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Abstract- The classical alternating minimization (or projec-
tion) algorithm has been successful in the context of solving
optimization problems over two variables or equivalently of
finding a point in the intersection of two sets. The iterative nature
and simplicity of the algorithm has led to its application to many
areas such as signal processing, information theory, control, and
finance.
A general set of sufficient conditions for the convergence

and correctness of the algorithm is quite well-known when the
underlying problem parameters are fixed. In many practical
situations, however, the underlying problem parameters are
changing over time, and the use of an adaptive algorithm is more
appropriate. In this paper, we study such an adaptive version
of the alternating minimization algorithm. As a main result
of this paper, we provide a general set of sufficient conditions
for the convergence and correctness of the adaptive algorithm.
Perhaps surprisingly, these conditions seem to be the minimal
ones one would expect in such an adaptive setting. Our result
is a generalization of the work by Csiszair and Tusna'dy on
alternating minimization procedures. We present applications of
our results to adaptive decomposition of mixtures, adaptive log-
optimal portfolio selection, and adaptive filter design.

I. INTRODUCTION

A. Background

The problem of finding a point in the intersection of two
sets or equivalently of solving an optimization problem over
two variables over a product space is central to many appli-
cations in areas such as signal processing, information theory,
statistics, control, and finance. The alternating minimization
or projection algorithm has been extensively used in such
applications due to its iterative nature and simplicity.
The alternating minimization algorithm attempts to solve a

minimization problem of the following form: given 2, Q and
a function D : P x Q -> JR, minimize D over P x Q. That
is, find

min D(P, Q).
(P,Q) C x Q

Often minimizing over both variables simultaneously is not
straightforward. However, minimizing with respect to one
variable while keeping the other one fixed is often easy and
sometimes possible analytically. In such a situation, the alter-
nating minimization algorithm described next is well suited:
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start with an arbitrary initial point Qo C Q; for n > 1,
iteratively compute

Pne arg minD(P,Qn-)
PEP

Qn C arg minD(Pn,Q).
QGQ

(1)

In other words, instead of solving the original minimization
problem over two variables, the alternating minimization algo-
rithm solves a sequence of minimization problems over only
one variable. If the algorithm converges, the converged values
are declared the solution to the original problem. Conditions
for the convergence and correctness of such an algorithm, that
is, conditions for

min D(P, Q),
(P,Q)fPlx Q

(2)

have been of interest since the early 1950s. A general set of
conditions, stated in the paper by Csiszar and Tusnady [1], is
summarized in the next theorem.

Theorem 1. Let 1P and Q be any two sets, and let D
P x Q -*> R U {+'o}. Then the alternating minimization
algorithm converges, i.e. (2) holds, if there exists P e P such
that D(P, Qo) < oc, and if there exists a nonnegative function
:P x P -> R+UU{+coo}such that for all n> the following

two properties hold:

(a) Three point property (P, Pr, Q,- l%

6(P: Pn) + D(P,: Qn-1) < D(P: Qn-l): VP C RP
(b) Four point property (P, Q, Pn, Qn):

D(P, Qn) < D(P, Q) +((P, Pn), VP e PQCQQ
B. Our Contribution

In this paper, we consider an adaptive version of the above
minimization problem. As before, suppose we wish to find

min D(P, Q)
(P,Q)Cflx Q

by means of an alternating minimization algorithm. However,
on the n-th iteration, we are provided with sets 7Pn, Qn which
are noisy versions of the sets P and Q, respectively. That is,
we are given a sequence of optimization problems

{ min D(P, Q)}
(P,Q)cEPn xQXQ n>O

(3)
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lim D(Pn Qn)no--oQ
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Such situations arise naturally in many applications. For
example, in adaptive signal processing problems, the changing
parameters could be caused by a slowly time-varying system,
with the index n representing time. An obvious approach is to
solve each of the problems in (3) independently (one at each
time instance n). However, since the system varies only slowly
with time, such an approach is likely to result in redundant
computation. Indeed, it is likely that a solution to the problem
at time instance n1 1 will be close to the one at time instance
n. A different approach is to use an adaptive algorithm
instead. Such an adaptive algorithm should be computationally
efficient: given the tentative solution at time n- 1, the tentative
solution at time n should be easy to compute. Moreover, if
the time-varying system eventually reaches steady state, the
algorithm should converge to the optimal steady state solution.
In other words, instead of insisting that the adaptive algorithm
solves (3) for every n, we only impose that it does so as
n -> oo.

Given these requirement, a natural candidate for such an
algorithm is the following adaptation of the alternating mini-
mization algorithm: choose an arbitrary initial Qo C Qo; for
n > 1 compute (as in (1))

Pn C arg min D(P, Q, 1),

Qn C arg min D(P, Q).

Suppose that the sequences of sets {f}ln>o and {Q}nn>0
converge (in a sense to be made precise later) to sets P and
Q, respectively. We are interested in conditions under which
D (Pn, Qn) converges to

min D(P, Q)
(P,Q)cflx Q

for large n. As a main result of this paper, we provide a general
set of sufficient conditions under which this adaptive algorithm
converges to the correct value. These conditions are essentially
the same as those of [1] described in Theorem 1. The precise
results are stated in Theorem 2.

This work was motivated by several applications in which
the need for an adaptive alternating minimization algorithm
arises. We present three such applications from the areas of
estimation, finance, and signal processing.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we describe the setup and notation. Section III pro-
vides a convergence result for a fairly general class of adaptive
alternating minimization algorithms. We specialize this result
to adaptive minimization of divergences in Section IV, and
to adaptive minimization procedures in Hilbert spaces (with
respect to inner product induced norm) in Section V. We
present an application in the divergence minimization setting
from statistics and finance in Section IV, and an application
in the Hilbert space setting from adaptive signal processing in
Section V. Section VI contains concluding remarks.

II. NOTATIONS AND TECHNICAL PRELIMINARIES

In this section, we setup notations and present technical
preliminaries needed in the remainder of the paper. Let (M, d)
be a compact metric space. Given two sets A, B c M, define
the Hausdorff distance between them as

dH(A B3) Amax sup inf d(A, B), sup inf d(A, B).
A ABC13 BE13ACA J

Consider a continuous function D : M x M --> R. For
compact sets A, B c M, define the set

Q(A,3B) A arg min D(A, B).
(A,B)GA x 13

With slight abuse of notation, let

D(A,B3) A min D(A,B).
(A,B)GAx B

Due to compactness of the sets A, B and continuity of D, we
have Q(A, B) :t 0, and hence D(A, B3) is well-defined.

Let (X, d) be a metric space and f : X -*> R. Define the
modulus of continuity w : R+ -> R+ of f as

w(t) A sup If(x) f(xf )

d(x,x') <t

Remark 1. Note that if f is uniformly continuous then w(t) -
0 as t -> 0. In particular, this holds if (X, d) is compact and
f is continuous.

III. ADAPTIVE ALTERNATING MINIMIZATION
ALGORITHMS

Here we present the precise problem setup. We then present
an adaptive algorithm and sufficient conditions for its conver-
gence and correctness.

A. Setup
Consider a compact metric space (M,d), compact sets

2P, Q C M, and a continuous cost function D : M xM -*> R.
We want to find D(P, Q). However, we are not given the sets
2, Q directly. Instead, we are given a sequence of compact
sets {(PWn Qn)}n>0: 7n, Qn C M are revealed at time n

dH dHsuch that as n -> 00, 7<n d P and Qn - Q. Given an

arbitrary initial (PO, Qo) C 'Po x Qo, the goal is to find a
sequence of points (Pn, Qn) C 7Pn x Qn so that

lim D(P, Qn) = D(P, ).

B. Algorithm
The setup described in the last section suggests the follow-

ing adaptive version of the alternating minimization algorithm
for the above setup. Initially, we have (Po, Q0) C P0 x Qo.
Define recursively: for n > 1, pick any

Pn C arg min D (P, Qn- 1i)

Qn C arg minD(Pn,Q).

We call this the AAM (Adaptive Alternating Minimization)
algorithm in the following. Note that if 7Pn = 1P and Qn Q
for all n, then the above algorithm is the same as the classical
alternating minimization algorithm.
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C. Sufficient Conditions for Convergence
In this section, we present a set of sufficient conditions

under which the AAM algorithm converges to D(2, Q). As
we shall see, we need "three point" and "four point" properties
(equivalent to those in [1]) also in the adaptive setup. To this
end, assume there exists a continuous function d: M x MA
R such that the following conditions are satisfied.
Cl. Three point property (P, Pn, Qr-,): for all n > 1,

6;(P: Pn) + D(P,: Qn-1I) < D(P, Qn-d1) VP C -Pn-
C2. Four point property (P, Q, Pn, Qn): for all n > 1,

D(P,Qn) <D(P,Q) +6(P,Pn), VP C 2PnQ C Qn

We are now ready to show convergence and correctness of
the AAM algorithm.

Theorem 2. Let {(2n, Qn)}n>o be compact subsets of M
such that

dH ~~dH'Pn ` P, Qn 4 C
and let D: M x M --> R be a continuous function. Let
conditions Cl and C2 hold. Then, under the AAM algorithm,

lim inf D (Pn: Qn) = D(-P Q):

and all limit points of subsequences of {(Pn, Qn)}n>o achiev-
ing this lim inf belong to 9(2P, Q). If in addition,

Zw(2£n) < 00,
n=O

where n A dH(2Pn:1,) + dH(Q2n Q), and w is the modulus
of continuity of D, then

lim D (Pn Qn) = D(2P,Q),n--oo
and all limit points of {(Pn, Qn)}n>o belong to 9(2, Q).
The proof of Theorem 2 can be found in [2].

Remark 2. Compared to the conditions of [1], the only
additional requirement here is in essence uniform continuity
of the function D (which is implied by compactness of M
and continuity of D), and summability of the w(24n). This is
the least one would expect in this adaptive setup to obtain a
conclusion as in Theorem 2.

IV. DIVERGENCE MINIMIZATION

In this section, we specialize the setup and algorithm
from Section III to the special case of alternating divergence
minimization. A large class of problems can be formulated as
a minimization of divergences. For example, computation of
channel capacity and rate distortion function [3], [4], selec-
tion of log-optimal portfolios [5], and maximum likelihood
estimation from incomplete data [6]. These problems were
shown to be divergence minimization problems in [1]. For
further applications of alternating divergence minimization
algorithms, see [7]. We describe applications to the problem
of adaptive mixture decomposition and of adaptive log-optimal
portfolio selection.

A. Setup

Given a finite set E and some constant 0 < 0 < 9, let
M = M(Z, 0, 9) be the set of all measures P on E such
that

S P(() <9, and P(() > 0, V or e E. (4)

Endow M with the topology induced by the metric d: M x
M --> R+ defined as

d(P, Q) max P(r) -Q(c(r)
It is easy to check that the metric space (M, d) is compact.
The cost function D of interest is divergence

D(P, Q) AD(P IQ)AE P(ur) log Q(u)
for any P, Q C M. Note that (4) ensures that D is well defined
(i.e., does not take the value oc). It is well-known (and easy to
check) that the function D is continuous and convex in both
arguments. Finally, define the function d

5(P, Q) A D(P| Q) - (P(u7) Q(a))

for any P, Q C M.
In [1], it has been established that for convex 2 and Q the

pair of functions D, d satisfy Cl and C2. As stated above, the
space M = M(Z, 0, 9) with metric d is a compact metric
space, and the function D is continuous. Hence Theorem 2
applies.

B. Application: Decomposition of Mixtures and Log-Optimal
Portfolio Selection

We consider an application of our adaptive divergence
minimization algorithm to the problem of decomposing a
mixture. A special case of this setting yields the problem of
log-optimal portfolio selection.
We are given a sequence of i.i.d. random variables {Yi}j>o,

each taking values in the finite set Y. Yl is distributed
according to the mixture cipi, where the {ci}, 1 sum to
one, and ci > co > 0 for all i e ... ., I}, and where {ui}I'
are distributions on Y. We assume that pii(y) > uo > 0 for
all y C Y, i e {,. .., I}. The goal is to compute an estimate
of {c}il 1 from {Yl}ln 1 and knowing {u}fi.

Let Pn be the empirical distribution of {yl}ln . The max-
imum likelihood estimator of {ci},I 1 is given by (see, e.g.,
[8, Lemma 3.1])

arg minD(PnPj i=ipi

Following [8, Example 5.1], we define

E-{1,,I}xy

Qn {Q Q(i y) cj,u(Y),
for some {ci} with :ici = 1, ci > coVi},

Pn {P: z lP(i,Y) = Pn(Y),P(i,y) > OVi,y}. (5)
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Note that P, and Q are convex and compact. From [8, Lemma
5.1], we have

min D(Pn |=lCili
{c~i}

mi min D(P Q),
EPcTh, QcEQ

and the minimizer of the left hand side can be recovered from
the corresponding marginal of the optimal Q on the right hand
side.

Fix a P, assuming without loss of generality that

E: P(l, y) > E: P(2,y) > ..> E: P(1I,y).
yCY yGY yGY

The {ci} minimizing D(P Q) can be shown to be of the
form ci > co for all i< J and ci = co for all i > J. More
precisely, define

Tij(J) A 1

1 (I- J)co E S P(i, y),

and choose J e {1,..., I +1} such that

(J) EP(J, Y) > co,

~(J ) 5 P(J + 1,y) < co,

where P(I + 1, y) 0. Then the optimal {ci} are given by

Ci (J ) 5P(i,y)
yCY

for i < J and ci co for J < i <I. For fixed Q, the
minimizing P is

P(i, y) = E I(y) P (Y) (6)

We now check that (4) is satisfied. As 7P< and Q are sets
of distributions, we can choose (9 = 1. For all Q C Q, i C
{1,... ,I}, y e Y, we have Q(i,y) > ,uoco > 0. However,
for P e 7<, we have in general only P(i, y) > 0. In order to
apply Theorem 2, we need to show that we can, without loss
of optimality, restrict the sets 1Pn to contain only distributions
P that are bounded below by some po > 0. In other words, we
need to show that the projections on 7P< are bounded below
by po.
Assume for the moment that the empirical distribution Pn

is close to the true one in the sense that

Pn(Y) -E Cipi(Y) <
Po

for all y e Y. As Ei cipi(y) > po this implies P,(y) > "°
for all y. From (6), this implies that the projection P on P
of any point in Q satisfies P(i,y) > APCop-Po for all
iC {l, ... , I}, y C Y. Hence M(,, 0, 9) satisfies (4) with
0= 1cC,u2 and 9 = 1.

It remains to argue that Pn is close to Ei cijiu(y). Suppose
instead of constructing the set 7P< (see (5)) with respect to Pn,
we construct it with respect to the distribution Pn defined as

Pn(Y) - + A(Pn(Y) Po)+
2

where A is chosen such that Ey Pn(y) = 1. Pn is bounded
below by 42 by construction. Moreover, by the strong law of
large numbers,

SD(Pn 7t Pn i-o) = 0
dH

Hence we have 7<n - P almost surely, where P is constructed
as in (5) with respect to the true distribution Ei ci,i.

Applying now Theorem 2 yields that under the AAM algo-
rithm

lim inf D (Pn: Qn ) = D (-P, C)

almost surely, and that every limit point of {(Pn, Qn)}n>O
achieving this lim inf is an element of 9(79, Q).

Since by the law of the iterated logarithm, convergence
of Pn to P is only 8(lo-glo-gn/n) as n -> oc almost
surely, and since wo(E) = o(E) as - > 0 only if D is a
constant [9, Chapter 2.6], we can in this scenario not conclude
from Theorem 2 that limn, D(Pn, Qn) = D(P, Q).
As noted in [8], a special case of the decomposition of

mixture problem is that of maximizing the expected value of
logEiciWi, where {Wi}l 1 is distributed according to Pn.
The standard alternating divergence minimization algorithm is
then the same as Cover's portfolio optimization algorithm [5].
Thus the AAM algorithm applied as before yields also an
adaptive version of this portfolio optimization algorithm.

V. PROJECTIONS IN HILBERT SPACE

In this section, we specialize the setup and algorithm from
Section III to the special case of minimization in a Hilbert
space. A large class of problems can be formulated as alter-
nating projections in Hilbert spaces. For example problems in
filter design, signal recovery, and spectral estimation. For an
extensive overview, see [10]. In the context of Hilbert spaces,
the alternating minimization algorithm is often called POCS
(Projection Onto Convex Sets).

A. Setup

Let M be a compact subset of a Hilbert space with the
usual norm d(A, B)2 A (A -B, A -B). Then (M, d) is a
compact metric space. The cost function D of interest is

D(A, B) A d(A, B)2.

The function D is continuous, convex and nonnegative. Define
the function d (as part of conditions C1 and C2), as

6(A, B) A d(A, B)2.

In [1], it has been established that for convex P and Q the
pair of functions D, d satisfies conditions Cl and C2 As stated
above, the space (M, d) is a compact metric space, and the
function D is continuous. Hence Theorem 2 applies.
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B. Application: Set Theoretic Signal Processing and Adaptive
Filter Design

In this section, we consider a problem in the Hilbert
space setting as defined in Section V-A. Let {Si}I_1 be a
collection of convex compact subsets of the Hilbert space
Rk with the usual inner product, and let {ci}l 1 be positive
weights summing to one. In set theoretic signal processing,
the objective is to find a point A* minimizing

Ecid(A, Si), (7)
i=l

where d(A, Si) minsEs, d(A, S). Many problems in signal
processing can be formulated in this way. Applications can be
found for example in control, filter design, and estimation. For
an overview and extensive list of references, see [10]. As an
example, in a filter design problem, the Si could be constraints
on the impulse and frequency responses of a filter [11], [12].

Following [13], this problem can be formulated in our
framework by defining the Hilbert space XH = Rlk with inner
product

(A,B)ciA ,ABi),

where Ai, Bi e Rk for i {1,. .., I} are the components of
A and B. Let

S-Alconv{Ul 1Si} c

and let
M A SI C X

be the I-fold product of the convex hull of the constraint sets
Si . Since each of the sets Si is bounded, M is bounded

and by definition also convex and closed. We define the set
2 CM as

=f{(P, . ,P) C X: P C S}

and the set Q c M as
A S1 X ..X SI.(8QASXXS ~~~~~~~~(8)

For a fixed P e 2, the Q e Q minimizing D(P, Q) has
the form

(S1 (P), ... ., SI (P)),
where Si (P) is the Qi e Si minimizing P-Q,2- For a fixed
Q = (Ql, . * QI) E Q the P C 2 minimizing D(P, Q) is
given by

(Et-lciQi, .., Etl CiQi)-
Moreover, a solution to (7) can be found from the standard
alternating minimization algorithm for Hilbert spaces on 2
and Q.
Up to this point, we have assumed that the constraint sets

{Sil}, 1 are constant. The results from Section III, enable us

to look at situations in which the constraint sets {Si,n}1
are time-varying. Coming back to the filter design example
mentioned above, we are now interested in an adaptive filter.
The need for such filters arises in many different situations
(see, e.g., [14]).
The time-varying sets {Si,nJ} 1 give rise to sets Qn, de-

dHfined in analogy to (8). We assume again that Si,n
H Si for all

i {1,. . , I}, and let Q be defined with respect to the limit-
ing {Si} 1 as before. Applying Theorem 2, we obtain that un-
der the AAM algorithm lim infn,o D(Pn, Qn) = D(P, Q),
every limit point of subsequences of {(Pn, Qn)ln>o achieving
this lim inf is in 9(2, Q), and if also Y:nO £o(2En) < 0
then Iimn, D(Pn, Qn) = D(2, Q), and every limit point
of {(Pn, Qn)}n>O is in 9(2, Q).

VI. CONCLUSIONS

We considered a fairly general adaptive alternating min-
imization algorithm, and found sufficient conditions for its
convergence and correctness. This adaptive algorithm has
applications in a variety of settings. We discussed in detail
how to apply it to three different problems (from statistics,
finance, and signal processing).
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