. More generally, suppose the
power allocations through block m− 1 have been determined
and we have now acquired channel state knowledge through
βm−1. To determine the allocation for block m, we first
compute the mutual information shortfall in layer l as

Δm,l =
R

L
−

m−1∑
m′=1

log(1 + SNRm′,l(βm′)). (35)

By the induction hypothesis, had the realized channel gain
been |βm−1| = |αm−1|, then Δm,l would be zero for all l =
1, . . . , L. Now since we have |βm−1| < |αm−1|, clearly the
shortfall is positive for all layers. By definition of αm, we also
have

Δm =
L∑

l=1

Δm,l = log(1 + P |αm|2). (36)

We then solve for Pm,1, . . . , Pm,L, in order, via

log(1 + SNRm,l(αm)) = Δm,l. (37)

The resulting power allocation ensures that the aggregate
mutual information per layer is at least R/L if |βm| > |αm|
when i.i.d. Gaussian codebooks for all layers and blocks.
However, we wish to use the same set of L codebooks for
all redundancy blocks, to keep decoding complexity low. We
return to this problem next, but in doing so will exploit this
power allocation.

B. Dithered Encoding

We restrict our attention to G(n) of the form

G(n) = P � D(n), (38)

where � denotes elementwise multiplication, where P is the
matrix (31) developed in Section IV-A, and where D(n) is a
(random) phase-only “dither” matrix of the form

D(n) =

⎡
⎢⎣

d1,1(n) · · · d1,L(n)
...

. . .
...

dM,1(n) · · · dM,L(n)

⎤
⎥⎦ . (39)

In our analysis, the dm,l(n) are all i.i.d. in m, l, and n, and are
drawn independently of all other random variables, including
noises, messages, and codebooks. It is sufficient for dm,l(n)
to take on only values ±1, and with equal probability.

C. Decoding

Since G(n) is drawn i.i.d., the overall channel is i.i.d., and
thus we may express the channel model in terms of an arbitrary
individual element in the block. Specifically, assume that the
channel gain for block m is the minimal required βm = αm,
then our received symbol can be expressed as

y =

⎡
⎢⎣

y1

...
ym

⎤
⎥⎦ = BmG

⎡
⎢⎣

c1

...
cL

⎤
⎥⎦ +

⎡
⎢⎣

z1

...
zm

⎤
⎥⎦ ,

where G = P � D, with G denoting the arbitrary element
in the sequence G(n), and where ym′ is the corresponding
received symbol from redundancy block m′ (and similarly for
cm′ , zm′ , D).
It is sufficient to employ successive cancellation decoding

with simple maximal ratio combining (MRC) of the redun-
dancy blocks. In decoding the lth layer, the MRC decoder
not only treats the undecoded layers 1, . . . , l− 1 as noise, but
also treats the dither in those layers as a process with known
statistics but unknown realization. As done in [1], it is easy to
show that the effective SNR at which this lth layer is decoded
from m blocks via such MRC decoding is

SNRMRC =
m∑

m′=1

SNRm′,l. (40)

D. Efficiency Analysis

To show that the resulting scheme is asymptotically perfect,
we begin by noting that the mutual information I ′m,l when ran-
dom dither encoding, MRC decoding, and capacity-achieving
base codes are used, we have

I ′m,l ≥ log (1 + SNRMRC) (41)

with SNRMRC as in (40), and where (41) is an inequality
because the effective noise is not necessarily Gaussian.
The efficiency of our scheme ultimately depends on the

choice of our power allocation matrix (31). Note that we may
further bound I ′m,l for all m by

I ′m,l ≥
1

ln 2
log

(
1 + ln 2

R

L

)
, (42)

where we have applied the inequality u ≥ ln(1 + u) valid for
u ≥ 0. Thus, if we choose the rate of the base code in each
layer to be

R′

L
=

1
ln 2

log
(

1 + ln 2
R

L

)
, (43)

then (42) ensures decodability after m blocks are received
when the channel gain satisfies |βm| ≥ |αm|, as required.
Moreover, the efficiency R′/R can be made as close as desired
to one by taking L sufficiently large.
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