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Abstract— We consider the problem of lossy source coding with B. Related Work

a mismatched distortion measure. That is, we investigate what . . . . .
distortion guarantees can be made with respect to distortion mea- The question of mismatched distortion measures in source

sure , for a source code designed such that it achieves distortion €0ding has previously been considered in [1], [2], [3], [4],
less thanD with respect to distortion measurep. We find a single- and [5]. In these works the mismatch is only with respect éo th
letter characterization of this mismatch distortion. We then study encoding part of the source code, whereas at least the decode
pro_[?e_:_tri]es of this l‘tlua_”“t)_’ andhctigritvetﬁsymbpto:icalIy tifglht bounds s matched to the proper distortion measure. This diffesefr
on it. These results give insight into the robustness of lossy sowc : o
coding with respect?o mode?ling errors in the distortion meésure. the setup here, where the mismatch is with respect to bo'gh,
They also provide guidelines on how to choose a good tractable th€ encoder and the decoder. We comment on the precise
approximation of an intractable distortion measure. differences in the following paragraphs.

In [1] a partial order among distortion measures is de-
] fined such thatp > p if for every source code (con-
A. Problem Formulation sisting of an encoderg, : A" — {1,...,exp(nR)}

Let the source alphabet and the reconstruction alphabetand a decodekp,, : {1,...,exp(nR)} — Y") satisfying
Y be (not necessarily finite) sets, and {eX,,},,>1 be i.i.d. Ep,(X", ¢,(g9,(X™))) < D there exists a second decoder
random variables with distributiod® € P(X). Given two ¢, satisfying Ep, (X", ¢,(9.(X™))) < D. Thus, in this
single-letter distortion measuresp, i.e., functionst’ x ) —  setup, the encodey;, is designed for a mismatched distortion

I. INTRODUCTION

Ry, let p,, pn : X™ x Y™ — R, be defined by measure, whereas the decodey, is matched to the distortion
1 measurep.
pn(z™,y") & = Zp(a:i, Yi) @) In [2] the following problem is considered. LétC Y™ and
mi gn : X" — C be an optimal encoder with respectoFind C
and analogously fop,,. and decoder,, : C — Y™ such thatEp, (X", ¢, (g,.(X™)))

Assume we have access to an oracle that, when querisdminimized. Again, the mismatch is only with respect to the
produces a source codg (i.e., a mappingf, : X — Y") encoderg,, whereas the decoder as well as the codehook
such that are matched to the distortion measuyre

11 Y <R In [3] the problem of finding an encodey,, : X" —
oo /(X)) < {1,...,exp(nR)} such that there exists a decoder,
Epu (X", fa(X")) < D. {1.....exp(nR)} — ¥ satisfyingEp, (X", 6 (9.(X"))) <
What guarantees can we make a priori (i.e., before QUEI’Yi{'l]) while maximizing inf;, Ep, (X ’.(b”(g".(X ) Is inves-
- |8ated. In other words, the goal is to find an encoder that
the oracle) abouEp,, (X", f,(X™))? . ! . .
: . . - uarantees distortion at mod? with respect top, while

This problem has the following operational significancet Lguar : . . : .

. ; .~ —“making sure that this code has maximum possible distortion
a source code of rate at moBtand with expected distortion _ . - . . . .
with respect top. As in the previous cases, the mismatch is

acpord|r1_g top of at most_D be given. Assume instead .Ofonly with respect to the encoder, the decoderis matched
using this source code with respectdpwe decide to use it . ; ~
to the distortion measurg.

with respect top. Such a situation occurs if constructing a In [4, Problem 2.2.14] and [5] the problem of lossy

source code fop is not feasible or ifs is not fully known . . . .
. source coding with respect to a class of distortion measures
when constructing the source code. As an example, for an

. . o ; IS considered: Given a class of distortion measuresve
image compression problem, is determined by the human

. . . want to find a source cod¢,, : X™ — Y™ such that
visual system, and any modglof it can necessarily be only " T
o ) - sup o Ep, (X7, f,(X™)) is minimized. In other wordsf,
an approximation of it. An answer to the above questian®* <’ | ’ X
; IS now “matched” to allp € I' simultaneously.
allows thus to analyze the robustness of the coding scheme

to modeling errors in the distortion measure. C. Modeling Perceptual Distortion Measures
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similar (see [6] for details on those distortion measurébe
discussion here follows [7] and [8].

The typical structure of a perceptual distortion measure fo

image compression is depicted in Figure 1. Herandy are
the original and reconstructed image respectively, remtesl,
for example, as vector of gray scale values.

Front Linear .
r end transform Masking
Error -
o= pooling [ pla.y)
Front Linear .
Yy end transform Masking

Fig. 1. Typical structure of a perceptual distortion meas@dapted from [7].

The first block (termed front end), contains conversions
from the image format used to physical luminance observed
by the human eye and other calibrations. The second block
performs a linear transform of the two images, usually de-
composing it into a number of spatial frequency bands with

different orientations. In the next block, the coefficierft o

each band is weighted to account for masking effects. The

resulting vector of weighted coefficients of the originaldan

reconstructed image are then subtracted. The last blogs tak

this vector of weighted differences and pools it togethéo in
one real number. Usually this is done by computing the
norm of the difference vector for some> 1 or taking some
powerr > 1 of that norm. Typical values gf range from2
to 4.

Formally, the source and reconstruction alphabetstare
Y =R™orX =Y = [0,1]™ for some finitem. In the
following, we write z,y for elements of generak’, ), and
we write z, y if we want to emphasize that =) = R™ or
X =Y =10,1]". This means thap is of the form

p(x,y)
Hv(xl), coy (@) | Wa — [v(y1), - - -, v(ym)]WyH;,

and is sometimes simplified to

p(,y)
= || ([v(a@l), coyv(@m)] = [lyr), .- ,v(ym)])WwH;. (2)

v : R — R accounts for the front endy : R — R™*k

accounts for the linear transform and masking. Here (and in

the following), we write fora € R* andp > 1
k 1/ .
lal, £ (i laslP)™™ i p < oo,
p maxj<;<r |ail if p=o0c.

D. Outline of Results

We now discuss several questions that arise when trying to
construct and use perceptual distortion measures for sourc
coding. These questions motivate the results presentddsin t

paper, and they are used as examples throughout.
o The choice ofr andp for the error pooling seems to vary

quite considerably across different perceptual distortio

measures for image compression. [9] uges 2,r =

1, [10] usesp = 2.4,r = 1, [11] usesp = 4,r = 1,

and [12], [13] usep = 2,r = 2. It is therefore of
interest to know how distortion mismatch in these two
parameters affect the performance of the source code.
This is discussed in Example 1 (using Theorems 1, 2, 3)
and Example 3 (using Theorem 5).

Given a class of distortion measuré&s [12] suggests
the following approach to find the “best” approximation
p € I to the distortion measure implemented by the
human visual system: Simulate the (information theo-
retically) optimal encoding scheme for all € T', and
determine experimentally (i.e., by showing the original
and distorted image to a human) the one yielding the
smallest distortion. This optimal distortion measure is
then declared to be the best approximation. While this
approach yields indeed the best approximatipore T"
when used with theptimal infinite length source code,

it is not clear a priori if thisp will also yield a good
approximation when used withsaboptimalsource code.
Indeed, as we shall see in Example 1, there are situations
in which the mismatch for the optimal and (even only
slightly) suboptimal source codes are very different. In
Example 2 (using Theorem 4), we provide conditions
on I" and the source under which thefound with this
approach yields also a good approximation when used
with good but not optimal source codes. These condi-
tions hold for the model in [12] (with a few additional
assumptions, that are implicitly made there). Hence our
results provide evidence that the optimal approximation
p € T found in [12] will also be good for practical (and
hence necessarily suboptimal) source codes.

[13] proposes a vector quantizer design procedure for
distortion measures of the form

p(e,y) = wy |y — ||, ©)

wherew : R™ — R. Since this is considerably simpler
than the standard model (2), the question arises of how
to find thew, such that the resulting in (3) is “close”

to one of the more complicated form (2). Note that it
is not immediately obvious what “close” should mean in
this context. Indeed, there are several such notions that
are reasonable. In Example 5, we show what properties
such a notion should have. The problem posed by [13]
discussed above is treated in detail in Example 4 (using
Theorem 5) and Example 6 (using Corollaries 6 and 7).
Essentially all models of perceptual distortion measures
contain a number of parameters that are usually chosen
to be in “close agreement” with the behavior of the
human visual system. Again, it is not clear what “close
agreement” should mean here. In Example 7 (using
Proposition 8), a simple such measure of closeness is
proposed, providing a guideline for how to tune the
parameters of a perceptual distortion model to be used
for source coding.



E. Organization there exists a sequence of source cofigs},>1 such that

The remainder of.this paper is organized as fqllows. In lim 1 log |fn(X™)] < R,
Section II-A, we provide a single-letter characterizatadrihe —oon
mismatch distortion. In Section I-B, we investigate projes limsup Ep, (X", fn(X")) < D,,
of the mismatch distortion. Section II-C, considers thebfem o N
of finding a good representation of a distortion measure fom liminf Epn (X", fo(X")) 2 D;

class of simpler ones. Section Il contains concluding nésa Theorem 2. If there exists am and a source codg, : X" —
Due to space constraints, all results in this paper a8 sych that "
presented without proofs.

1 n
*10g|fn(x )| =R,
II. SOURCECODING WITH DISTORTION MISMATCH " n n
In this section, we formally introduce the problem of source Epn (X", fn(X™)) > Dj
coding with distortion mismatch. In what follows, we willtle .
g with cistortion mi W e, WE W ther? D, < D, 5(R+,D,) and D, < D, 5(R,D,) if R >

the source alphabet and the reconstruction alphabtbe
Polistt. We let B(X x )) be the Borel sets oft x ). By Rp(Dy)-

P(X x Y), we denote the set of all probability measures on Theorems 1 and 2 allow us to make guarantees about the
(X xY,B(X xY)). ForQ € P(X x)), Qx denotes theY performance of a source code constructed with mismatched
marginal of@. For a measurable function: X x)Y — R, we distortion measure. Indeed, ff, : X" — Y™ is a source code
denote byEqg(X,Y) or Eqgg the expectation of (X, Y) with  of rate R designed for a distortion measupeand distortion
respect toQ. For anyA € B(X x V), we write Eq(g; A) for  level D, then by Theorem 2f,, is also a source code for
Eqglls. I(Q) denotes mutual information (in nats) betweeany distortion measurg and distortion levelD,, ;(R+, D,,).

the random variablegX,Y") ~ Q. Throughout this paper, we Moreover, this is essentially the best guarantee one cae,mak
restrict attention to single-letter distortion measur&s, mea- since by Theorem 1 there exist source codes with same
surable functiong : X x Y — R, with p,, : X" x Y™ — R,  blocklengthn and same rat& designed for distortion measure
as defined in (1)R,(D) and D,(R) denote the rate-distortion p and distortion levelD,, that result in a distortion level of
and the distortion-rate function for the sourf&,},>1 and more than

with respect to the single-letter distortion measureMore

precisely, if{ X, },>1 is Lid. P € P(X) then Dpp(R=b(n), Dy —(n)) = é(n)

for distortion measure with § 0 as .
R(D)E it Q) ® With 6(n) 0 asn e

TR, B. Properties ofD, 5(R, D,)
D,(R) & inf Egp. The functionD, ;(R, D,) exhibits the following behavior:
QEP(XXY):
Qx=PI(Q)<R {—o0} if R<R,(D,),

D,;(R,D,) € { R, U{too} if R=R,(D,),
Ry U{oo} if R> R,(D,).

A. Single-Letter Characterization

In this section, we provide a single-letter characteroratf
the smallest distortion with respect ichat can be guaranteedMoreover, a simple argument shows thax, ;(R, D,) is
for any source code of ratg designed for distortiorD, with concave and increasing in both its arguments, and contguou
respect top. at all points(R, D,) such thatR > R,(D,). D, ;(R,D,) is
Define necessarily discontinuous @,(D,), D,), but could be either
A - left- or right-continuous (as a function of eithBror D). This
Dy.p(R, Dy) = supEqp, @) implies that the function either equats for all (R, DZ,) such

where the supremum is taken over@lic P(X x ) such that (hat R > R,(D,) or is finite on this whole range. The two
Qx = P.Egp < D, andI(Q) < R. If the set over which this types of possible behaviors d?, ;(R,D,) are depicted in

supremum is taken is empty, we defibg ;(R, D,) 2 —oo. F19ure 2.
P Pty %8.5(1, D) > The next three theorems describe the behavior of

Theorem 1. Let p,p be distortion measures with D, ;(R,D,) in more detail. Theorem 3 provides conditions
Epp(X,y0) < oo for somey, € Y. For everyD; < oo such under whichD,, (R, D,) = oo for all (R, D,) such thatRk >
that R,(D,). In these situations, we cannot make any guarantees
0<D; <limD,;(R—9,D,—9) apout Fhe performance of a source code of ratgesigned for
310 distortion measurep and distortion levelD, when used for

%j ., complete, separable, metric spaces (&4, or [0,1)™ for some  °For a real valued function, we write g(z+) £ lims o g(z + §) and
finite m) g(z—) & lims | g(x — §) assuming the limits exist.



°  and therefore for all) € P(X xY) such thatEgp < D, < 0o

Eqgp <b2(1+D,) < occ.

Dp,p(Ry Dp)
Dpp(Rz Dﬂ)

This impliesD, (R, D,) < oo for all R, D, € R,.
' * Case 2:7 > r. We first show that the conditions of
Theorem 3 are satisfied. We have

. R . R
R,(D R,(D ~ r—7)/r
o) D) p(x,y)/p(x,y) < bip(e,y) "/
s o forallz € X,y € Y. Let A £ [—¢,¢]™, and choose: such
that P(A) > 0. Sety = nl, wherel = (1,...,1) € R™.
Fig. 2. Possible behaviors db, ;(R, D). With this
sup p(@,yp)/ (@, yp) < sup bip(a, )"
distortion measurey. Theorem 4 gives s_ufﬁcient conditions = maxbyd(y’ —z)"™" — 0
such thatD, ;(R,D,) > 0 for (R,D,) with R = R,(D,), zEA

and conditions forD, ;(R, D,) to be right-continuous if? 55, —, 0. Moreover,

at those points. Theorem 5 provides a limiting expression fo ~ i

D, ;(R,D,) asR — occ. SinceD, (R, D,) is increasing in P(A) inf p(z,y)) = P(A) mind(y;, —x)" — o0
R . . ? €A €A

R, this limiting expression is also a bound &, ;(R, D,,) for

any finite R, and in particular is the best distortion guarantegasn — oco. Finally, with B,, & {z : d(y} — =) > 1}

that is independent of the rafe. . .
Epp(X,y,) < P(By) +Ep(d(y, — X)"; By)

Theorem 3. If

<14Ep((dy}) +d(Xx); B,
) 0<R<oo < +[?(( (yy) + d(X)) )
i) D,(R) <D, < oo — (T i
iii) there existgy € Y such thatEpp(X, yo) < 0o <1+ _ i d(yy) Epd(X)
iv) there exist{A,},>1 C B(X), {y}:}n>1 C Y such that =0

Ep(p(X,ys);Ay) < oo forallm>1,

< 00,

and hence withy, = 0, we haveEpp(X,yy) < oo and

P(An) xienjn p,y,) = 00 asn — oo, Ep(p(X,y’); A) < oo. Thus applying Theorem 3 witd,, £

sup p(z,y%)/plz,y=) — 0 asn — oo A yields D, ;(R,D,) = oo forall 0 < R < oo and

cch, D,(R) < D, < . o

then D, 5(R, D,) = oc. Theorem 3 characterizes the behaviorlaf ;(R, D) for

Remark.For ¥ = Y = R™, the second and third part of (1%, Dp) such thatR > R,(D,). The next theorem charac-
assumption iv) are satisfied for example jifz,y) — oo terizes the behavior oD, ;(R, D,) for (R,D,) such that

and p(z,y)/p(xz,y) — 0 when |y —z||, — oo. See also R=R,(D,).

Example 1. Theorem 4. Let the distortion measure@ be continuous,

Example 1. Let X = ) = R™ for somem < N, and assume D, > 0. If YV is compact or if there exists compact sets
p(z,y) = dly — 2)", p(z,y) = g(y — )7 for normsd,d and Kn C &, M, CY such thatP(K,) — 1 asn — oo and

r,# > 1. Let P € P(X) such thatEpd(X)" < cc.

: L X . in plz,y) — oo (5)
Since all norms on a finite dimensional space are equivalent, r€Ky yEMS
there exista, a; > 0 such that asn — oo. ThenD, 5(R,(D,),D,) > 0, i.e., the set over
ard(z) < J(Z) < asd(z) which we optimize iff4) is non-empty.

. _ If, in addition, D, ;(R,(D,)+7,D,) < oo for somer > 0,

for all z € R™, and thus there exig, b, > 0 such that p is continuous, and there exists> 1 and ¢ € R such that
bip(e,y)"" < f(w,y) < bap(w,y)/" pr< et then

forallx e X,y e ). Dy 5(Rp(Dp)+,Dp) = Dy s(Ry(Dp), D).

Case L7 < r. Then Remark.For X = Y = R™ (b), is satisfied for example for

Az, y) < bap(a,y)™/" p such thatp(z,y) — oo as |y — x|, — oc. Indeed, for
< bymax{1, p(z,y)} K, = [-n,n|™ and M,, = [-2n,2n]™,
< ba(1+ p(z,9)), lim P(K,) =1,

n—oo



and Example 3. Let X =) = R™, p(z,y) = d(y—=)", p(x,y) =
" - , d(y — z)" for normsd,d, and forr,# > 1. Let P € P(X)
€Ky Ms pla.y) 2 m,yzl\gyvrvl\bznp(m’y) o be such thaftpd(X)!"! < co. With slight abuse of notation,

we shall writep(xz — y) for p(z,y) and similar forp in this

asn — oo.

example. Set
Example 2. Given a class of distortion measurés the v* € arg max cZ(v).
following approach is suggested in [12] to find the “closest” vER™:d(v)=1

one top implemented by the human visual system: Determi
D, ;(R,D,(R)) for eachp € I and pick a minimizep*. In
situations where a unique distributichwith Q x = P achiev-
ing D,(R) exists,D, 5(R,D,(R)) can be found empirically sup p(z) —np(z) = supa”d(v*)" — na’, (6)
by generating samples fro@ and having them evaluated by zER™ az0
human subjects. The hope is that the distortion measure mile:, the maximizing: is of the formz* = av* for somea > 0.
imizing D, ;(R, D,(R)) should be a good approximation to Case 1:r < 7. We have seen in Example 1 that then
p also for non-optimal image compression schemes. Formally,, ;(R, D,) = oo for R > R,(D,).
this amounts to assuming thaX, (R +r, D,(R)) is close to  Case 2:r = 7. From Theorem 5, we have fdp,(co0) <
D, (R, D,(R)) (at least for small). Hence this approach is D, < co
only valid, if D, ;(R + r,D,(R)) is right continuous in- at ) ~
° :yO_ P, ( p(R)) g D, 5(c0,D,) = 1;1>nt}nDp + ZE;L%%L p(z) —np(z).

Theorem 4 gives conditions under which this is indeed the . -
case. In [12]X = Y = R™*, and eactp € T is of the form Let z = av* for somea > 0. Then

p(x,y) = H ([’U(xl)v v v(@m)] = [v(yn), - 7U(ym)])W”§ plz) = mplz) = a"(d(v’)" =m) = co

for some monotonic increasing concave functionR R 2502200 provided thaty < d(v*)". On the other hand, if
+ = > d(v*\" m i _

and some matrid¥ € R™>*", In order to apply Theorem 4, 7 = d(v")", then for anyz € RN with d(z) =1

we need the additional assumptions théds continuous ab), p(z) —np(z) <d@w*)" —n <0,

thatv(s) — oo ass — oo, thatW W is positive definite, and _ o .
(the reasonable assumption) thi@mplemented by the human &9 hencei(z) —np(z) < 0 for all z € R™, with e~qu3I|;Ly for
visual system is continuous and bounded. From Theorem“4, 0. Therefore the minimizing > 0 is equal tod(v*)" and
we obtain that under these slightly stronger conditions tha lim D, ;(R,D,) = Dpd(v*)r.
in[12], D, 5(R+7,D,(R)) is indeed right continuous at= R0
0, showing thatp* should yield a good approximation {® Case 3:r > 7. Recall that by (6)
also for compression schemes that are only close to optimal. FToanF ” -

We consider the problem of finding an optimal € T 3218“ A" =mna’ = Zse%% p(2) = 1p(2)-
approximating a giverp in more detail in Section 1I-C. ¢ i

Cinced is continuous andv : d(v) = 1} is compact, at least
one such maximizer exists. It is easy to check that

The optimale™ > 0 maximizing this quantity is

The next theorem provides an upper bound on o \1/(r—)
D, ;(R,D,), independent ofR. This bound is equal to a* = (—d(v*)”) ,
limr_ D, (R, D,), and is hence the tightest such bound "

possible. We shall see in Example 4 that this bound can Wich by Theorem 5 implies that fab,(co) < D, < oo

quite good for small values aR. D, 5(00,D,) = mgg nD, + nff/(rj)b Iy m;gg(ﬂ),
n=z n=

Theorem 5. If

i) p,p are continuous where
ii) there existyy € Y such thatEpp(X, yo) < oo b2 d(uryr /=D (f)i/(rff) B (i)r/(T—F) -
i) D,(00) <D, < o0 r r '
then for anyn > 0 the expectation The 7* minimizing g is
Ep sup(p(X,y) —np(X,y)) o (T T N/
yeY n = <7Dp) )
is well defined and which finally yields
D, 5(0c0,D,) =min (nD, + Epsup(p(X,y) — np(X, . . b \=F)/r
p.3(00, Dy) = min (nD, pyeg(p( y) —np(X,y))) Tin D, 5(R. D,) - D;/T(r b 7:) .

If, moreover,D,, 5(c0, D) < oo, then Form =1, r =2, 7 = 1, this reduces to

Rhinoo Dy s(R,Dp) = Dy 5(c0, D). Rli_r)nOo D, ;(R,D,) =+/D,.



Note that in this case the limiting expression does not dépefihis function is plotted in Figure 3. As a quick check, we see
on the normsi andd. ¢ that indeed

1
Example 4. Let X =Y = R™, p(x,y) = (y — )" Wa(y — lim Dy 5(Ry(Dy) +7,D,) = 5 Dyla+1b),
z), p(z,y) = (y — )T W (y — ), whereW,, and W,, are "
positive definite forP almost everyz. Let P € P(X) such Jim Dpp(Rp(Dy) +1,Dp) = aD,,
thatEp XTWx X < cc.

_ which are the values found in (8) and (9).
Hence Theorem 5 yields that fdp,(co) < D, < oo,

D, (00, D,) =minnD,
n=0

+Ep suRp (y — X)T(WX -nWx)(y — X),
yeR™

and whenever this quantity is finite then also
RILmOO Dy 5(R, Dp) = Dy 5(00, Dp).
If ﬁvfm — nW, is not negative semidefinite for some

then it has at least one strictly positive eigenvatue 0 with
corresponding eigenvecter. Settingy = « — av yields

(y — :c)T(Ww — W) (y — ) = a2rvlv — co Fig. 3. D, (R, D,) from Example 4 witha = 2 andb = 0.5.

asa — oo. Hencen will always be such thaW,, — nWy IS For0 < D, <1, the ratio between the limiting expression

negative semidefinite foP almost everyz. asr — oo and the value for finite is independent oD, and
In this case given by
up (=) (We —nWo)(y — =) =0 Dy (Ry(D,) +7. D)/ Dy (00, D)
yeR™

= ((a+0b) + /1 —exp(—2r)(a — b)) /2a.

This converges to one quickly as — oo, as is shown in

and we obtain

Rlim D, s(R,D,) Figure 4. Hence in this case the limiting expression found in
o . . Theorem 5 is a fairly tight bound even for small values-of
=D,inf{n>0: Wy —nW, <0 P a.e}, (7) 0

Wheref)[v/},D —nW, < 0 means that the matrix on the left hand N

side is negative semidefinite. ' '
To illustrate that this bound can be fairly tight already08
for small R, we consider now a special case, for which *| _
D, ;(R,D,) can be calculated analytically. L&t = Y = R?,
0.6 -
1 0

p(wvy) = (y_a:)T (y_w)v

~ - - T [Q 0 .

o) = -2 (§ ) w-a) ol e oo ]
with @ > b > 0, and letX ~ AN(0,I). The asymptotic | | |
expression (and upper bound) given by (7) is 0 0.5 1 15 2

lim D, 5(R,D,) = aD, @) '

Fig.4. D, 5(Ry(Dp)+r,Dy) /D, 5(c0, D,) from Example 4 as a function
and on the boundary of r with @ = 2, b = 0.5, for all valuesd < D, < 1. Note that for an excess
rate ofr = 0.5, we are already at ovel0% of the limiting value, at excess

1 rate ofr = 1, we are at oved7% of the limiting value.
Dy 5(Ry(Dy),Dy) = 5(‘1 +0)D,. (©)]

It can be shown that fob < D, <1 C. Choosing a “Representative” of a Class of Distortion
Measures

Let I andI" denote classes of distortion measures. In this
< Dy((a+0b) + /1 —exp(=2r)(a—1b))/2, section, we consider the question of how a good “represen-

D, 5(Rp(Dy) +1,D,)



tative” p € I' of I' can be chosen (in a sense to be made %
precise).

For rate R, distortion measure, and distortion levelD,,,
define the excess distortion

A,(R.D,) 2 (D, - D,(R))*.

The following two corollaries of Theorem 1 and 2, re-
spectively, establish the operational meaningofx(R) and
AF f(R)-

Corollary 6. LetT, I be classes of distortion measures such
Consider again the oracle producing source codes as Mg for all pel there exists ajo = yo(p) € V' satisfying

tioned in the introduction, but assume this time that whep 2o(X, ) < oo. For everyp € T' and Dy, A < oo such
queried, we can also supply the oracle with a dlStOI’tl%at ' r

measurep € I'. The oracle then produces a source cgide
such that 0 SDF < Dr)f(R_)>

log /(") < R 0 <AF < Ap (R,
n ~
Epn (X", fu(X™)) < Dy(R) 4+ A,. a) there existsp € I' and sequences of source codes

~ W +>1 such that
Knowing the set of al{A,},cr, and given &', how should {fnknz1

we choosep € I' to query the oracle with such thgt* will lim — log |fn(X™)| < R,
“work well” for all p e I'? n—oon
The operational significance of this question follows from limsup Ep, (X", fo(X™)) < Dy(R) + A,
the discussion in the introduction. The parametfs,} cr o
allow to account for the difficulty of constructing a source hnnil@ngp”(X  fn(X") 2 D

code for distortion measurg (see also Example 5 below).
Note, however, that there are several reasonable ways ohwhi
“work well” in the last paragraph can be defined. We will
consider two such definitions in the following.

b) there existsp € I and sequences of source codes
{fn}n>1 such that

1
. im — ™| <
For rate R, define nh—>ngo n log | fn (™) < R,
Dy (R) 2 inf sup D, 5(R, D,(R) + A,), limsup Epn (X7, fn(X")) < Do(B) + &
’ pel’ - T )
Pe liminf (Eg, (X", fu(X™)) — D5(R)) > Ag.
A . n—oo
AF,T“(R) = mg sup (Dmﬁ(Rv Dy(R) +Ap) — Dﬁ(R))' .
PEL per Corollary 7. a) For everyd > 0 there existsp € I' such
The next example illustrates why introducifgh,} ,er is that if f,, : A" — Y satisfies
necessary. 1 n
. . . ~ A *10g|fn(/v )lZR
Example 5. Fix a distortion measurg and letI’ = {ap},>1, o N
for some distortion measuye All distortion measures ifi are Epn (X", fu(X™)) < Dy(R) + Ap,
equivalent (in the sense that constructing source codeg for sup Epn (X", fu(X")) > Dy,
is as difficult as constructing source codes for apy. So we pel’
should have that alkp representp equally well (in the sense then Dx < Dy =(R+) + 0.

that for appropriately chosefl,,, Day,5(R, Day) is the same b) For everyd > 0 there existsp € I' such that if f,, :
for all « > 1). As we will see in a moment, this imposes the X" — V" satisfies

introduction of the quantitfA,,}o>1.
For anyfixed D,, we have 1 log | (X7 =

R,
Dap,ﬁ(Rv Dp) = Dpyﬁ(R»Dp/a) Epn(X f ( ) < Dp( )+ A,

which goes either td) (if # > R,(0)) or to —co asa — sup (Epn (X", fu(X™)) R)) > Ag,
oo. This shows that we should always look at source codes per N
constructed with distortion level relative 10,,(R) thenA=~ < A ~(R 5

Assume then we try to minimizé,, ;(R, D,,(R) + A) rp(f) +0.
for somefixed A > 0. We have Example 6. Let ¥ =Y = R™, = {p}, and

Dap,ﬁ(R, Dap(R) + A) = l)pﬁ(R7 DP(R) + A/a) T 2 {p(m’y) = Wg ||y — ;1}”3 rweEWCX — ]R_,'_}’

Thus, again, the minimum is achievedas- oo, irrespective
of the choice ofp.

This shows, that we should not choodg, as a constant.
The natural choice in this example 4s,, = aA, for which

Let P € P(X x )) be such thatpwx || X||5 < oo for all
weW.

In [13], the authors show how vector quantizers can be
relatively easily constructed for distortion measuredhimdlass
Dap (R, Dap(R) + Agp) = Dy 5(R,D,y(R) + A). I" defined here. Given a more sophisticated distortion measure



p, it is thus of interest to find the “closesp € I" to p. In
other words, we want to find. (R) and ap € I" such that

Dp,ﬁ(Rv DP<R) + Ap) < DF.I“(R) +9,
for somed > 0.

guarantees that minimizin@,, ,,(R,D,, + A,,) over all
p1 € T' (as is done in Example 6) is essentially equivalent
to minimizing D,, ,,(R,D,, +A,,).

Hence, when constructing a mogel for the human visual
system (implementings) to be used for data compression

Computing Dy (R) could be done numerically; to obtaingpplications, it is reasonable to choose the model paramete

some insight we will instead minimizB,, 5(co, D,(R)+A,).

As we have seen this last quantity is usually quite close to

D, (R, Dy(R) + A,). To be specific, leti(z,y) = (y —
x)T W, (y—=x) for W, positive definiteP almost everywhere.
Then from Example 4

Dy (00, Dy(R) + A))
= (Dy(R) + Ay)min {n: Wy —nquweI <0 P a.e

(Dy(R)+ A,)ess S)?p M (W) /we,
re

where \; (W) is the largest eigenvalue d,, and where
the essential supremum is with respectito %

such that
]EP sup |p3(X7 y) - P2(X7 y)|
yey
is minimized.
IIl. CONCLUSION

In this paper, we investigated the problem of source coding
with mismatched distortion measures. We derived a single-
letter characterizatio®, ;(R, D,) of the best distortion level
with respect top that can be guaranteed for any source code
of rate R designed for distortion leveD, with respect top.

We then looked at properties @b, 5(R, D,), characterizing
its behavior forR > R,(D,) and on the boundary. We also

In this last eXampIe, we have taken a Sophisticated diemrtifound an asymptotic expression (and upper boun@ as oo

measurep and found a good tractable approximationlirfor
it. This approach poses the following question. Everp i

for this quantity, that seems to be fairly tight also for sinfal
This asymptotic expression gives considerable insiglat iine

a very good model for (say) the human visual system, it Wilehavior of D, ;(R, D,), which we illustrated with several

certainly be different from it. In this situation, it is notear
if minimizing D, (R, D,(R)+A,) is meaningful. Indeed, if

examples. We finally considered the problem of choosing a
representative € I of p.

p* is the distortion measure implemented by the human visual

system, we should really be minimizin®, ,-(R, D,(R) +

A,) instead. The next theorem provides conditions unde]

which D, ;(R,D,(R)+A,) andD,, ,-(R,D,(R)+A,) are

close and hence the approach of Example 6 is reasonable.

Proposition 8. Let py, p2, p3 be continuous distortion mea-

sures. Then

DPl;ﬂ3 (R’ DPl)

< Dy, p, (R, Dp,) + EP(SHE p3(X,y) — p2(X,y))
ye

and

Dﬁl,Ps.(Rv Dm)
= Dph/)z(Rle)l) - ]EP SLGI:I;)/ |p3(X7 y) - pQ(Xa y)|
Yy

Example 7. Settingp; = p2, Proposition 8 shows that
1Dpaps (R, D) = Dy, (R)| < Ep sup lps(X, ) — p2(X, ).
Yy

Thus if

Ep sup |p3(X,y) — p2(X,y)]
yeY

is small, then the distortion measurgs and p; are almost
equivalent (from the point of source coding).

Moreover, if ps is the actual distortion measure (imple

mented, e.g., by the human visual system), andis a
sophisticated model for it (e.gs (z, y) = (y—x)" W, (y—)
as in Example 6), then small

Ep sup |p3(X,y) — p2(X,y)]
yeY
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