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Abstract— We consider asynchronous communication
over point-to-point discrete memoryless channels with-
out feedback. The transmitter starts sending one block
codeword at an instant that is uniformly distributed
within a certain time period, which represents the level of
asynchronism between the transmitter and the receiver.
The receiver, by means of a sequential decoder, must
isolate the message without knowing when the codeword
transmission starts but being cognizant of the asynchro-
nism level. We are interested in quick detection and
isolation of the sent message, particularly in the regime
where the asynchronism level is exponentially larger
than the codeword length, which we refer to as ‘strong
asynchronism.’

This model of sparse communication might represent,
for instance, the situation of a sensor that remains
idle most of the time and, only occasionally, transmits
information to a remote base station which needs to
quickly take action. Because of the limited amount of
energy the sensor possesses, assuming the same cost per
transmitted symbol, it is of interest to consider minimum
size codewords given the asynchronism level.

The first result is an asymptotic characterization of
the largest asynchronism level, in terms of the code-
word length, for which reliable communication can be
achieved: vanishing error probability can be guaranteed
as the codeword length N tends to infinity while the
asynchronism level grows as eNα if and only if α does
not exceed the synchronization threshold, a constant that
admits a simple closed form expression, and is at least
as large as the capacity of the synchronized channel.

The second result is the characterization of a set of
achievable strictly positive rates in the regime where
the asynchronism level is exponential in the codeword
length, and where the rate is defined with respect to the
expected (random) delay between the time information
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starts being emitted until the time the receiver makes a
decision. Interestingly, this achievability result is obtained
by a coding strategy whose decoder not only operates
asynchronously, but has also an almost universal decision
rule, in the sense that it is almost independent of the
channel statistics.

As an application of the first result we consider
antipodal signaling over a Gaussian additive channel and
derive a simple necessary condition between blocklength,
asynchronism level, and SNR for achieving reliable com-
munication.

Finally we note that the communcation model we study
can be seen as a complement to the insertion, deletion,
and substitution channel model introduced by Dobrushin
in 1967. The chief difference is that this channel models
timing uncertainty that result from the channel, whereas
our setting models timing uncertainty caused by the users
(or by a bursty source of information).

Index Terms— Asynchronous communication, detec-
tion and isolation problem, discrete-time communication,
error exponent, low probability of detection, point-to-
point communication, quickest detection, sequential anal-
ysis, sparse communication, stopping times

I. INTRODUCTION

A common assumption in information theory is
that ‘whenever the transmitter speaks the receiver
listens.’ In other words, in general, there is the
assumption of perfect synchronization between the
transmitter and the receiver and, basic quantities,
such as the channel capacity, are defined under
this hypothesis [14]. In practice this assumption is
rarely fulfilled. Time uncertainty due, for instance,
to bursty sources of information often causes asyn-
chronous communication, i.e., communication for
which the receiver has only a partial knowledge of
when information is sent.
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There are, however, notable channels for which
asynchronism effects have been studied from an
information theoretic standpoint. An example is
the multiple access channel (see, e.g., [4], [10],
[13], [18]) for which the capacity region has been
computed under various assumptions on the users’
asynchronism. Another important example is the
insertion, deletion, and substitution (IDS) channel
for which only bounds on the capacity are known
(see, e.g., [1], [8], [9], [7]).

In this paper we propose an information the-
oretic framework that models users’ asynchro-
nism for point-to-point discrete-time communica-
tion without feedback. We consider the situation
where the transmitter may start sending informa-
tion at a time unknown to the receiver. The time
transmission starts is assumed to be uniformly
distributed within a certain interval, which defines
the asynchronism level between the transmitter and
the receiver. A suitable notion of rate is introduced
and scaling laws between block message size and
asynchronism level are given for which reliable
communication can or cannot be achieved.1 Our
first result is the characterization of the highest
asynchronism level with respect to the codeword
length under which reliable communication can
still be achieved. This limit is attained by a cod-
ing strategy that operates at vanishing rate. This
strategy also allows for communication at positive
rates while operating at asynchronism levels that
are exponentially larger than the codeword length.

Note that the above channel setting can be con-
sidered as a complement to the IDS channel model
since these two channels model different types
of asynchronism. Specifically, the IDS channel
models asynchronism effects during information
transmission, whereas our setting models users’
asynchronism. We will return to this issue in
Section II.

In Section II we formally introduce our model
and draw connections with the related ‘detection
and isolation’ problem in sequential analysis, and
Section III contains our main results.

II. PROBLEM FORMULATION AND

BACKGROUND

We consider discrete-time communication over
a discrete memoryless channel characterized by

1We refer to ‘reliable communication’ whenever arbitrary low
error probability can be achieved.
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�

Q(·|·)

Fig. 1. Communication is carried over a discrete memoryless
channel. When ‘no information’ is sent the input of the channel is
the ‘�’ symbol.

its finite input and output alphabets X and Y ,
respectively, transition probability matrix Q(y|x),
for all y ∈ Y and x ∈ X , and ‘noise’ symbol
� ∈ X (see Fig. 1).2 The codebook consists of
M ≥ 2 equally likely codewords of length N
composed of symbols from X — possibly also
the � symbol. The transmission of a particular
codeword starts at a random time ν, independent
of the codeword to be sent, uniformly distributed
in [1, 2, . . . , A], where the integer A ≥ 1 charac-
terizes the asynchronism level. We assume that the
receiver knows A but not ν. If A = 1 the channel
is said to be synchronized. Throughout the paper,
whenever we refer to the capacity of a channel, it
is intended to be the capacity of the synchronized
channel. Throughout the paper we only consider
channels Q with strictly positive capacity C(Q).

Before and after the transmission of the informa-
tion, i.e., before time ν and after time ν+N−1, the
receiver observes noise. Specifically, conditioned
on the value of ν and on the message to be
conveyed m, the receiver observes independent
symbols Y1, Y2, . . . distributed as follows. If i ≤
ν − 1 or i ≥ ν + N , the distribution is Q(·|�). At
any time i ∈ [ν, ν + 1, . . . , ν + N − 1] the dis-
tribution is Q(·|ci−ν+1(m)), where cn(m) denotes
the nth symbol of the codeword cN(m) assigned
to message m.

The decoder consists of a sequential test (τ, φ),
where τ is a stopping time with respect to the out-
put sequence Y1, Y2, . . .

3 indicating when decoding

2Throughout the paper we always assume that for all y ∈ Y there
is some x ∈ X for which Q(y|x) > 0.

3Recall that a stopping time τ is an integer-valued random
variable with respect to a sequence of random variables {Yi}∞i=1

so that the event {τ = n}, conditioned on {Yi}n
i=1, is independent

of {Yi}∞i=n+1 for all n ≥ 1.
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� � . . . � c1(m)
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cN (m)� � . . . �

Fig. 2. Time representation of what is sent (upper arrow) and what
is received (lower arrow). The ‘�’ represents the ‘noise’ symbol. At
time ν message m starts being sent and decoding occurs at time τ .

happens, and where φ denotes a decision rule4 that
declares the decoded message (see Fig. 2).

We are interested in reliable and quick decoding.
To that aim we first define the average decoding
error probability as

P(E) =
1

A

1

M

M∑
m=1

A∑
l=1

Pm,l(E),

where E indicates the event that the decoded mes-
sage does not correspond to the sent message, and
where the subscripts m,l indicate the conditioning
on the event that message m starts being sent at
time l. Second, we define the average communica-
tion rate with respect to the average delay it takes
the receiver to react to a sent message, i.e.

R =
ln M

E(τ − ν)+
(1)

with

E(τ − ν)+ � 1

A

1

M

M∑
m=1

A∑
l=1

Em,l(τ − l)+

where x+ denotes max{0, x}, and where Em,l

denotes the expectation with respect to Pm,l.5 With
the above definitions we now introduce the notion
of achievable rate with respect to a certain asyn-
chronism level as well as the notion of synchro-
nization threshold.

Definition 1. An asynchronism exponent α is
achievable at a rate R if, for any ε > 0, there exists
a block code with (sufficiently large) codeword
length N , operating under asynchronism level A =
e(α−ε)N , while yielding a rate at least as large as
R − ε and an error probability P(E) ≤ ε. The

4Formally φ is an Fτ -measurable map where F1,F2, . . . is the
natural filtration induced by the process Y1, Y2, . . .

5Here ln denotes the natural logarithm.

supremum of the set of asynchronism exponents
that are achievable at rate R is denoted α(R, Q).

Note that, for a given channel Q, the asynchronism
exponent function α(R, Q) is non-increasing in R.

Definition 2. The synchronization threshold of a
channel Q, denoted by α(Q), is the supremum of
the set of achievable asynchronism exponents at
all rates, i.e., α(Q) = α(R = 0, Q).

Throughout the paper we often use the terminology
‘coding strategy’ or ‘coding scheme’ to denote
an infinite sequence of pairs codebook/decoder
labeled by the blocklength. In particular, whenever
we refer to a coding strategy that ‘achieves a
certain rate,’ it is intended to be asymptotically
in the limit N → ∞.

Let us comment on the above bursty commu-
nication model and its associated notions of rate
and synchronization threshold. We first compare
the insertion, deletion, and substitution (IDS) chan-
nel model setting with ours. Recall that the IDS
channel is specified by the set of all conditional
output distributions Q(y|x) where x belongs to
some finite alphabet X and y is a string, possibly
the empty one, where each element belongs to the
same finite alphabet Y . The IDS channel models
timing uncertainty that result from the channel
itself and not from the users’. Instead, our setting
models timing uncertainty that result from the
users’ and not from the channel. Indeed, in the
IDS channel there is the implicit assumption that
information tries to be conveyed from time one,
and that the receiver knows the timing of the
last output symbol. For instance, in the purely
deletion channel where each input symbol result
deleted with a certain probability, if the codeword
cN produces the output y ∈ Y l, l ≤ N , the
receiver knows that nothing comes after time l.
In contrast, in our setting information does not
necessary start to be conveyed from time one and
the receiver is not informed of the timing of the last
output symbol. However, in contrast with the IDS
channel model, our setting does not model timing
uncertainty during transmission: conditioned on
the time ν when information starts being conveyed,
information transmission ends at the fixed time ν+
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N −1.6 Finally note that in our setting, in contrast
with IDS channel, the level of asynchronism is
captured through a single parameter (A or α).

First observe that we do not introduce a feed-
back channel from the receiver to the transmitter.
With a noiseless feedback it is possible to inform
the transmitter of the receiver’s decoding time, say
in the form of ack/nack, therefore allowing the
sending of multiple messages instead of just one
as in our model. Here the noiseless assumption is
crucial. If the feedback is noisy, the receiver’s deci-
sion may be wrongly recognized by the transmitter,
which possibly may result in a loss of message
synchronization between transmitter and receiver
(say the receiver hasn’t yet decoded the first mes-
sage while the transmitter has already started to
emit the second one). Therefore, in order to avoid a
potential second source of asynchronism, we omit
feedback in our study and limit transmission to
only one message.

The reason for defining the rate with respect to
the average delay E(τ −ν)+ (see (1)) is motivated
by the following considerations. At first sight, a
natural measure of delay may be the codeword
length N . However, in light of the use of sequential
decoding, the codeword length does not provide a
measure of the delay needed for the information
to be reliably decoded. Another candidate for the
delay one might consider is E(τ) or, equivalently,
Eν + E(τ − ν). The fact that this delay takes into
account the initial offset Eν can be regarded as a
weakness since this offset can be influenced neither
by the transmitter nor by the receiver. Also, with
such a delay measure, it can be shown that, in the
regime of positive asynchronism exponents we are
interested in, the rate is always (asymptotically)
vanishing for any reliable coding strategy. Instead,
we propose to consider E(τ − ν)+, the average
time the transmitter needs to wait until the receiver
makes a decision. Also note that, in the definition
of achievable rate (Definition 1), we choose to
grow A with N . Indeed, when A is fixed the
problem becomes trivial. By using sufficiently long
codewords and simply decoding at the (fixed) time
A+N −1 the asynchronism effect on the rate can

6In [8] (see discussion after Theorem 1) Dobrushin discusses the
assumption that the receiver implicitely knows the length of the
received sequence. To avoid this assumption, instead of ‘one-shot’
communication, Dobrushin proposes to consider the sending of an
infinite sequence of messages.

be made negligible.

We now briefly discuss the notion of syn-
chronization threshold. This threshold is defined
with respect to zero rate coding strategies, that
is strategies for which ln M/E(τ − ν)+ tends to
zero (as N → ∞). However, because E(τ − ν)+

and N need not coincide in general, zero rate
coding strategies need not, in general, yield a
vanishing fraction ln M/N as N tends to infinity.
Indeed, as we will see, one can operate arbitrarily
closely to the synchronization threshold while hav-
ing ln M/N asymptotically bounded away from
zero.

Perhaps the closest sequential decision problem
our model relates to is a generalization of the
change-point problem, often called the ‘detection
and isolation problem,’ introduced by Nikiforov in
1995 (see [12], [11] and [2] for a survey). A pro-
cess Y1, Y2, . . . starts with some initial distribution
and changes it at some unknown time. The post
change distribution can be any of a given set of M
distributions. By sequentially observing Y1, Y2, . . .
the goal is to quickly react to the statistical change
and isolate its cause, i.e., the post-change distri-
bution. Hence, our synchronization problem takes
the form of a detection and isolation problem
where the change in distribution is induced by
the transmitted message. However, to the best of
our knowledge studies related to the detection and
isolation problem usually assume that once the
observed process jumps into one of its post-change
distributions, it remains in that state forever. This
means that, eventually, if we wait long enough, a
correct decision is be possible. Instead, in the syn-
chronization problem the change in distribution is
local since it only lasts the duration of a codeword
length. In particular once the codeword is ‘missed’
no recovery is possible. Finally, optimal decoding
rules for the detection and isolation problem seem
to have been obtained only in the limit of small
error probabilities P(E) while keeping M , the
number of post-change distributions, fixed.7 In our
case we typically let M grow as (1/P(E))ξ, for
some ξ > 0.

7Here optimal decoding rules refer to sequential tests yielding
minimum reaction delay, usually a function of τ−ν, given a certain
error probability.
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III. RESULTS

Our first result is the characterization of the
synchronization threshold.

Theorem 1. For any discrete memoryless channel
Q, the synchronization threshold as given in Defi-
nition 2 is given by

α(Q) = max
x

D(Q(·|x)||Q(·|�))

where D(Q(·|x)||Q(·|�)) is the divergence
(Kullback-Leibler distance) between Q(·|x)
and Q(·|�). Furthermore, any synchronization
threshold α < α(Q) can be achieved by a coding
strategy that yields limN→∞ ln M/N > 0. �

The theorem says that vanishing error probability
can be achieved as the blocklength N tends to
infinity if the asynchronism level grows as eNα

where α < D(Q(·|x)||Q(·|�)). Conversely, any
coding strategy that operates at an asynchronism
exponent α > D(Q(·|x)||Q(·|�)) cannot achieve
arbitrary low error probability. The second part
of the theorem shows the distinction between the
delay measured by the codeword length N and by
the expected ‘reaction time’ E(τ − ν)+. Arbitrary
closely to the synchronization threshold one can
(asymptotically) guarantee ln M/N to be strictly
positive, while the question remains open for the
rate ln M/E(τ − ν)+.

At least some connections between channel ca-
pacity and synchronization threshold exist. Al-
though these two quantities are not directly related,
both refer to limits on hypothesis discrimination.
The first concerns a purely isolation problem
whereas the second concerns an almost purely de-
tection problem (since there is no rate constraint).
It may be interesting to note that the synchroniza-
tion threshold α(Q) is always at least as large as
C(Q). To see this let P be the capacity achieving
distribution of the (synchronized) channel Q. It
is well known [5, Lemma 13.8.1] that for any
distribution V on Y

D(PQ||PPY ) ≤ D(PQ||PV )

where PY is the right marginal of PQ =

+1

−1

+1

−1

� = 0

ε

1 − ε

1/2

1/2

Fig. 3. Antipodal signaling over a Gaussian channel with hard
decision at the decoder.

P (·)Q(·|·). Letting V = Q(·|�) we get

C(Q) � D(PQ(·|·)||PPY )

≤ D(PQ(·|·)||PQ(·|�))

=
∑

x

P (x)
∑

y

Q(y|x) ln
Q(y|x)

Q(y|�)

≤ max
x

D(Q(·|x)||Q(·|�))

= α(Q)

Finally it can be checked that if C(Q) = 0 then
α(Q) = 0.

Example: the Gaussian channel

As an application of Theorem 1 we consider
antipodal signaling over a Gaussian channel and
derive a necessary condition between asynchro-
nism level, block length, and signal to noise ratio
(SNR) for achieving reliable communication. Sup-
pose communication takes place over an additive
channel X → Y = X + Z where X denotes the
input, Y the output, and where Z is a normally
distributed random variable, independent of X ,
with zero mean and unit variance. We consider
antipodal signaling, that is ci(m) = ±√

SNR
for all i ∈ {1, 2, . . . , N} and m ∈ {1, . . . , M},
where the SNR is some positive constant. Before
decoding, the receiver makes a hard decision on
each received symbol and declares +1 if Yi ≥ 0
and −1 if Yi < 0. The noise symbol � equals
zero meaning that when no information is sent
the receiver declares +1 or −1 with probability
1/2. The inputs +

√
SNR and −√

SNR are received
correctly with probability 1 − ε and are flipped
with probability ε, where ε = e−

SNR
2

(1+o(1)) as
the SNR tends to infinity. The discrete channel
Q that results from the hard decision procedure
is depicted in Fig. 3. From Theorem 1, any cod-
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ing strategy that yields vanishing error probability
satisfies lim supN→∞ 1/N lnA ≤ α(Q) where

α(Q) = max
x

D(Q(·|x)||Q(·|�))

= ln 2 − H(ε)

= ln 2 − H(e−
SNR
2

(1+o(1))) as SNR → ∞
with H(ε) � −ε ln ε−(1−ε) ln(1−ε). Therefore,
as N tends to infinity, in order to achieve reliable
communication it is necessary that

1

N
ln A ≤ ln 2 − H(e−

SNR
2

(1+o1(1))) + o2(1)

where o1(1) and o2(1) are vanishing functions of
the SNR and of N , respectively. Because of the
chosen quantization, in the limit of high SNR we

have 1
N

lnA
∼≤ ln 2, and an increase in the power

results in a negligible increase of the asynchronism
level for which reliable communication is possible
(for fixed blocklength). To exploit power at high
SNR it is necessary to have a finer quantization at
the output. Finally notice that for this (quantized)
channel the synchronization threshold coincides
with the channel capacity. �

While we do not characterize the asynchronism
exponent function α(R, Q) for R > 0, Theorem 2
provides a non trivial lower bound characterization
of α(R, Q), for any R ∈ [0, C(Q)).

We use the notation (PQ)Y to denote the right
marginal of a joint distribution P (·)Q(·|·) and,
given a joint distribution J on X × Y we denote
by I(J) the mutual information induced by J .
Also we denote by PY|X the set of conditional
distributions of the form V (y|x) with x ∈ X and
y ∈ Y .

Theorem 2. Let Q be a discrete memoryless chan-
nel. If for some constants α ≥ 0, t1 ≥ 0, t2 > 1,
and input distribution P , with I(PQ) > 0, the
following inequalities

a. α < inf
V ∈PY|X

D((PV )Y ||Q(·|�))<
t1α

δ(t1+t2−1)

D((PV )Y ||(PQ)Y )

b. α < min
V ∈PY|X

I(PV )≤ t2α

δ(t1+t2−1)

D(PV ||PQ)

c.
t1
t2

<
D((PQ)Y ||Q(·|�))

I(PQ)

are satisfied for some δ ∈ (0, 1), then the rate
I(PQ)/t2 is achievable at an asynchronism expo-
nent α. �

Note that the conditions a and b in Theorem 2 are
easy to check numerically since they only involve
convex optimizations. Also notice, on the right
hand side of the inequality b, the sphere packing
exponent function — of the channel Q with input
distribution P — evaluated at t2α

δ(t1+t2−1)
(see [6,

p.166]).

Corollary. For any channel Q with capacity
C(Q) > 0, any rate R ∈ (0, C(Q)) can be
achieved at a strictly positive asynchronism expo-
nent.

Proof of the Corollary. Consider the inequalities
a, b, and c from Theorem 2. First choose some
P and t2 > 1 so that I(PQ)/t2 ≥ R and so that
(PQ)Y �= Q(·|�) (this is always possible since
C(Q) > 0). By setting t1 = 0 the inequality c
holds (since its right hand side is strictly positive).
Also inequality a holds for any finite α (the infi-
mum equals infinity). For the inequality b, observe
that its right hand side is a decreasing function of
α and has a strictly positive value at α = 0 (since
I(PQ) > 0). It follows that inequality b holds for
strictly positive and small enough values of α.

A. Coding for asynchronous channels

In this section we present the coding scheme
from which one deduces Theorem 2 and the di-
rect part of Theorem 1. As we will see, our
scheme does not subdivide the synchronization
problem into a detection problem followed by a
message isolation problem: detection and isolation
are treated jointly.

The codebook is randomly generated according
to some distribution P . If the aim is only to reliably
communicate at a certain asynchronism exponent
α, there is some degrees of freedom in choosing
P . One possible choice is to pick a P that satisfies

D((PQ)Y ||Q(·|�)) + I(PQ) − ln M/N > α

with D((PQ)Y ||Q(·|�)) > 0 and I(PQ) > 0,
where M represents the size of the message set
and N the size of the codewords. In the regime
where the asynchronism exponent is close to α(Q)
the codewords are mainly composed of the symbol
arg maxx D(Q(·|x)||Q(·|�)). Indeed, in this asyn-
chronism regime, the main source of error comes
from a miss detection of the sent codeword, later
referred to as ‘false-alarm.’ We deal with this
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source of error by distillating information using
codewords with (mostly) symbols that induce out-
put distributions that are ‘as far as possible’ from
the output distribution induced by the � symbol.
Finally if the aim is to accommodate both rate
and asynchronism constraints, the distribution P
has to satisfy the conditions explicitly stated in
Theorem 2.

For the decoder, let us observe first that our
communication model admits two sources of error.
The first comes from an atypical behavior of the
noise during the period when no information is
conveyed, which may result in a false-alarm. The
second comes from an atypical behavior of the
channel during information transmission, which
may result in a miss-isolation of the sent codeword.
These two sources of error depend on the asyn-
chronism level as well as on the communication
rate: the higher the asynchronism the higher the
first source of error, the higher the communication
rate the higher the second source of error. Ac-
cordingly, our decoder is the combination of two
criteria parameterized by constants that are chosen
based on the level of asynchronism and according
to the rate we aim at.

More specifically, the decoder observes the
channel outputs Y1, Y2, . . . and makes a decision as
soon as it observes i consecutive output symbols,
with i ∈ [1, 2, . . . , N ], that simultaneously satisfy
two conditions. The first condition is that these
symbols should look ‘sufficiently different’ from
the noise, as measured by the divergence. The
second condition is that these symbols must be
sufficiently correlated, in a mutual information
sense, with one of the codewords. We formalize
this below.

For j ≥ i we write xj
i for xi, xi+1, . . . , xj .

If i = 1 we use the shorthand notation xj in-
stead of xj

i . Given a pair (xn, yn) let us denote
by P̂(xn,yn) the empirical distribution of (xn, yn),
i.e., P̂(xn,yn)(x, y) = 1

n

∑n
i=1 11(x,y)(xi, yi) where

11(x,y)(xi, yi) = 1 if (xi, yi) = (x, y), else equals
zero. To each message m ∈ [1, 2, . . . , M ] associate
the stopping time

τm = inf

{
n ≥ 1 : ∃i ∈ {1, . . . , N} so that

iD(P̂Y n
n−i+1

||Q(·|�)) ≥ t1 ln M and

min
k∈[1,...,i]

[
kI(P̂ck(m),yn−i+k

n−i+1
)

+ (i − k)I(P̂ci
k+1(m),yn

n−i+k+1
)
]
≥ t2 ln M

}
(2)

where t1 ≥ 0 and t2 > 1 are some fixed threshold
constants to be appropriately chosen according to
the asynchronism level and desired communication
rate. The decoding is made at time

τ = min
m∈[1,2,...,M ]

τm

and the message m̄ that is declared is any that
satisfies τm̄ = τ .

It should be emphasized that there may be
other sequential decoders that also achieve the
synchronization threshold. The one we propose has
the property that it also allows for communication
at positive rates and positive asynchronism expo-
nents. Also, an interesting feature of the above
decoder is that, in addition to operating in an
asynchronous setting, it is also almost universal
in the sense that its rule does not depend of the
channel statistics, except for the noise distribution
Q(·|�). In fact this decoder is an extension of
a sequential universal decoder introduced in [17,
eq. (10)] for the synchronized setting.

In the context of asynchronous communication,
the same decoding rule as above is considered in
[16], but without the divergence condition, i.e., a
decision is made as soon as for some m and i the
condition

min
k∈[1,...,i]

[
kI(P̂ck(m),yn−i+k

n−i+1
) + (i − k)I(P̂ci

k+1(m),yn
n−i+k+1

)
]

≥ t2 ln M

holds. With the mutual information condition
alone, however, it was not possible to prove that
reliable communication can be achieved for asyn-
chronism exponents higher than the capacity of the
channel.
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B. Optimal sequential frame synchronization

In this section we consider the situation where
there is only one codeword, cN , that needs to be
detected at the output of the channel on the basis
of sequential observations. In the litterature this
setting is referred to as the sequential frame syn-
chronization problem. To identify the instant when
the message starts being emitted, the receiver uses
a sequential decoder in the form of a stopping time
τ with respect to the output sequence Y1, Y2, . . .
If τ = n the receiver declares that the message
started being sent at time n−N+1. The associated
error probability is defined as

P(τ �= ν + N − 1) .

We now define the frame synchronization thresh-
old.

Definition 3. An asynchronism exponent α is
achievable if there exists a sequence of pairs code-
word/decoder {(cN , τN )}N≥1 such that cN and τN

operate under asynchronism level A = eαN , and
so that

P(τN �= ν − N + 1)
N→∞−→ 0 .

The frame synchronization threshold, denoted
α(Q), is the supremum of the set of achievable
asynchronism exponents.

The following theorem shows that the frame syn-
chronization threshold corresponds to the maxi-
mum achievable asynchronism exponent at rate
R = 0. This should not come as a surprise
since the limit of asynchronous communication is
obtained in the zero rate regime where decoding
errors are mainly due to a miss location of the
transmitted message.

Theorem 3. The synchronization threshold as de-
fined in Definition 3 is given by

α(Q) = α(R = 0, Q)

where α(R, Q) is defined in Definition 1. Further-
more, if the asynchronism exponent is above the
synchronization threshold, a maximum likelihood
decoder that is revealed the maximum length se-
quence of size A + N − 1 makes an error with a
probability that tends to one as N → ∞. �

A direct consequence of Theorem 3 is that a
sequential decoder can (asymptotically) locate the

sync pattern as well as the optimal maximum
likelihood decoder that has access to sequences of
maximum size A + N − 1, but with much fewer
observations.
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