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Abstract— Practical rateless codes for the additive white Gaus-
sian noise channel based on the layer-dither-repeat construction
of Erez, et al. [5] are developed and analyzed. We use an
iteratively decoded base code for each layer and a maximal-ratio
combining receiver, which provides suitable log-likelihood ratios
to the decoder. For this construction we derive an algorithm for
computing the optimal power allocation among the layers that
takes into account the base code gap to capacity. We further
derive the initial and limiting gaps to capacity of the rateless
code. Finally, we verify the predicted performance characteristics
via simulations using a turbo base code.

I. INTRODUCTION

Rateless codes are good codes whose codeword prefixes
themselves form good codes. Such codes have recently re-
ceived increased attention from the research community, in
large part because they are attractive for use over channels with
unpredictable channel characteristics, e.g., in many wireless
environments. Using rateless codes, a transmitter only needs
to transmit as much of the codeword as is necessary to decode,
in effect making the code rate itself variable in response to
the variability in the channel. Rateless codes allow the system
designer to leave out link margin requirements because the
rateless codes themselves adapt to changing channel condi-
tions. While some of the best known rateless codes are the
so-called fountain codes, designed for the application layer
and erasure channel models [1], rateless codes of the type
we develop here are closer in spirit to hybrid-ARQ (H-ARQ)
systems familiar in many standards.

This paper describes a reduction to practice of an approach
to rateless coding for the additive white Gaussian noise
(AWGN) channel proposed in [5]. In [5], Erez, et al. show
that when used in conjunction with capacity-achieving binary
base codes of sufficiently low rate, a particular layer-dither-
repeat architecture is sufficient to come within any desired
fraction of capacity on the realized channel. In this paper, we
derive the optimal power allocation algorithm for use of this
architecture with practical codes, develop important measures
of performance for the resulting rateless code, and validate the
associated analysis via simulations with turbo base codes.

The rateless block code of interest [5], [6] is depicted in
Figs. 1 and 2. A packet of information bits is divided into L
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Fig. 1. Encoding with the rateless block code construction. d0,d1, ...,dL−1

are binary dither sequences.
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Fig. 2. A rateless code construction with 4 layers and 3 blocks of
redundancy. Each block is a weighted linear combination of the base code-
words c1, c2, . . . , c4, where gml denotes the weight for layer l of block m
incorporating the effect of dithering and power allocation.

layers, each of which is encoded using a base code of rate R◦
(the same for all layers), dithered, modulated, and weighted by
a derived amplitude. Then the layers are superimposed to form
one redundancy block of the rateless code. The block is then
sent over the channel. If the receiver can decode this block,
it sends an acknowledgement (ACK). If not it either sends
a no-acknowledgement (NACK) or there is time-out, and the
transmitter sends the information again in a new redundancy
block, encoding the same layers as before and using the same
base codes, but with different power allocation and dithering
in the superposition.

The receiver computes the channel log-likelihood ratios
for soft-decision decoding by employing successive decoding
with maximal ratio combining (MRC). Specifically, MRC is



applied to the first layer of the set of received blocks, treating
the other layers as (white Gaussian) noise. If this first layer
can be decoded, its contribution to all blocks is cancelled
(removed), and decoding proceeds to the second layer. MRC
and successive cancellation are now used on this second layer,
and so on, until all layers are successfully decoded, at which
time the receiver sends an ACK.

II. POWER ALLOCATION

In this section, we optimize the implementation of such
rateless block codes when used in conjunction with practical
base codes. In particular, we derive the appropriate power
allocation to use when our base code of rate R◦ is decodable
only at a signal-to-noise ratio (SNR) ρ that is somewhat higher
than what a capacity-achieving code would require, i.e.,

ρ =
(
22R◦ − 1

)
∆, (1)

for some SNR gap ∆ > 1 to capacity. Here we make the
familiar simplifying assumption that the word-error rate curve
is a perfect “cliff,” i.e., that the decoder always decodes a
codeword perfectly for SNRs greater than or equal to ρ and
fails to decode otherwise.

In our channel model, the received signal is, omitting the
time index, y = x+z, where x is the channel input (transmitted
signal) and z is the channel noise of variance N . We use Nm

to denote the maximum noise threshold at which decoding
is possible after receiving the mth block; the corresponding
(minimum) SNR threshold is thus SNRm = P/Nm.

The transmission is limited to average power P , so for an
encoding of L layers, the power constraint takes the form

L−1∑
l=0

Pm,l = P, m = 1, 2, . . . (2)

where Pm,l is the power allocated to the lth layer of the mth
block.

We now develop a simple block-by-block iteration for
calculating the optimal power allocation, beginning with the
first block.

A. Case: First Block

For block m = 0, we determine the noise threshold N0 and
power allocation P0,l, l = 0, 1, . . . , L−1, such that each layer
sees the same target SNR ρ that will allow decoding of the
chosen base codes. Specifically,

P0,l

N0 +
∑L−1

l′=l+1 P0,l′
= ρ (3)

for l = 0, 1, . . . , L− 1.
Rewriting in matrix form



1 −ρ −ρ · · · −ρ
0 1 −ρ · · · −ρ
...

. . .
...

0 · · · 0 1 −ρ
1 · · · · · · 1 0







P0,0

P0,1

...
P0,L−1

N0


 =




0
0
...
0
P


 (4)

and applying Gaussian elimination, we obtain1

N0 =
P

(1 + ρ)L − 1
(5)

P0,l =
ρ(1 + ρ)L−l−1P

(1 + ρ)L − 1
, l = 0, 1, . . . , L− 1. (6)

Of course, the P0,l may be computed iteratively with l: we
first calculate N0 as in (5) and then proceed via

P0,L−1 = ρN0 (7)

P0,l = (1 + ρ)P0,l+1, l = L− 2, . . . , 1, 0. (8)

Note that, rearranging (5), we obtain that the total rate in
the transmission can be expressed in the form2

LR = L
1
2

log(1 + ρ) =
1
2

log
(

1 +
P

N0

)
, (9)

which is the rate achievable by a capacity-achieving code over
this channel when the noise level is N0.

Gap to Capacity: A layered rateless system using a capacity
achieving base code approaches optimal efficiency in the limit
of large L [5]. In this section, we show a counterbalancing
effect — that using a practical base code the gap to capacity
of Block 0 decoding increases monotonically with L. For this
analysis, we fix the ceiling rate R for the code, which is the
rate achieved if the transmission is decodable from a single
received block.3 Then since

R = LR◦, (10)

varying L requires varying R◦ to keep R fixed. From (5) we
obtain the SNR threshold for successful decoding after a single
block is

SNRL = (1 + ρ)L − 1, (11)

which, substituting for ρ via (1) and using (10), yields

SNRL =
(
1 + ∆

(
22R/L − 1

))L

− 1. (12)

Now the corresponding SNR with a capacity-achieving code
is obtained by setting ∆ = 1 in (12) and recognizing that the
result is invariant to L, yielding 22R − 1. Hence, the overall
gap to capacity is simply a scaled version of (12):

∆L =

(
1 + ∆

(
22R/L − 1

))L − 1
22R − 1

. (13)

It is straightforward to verify using the convenient mono-
tonic transformation

rL = ln(1 + SNRL) (14)

that SNRL as defined in (12) converges to

lim
L→∞

SNRL = 2∆2R − 1, (15)

1A similar power allocation formula is developed in [7] in the context of
multi-user CDMA.

2Note that all logs are base 2 unless otherwise noted.
3In practice, a typical target R might be, for example, 4 b/s/Hz.



whence

lim
L→∞

∆L =
2∆2R − 1
22R − 1

. (16)

Moreover, ∆L as given in (16) increases monotonically in
L. To see this, it suffices to first note that 1) the second
derivative of (14) is negative:

d2rL

dL2
= −4(ln 2)2∆(∆− 1)R222R/L

L3
(
1 + ∆

(
22R/L − 1

))2 < 0, (17)

which follows from simple calculus; and 2) rL converges as
L → ∞ [cf. (15)]. Hence, rL increases monotonically, and
since rL is a monotonic function of SNRL, so must SNRL.

B. Case: mth Block

We compute the optimal power allocation for the layers
within block m, taking into account the use of MRC. Since
we will be generating the power allocation iteratively in m, we
assume the optimum power allocation for blocks 0, 1, . . . ,m−
1 has been determined.

With MRC, SNRs add, so the total post-combining SNR
seen by layer l after the cancelation of lower layers is the
sum of SNRs for the individual redundancy blocks:

SNRl(Nm) =
m∑

m′=0

SNRm′,l(Nm), (18)

where

SNRm′,l(Nm) =
Pm′,l∑L−1

l′=l+1 Pm′,l′ + Nm

. (19)

When going from m − 1 blocks to m blocks, the noise
threshold increases from Nm−1 to Nm, and thus the per-layer
per-block SNRs all decrease. The new (mth) redundancy block
must make up for this SNR shortfall to enable decoding. Since
MRC is used, the SNR that must be contributed by this mth
block is simply calculated as

SNRm,l(Nm) = ρ−
m−1∑
m′=0

SNRm′,l(Nm), (20)

for l = 0, 1, . . . , L− 1, and thus we obtain L linear equations

Pm,l − ρm,l

(
L−1∑

l′=l+1

Pm,l′ + Nm

)
= 0. (21)

where, for convenience, we have denoted the righthand side
of (20) by ρm,l. The shortfall equations (21) and the power
constraint (2) can together be written in matrix form


1 −ρm,0 −ρm,0 · · · −ρm,0

0 1 −ρm,1 · · · −ρm,1

...
. . .

...
0 · · · 0 1 −ρm,L−1

1 · · · · · · 1 0







Pm,0

Pm,1

...
Pm,L−1

Nm


 =




0
0
...
0
P.




(22)

Applying Gaussian elimination and (sub)iteration over l we
can solve for Nm as

Nm =
P

L−1∏
l′=0

(1 + ρm,l′)− 1

, (23)

and then proceed from l = L− 1 down to l = 0 via

Pm,l = ρm,l

(
L−1∑

l′=l+1

Pm,l′ + Nm

)
. (24)

Finally, note that rearranging (23) yields a total rate expres-
sion

L−1∑
l=0

1
2

log (1 + ρm,l) =
1
2

log
(

1 +
P

Nm

)
. (25)

that generalizes (9). Substituting (19) and (20) into (25), we
can solve for Nm from the nonlinear equation

1
2

log
(

1 +
P

Nm

)
=

L−1∑
l=0

1
2

log

[
1 +

(
ρ−

m−1∑
m′=0

Pm′,l∑L−1
l′=l+1 Pm′,l′ + Nm

)]
.

(26)

To verify that there is a unique solution, we find the
following bounds on Nm:

Nm−1 < Nm <
P

22LR◦/(m+1) − 1
. (27)

Clearly Nm > Nm−1 because the right hand side becomes
0 for Nm = Nm−1. Otherwise, we would have achieved
sufficient SNR by block m − 1 to reach the threshold for
decoding. Furthermore, the upper bound is the noise threshold
for the case when we have a capacity-achieving code. Since
our code is less efficient, we need a larger SNR to decode by
block m.

Note that for the values of Nm in range of (27), the left hand
side of (26) is a monotonically decreasing function of Nm and
the right hand side is a monotonically increasing function of
Nm. A search technique starting from the upper and lower
bounds converges to the unique solution.

III. PERFORMANCE LOSS DUE TO IMPERFECT CODES

In this section, we examine the SNR gap to capacity as a
function of the number of layers, the number of redundancy
blocks, and the choice of power allocation.

In the sequel we use as an example base code a rate 1/6
CCSDS turbo code [2] using a block size of 16384 information
bits, including a 32-bit CRC. The word error rate performance
curve for the base code is shown in Fig. 3. We note an
error floor at a word error rate of about 10−4. The SNR
threshold ρ (normalized by 2R◦) is indicated by the dashed
line at Eb/N0 = −0.3 dB, which is 0.78 dB from capacity.
4 Although there have been more efficient codes reported in

4This value for ρ was selected by empirically optimizing over the block
error performance for the rateless codes for multiple blocks.
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Fig. 3. Word error rate of base rate-1/6 CCSDS code. Blocklength=16384.
SNR ρ used in power allocation computations shown as dashed line.

TABLE I

OPTIMAL POWER ALLOCATION FOR CAPACITY ACHIEVING CODE WITH

QPSK, R◦=1/6, 12 LEVELS, 6 BLOCKS

Block
Layer 0 1 2 3 4 5 6

0 0.220 0.066 0.078 0.081 0.082 0.082 0.083
1 0.175 0.074 0.083 0.084 0.084 0.084 0.084
2 0.139 0.082 0.086 0.085 0.085 0.084 0.084
3 0.110 0.089 0.088 0.086 0.085 0.085 0.084
4 0.087 0.093 0.089 0.086 0.085 0.084 0.084
5 0.069 0.096 0.088 0.085 0.084 0.084 0.084
6 0.055 0.096 0.086 0.084 0.084 0.084 0.084
7 0.044 0.093 0.085 0.084 0.083 0.083 0.083
8 0.035 0.089 0.083 0.083 0.083 0.083 0.083
9 0.028 0.082 0.081 0.082 0.082 0.083 0.083

10 0.022 0.074 0.078 0.081 0.082 0.082 0.083
11 0.017 0.066 0.076 0.080 0.081 0.082 0.082

the literature, [3], [4], this performance is representative of the
practically implementable codes currently used in practice.

A. Effect of Power Allocation on Gap to Capacity

The power allocation that results when assuming that the
base code achieves capacity is given in Table I. The optimal
power allocation taking into account that the code decodes
with Eb/N0 = −0.3 dB is given in Table II. In both cases, the
allocation approaches equal power quite quickly. However, in
the power allocation optimized for the particular code, initially,
more power is allocated to Layer 0.

Fig. 4 shows three curves for the SNR gap to capacity as
a function of the number of blocks under the following three
conditions: 1) the power allocation is optimized for a decoding
threshold of Eb/N0 = −0.3 dB, 2) the power allocation is for
the capacity achieving code, but we really have a decoding
threshold of Eb/N0 = −0.3 dB, and 3) equal power of P/12
at each layer and a decoding threshold of Eb/N0 = −0.3 dB.
Note that even in the absence of noise, using the power
allocation of [5], Block 0 cannot decode. Similarly, the equal
power case doesn’t decode until Block 2 even under zero noise.

TABLE II

OPTIMAL POWER ALLOCATION FOR BASE CODE SNR THRESHOLD

Eb/N0 = −0.3 DB, 12 LEVELS, 6 BLOCKS.

Block
Layer 0 1 2 3 4 5 6

0 0.247 0.066 0.079 0.082 0.083 0.083 0.083
1 0.188 0.076 0.085 0.086 0.085 0.085 0.085
2 0.144 0.086 0.089 0.088 0.086 0.085 0.085
3 0.110 0.094 0.091 0.088 0.086 0.085 0.085
4 0.084 0.099 0.091 0.087 0.086 0.085 0.084
5 0.064 0.101 0.090 0.086 0.085 0.084 0.084
6 0.049 0.099 0.087 0.084 0.084 0.084 0.083
7 0.037 0.094 0.084 0.083 0.083 0.083 0.083
8 0.028 0.086 0.081 0.081 0.082 0.082 0.083
9 0.022 0.076 0.078 0.080 0.081 0.082 0.082

10 0.016 0.066 0.074 0.078 0.080 0.081 0.082
11 0.013 0.056 0.071 0.076 0.079 0.080 0.081
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layers. Note power allocation of [5] has no gap to capacity regardless of m.

With the optimal power allocation, we are 2.18 dB from
capacity on Block 0, but improve to 1.4 dB from capacity by
Block 12.

B. Effect of Number of Layers on Gap to Capacity

In Sec. II-A we determined that the gap to capacity of the
initial block increases monotonically with the number of layers
L. Here we examine the total effect of suboptimal coding
and combining by considering an empirical example. Fig. 5
is a plot of the gap to capacity versus number of blocks
for a layered rateless coding system with ∆ = 0.78 dB,
corresponding to the rate 1/6 CCSDS code, and R = 4 b/s/Hz
using a QPSK constellation. We use the iterative computation
of the optimal power allocation developed in Sec. II-B. Each
curve corresponds to a different number of layers L. We have
run the same computations for several ∆ and R, and we
observe the same general trends as this representative case.

We observe that for m = 0 the gap increases with L, as
expected. Notably for all m > 0, the behavior inverts and
the gap decreases with L, reaching a limiting value for large
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m. We also observe that for large block number, the gap to
capacity reaches an asymptotic value in L, which we show
below equals the base code gap to capacity ∆.

We derive the limiting value of the curves in Fig. 5 for
large m. As m → ∞ the channel noise will dominate the
interference for all of the layers, and the effect of interference
can be ignored when computing SNR. It follows that an equal
power allocation for all of the blocks will provide optimal
performance for large m, a fact illustrated in Fig. 4. MRC
for equal power allocation will yield a combined single-layer
SNR of ρ = (m + 1)P/(LNm), which yields a channel SNR
of P/Nm = Lρ/(m+1). Taking the ratio of this channel SNR
to that of a capacity-achieving code yields the gap to capacity

∆m,L =
Lρ

(m + 1)
(
(1 + ρ/∆)L/(m+1) − 1

) .
In the limit of large m we have, using (10),

lim
m→∞∆m,L =

∆(22R/L − 1)
2R/L ln 2

. (28)

We see that the limit of (28) as L → ∞ is ∆, the gap to
capacity of the base code.

There is no clear objective function that one should select
to determine an optimal L. A logical choice for an objective
function is a weighted sum of gaps to capacity for several
blocks m = 1, 2, ...,M for some M ≥ 1. It is difficult
to develop an analytical solution to such an optimization,
because the determination of performance is based on a recur-
sive formulation and solutions to transcendental equations. A
numerical solution for an optimal L should be straightforward.

IV. SIMULATION RESULTS

Finally, we simulate an actual layered rateless coding system
using a rate-1/6 CCSDS turbo code for a base code with
QPSK modulation and L = 12 layers, resulting in a maximum
throughput of 4 bits/sec/Hz for the Block 0 code.
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Fig. 6. Block error rate performance for the rateless code for Blocks 0,
1, and 2. Base rate-1/6 CCSDS code. Blocklength=16384. Normalized SNR
= SNR/(22R/(m+1) − 1). SNR threshold calculated from optimal power
allocation shown as dashed line.

We simulate the AWGN channel around the SNR thresholds
for Block 0, Block 1 and Block 2 using our optimal power
allocation. In Fig. 6, we show the block error rate curves for
Blocks 0,1, and 2. The curves are plotted with respect to
normalized SNR, SNRnorm = SNR/(22R/(m+1) − 1). Thus
capacity for each curve is at 0 dB. We show as dashed lines
the SNR thresholds P/Nm for each block m as computed by
the power allocation algorithm, and we see that they are in
good agreement with the corresponding performance curve.
Because capacity is at 0 dB, these SNR thresholds expressed
as SNRnorm equal the gaps to capacity corresponding to the
first three points of the L = 12 curve in Fig. 5.

We see that in all cases the error floor for the block error rate
is about 10−3, which is approximately L = 12 times higher
than the error floor for the base code. This error floor is in
line with predicted behavior, because a block must decode L
consecutive base codewords in order to decode.
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