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Abstract— We consider the problem of lossy source coding with
a mismatched distortion measure. That is, we investigate what
distortion guarantees can be made with respect to distortion mea-
sure ρ̃, for a source code designed such that it achieves distortion
less thanD with respect to distortion measureρ. We find a single-
letter characterization of this mismatch distortion. We then study
properties of this quantity and derive asymptotically tight bounds
on it. These results give insight into the robustness of lossy source
coding with respect to modelling errors in the distortion measure.
They also provide guidelines on how to choose a good tractable
approximation of an intractable distortion measure.

I. I NTRODUCTION

A. Problem Formulation

Let the source alphabetX and the reconstruction alphabet
Y be (not necessarily finite) sets, and let{Xn}n≥1 be i.i.d.
random variables with distributionP ∈ P(X ). Given two
single-letter distortion measuresρ, ρ̃, i.e., functionsX ×Y →
R+, let ρn, ρ̃n : Xn × Yn → R+ be defined by

ρn(xn, yn) ,
1

n

n∑

i=1

ρ(xi, yi) (1)

and analogously for̃ρn.
Assume we have access to an oracle that, when queried,

produces a source codefn (i.e., a mappingfn : Xn → Yn)
such that1

1

n
log |fn(Xn)| ≤ R

Eρn(Xn, fn(Xn)) ≤ D.

What guarantees can we make a priori (i.e., before querying
the oracle) aboutEρ̃n(Xn, fn(Xn))?

This problem has the following operational significance. Let
a source code of rate at mostR and with expected distortion
according toρ of at mostD be given. Assume instead of
using this source code with respect toρ, we decide to use it
with respect toρ̃. Such a situation occurs if constructing a
source code for̃ρ is not feasible or ifρ̃ is not fully known
when constructing the source code. As an example, for an
image compression problem,̃ρ is determined by the human
visual system, and any modelρ of it can necessarily be only
an approximation of it. An answer to the above question
allows thus to analyze the robustness of the coding scheme
to modeling errors in the distortion measure.
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1|fn(Xn)| denotes the cardinality of the range of the functionfn.

B. Related Work

The question of mismatched distortion measures in source
coding has previously been considered in [1], [2], [3], [4],
and [5]. In these works the mismatch is only with respect to the
encoding part of the source code, whereas at least the decoder
is matched to the proper distortion measure. This differs from
the setup here, where the mismatch is with respect to both,
the encoder and the decoder. We comment on the precise
differences in the following paragraphs.

In [1] a partial order among distortion measures is de-
fined such thatρ ≥ ρ̃ if for every source code (con-
sisting of an encodergn : Xn → {1, . . . , exp(nR)}
and a decoderφn : {1, . . . , exp(nR)} → Yn) satisfying
Eρn(Xn, φn(gn(Xn))) ≤ D there exists a second decoder
φ̃n satisfying Eρ̃n(Xn, φ̃n(gn(Xn))) ≤ D. Thus, in this
setup, the encodergn is designed for a mismatched distortion
measureρ, whereas the decoder̃φn is matched to the distortion
measurẽρ.

In [2] the following problem is considered. LetC ⊂ Yn and
gn : Xn → C be an optimal encoder with respect toρ. Find C
and decoder̃φn : C → Yn such thatEρ̃n(Xn, φ̃n(gn(Xn)))
is minimized. Again, the mismatch is only with respect to the
encodergn, whereas the decoder as well as the codebookC
are matched to the distortion measureρ̃.

In [3] the problem of finding an encodergn : Xn →
{1, . . . , exp(nR)} such that there exists a decoderφn :
{1, . . . , exp(nR)} → Y satisfyingEρn(Xn, φn(gn(Xn))) ≤
D while maximizing inf φ̃n

Eρ̃n(Xn, φ̃n(gn(Xn))) is inves-
tigated. In other words, the goal is to find an encoder that
guarantees distortion at mostD with respect toρ, while
making sure that this code has maximum possible distortion
with respect toρ̃. As in the previous cases, the mismatch is
only with respect to the encoder, the decoderφ̃n is matched
to the distortion measurẽρ.

In [4, Problem 2.2.14] and [5] the problem of lossy
source coding with respect to a class of distortion measures
is considered: Given a class of distortion measuresΓ, we
want to find a source codefn : Xn → Yn such that
supρ∈Γ Eρn(Xn, fn(Xn)) is minimized. In other words,fn

is now “matched” to allρ ∈ Γ simultaneously.

C. Modeling Perceptual Distortion Measures

In this section, we briefly review the typical structure of
perceptual distortion measures. This will motivate the results
presented in the main text. We focus here on distortion
measures for image compression; the structure of perceptual
distortion measures for speech, audio, or video compression is



similar (see [6] for details on those distortion measures).The
discussion here follows [7] and [8].

The typical structure of a perceptual distortion measure for
image compression is depicted in Figure 1. Herex andy are
the original and reconstructed image respectively, represented,
for example, as vector of gray scale values.
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Fig. 1. Typical structure of a perceptual distortion measure. Adapted from [7].

The first block (termed front end), contains conversions
from the image format used to physical luminance observed
by the human eye and other calibrations. The second block
performs a linear transform of the two images, usually de-
composing it into a number of spatial frequency bands with
different orientations. In the next block, the coefficient of
each band is weighted to account for masking effects. The
resulting vector of weighted coefficients of the original and
reconstructed image are then subtracted. The last block takes
this vector of weighted differences and pools it together into
one real number. Usually this is done by computing theℓp

norm of the difference vector for somep ≥ 1 or taking some
power r ≥ 1 of that norm. Typical values ofp range from2
to 4.

Formally, the source and reconstruction alphabets areX =
Y = R

m or X = Y = [0, 1]m for some finitem. In the
following, we write x, y for elements of generalX , Y, and
we write x,y if we want to emphasize thatX = Y = R

m or
X = Y = [0, 1]m. This means thatρ is of the form

ρ(x,y)

=
∥∥[v(x1), . . . , v(xm)]Wx − [v(y1), . . . , v(ym)]Wy

∥∥r

p
,

and is sometimes simplified to

ρ(x,y)

=
∥∥(

[v(x1), . . . , v(xm)] − [v(y1), . . . , v(ym)]
)
Wx

∥∥r

p
. (2)

v : R → R accounts for the front end,W : R
m → R

m×k

accounts for the linear transform and masking. Here (and in
the following), we write fora ∈ R

k andp ≥ 1

‖a‖p ,

{( ∑k
i=1 |ai|

p
)1/p

if p < ∞,

max1≤i≤k |ai| if p = ∞.

D. Outline of Results

We now discuss several questions that arise when trying to
construct and use perceptual distortion measures for source
coding. These questions motivate the results presented in this
paper, and they are used as examples throughout.

• The choice ofr andp for the error pooling seems to vary
quite considerably across different perceptual distortion

measures for image compression. [9] usesp = 2, r =
1, [10] usesp = 2.4, r = 1, [11] usesp = 4, r = 1,
and [12], [13] usep = 2, r = 2. It is therefore of
interest to know how distortion mismatch in these two
parameters affect the performance of the source code.
This is discussed in Example 1 (using Theorems 1, 2, 3)
and Example 3 (using Theorem 5).

• Given a class of distortion measuresΓ, [12] suggests
the following approach to find the “best” approximation
ρ ∈ Γ to the distortion measure implemented by the
human visual system: Simulate the (information theo-
retically) optimal encoding scheme for allρ ∈ Γ, and
determine experimentally (i.e., by showing the original
and distorted image to a human) the one yielding the
smallest distortion. This optimal distortion measure is
then declared to be the best approximation. While this
approach yields indeed the best approximationρ ∈ Γ
when used with theoptimal infinite length source code,
it is not clear a priori if thisρ will also yield a good
approximation when used with asuboptimalsource code.
Indeed, as we shall see in Example 1, there are situations
in which the mismatch for the optimal and (even only
slightly) suboptimal source codes are very different. In
Example 2 (using Theorem 4), we provide conditions
on Γ and the source under which theρ found with this
approach yields also a good approximation when used
with good but not optimal source codes. These condi-
tions hold for the model in [12] (with a few additional
assumptions, that are implicitly made there). Hence our
results provide evidence that the optimal approximation
ρ ∈ Γ found in [12] will also be good for practical (and
hence necessarily suboptimal) source codes.

• [13] proposes a vector quantizer design procedure for
distortion measures of the form

ρ(x,y) = wx ‖y − x‖2
2 , (3)

wherew : R
m → R. Since this is considerably simpler

than the standard model (2), the question arises of how
to find thewx such that the resultingρ in (3) is “close”
to one of the more complicated form (2). Note that it
is not immediately obvious what “close” should mean in
this context. Indeed, there are several such notions that
are reasonable. In Example 5, we show what properties
such a notion should have. The problem posed by [13]
discussed above is treated in detail in Example 4 (using
Theorem 5) and Example 6 (using Corollaries 6 and 7).

• Essentially all models of perceptual distortion measures
contain a number of parameters that are usually chosen
to be in “close agreement” with the behavior of the
human visual system. Again, it is not clear what “close
agreement” should mean here. In Example 7 (using
Proposition 8), a simple such measure of closeness is
proposed, providing a guideline for how to tune the
parameters of a perceptual distortion model to be used
for source coding.



E. Organization

The remainder of this paper is organized as follows. In
Section II-A, we provide a single-letter characterizationof the
mismatch distortion. In Section II-B, we investigate properties
of the mismatch distortion. Section II-C, considers the problem
of finding a good representation of a distortion measure froma
class of simpler ones. Section III contains concluding remarks.

Due to space constraints, all results in this paper are
presented without proofs.

II. SOURCECODING WITH DISTORTION M ISMATCH

In this section, we formally introduce the problem of source
coding with distortion mismatch. In what follows, we will let
the source alphabetX and the reconstruction alphabetY be
Polish2. We let B(X × Y) be the Borel sets ofX × Y. By
P(X × Y), we denote the set of all probability measures on
(X ×Y,B(X ×Y)). For Q ∈ P(X ×Y), QX denotes theX
marginal ofQ. For a measurable functiong : X ×Y → R, we
denote byEQg(X,Y ) or EQg the expectation ofg(X,Y ) with
respect toQ. For anyA ∈ B(X ×Y), we writeEQ(g;A) for
EQg11A. I(Q) denotes mutual information (in nats) between
the random variables(X,Y ) ∼ Q. Throughout this paper, we
restrict attention to single-letter distortion measures,i.e., mea-
surable functionsρ : X ×Y → R+ with ρn : Xn ×Yn → R+

as defined in (1).Rρ(D) andDρ(R) denote the rate-distortion
and the distortion-rate function for the source{Xn}n≥1 and
with respect to the single-letter distortion measureρ. More
precisely, if{Xn}n≥1 is i.i.d. P ∈ P(X ) then

Rρ(D) , inf
Q∈P(X×Y):

QX=P,EQρ≤D

I(Q),

Dρ(R) , inf
Q∈P(X×Y):

QX=P,I(Q)≤R

EQρ.

A. Single-Letter Characterization

In this section, we provide a single-letter characterization of
the smallest distortion with respect tõρ that can be guaranteed
for any source code of rateR designed for distortionDρ with
respect toρ.

Define

Dρ,ρ̃(R,Dρ) , sup EQρ̃, (4)

where the supremum is taken over allQ ∈ P(X×Y) such that
QX = P , EQρ ≤ Dρ andI(Q) ≤ R. If the set over which this
supremum is taken is empty, we defineDρ,ρ̃(R,Dρ) , −∞.

Theorem 1. Let ρ, ρ̃ be distortion measures with
EP ρ(X, y0) < ∞ for somey0 ∈ Y. For everyDρ̃ < ∞ such
that

0 ≤ Dρ̃ < lim
δ↓0

Dρ,ρ̃(R − δ,Dρ − δ)

2i.e., complete, separable, metric spaces (e.g.,R
m or [0, 1]m for some

finite m)

there exists a sequence of source codes{fn}n≥1 such that

lim
n→∞

1

n
log |fn(Xn)| ≤ R,

lim sup
n→∞

Eρn(Xn, fn(Xn)) ≤ Dρ,

lim inf
n→∞

Eρ̃n(Xn, fn(Xn)) ≥ Dρ̃.

Theorem 2. If there exists ann and a source codefn : Xn →
Yn such that

1

n
log |fn(Xn)| = R,

Eρn(Xn, fn(Xn)) ≤ Dρ,

Eρ̃n(Xn, fn(Xn)) ≥ Dρ̃,

then3 Dρ̃ ≤ Dρ,ρ̃(R+,Dρ) and Dρ̃ ≤ Dρ,ρ̃(R,Dρ) if R >
Rρ(Dρ).

Theorems 1 and 2 allow us to make guarantees about the
performance of a source code constructed with mismatched
distortion measure. Indeed, iffn : Xn → Yn is a source code
of rate R designed for a distortion measureρ and distortion
level Dρ, then by Theorem 2,fn is also a source code for
any distortion measurẽρ and distortion levelDρ,ρ̃(R+,Dρ).
Moreover, this is essentially the best guarantee one can make,
since by Theorem 1 there exist source codes with same
blocklengthn and same rateR designed for distortion measure
ρ and distortion levelDρ that result in a distortion level of
more than

Dρ,ρ̃(R − δ(n),Dρ − δ(n)) − δ(n)

for distortion measurẽρ with δ(n) → 0 asn → ∞.

B. Properties ofDρ,ρ̃(R,Dρ)

The functionDρ,ρ̃(R,Dρ) exhibits the following behavior:

Dρ,ρ̃(R,Dρ) ∈





{−∞} if R < Rρ(Dρ),

R+ ∪ {±∞} if R = Rρ(Dρ),

R+ ∪ {∞} if R > Rρ(Dρ).

Moreover, a simple argument shows thatDρ,ρ̃(R,Dρ) is
concave and increasing in both its arguments, and continuous
at all points(R,Dρ) such thatR > Rρ(Dρ). Dρ,ρ̃(R,Dρ) is
necessarily discontinuous at(Rρ(Dρ),Dρ), but could be either
left- or right-continuous (as a function of eitherR or Dρ). This
implies that the function either equals∞ for all (R,Dρ) such
that R > Rρ(Dρ) or is finite on this whole range. The two
types of possible behaviors ofDρ,ρ̃(R,Dρ) are depicted in
Figure 2.

The next three theorems describe the behavior of
Dρ,ρ̃(R,Dρ) in more detail. Theorem 3 provides conditions
under whichDρ,ρ̃(R,Dρ) = ∞ for all (R,Dρ) such thatR >
Rρ(Dρ). In these situations, we cannot make any guarantees
about the performance of a source code of rateR designed for
distortion measureρ and distortion levelDρ when used for

3For a real valued functiong, we write g(x+) , limδ↓0 g(x + δ) and
g(x−) , limδ↓0 g(x − δ) assuming the limits exist.
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Fig. 2. Possible behaviors ofDρ,ρ̃(R, Dρ).

distortion measurẽρ. Theorem 4 gives sufficient conditions
such thatDρ,ρ̃(R,Dρ) ≥ 0 for (R,Dρ) with R = Rρ(Dρ),
and conditions forDρ,ρ̃(R,Dρ) to be right-continuous inR
at those points. Theorem 5 provides a limiting expression for
Dρ,ρ̃(R,Dρ) asR → ∞. SinceDρ,ρ̃(R,Dρ) is increasing in
R, this limiting expression is also a bound onDρ,ρ̃(R,Dρ) for
any finiteR, and in particular is the best distortion guarantee
that is independent of the rateR.

Theorem 3. If

i) 0 < R < ∞
ii) Dρ(R) < Dρ < ∞

iii) there existsy0 ∈ Y such thatEP ρ(X, y0) < ∞
iv) there exist{An}n≥1 ⊂ B(X ), {y∗

n}n≥1 ⊂ Y such that

EP (ρ(X, y∗
n);An) < ∞ for all n ≥ 1,

P (An) inf
x∈An

ρ̃(x, y∗
n) → ∞ as n → ∞,

sup
x∈An

ρ(x, y∗
n)/ρ̃(x, y∗

n) → 0 as n → ∞

thenDρ,ρ̃(R,Dρ) = ∞.

Remark. For X = Y = R
m, the second and third part of

assumption iv) are satisfied for example ifρ̃(x, y) → ∞
and ρ(x, y)/ρ̃(x, y) → 0 when ‖y − x‖2 → ∞. See also
Example 1.

Example 1. Let X = Y = R
m for somem ∈ N, and assume

ρ(x, y) = d(y − x)r, ρ̃(x, y) = d̃(y − x)r̃ for normsd, d̃ and
r, r̃ ≥ 1. Let P ∈ P(X ) such thatEP d(X)⌈r⌉ < ∞.

Since all norms on a finite dimensional space are equivalent,
there exista1, a2 > 0 such that

a1d(z) ≤ d̃(z) ≤ a2d(z)

for all z ∈ R
m, and thus there existb1, b2 > 0 such that

b1ρ(x, y)r̃/r ≤ ρ̃(x, y) ≤ b2ρ(x, y)r̃/r

for all x ∈ X , y ∈ Y.
Case 1:r̃ ≤ r. Then

ρ̃(x, y) ≤ b2ρ(x, y)r̃/r

≤ b2 max{1, ρ(x, y)}

≤ b2(1 + ρ(x, y)),

and therefore for allQ ∈ P(X×Y) such thatEQρ ≤ Dρ < ∞

EQρ̃ ≤ b2(1 + Dρ) < ∞.

This impliesDρ,ρ̃(R,Dρ) < ∞ for all R,Dρ ∈ R+.
Case 2: r̃ > r. We first show that the conditions of

Theorem 3 are satisfied. We have

ρ(x, y)/ρ̃(x, y) ≤ b1ρ(x, y)(r−r̃)/r

for all x ∈ X , y ∈ Y. Let A , [−c, c]m, and choosec such
that P (A) > 0. Set y∗

n , n1, where1 = (1, . . . , 1) ∈ R
m.

With this

sup
x∈A

ρ(x, y∗
n)/ρ̃(x, y∗

n) ≤ sup
x∈A

b1ρ(x, y∗
n)(r−r̃)/r

= max
x∈A

b1d(y∗
n − x)r−r̃ → 0

asn → ∞. Moreover,

P (A) inf
x∈A

ρ̃(x, y∗
n) = P (A)min

x∈A
d̃(y∗

n − x)r̃ → ∞

asn → ∞. Finally, with Bn , {x : d(y∗
n − x) ≥ 1}

EP ρ(X, y∗
n) ≤ P (Bc

n) + EP

(
d(y∗

n − X)r;Bn

)

≤ 1 + EP

(
(d(y∗

n) + d(X))⌈r⌉;Bn

)

≤ 1 +

⌈r⌉∑

i=0

(
⌈r⌉

i

)
d(y∗

n)⌈r⌉−i
EP d(X)i

< ∞,

and hence withy0 = 0, we haveEP ρ(X, y0) < ∞ and
EP (ρ(X, y∗

n);A) < ∞. Thus applying Theorem 3 withAn ,
A yields Dρ,ρ̃(R,Dρ) = ∞ for all 0 < R < ∞ and
Dρ(R) < Dρ < ∞. ♦

Theorem 3 characterizes the behavior ofDρ,ρ̃(R,Dρ) for
(R,Dρ) such thatR > Rρ(Dρ). The next theorem charac-
terizes the behavior ofDρ,ρ̃(R,Dρ) for (R,Dρ) such that
R = Rρ(Dρ).

Theorem 4. Let the distortion measureρ be continuous,
Dρ > 0. If Y is compact or if there exists compact sets
Kn ⊂ X ,Mn ⊂ Y such thatP (Kn) → 1 as n → ∞ and

inf
x∈Kn,y∈Mc

n

ρ(x, y) → ∞ (5)

as n → ∞. ThenDρ,ρ̃(Rρ(Dρ),Dρ) ≥ 0, i.e., the set over
which we optimize in(4) is non-empty.

If, in addition,Dρ,ρ̃(Rρ(Dρ)+r,Dρ) < ∞ for somer > 0,
ρ̃ is continuous, and there existsa > 1 and c ∈ R such that
ρ̃a ≤ c + ρ, then

Dρ,ρ̃(Rρ(Dρ)+,Dρ) = Dρ,ρ̃(Rρ(Dρ),Dρ).

Remark.For X = Y = R
m (5), is satisfied for example for

ρ such thatρ(x, y) → ∞ as ‖y − x‖2 → ∞. Indeed, for
Kn = [−n, n]m andMn = [−2n, 2n]m,

lim
n→∞

P (Kn) = 1,



and

inf
x∈Kn,y∈Mc

n

ρ(x, y) ≥ min
x,y:‖y−x‖

2
≥n

ρ(x, y) → ∞

asn → ∞.

Example 2. Given a class of distortion measuresΓ, the
following approach is suggested in [12] to find the “closest”
one toρ̃ implemented by the human visual system: Determine
Dρ,ρ̃(R,Dρ(R)) for eachρ ∈ Γ and pick a minimizerρ∗. In
situations where a unique distributionQ with QX = P achiev-
ing Dρ(R) exists,Dρ,ρ̃(R,Dρ(R)) can be found empirically
by generating samples fromQ and having them evaluated by
human subjects. The hope is that the distortion measure min-
imizing Dρ,ρ̃(R,Dρ(R)) should be a good approximation to
ρ̃ also for non-optimal image compression schemes. Formally,
this amounts to assuming thatDρ,ρ̃(R+ r,Dρ(R)) is close to
Dρ,ρ̃(R,Dρ(R)) (at least for smallr). Hence this approach is
only valid, if Dρ,ρ̃(R + r,Dρ(R)) is right continuous inr at
r = 0.

Theorem 4 gives conditions under which this is indeed the
case. In [12],X = Y = R

m
+ , and eachρ ∈ Γ is of the form

ρ(x,y) =
∥∥(

[v(x1), . . . , v(xm)] − [v(y1), . . . , v(ym)]
)
W

∥∥2

2

for some monotonic increasing concave functionv : R+ → R

and some matrixW ∈ R
m×m. In order to apply Theorem 4,

we need the additional assumptions thatv is continuous at0,
thatv(s) → ∞ ass → ∞, thatW T W is positive definite, and
(the reasonable assumption) thatρ̃ implemented by the human
visual system is continuous and bounded. From Theorem 4,
we obtain that under these slightly stronger conditions than
in [12], Dρ,ρ̃(R+r,Dρ(R)) is indeed right continuous atr =
0, showing thatρ∗ should yield a good approximation tõρ
also for compression schemes that are only close to optimal.

We consider the problem of finding an optimalρ ∈ Γ
approximating a giveñρ in more detail in Section II-C. ♦

The next theorem provides an upper bound on
Dρ,ρ̃(R,Dρ), independent ofR. This bound is equal to
limR→∞ Dρ,ρ̃(R,Dρ), and is hence the tightest such bound
possible. We shall see in Example 4 that this bound can be
quite good for small values ofR.

Theorem 5. If

i) ρ, ρ̃ are continuous
ii) there existsy0 ∈ Y such thatEP ρ(X, y0) < ∞

iii) Dρ(∞) < Dρ < ∞

then for anyη ≥ 0 the expectation

EP sup
y∈Y

(ρ̃(X, y) − ηρ(X, y))

is well defined and

Dρ,ρ̃(∞,Dρ) = min
η≥0

(
ηDρ + EP sup

y∈Y
(ρ̃(X, y) − ηρ(X, y))

)
.

If, moreover,Dρ,ρ̃(∞,Dρ) < ∞, then

lim
R→∞

Dρ,ρ̃(R,Dρ) = Dρ,ρ̃(∞,Dρ).

Example 3. LetX = Y = R
m, ρ(x, y) = d(y−x)r, ρ̃(x, y) =

d̃(y − x)r̃ for normsd, d̃, and for r, r̃ ≥ 1. Let P ∈ P(X)
be such thatEP d(X)⌈r⌉ < ∞. With slight abuse of notation,
we shall writeρ(x − y) for ρ(x, y) and similar forρ̃ in this
example. Set

v∗ ∈ arg max
v∈Rm:d(v)=1

d̃(v).

Sinced̃ is continuous and{v : d(v) = 1} is compact, at least
one such maximizer exists. It is easy to check that

sup
z∈Rm

ρ̃(z) − ηρ(z) = sup
a≥0

ar̃d̃(v∗)r̃ − ηar, (6)

i.e., the maximizingz is of the formz∗ = av∗ for somea ≥ 0.
Case 1: r < r̃. We have seen in Example 1 that then

Dρ,ρ̃(R,Dρ) = ∞ for R > Rρ(Dρ).
Case 2:r = r̃. From Theorem 5, we have forDρ(∞) <

Dρ < ∞

Dρ,ρ̃(∞,Dρ) = min
η≥0

ηDρ + sup
z∈Rm

ρ̃(z) − ηρ(z).

Let z = av∗ for somea ≥ 0. Then

ρ̃(z) − ηρ(z) = ar(d̃(v∗)r − η) → ∞

as a → ∞, provided thatη < d̃(v∗)r. On the other hand, if
η ≥ d̃(v∗)r, then for anyz ∈ R

m with d(z) = 1

ρ̃(z) − ηρ(z) ≤ d̃(v∗)r − η ≤ 0,

and hencẽρ(z)− ηρ(z) ≤ 0 for all z ∈ R
m, with equality for

z = 0. Therefore the minimizingη ≥ 0 is equal tod̃(v∗)r and

lim
R→∞

Dρ,ρ̃(R,Dρ) = Dρd̃(v∗)r.

Case 3:r > r̃. Recall that by (6)

sup
a≥0

ar̃d̃(v∗)r̃ − ηar = sup
z∈Rm

ρ̃(z) − ηρ(z).

The optimala∗ ≥ 0 maximizing this quantity is

a∗ =
( r̃

ηr
d̃(v∗)r̃

)1/(r−r̃)

,

which by Theorem 5 implies that forDρ(∞) < Dρ < ∞

Dρ,ρ̃(∞,Dρ) = min
η≥0

ηDρ + η−r̃/(r−r̃)b , min
η≥0

g(η),

where

b , d̃(v∗)r̃r/(r−r̃)

(( r̃

r

)r̃/(r−r̃)

−
( r̃

r

)r/(r−r̃)
)

> 0.

The η∗ minimizing g is

η∗ =
(r − r̃

br̃
Dρ

)(r̃−r)/r

,

which finally yields

lim
R→∞

Dρ,ρ̃(R,Dρ) = Dr̃/r
ρ

( b

r − r̃

)(r−r̃)/r

r̃−r̃/rr.

For m = 1, r = 2, r̃ = 1, this reduces to

lim
R→∞

Dρ,ρ̃(R,Dρ) =
√

Dρ.



Note that in this case the limiting expression does not depend
on the normsd and d̃. ♦

Example 4. Let X = Y = R
m, ρ(x,y) = (y −x)T Wx(y −

x), ρ̃(x,y) = (y − x)T W̃x(y − x), whereWx andW̃x are
positive definite forP almost everyx. Let P ∈ P(X ) such
that EP XT WXX < ∞.

Hence Theorem 5 yields that forDρ(∞) < Dρ < ∞,

Dρ,ρ̃(∞,Dρ) = min
η≥0

ηDρ

+ EP sup
y∈Rm

(y − X)T (W̃X − ηWX)(y − X),

and whenever this quantity is finite then also

lim
R→∞

Dρ,ρ̃(R,Dρ) = Dρ,ρ̃(∞,Dρ).

If W̃x − ηWx is not negative semidefinite for somex,
then it has at least one strictly positive eigenvaluer > 0 with
corresponding eigenvectorv. Settingy = x − av yields

(y − x)T (W̃x − ηWx)(y − x) = a2rvT v → ∞

asa → ∞. Henceη will always be such that̃Wx − ηWx is
negative semidefinite forP almost everyx.

In this case

sup
y∈Rm

(y − x)T (W̃x − ηWx)(y − x) = 0,

and we obtain

lim
R→∞

Dρ,ρ̃(R,Dρ)

= Dρ inf{η ≥ 0 : W̃x − ηWx ≤ 0 P a.e.}, (7)

whereW̃x−ηWx ≤ 0 means that the matrix on the left hand
side is negative semidefinite.

To illustrate that this bound can be fairly tight already
for small R, we consider now a special case, for which
Dρ,ρ̃(R,Dρ) can be calculated analytically. LetX = Y = R

2,

ρ(x,y) = (y − x)T

(
1 0
0 1

)
(y − x),

ρ̃(x,y) = (y − x)T

(
a 0
0 b

)
(y − x),

with a ≥ b > 0, and let X ∼ N (0, I). The asymptotic
expression (and upper bound) given by (7) is

lim
R→∞

Dρ,ρ̃(R,Dρ) = aDρ (8)

and on the boundary

Dρ,ρ̃(Rρ(Dρ),Dρ) =
1

2
(a + b)Dρ. (9)

It can be shown that for0 < Dρ ≤ 1

Dρ,ρ̃(Rρ(Dρ) + r,Dρ)

≤ Dρ

(
(a + b) +

√
1 − exp(−2r)(a − b)

)
/2,

This function is plotted in Figure 3. As a quick check, we see
that indeed

lim
r→0

Dρ,ρ̃(Rρ(Dρ) + r,Dρ) =
1

2
Dρ(a + b),

lim
r→∞

Dρ,ρ̃(Rρ(Dρ) + r,Dρ) = aDρ,

which are the values found in (8) and (9).

Dρ,ρ̃(R,Dρ)

2

1.5

1

0.5

Dρ

1

0.8

0.6 R

1.4
1.2

1
0.8

Fig. 3. Dρ,ρ̃(R, Dρ) from Example 4 witha = 2 andb = 0.5.

For 0 < Dρ ≤ 1, the ratio between the limiting expression
asr → ∞ and the value for finiter is independent ofDρ and
given by

Dρ,ρ̃(Rρ(Dρ) + r,Dρ)/Dρ,ρ̃(∞,Dρ)

=
(
(a + b) +

√
1 − exp(−2r)(a − b)

)
/2a.

This converges to one quickly asr → ∞, as is shown in
Figure 4. Hence in this case the limiting expression found in
Theorem 5 is a fairly tight bound even for small values ofr.

♦

Dρ,ρ̃(Rρ(Dρ) + r,Dρ)/Dρ,ρ̃(∞,Dρ)

r

21.510.50

1

0.8

0.6

0.4

0.2

0

Fig. 4. Dρ,ρ̃(Rρ(Dρ)+r, Dρ)/Dρ,ρ̃(∞, Dρ) from Example 4 as a function
of r with a = 2, b = 0.5, for all values0 < Dρ ≤ 1. Note that for an excess
rate ofr = 0.5, we are already at over90% of the limiting value, at excess
rate ofr = 1, we are at over97% of the limiting value.

C. Choosing a “Representative” of a Class of Distortion
Measures

Let Γ and Γ̃ denote classes of distortion measures. In this
section, we consider the question of how a good “represen-



tative” ρ ∈ Γ of Γ̃ can be chosen (in a sense to be made
precise).

For rateR, distortion measureρ, and distortion levelDρ,
define the excess distortion

∆ρ(R,Dρ) , (Dρ − Dρ(R))+.

Consider again the oracle producing source codes as men-
tioned in the introduction, but assume this time that when
queried, we can also supply the oracle with a distortion
measureρ ∈ Γ. The oracle then produces a source codefn

such that
1

n
log |fn(Xn)| ≤ R

Eρn(Xn, fn(Xn)) ≤ Dρ(R) + ∆ρ.

Knowing the set of all{∆ρ}ρ∈Γ, and given ãΓ, how should
we chooseρ ∈ Γ to query the oracle with such thatfn will
“work well” for all ρ̃ ∈ Γ̃?

The operational significance of this question follows from
the discussion in the introduction. The parameters{∆ρ}ρ∈Γ

allow to account for the difficulty of constructing a source
code for distortion measureρ (see also Example 5 below).
Note, however, that there are several reasonable ways in which
“work well” in the last paragraph can be defined. We will
consider two such definitions in the following.

For rateR, define

DΓ,eΓ(R) , inf
ρ∈Γ

sup
ρ̃∈eΓ

Dρ,ρ̃(R,Dρ(R) + ∆ρ),

∆Γ,eΓ(R) , inf
ρ∈Γ

sup
ρ̃∈eΓ

(
Dρ,ρ̃(R,Dρ(R) + ∆ρ) − Dρ̃(R)

)
.

The next example illustrates why introducing{∆ρ}ρ∈Γ is
necessary.

Example 5. Fix a distortion measurẽρ and letΓ , {aρ}a≥1,
for some distortion measureρ. All distortion measures inΓ are
equivalent (in the sense that constructing source codes forρ
is as difficult as constructing source codes for anyaρ). So we
should have that allaρ represent̃ρ equally well (in the sense
that for appropriately chosenDaρ, Daρ,ρ̃(R,Daρ) is the same
for all a ≥ 1). As we will see in a moment, this imposes the
introduction of the quantity{∆aρ}a≥1.

For anyfixed Dρ, we have

Daρ,ρ̃(R,Dρ) = Dρ,ρ̃(R,Dρ/a)

which goes either to0 (if R ≥ Rρ(0)) or to −∞ as a →
∞. This shows that we should always look at source codes
constructed with distortion level relative toDaρ(R)

Assume then we try to minimizeDaρ,ρ̃(R,Daρ(R) + ∆)
for somefixed ∆ > 0. We have

Daρ,ρ̃(R,Daρ(R) + ∆) = Dρ,ρ̃(R,Dρ(R) + ∆/a).

Thus, again, the minimum is achieved asa → ∞, irrespective
of the choice ofρ̃.

This shows, that we should not choose∆aρ as a constant.
The natural choice in this example is∆aρ = a∆, for which

Daρ,ρ̃(R,Daρ(R) + ∆aρ) = Dρ,ρ̃(R,Dρ(R) + ∆).

♦

The following two corollaries of Theorem 1 and 2, re-
spectively, establish the operational meaning ofDΓ,eΓ(R) and
∆Γ,eΓ(R).

Corollary 6. Let Γ, Γ̃ be classes of distortion measures such
that for all ρ ∈ Γ there exists ay0 = y0(ρ) ∈ Y satisfying
EP ρ(X, y0) < ∞. For everyρ ∈ Γ and DeΓ,∆eΓ < ∞ such
that

0 ≤DeΓ < DΓ,eΓ(R−),

0 ≤∆eΓ < ∆Γ,eΓ(R−),

a) there existsρ̃ ∈ Γ̃ and sequences of source codes
{fn}n≥1 such that

lim
n→∞

1

n
log |fn(Xn)| ≤ R,

lim sup
n→∞

Eρn(Xn, fn(Xn)) ≤ Dρ(R) + ∆ρ,

lim inf
n→∞

Eρ̃n(Xn, fn(Xn)) ≥ DeΓ.

b) there existsρ̃ ∈ Γ̃ and sequences of source codes
{fn}n≥1 such that

lim
n→∞

1

n
log |fn(Xn)| ≤ R,

lim sup
n→∞

Eρn(Xn, fn(Xn)) ≤ Dρ(R) + ∆ρ,

lim inf
n→∞

(
Eρ̃n(Xn, fn(Xn)) − Dρ̃(R)

)
≥ ∆eΓ.

Corollary 7. a) For everyδ > 0 there existsρ ∈ Γ such
that if fn : Xn → Yn satisfies

1

n
log |fn(Xn)| = R,

Eρn(Xn, fn(Xn)) ≤ Dρ(R) + ∆ρ,

sup
ρ̃∈eΓ

Eρ̃n(Xn, fn(Xn)) ≥ DeΓ,

thenDeΓ ≤ DΓ,eΓ(R+) + δ.

b) For every δ > 0 there existsρ ∈ Γ such that if f̃n :
Xn → Yn satisfies

1

n
log |f̃n(Xn)| = R,

Eρn(Xn, f̃n(Xn)) ≤ Dρ(R) + ∆ρ,

sup
ρ̃∈Γ

(
Eρ̃n(Xn, f̃n(Xn)) − Dρ̃(R)

)
≥ ∆eΓ,

then∆eΓ ≤ ∆Γ,eΓ(R+) + δ.

Example 6. Let X = Y = R
m, Γ̃ = {ρ̃}, and

Γ ,
{
ρ(x,y) = wx ‖y − x‖2

2 : w ∈ W ⊂ X → R+

}
,

Let P ∈ P(X × Y) be such thatEP wX ‖X‖2
2 < ∞ for all

w ∈ W.
In [13], the authors show how vector quantizers can be

relatively easily constructed for distortion measures in the class
Γ defined here. Given a more sophisticated distortion measure



ρ̃, it is thus of interest to find the “closest”ρ ∈ Γ to ρ̃. In
other words, we want to findDΓ,Γ̃(R) and aρ ∈ Γ such that

Dρ,ρ̃(R,Dρ(R) + ∆ρ) ≤ DΓ,Γ̃(R) + δ,

for someδ > 0.
ComputingDΓ,eΓ(R) could be done numerically; to obtain

some insight we will instead minimizeDρ,ρ̃(∞,Dρ(R)+∆ρ).
As we have seen this last quantity is usually quite close to
Dρ,ρ̃(R,Dρ(R) + ∆ρ). To be specific, let̃ρ(x,y) = (y −

x)T W̃x(y−x) for W̃x positive definiteP almost everywhere.
Then from Example 4

Dρ,ρ̃(∞,Dρ(R) + ∆ρ)

= (Dρ(R) + ∆ρ)min
{
η : W̃x − ηwxI ≤ 0 P a.e

}

= (Dρ(R) + ∆ρ) ess sup
x∈X

λ1(W̃x)/wx,

whereλ1(W̃x) is the largest eigenvalue of̃Wx, and where
the essential supremum is with respect toP . ♦

In this last example, we have taken a sophisticated distortion
measurẽρ and found a good tractable approximation inΓ for
it. This approach poses the following question. Even ifρ̃ is
a very good model for (say) the human visual system, it will
certainly be different from it. In this situation, it is not clear
if minimizing Dρ,ρ̃(R,Dρ(R)+∆ρ) is meaningful. Indeed, if
ρ∗ is the distortion measure implemented by the human visual
system, we should really be minimizingDρ,ρ∗(R,Dρ(R) +
∆ρ) instead. The next theorem provides conditions under
which Dρ,ρ̃(R,Dρ(R) + ∆ρ) andDρ,ρ∗(R,Dρ(R) + ∆ρ) are
close and hence the approach of Example 6 is reasonable.

Proposition 8. Let ρ1, ρ2, ρ3 be continuous distortion mea-
sures. Then

Dρ1,ρ3
(R,Dρ1

)

≤ Dρ1,ρ2
(R,Dρ1

) + EP (sup
y∈Y

ρ3(X, y) − ρ2(X, y))

and

Dρ1,ρ3
(R,Dρ1

)

≥ Dρ1,ρ2
(R,Dρ1

) − EP sup
y∈Y

|ρ3(X, y) − ρ2(X, y)|.

Example 7. Settingρ1 = ρ2, Proposition 8 shows that
∣∣Dρ2,ρ3

(R,Dρ1
)−Dρ2

(R)
∣∣ ≤ EP sup

y∈Y
|ρ3(X, y)− ρ2(X, y)|.

Thus if
EP sup

y∈Y
|ρ3(X, y) − ρ2(X, y)|

is small, then the distortion measuresρ2 and ρ3 are almost
equivalent (from the point of source coding).

Moreover, if ρ3 is the actual distortion measure (imple-
mented, e.g., by the human visual system), andρ2 is a
sophisticated model for it (e.g.ρ2(x,y) = (y−x)T W̃x(y−x)
as in Example 6), then small

EP sup
y∈Y

|ρ3(X, y) − ρ2(X, y)|

guarantees that minimizingDρ1,ρ2
(R,Dρ1

+ ∆ρ1
) over all

ρ1 ∈ Γ (as is done in Example 6) is essentially equivalent
to minimizing Dρ1,ρ3

(R,Dρ1
+ ∆ρ1

).
Hence, when constructing a modelρ2 for the human visual

system (implementingρ3) to be used for data compression
applications, it is reasonable to choose the model parameters
such that

EP sup
y∈Y

|ρ3(X, y) − ρ2(X, y)|

is minimized. ♦

III. C ONCLUSION

In this paper, we investigated the problem of source coding
with mismatched distortion measures. We derived a single-
letter characterizationDρ,ρ̃(R,Dρ) of the best distortion level
with respect toρ̃ that can be guaranteed for any source code
of rate R designed for distortion levelDρ with respect toρ.
We then looked at properties ofDρ,ρ̃(R,Dρ), characterizing
its behavior forR > Rρ(Dρ) and on the boundary. We also
found an asymptotic expression (and upper bound) asR → ∞
for this quantity, that seems to be fairly tight also for small R.
This asymptotic expression gives considerable insight into the
behavior ofDρ,ρ̃(R,Dρ), which we illustrated with several
examples. We finally considered the problem of choosing a
representativeρ ∈ Γ of ρ̃.
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