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Abstract—We consider the “one-shot frame synchronization problem,”
where a decoder wants to locate a sync pattern at the output of a mem-
oryless channel on the basis of sequential observations. The sync pattern
of length N starts being emitted at a random time within some interval of
size A, where A characterizes the asynchronism level. We show that a se-
quential decoder can optimally locate the sync pattern, i.e., exactly, without
delay, and with probability approaching one as N ! 1, if the asynchro-
nism level grows as O(e ), with � below the synchronization threshold, a
constant that admits a simple expression depending on the channel. If� ex-
ceeds the synchronization threshold, any decoder, sequential or nonsequen-
tial, locates the sync pattern with an error that tends to one as N ! 1.
Hence, a sequential decoder can locate a sync pattern as well as the (nonse-
quential) maximum-likelihood decoder that operates on the basis of output
sequences of maximum lengthA+N �1, but with far fewer observations.

Index Terms—Frame synchronization, pattern recognition, quickest de-
tection, sequential analysis.

I. INTRODUCTION

Frame synchronization refers to the problem of locating a sync
pattern embedded into data and received over a channel (see, e.g.,
[4]–[7]). In [5], Massey considered the situation of binary data trans-
mitted across a white Gaussian noise channel. He showed that given
received data of fixed size which the sync pattern is known to belong
to, the maximum-likelihood rule consists of selecting the location that
maximizes the sum of the correlation and a correction term.

We are interested in the situation where the receiver wants to locate
the sync pattern on the basis of sequential observations, which Massey
refers to as the “one-shot” frame synchronization problem in [5]. A
receiver observes data sequentially, with the foreknowledge that a sync
pattern will occur within a certain time interval with probability one.
The length of this time interval represents the asynchronism level. The
receiver’s goal is to locate the sync pattern exactly and without delay.
Our result is an asymptotic characterization of the largest asynchronism
level with respect to the size of the sync pattern for which a decoder
can correctly perform with arbitrarily high probability.

We note that a similar problem formulation has been studied in [1],
where various pattern detection rules have been studied, yet without
deriving fundamental limitations in terms of sync pattern size, asyn-
chronism level, and mislocation probability.

II. PROBLEM FORMULATION AND RESULT

We consider discrete-time communication over a discrete memory-
less channel characterized by its finite input and output alphabetsX and
Y , respectively, transition probability matrixQ(yjx), for all y 2 Y and
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Fig. 1. Time representation of what is sent (upper arrow) and what is received
(lower arrow). The “?” represents the “data” symbol. The sync pattern starts
being sent at time � , and is detected at time � .

x 2 X , and “data” symbol ? 2 X .1 We discuss the extension of our
main result to the Gaussian channel at the end of the correspondence.

The sync pattern sN consists of N � 1 symbols from X—possibly
also the ? symbol. The transmission of the sync pattern starts at a
random time � , uniformly distributed in [1; 2; . . . ; A = e�N ], where
the integerA � 1 characterizes the asynchronism level and� the asyn-
chronism exponent.

We assume that the receiver knows A but not � . Before and after the
transmission of the sync pattern, i.e., before time � and after time � +

N �1, the receiver observes random data. Specifically, conditioned on
the value of � , the receiver observes independent symbols Y1; Y2; . . .
distributed as follows. If i � � � 1 or i � � + N , the distribution is
Q(�j?). At any time i 2 [�; � + 1; . . . ; � +N � 1] the distribution is
Q(�jsi��+1), where sn denotes the nth symbol of sN .

To identify the instant when the sync pattern starts being emitted,
the receiver uses a sequential decoder in the form of a stopping time �
with respect to the output sequence Y1; Y2; . . ..2 If � = n, the receiver
declares that the sync pattern started being sent at time n�N +1 (see
Fig. 1).

The associated error probability is defined as

(� 6= � +N � 1):

We now define the synchronization threshold.

Definition: An asynchronism exponent � is achievable if there ex-
ists a sequence of pairs sync pattern/decoder f(sN ; �N )gN�1 such that
sN and �N operate under asynchronism level A = e�N , and so that

(�N 6= � +N � 1)
N!1
�! 0:

The synchronization threshold, denoted �(Q), is the supremum of the
set of achievable asynchronism exponents.

Our main result lies in the following theorem.

Theorem: The synchronization threshold as defined above is given
by

�(Q) = max
x

D(Q(�jx)jjQ(� j ?))

where D(Q(�jx)jjQ(�j?)) is the Kullback–Leibler distance between
Q(�jx) andQ(�j?). Furthermore, if the asynchronism exponent is above
the synchronization threshold, a maximum-likelihood decoder that is
revealed the maximum length sequence of size A + N � 1 makes an
error with a probability that tends to one as N ! 1.

1Throughout this note, we assume that for all y 2 Y there is some x 2 X
for which Q(yjx) > 0.

2Recall that a (deterministic or randomized) stopping time � with respect to
a sequence of random variables fY g is a positive, integer-valued random
variable such that the event f� = ng, conditioned on fY g , is independent
of fY g for all n � 1.
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A direct consequence of the theorem is that a sequential decoder can
(asymptotically) locate the sync pattern as well as the optimal max-
imum-likelihood decoder that operates on a nonsequential basis having
access to sequences of maximum size A + N � 1.

Note that the synchronization threshold is the same as the one in
[8], which is defined as the largest asynchronism level for which reli-
able communication can be achieved over point-to-point asynchronous
channels. This should not come as a surprise since, for asynchronous
communication in the zero-rate regime, decoding errors are mainly due
to incorrectly identifying the location of the transmitted message.

We now prove the theorem by first presenting the direct part and
then its converse. Recall that a type, or empirical distribution, induced
by a sequence zN 2 ZN is the probability measure P̂ on Z where
P̂ (a); a 2 Z , is equal to the number of occurrences of a in zN divided
by N . Similarly, the empirical distribution induced by two sequences
zN 2 ZN andwN 2 WN is the probability measure P̂ onZ�W such
that P̂ (a; b); a 2 Z; b 2 W , is equal to the number of occurrences
of the pair (a; b) among the pairs (zi; wi); 1 � i � N , divided by
N . We define P (x; y) = P̂s(x)Q(yjx), where P̂s(x) is the empirical
distribution of the sync pattern.

Proof of Achievability: We show that a suitable sync pattern to-
gether with the sequential typicality decoder3 achieves an asynchro-
nism exponent arbitrarily close to maxxD(Q(�jx)jjQ(�j?)). The in-
tuition is as follows. Let �x be a “maximally divergent symbol,” i.e.,
so that D(Q(�j�x)jjQ(�j?)) = maxxD(Q(�jx)jjQ(�j?)). Suppose the
sync pattern consists ofN repetitions of �x. If we use the sequential typ-
icality decoder, we have almost all the properties we need. Indeed, if
� < maxxD(Q(�jx)jjQ(�j?)), with negligible probability the random
data generates a block of N output symbols that is jointly typical with
the sync pattern. Similarly, the block of output symbols generated by
the sync pattern is jointly typical with the sync pattern with high prob-
ability. The only problem occurs when a block of N output symbols
is generated partly by the data and partly by the sync pattern. Indeed,
consider for instance the block of N output symbols from time � � 1

up to �+N�2. These symbols are all generated according to the sync
pattern, except for the first. Hence, whenever the decoder observes this
portion of symbols, it makes an error with constant probability. The
argument extends to any fixed length shift.

The reason that the decoder is unable to locate the sync pattern ex-
actly is that the sync pattern used above has the undesirable property
that when it is shifted to the right, it still looks almost the same. There-
fore, to prove the direct part of the theorem, we consider a sync pattern
mainly composed of �x’s, but with a few ?’s mixed in4 so that shifts of
the sync pattern look sufficiently different from the original sync pat-
tern. This allows the decoder to identify the sync pattern exactly, with
no delay, and with probability tending to one as N goes to infinity, for
any asynchronism exponent less than maxxD(Q(�jx)jjQ(�j?)). We
formalize this below.

Suppose that, for any arbitrarily large K , we can construct a se-
quence of patterns fsNg of increasing lengths such that each sN =

s1; s2; . . . ; sN satisfies the following two properties:

3The sequential typicality decoder operates as follows. At time n, it computes
the empirical distribution P̂ induced by the sync pattern and the previous N
output symbols y ; y ; . . . ; y . If this distribution is close enough
toP , i.e., if jP̂ (x; y)�P (x; y)j � � for allx; y, the decoder stops, and declares
n�N+1 as the time the sync pattern started being emitted. Otherwise, it moves
one step ahead and repeats the procedure. Throughout the argument we assume
that � is a negligible strictly positive quantity.

4Indeed, any symbol different than �x can be used.

I. all si’s are equal to �x, except for a fraction at most equal to 1=K

that are equal to ?;
II. the Hamming distance between the pattern and any of its shifts

of the form

?; ?; . . . ; ?

itimes

; s1; s2; . . . ; sN�i i 2 [1; 2; . . . ; N ]

is linear in N .
Now let A = eN(max D(Q(�jx)jjQ(�j?))��), for some � > 0, and

consider using patterns with properties I and II in conjunction with
the sequential typicality decoder, i.e., we take �N to be the sequential
typicality decoder operating on blocks of size N .

By [2, Lemma 2.6, p. 32] and property I, the probability that N
output symbols entirely generated by the random data are typical with
the sync pattern is upper-bounded by

exp(�N(1� 1=K)(max
x

D(Q(�jx)jjQ(�j?))� �))

where � > 0 goes to zero as the typicality constant � goes to zero.5

Hence, by the union bound

(f�N < �g [ f�N � � + 2N � 1g)

� e�N(����(max D(Q(�jx)jjQ(�j?))��)=K)

which tends to zero for � small enough andK sufficiently large.6 If the
N observed symbols are generated partly by the data and partly by the
sync pattern, by property II, the Chernoff bound, and the union bound
we obtain

(�N 2 [�; � + 1; . . . ; � +N � 2]) � (N � 1)e�
(N)

which vanishes as N tends to infinity. We then deduce that

(�N = � +N � 1)! 1

as N ! 1.
To conclude, we give an explicit construction of a sequence of sync

patterns satisfying the properties I and II above. To that aim, we use
maximal-length shift register sequences (see, e.g., [3]). Actually, for
our purposes, the only property we use from such binary sequences
of length l = 2m � 1;m 2 [1; 2; . . .), is that they are of Hamming
distance (l + 1)=2 from any of their circular shifts.

Pick some large K that satisfies bN
K
c = 2m � 1 for some m 2

[1; 2; . . .).7 We start by setting si = �x for all bN
K
c < i � N . With this

choice, property I is already satisfied regardless of the first bN
K
c sym-

bols of the pattern. To specify the latter, pick a maximal length shift
register sequence m1;m2; . . . ; mb c, and set sj = �x if mj = 0 and

sj = ? if mj = 1, for any j 2 [1; 2; . . . ; bN
K
c]. It can be readily ver-

ified, using the circular shift property of maximal length shift register
sequences, that this construction yields patterns satisfying property II.

Proof of the Converse: We assume that A = eN� with

� > max
x

D(Q(�jx)jjQ(�j?))

and show that the (optimal) maximum-likelihood decoder that operates
on the basis of sequences of maximum length A + N � 1 yields a
probability of error going to one as N tends to infinity.

5See footnote 3.
6If max D(Q(�jx)jjQ(�j?)) = 1, the upper bound is zero if � is small

enough.
7We use bxc to denote the largest integer smaller than x.
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Fig. 2. Parsing of the entire received sequence of size A+N�1 into r blocks
y ; y ; . . . ; y of length N , where the ith block starts at time t .

We assume that the sync pattern sN is composed ofN identical sym-
bols s 2 X . The case with multiple symbols is obtained by a straight-
forward extension. Suppose the maximum-likelihood decoder not only
is revealed the complete sequence

y1; y2; . . . ; yA+N�1;

but also knows the value of � mod n, i.e., the decoder knows that the
sync pattern was sent in one of

r =
A+N � (�modN)

N

disjoint blocks of duration N , as shown in Fig. 2.
AssumingQ(yj?) > 0 for all y 2 Y ,8 straightforward algebra shows

that the decoder outputs the time ti; i 2 [1; 2; . . . ; r], that maximizes9

f(y(t )) =
Q(y(t )jsN )
Q(y(t )j?) : (1)

Note that f(y(t)) depends only on the type of the sequence y(t) since
sN is the repetition of a single symbol. For conciseness, from now on
we adopt the notation Qs(y) instead of Q(yjs) and Q?(y) instead of
Q(yj?).

Let Qs � �0 denote the set of types (induced by sequences yN ) that
are �0 > 0 close to Qs with respect to the L1 norm, and let E1 de-
note the event that the type of the �th block (corresponding to the sync
transmission period) is not in Qs � �0. It follows that

(E1) � e�N� (2)

for some � = �(�0) > 0.10 Let �Qs = argmaxP2Q �� f(P ),11 where
with a slight abuse of notation f(P ) is used to denote f(yN) for any
sequence yN having type P . Now consider the event E2 where the
number of blocks generated by Q? that have type �Qs is smaller than

1

2(N + 1)1+jXj
e�N(D( �Q jjQ )��):

Using [2, Lemma 2.6, p. 32], the expected number of blocks generated
by Q? that have type �Qs is lower-bounded as

(number of type �Qs blocks generated fromQ?)

� 1

(N + 1)jXj
e�ND( �Q jjQ )(r � 1)

� 1

(N + 1)1+jXj
e�N(D( �Q jjQ )��)

8If Q(yj?) = 0 for some y 2 Y we have �(Q) = 1, and there is nothing
to prove.

9In the case of a tie, we assume that the decoder chooses one of the maxi-
mizing t ’s uniformly at random.

10Here we implicitly assume that N is large enough so that the set of types
Q � � is nonempty.

11Note that �Q may not be equal to Q .

where the last inequality holds for sufficiently large N . Hence, using
Chebyshev’s inequality, we get

(E2) � poly(N)e�N(��D( �Q jjQ )) (3)

where poly(N) denotes a term that increases no faster than polynomi-
ally in N .

Finally, consider the eventE3 defined as the complement ofE1[E2.
Given that E3 happens, the decoder sees at least

1

2(N + 1)1+jXj
e�N(D( �Q jjQ )��)

time slots whose corresponding ratios (1) are at least as large as the
correct �th. Hence, the probability of correct decoding given that the
event E3 happens is upper-bounded as

(corr.decjE3) � poly(N)e�N(��D( �Q jjQ )): (4)

We deduce from (2), (3), and (4) that the probability of correct decoding
is upper-bounded as

(corr. dec.) =
3

i=1

(corr.decjEi) (Ei)

� (E1) + (E2) + (corr.decjE3)

� (e�N� + e�N(��D( �Q jjQ )))poly(N):

Therefore, if

� > D( �QsjjQ?)

the probability of successful decoding goes to zero as N tends to in-
finity. Since D( �QsjjQ?) tends to D(QsjjQ?) as �0 # 0 by continuity
of D(�jjQ?),12 the result follows by maximizing D(QsjjQ(�j?)) over
s 2 X .

III. THE GAUSSIAN CHANNEL

The result presented in the previous section can be extended to the
Gaussian channel with a peak power constraint on the input. Specifi-
cally, consider a Gaussian channel described by the conditional proba-
bility distribution function

Q(yjx) = 1p
2��2

e
�

where x; y 2 . Suppose the random data has a Gaussian distribution
with mean 0 and variance �2, i.e., Q(yj?) = Q(yj0). The input con-
straint is that the sync pattern sN must satisfy s2i � P for 1 � i � n,
where P represents the available power. For this channel, a straightfor-
ward extension of the arguments from the previous section shows that
the synchronization threshold is given by

�(Q) =
1

2
SNR

where SNR denotes the signal to noise ratio, and is defined as P=�2.

12We may assume D(�jjQ ) is continuous because otherwise �(Q) = 1,
so there is nothing to prove.
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IV. CONCLUDING REMARKS

Similarly to Massey’s setting [5], ours assumes that the decoder ob-
serves either a noisy version of the sync pattern or a sequence of inde-
pendent and identically distributed, random variables. In this setting,
we derived an optimal tradeoff between pattern size and asynchronism
level in the form of the synchronization threshold. In certain applica-
tions, however, the output random variables outside the sync pattern
period are not i.i.d., and optimal pattern detection procedures remain
to be found.

Another issue concerns the definition of optimality. Ours requires
that “the decoder must isolate the sync pattern with arbitrarily high
probability.” However, we have imposed no constraints on how quickly
the error probability approaches 0 asN !1. For the problem where
we require that the error probability decays with a certain error expo-
nent, the maximum achievable asynchronism exponent remains to be
identified.
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A Case for Amplify–Forward Relaying in the Block-Fading
Multiple-Access Channel

Deqiang Chen, Member, IEEE, Kambiz Azarian, and
J. Nicholas Laneman, Senior Member, IEEE

Abstract—This correspondence demonstrates the significant gains that
multiple-access users can achieve from sharing a single amplify–forward
relay in slow-fading environments. The proposed protocol, namely, mul-
tiple-access amplify–forward (MAF), allows for a low-complexity relay and
achieves the optimal diversity–multiplexing tradeoff (DMT) at high multi-
plexing gains. Analysis of the protocol further reveals that it outperforms
both the compress-forward strategy at low multiplexing gains and the dy-
namic decode-forward protocol at high multiplexing gains. An interesting
feature of the proposed protocol is that, at high multiplexing gains, it re-
sembles a multiple-input single-output (MISO) system, and at low multi-
plexing gains, it provides each user with the same DMT as if there were no
contention for the relay from the other users.

Index Terms—Amplify–forward, block-fading channel, cooperative
diversity, diversity–multiplexing tradeoff (DMT), multiple-access relay
channel (MARK), wireless networks.

I. INTRODUCTION
A. Motivation

In recent years, cooperative communications has received signifi-
cant interest (e.g., [1]–[7]) as a means of providing spatial diversity for
applications in which temporal, spectral, and antenna diversity are lim-
ited by delay, bandwidth, and terminal size constraints, respectively.
Cooperative techniques offer diversity by enabling users to utilize one
another’s resources such as antennas, power, and bandwidth. As a con-
sequence, most cooperative protocols share the characteristic that they
require substantial coordination among the users. In a wireless setting,
establishing this level of user cooperation may be impractical due to
cost and complexity considerations. Inspired by this observation, this
correspondence focuses on an alternative architecture, namely, the
multiple-access relay channel (MARC) [4], [8] and proposes a strategy
called the multiple-access amplify–forward (MAF) that allows the
users to operate as if in a normal (noncooperative) multiple-access
channel (MAC). In this system, the users need not be aware of the
existence of the relay, i.e., all cost and complexity of exploiting
cooperative diversity is placed in the relay and destination. Such an
architecture may be suitable for infrastructure networks, in which the
relay and destination correspond, respectively, to a relay station and
a base station deployed and managed by the service provider. It is
worth noting that since a single relay is shared by multiple users in the
MARC, the extra cost of adding the relay is amortized across many
users and may thus be more acceptable, especially as the number of
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