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Abstract- We present a generalization of the well-known
Bayesian change-point detection problem. Specifically, let
{(Xi, Yi)}i>l be a sequence of pairs of random variables, and
let S be a stopping time with respect to {Xi}i>1. We assume

that the (Xi, Y1)'s take values in the same finite alphabet X x Y.

For a fixed > 1, we consider the problem of finding a stopping
time T < with respect to {Y>i>i that optimally tracks S, in
the sense that T minimizes the average reaction time E(T -S) +,
while it keeps the false-alarm probability IP(T < S) below a given
threshold a C [0,1].

In previous work, we presented an algorithm that computes
the optimal expected reaction times for all a C [0,1] such that
a > IP(S > s), and constructs the associated optimal stopping
times T. In this paper, we provide a sufficient condition on

{(Xi, Yi)> i and S under which the algorithm running time
is polynomial in s, and we illustrate this condition with two
examples: a Bayesian change-point problem and a pure tracking
stopping time problem.

I. PROBLEM STATEMENT AND EXAMPLES

The tracking stopping time (TST) problem is defined as

follows. Let {(Xi, Yj)}i>1 be a sequence of pairs of random
variables. Alice observes Xl, X2, .... and chooses a stopping
time' (s.t.) S with respect to that sequence. Knowing the
distribution of {(Xi, Yi)}i>1 and the stopping rule S, but
having access only to the Yi's, Bob wishes to find a time T
that stops as closely as possible to S. Specifically, Bob aims
to find a s.t. T minimizing the expected delay E(T -S)+
E max{0, T -S}, while keeping the false-alarm probability
P(T < S) below a certain threshold a C [0,1].

This problem finds applications, for instance, in monitoring,
forecasting, and communication [1].

In the following subsection we discuss the relationship
between the TST problem and the Bayesian change-point
problem.

The Bayesian change-point detection as a TST problem

The Bayesian change-point problem can be formulated
as follows. Let 0 be a random variable taking values over

the positive integers. Let {Y,}i>j be a sequence of random
variables such that, given the value of 0, the conditional
probability of Y, given ynl' is Po( SY` 1) for n < 0 and
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'An integer-valued random variable S is called a s.t. with respect to a

sequence of random variables {Xi }i> I if, conditioned on {Xi}Xi, the event
{S = n} is independent of {X}XiJ+1, for all n > 1.
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is Pi(. Y` 1) for n > 0. The problem is to find a s.t. T with
respect to the Yi's minimizing the change-point reaction delay
E(T -0)+ while keeping the false-alarm probability IP(T < 0)
below a certain threshold a e [0, 1].

Shiryaev [2, Chapter 4.3] considered the Lagrangian formu-
lation of the above problem and aimed to minimize

J,,(T) E(T -S)+ +AP(T < S)

among all s.t.'s T, for fixed A > 0. Assuming a geometric
prior on the change-point 0 and that before and after 0 the
observations are independent with common density function
fo for t < 0 and fi for t > 0, Shiryaev showed that the
optimal T stops as soon as the posterior probability that a

change occurred exceeds a certain fixed threshold. Later Yakir
[3] generalized Shiryaev's result by considering finite-state
Markov chains. For more general prior distributions on 0 the
problem is known to become difficult to handle. However,
in the limit of small false-alarm probabilities, Lai [4] derived
asymptotic optimal detection policies for the Bayesian change-
point problem under general assumptions on the distributions
on the change-point and on the observed process.

As we shall see, the TST problem represents a generaliza-
tion of the Bayesian change-point problem. Interestingly, even

though easy computable solutions for the Bayesian change-
point problem have been found only for specific cases we

shall present certain non trivial TST instances that also admit
easy computable solutions. We use here the terminology
computable' since our approach is indeed algorithmic.
To see that the Bayesian change-point problem can be

formulated as a TST problem, it suffices to define the sequence
of binary random variables {Xi}i>j such that Xi = 0 if
i < 0 and Xi 1 if i > 0, and to define the stopping time
S = inf{i : Xi 1} (i.e., S = 0). The change-point problem
now becomes a TST problem where the goal is to track S
having access only to the Yi's.

In general, however, the TST problem cannot be formulated
as a Bayesian change-point problem. Indeed, for the Bayesian
change-point problem we have for any k > n

P(O = kY =y=yO > n)

P(Yn = yn ,> nrO = k)P(O = k)
P(Yn = ynS0 > n)P(0 > n)

P(Yn = ynlS = k)P(O = k)
P(Yn = yn0O > n)P(0 > n)
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P(O = k0O > n) (1)

since P(Y' = y0lf = k) = p(Yn = ynl0 > n). Hence,
conditioned on the event {O > n}, the first n observations yn
are independent of 0. In other words, given that no change
occurred up to time n, the observations yn are useless in
predicting the value of the change point 0. In contrast, for
the TST problem, in general we have

P(S klYn = yn,S > n) P(S = klS > n) (2)

since p(Yn = ynlS = k) may not be equal to P(Yn=
yn2S > n).

This paper is organized as follows. In Section II we formally
define the TST optimization problem, and in Section III we
recall the algorithm solving it [5]. In Section IV we provide
conditions under which the algorithm has low complexity and
illustrate this in Section V with two examples.

II. THE OPTIMIZATION PROBLEM

Let {(Xi, Yi)}i>1 be a discrete-time process where the
Xi's and Yi's take value in some finite alphabets X and Y,
respectively. Let S be a s.t. with respect to {Xi}i>1 such
that P(S < ox) = 1, and let i > 1. For any a such that
P(S > i) < a < 1 we aim to find

d(a)A mJin E(T -S)+ (3)
T:P(T<S)<ca

T<I

where the minimization is over all (possibly randomized2)
s.t.'s with respect to {Yj}i>i. The mild constraint T < i is
motivated at the end of this section. Now, the extreme points of
the set of all s.t.'s over fYj}i>j are non-randomized s.t.'s [6],
[7]. This means that any randomized s.t. T < i can be written
as a finite convex combination of non-randomized s.t.'s {Tm}
i.e.

P(T = k) ZP(Tm = k)am
m

for any integer k, where am > 0 and EMam = 1. This
implies that

P(T < S) = ZamP(Tm < S),
m

E(T- S)+ = amE(Tm -S)+,
m

i.e., P(T < S) and E(T -S)+ are linear with respect to
T. Therefore the epigraph of d(a) is convex, and its extreme
points are achieved by non-randomized s.t.'s. Since there are
only a finite number of non-randomized s.t.'s bounded by i,
the function d(a) is piecewise linear. The typical shape of d(a)
is depicted in Figure 1, where the break-points are achieved
by non-randomized s.t.'s.

Using Lagrange duality yields

d(a) = sup min (Jx (T)- Ae) (4)
A>0 T<i{

2A s.t. T is non-randomized if P(T = nlyn = yn) E {O, 1} for all
yn E yn and n > 1. In contrast a s.t. T is randomized if P(T = nlyn
yn) E [0, 1] for all yn E yn and n > 1.

- * > 0a

Fig. 1. Typical shape of the expected delay d(oa) as a function of false alarm
probability oz.

where
J,,(T) E(T -S)+ +AP(T < S)

Without loss of optimality, we may restrict the minimization
in (4) to be over the set of s.t.'s that represent the extreme
points of the epigraph of d(a), i.e., the non-randomized s.t.'s
bounded by K.

The restriction T < K in the minimization (3) is motivated
as follows. Let T* be the s.t. that minimizes E(T-S)+ subject
to P(T < S) < a, but not necessarily bounded by K. Assume
first S < K for some integer K > 1. In this case the restriction
T < K in (3) is without loss of optimality since T* < .
Second, assume that S is unbounded but still satisfies P(S <
ox) = 1. Let us choose K such that P(S > K) < 6, and set
TAmin{T ,}. Note first that E(T -S)+ < E(T* -S)+.
For the false-alarm probability, we have

P(T < S) = P(T < S, T* > K) + P(T < S, T* <
< P(S >K)+ P(T* < S)
< +a .

Therefore the bounded s.t. T yields an approximation to T*
in the sense that it gives an expected reaction delay at least as
good as T*, while having only a slightly higher false-alarm
probability. From now on, and unless stated otherwise, we
assume S to be bounded by some K > 1.

III. AN ALGORITHM FOR COMPUTING d(a)

We first establish a few preliminary results later used to
evaluate minT<,< JA (T). Emphasis is put on the finite tree
representation of bounded s.t.'s with respect to finite alphabet
processes.

Let us introduce a few notational conventions. The set Y*
represents the set of all finite sequences over Y. An element
in Y* is denoted either by y or by yf, depending on whether
we want to emphasize the length of the sequence or not. To
any non-randomized s.t. T we associate a unique 3Y2-ary tree
IT i.e., all the nodes of IT have either zero or exactly 3Y2
children having each node specified by some y e Y*,
where py represents the vertex path from the root p to the
node y. The depth of a node y' e IT is denoted by l(y) An.
The tree consisting only of the root is the trivial tree. A node
y' C T is a leaf if P(T = nY' = y') = 1. We denote by
L(T) the leaves of IT and by 1(T) the intermediate (or non-
terminal) nodes of 'T. The notation T(T) is used to denote
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the s.t. T induced by the tree T. Given a node y in 7, let
'Ty be the subtree of T rooted in y. Finally let D(Ej) denote
the descendants of y in T. The next example illustrates these
notations.

Example 1. Let Y= {0, 1} and i = 2. The tree 7 depicted
in Figure 2 corresponds to the non-randomized s.t. T taking
value one if Y1 = 1 and value 2 if Y1 = 0. The sets L:(T)
and 1(T) are given by {00, 01, 1} and {p, 0}, respectively.
The subtree 70 of 7 consists of the nodes {0, 00, 01}, and its
descendants D(70) are {00, 01}. The subtree R-p is the same
as 7, and its descendants D(hP) are {0, 1, 00, 01}.

0 1

01

Fig. 2. Tree corresponding to the s.t. T defined by T = 1 if Y1 = 1, and
T= 2 else.

Below we describe an algorithm that, for a given s.t. S,
constructs a sequence of s.t.'s {T(7m)}m 0 and Lagrange
multipliers {Am }I with the following two properties. First,
the Tm's and Am's are ordered in the sense that 'M C
TM-1 c... C70 and0 = AM < AM-, < ... <A1 <A0
oc. (Here the symbol c denotes inclusion, not necessarily
strict.) Second, for any m C {,. . ., M} and A C (Am, Am-1]
the tree 7m1- minimizes JA (T) A J(T(7)) among all
non-randomized s.t.'s. The algorithm builds upon ideas from
the CART algorithm for the construction of classification and
regression trees [8, Chapter 10].

Before we state the algorithm, we need to introduce a few
quantities. Given a s.t. T represented by its 3Y2-ary tree 7, we
have

JA(T) E(T -S)+ +AP(T < S)

= P(Y = Y)
yeL(T)

x (((I(y) - S)+lY=y)+AP(S > I(y)lY=y))
Z b(y) +Aa(y)

yeL(T)

=E J'x(Y),
yeL(T)

where

a(y) AP(Y = y)P(S > I(y) Y = y),
b(y) AP(Y = y)E((l(y) -S)+lY = y),

JA(y) b(y) + Aa(y)

We extend the definition of JA (.) to subtrees of T by setting
Jx (E,) A Z (T) JA(Qy). With this definition3

i - ){ JX(y) if y cL(T)e
A A(h) E> yJA('T) if y C (T).

Similarly, we define a(Ry) -I= C(T) a(-y) and b(7l)

ZyCL(Ty) b(y).
For a given A > 0 and 7, define T(A) c 7 to be the

subtree of T such that JA(7-(A)) < J,(7-') for all subtrees
T' c 7, and such that T(A) c T' for all subtrees 7' c 7
satisfying JA(T(A)) = JA(). In words, among all subtrees
of T yielding a minimal cost for a given A, the tree T(A)
is the smallest. It can be shown that such a smallest optimal
subtree always exists, and hence T(A) is well defined.

Define for any y e1(T)

g(Y' 7-) abQj) b(y)

The following algorithm fully characterizes d(a) by comput-
ing its set of break-points [5].

Algorithm Compute the break-points {am, dm}'M of d(a).
70 = complete tree of depth i

A0 o#

repeat
mT Tm+ 1
Am e maxyGI(T- 1) g(y m 1)

TM -1 \ U y (T 1): 1D(R )

nm A= D(T(Tm) < S)
dmn E(T(7m) -S)+

until 7Tn {p}

As a 3Y-ary tree has less than 3Y2' non-terminal nodes, the
algorithm terminates after at most that many iterations. Fur-
ther, one may check that each iteration has a running time that
is exp(O(%)). Therefore, the worst case running time of the
algorithm is exp(O(i)). This is to be compared, for instance,
with exhaustive search that has a Q(exp exp(%)) running time.
This is because all break-points of d(a) are achieved by non-
randomized s.t.'s and there are already 21YK 1Y -ary trees
having leaves at either depth i or -1.

In Sections IV and V we will see that, under certain
conditions on {(X-,Yj)}j>1 and S, the running time of the
algorithm is only polynomial in K.

IV. PERMUTATION INVARIANT STOPPING TIMES

Here we consider a special class of s.t.'s and processes
{(Xi, Yj) }i>1 for which the optimal tradeoff curve d(a) and
the associated optimal s.t.'s can be computed in polynomial
time in K.

3We used T, I, 'Ty, and y, as possible arguments of JX (.). No confusion
should arise from this slight abuse of notation, since all of these arguments
can be interpreted as trees.
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We say that a s.t. S with respect to {Xi}i>1 is permutation
invariant if

Pi(S < nlX' = xn) = PE(S < n|X' = 17(xt))

for all permutations 7w: X - > X', all x' C X' and
n {1, ....,}. Examples of permutation invariant s.t.'s are
inf{i: Xi > c} or inf{i: Z=1 Xk > c} for some constant
c > 0 and assuming the Xi's to be positive. The notion of
a permutation invariant s.t. is closely related to (and in fact
slightly stronger than) that of an exchangeable s.t. as defined
in [9].
We now investigate the running time in i of the algorithm

applied to permutation invariant s.t.'s. Assume S is permuta-
tion invariant and the input of the algorithm is a list of the
probabilities P(S < niiX = x') for all x' e X' and n C
{1, ....,} specifying S and a list of IP(X = x, Y = y)
for all x e X and y e Y characterizing the distribution of
the process {(Xi, Yj)}i>1. As S is permutation invariant, we
only have to specify P(S < niXi = xc) for each composition
(or type) of x'. Since the number of compositions of length
at most K is upper bounded by (K + 1)1±+lX any element
x C X appears at most k times in a string of length k
the list of these probabilities has only polynomial size in K.
Given x't, the element P(S < nlX' = xc) in the list can be
accessed in O(r) time.
The next theorem establishes conditions under which the

algorithm worst case complexity is polynomial in K. Its proof
can be found in [1].

Theorem 1. Let { (Xi, Yi)}i>1 be i.i.d. and S be a permuta-
tion invariant s.t. with respect to {Xi}i>1. If all {7}'M=O
are permutation invariant, then the algorithm has a polynomial
running time in K.

In the next section we illustrate Theorem 1 with two
examples. First, we consider a TST problem that indeed can be
formulated as a Bayesian change-point problem. The second
example is a pure TST problem, i.e., one that cannot be
formulated as a Bayesian change-point problem. For both ex-
amples we also provide an analytical solution of the Lagrange
minimization problem minT<,< JA(T).

V. ONE-STEP LOOKAHEAD STOPPING TIMES

Define
A A {yC S JA(yn) > j,, (yn)

eyYG
and let

T, A min {,inf{n: Y' C An}}

In words, T, stops whenever the current cost

E((n -S)|Y') + AP(S > ny'2)
is less than the expected cost at time n + 1, i.e.,

E(((n + 1) - S)+|y') + AIP(S > n + Ily') -

Recall that 7T denotes the complete tree of depth r and that
T(A) denotes the minimal subtree of T whose corresponding
s.t. minimizes the Lagrangian JA(T). For (Xi, Yj)'s i.i.d.,
Theorem 2 provides a sufficient condition on S for which
T(7-0(A)) = TA. In words, the s.t. T, minimizes JA(T)
among all s.t.'s bounded by i, and among all stopping times
minimizing J,,(T), the s.t. TA admits the smallest tree repre-
sentation. The proof of Theorem 2 is reported in [1].

Theorem 2. Let {(Xi,Yi)}i>1 be i.i.d. If S is a s.t. with
respect to {Xi}i>j that satisfies

P(S = nYn 1) > P(S = n +1lyn) (6)
for all n e {2,.. . ,}, then T(7'0(A)) = TA

Note that, unlike the algorithm, Theorem 2 provides an
analytical solution only to the inner minimization problem in
(4). To find the reaction delay d(a) one still needs to maximize
over the Lagrange multipliers A.

Using Theorems 1 and 2, we now give two examples of
process {Xi, Yi}i>1 and s.t. S for which the algorithm has
only polynomial running time in K.

Example 2. Let {(Xi, Yi) }i>1 be i.i.d. with the Xi's taking
values in {0, 1}. Consider the s.t. S A inf{i: Xi 1}. We
have for n > 2

IP(S = nyn 1) = IP(S > nYn 1)|p(Xn = 1)
>I1(S> nYn 1)P(Xn = 0lyn)p(Xn+l 1)

=P(S n + 1 Yn)

hence Theorem 2 yields that the one-step lookahead stopping
time T, defined in (5) satisfies T(T7(A)) = T,.
We now show that the algorithm finds the set of break-points

{arm, dm}fI- and the corresponding {Tm}I o in polynomial
running time in K. First, it can be shown that T, is permutation
invariant. Since T(70(A)) = T, by Theorem 2, all {Tm}Mn
are permutation invariant. Finally, because S is permutation
invariant, applying Theorem 1 we conclude that the algorithm
has indeed polynomial running time in K.
The problem considered in this example is actually a

Bayesian change-point problem, as defined at the end of
Section I. Here the change-point O A S has distribution
P(9( = n) = p(l p)nl 1, where p A IP(X = 1). The
conditional distribution of Yi given 9 is

(P(Yi
P(Y,t = yjl(O = n) = PI(Yt

P(Yi

YidXi
Yi Xi
Yi)

0)
1)

if i < n,
if i = n,
if 'I > n.

Note that, unlike the case considered by Shiryaev (see end of
(5) Section I), the distribution of the process at the change-point

differs from the ones before and after it. X

We now give an example that cannot be formulated as a
change-point problem and for which the one-step lookahead
s.t. minimizes the Lagrangian JA(T).

Example 3. Let {(Xi, Yi)}i>1 be i.i.d. where the Xi's and
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Y.'s take value in {0, 1}, and let

SA inf{i > 1 : EXx
j=1

2}.

A similar computation as for Example 2 reveals that if

P(Xi = I1 IYt) > P(Xi = 0IYt)
then Theorem 2 applies, showing that the one-step lookahead
stopping time T, defined in (5) satisfies T(To (A)) = TA.

Furthermore, as in the previous example, it can be shown
that T, is permutation invariant. Applying Theorem 1 one
deduces that the algorithm has polynomial running time in i
in this case as well.

Finally, the problem considered here is not a change-point
problem since for k > n

P(S = klY = y lS > n) 7p(S = klS > n),

and therefore (1) does not hold.
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