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Abstract-
Wyner's wiretap channel is generalized to the case when the

sender, the receiver and the eavesdropper have multiple antennas.
We consider two cases: the deterministic case and the fading
case. In the deterministic case, the channel matrices of the
intended receiver and the eavesdropper are fixed and known to all
the nodes. In the fading case, the channel matrices experience
block fading and the sender has only the intended receiver's
channel state information (CSI) and statistical knowledge of the
eavesdropper's channel. For the deterministic case, a scheme
based on the generalized-singular-value-decomposition (GSVD)
of the channel matrices is proposed and shown to achieve the
secrecy capacity in the high signal-to-noise-ratio (SNR) limit.
When the intended receiver has only one antenna (MISO case) the
secrecy-capacity is characterized for any SNR. Next, a suboptimal
"artificial noise" based scheme is considered. Its performance is
characterized and observed to be nearly optimal in the high
SNR regime for the MISO case. This scheme extends naturally
to the fading case and results are reported for the MISO
case. For the independent Rayleigh fading distribution as we
simultaneously increase the number of antennas at the sender
and the eavesdropper, the secrecy capacity approaches zero if
and only if the ratio of the number of eavesdropper antennas to
transmitter antennas is at least two.

I. INTRODUCTION

The wiretap channel introduced by Wyner [1] has potential
applications in secret-key distribution over wireless links. In
this paper, we study the Gaussian wiretap channel when
the sender, the intended receiver and the eavesdropper have
multiple antennas. Note that unlike the scalar case [2], our
channel of interest is a non-degraded broadcast channel. A
first natural attempt to characterize the secrecy capacity is to
apply a result by Csiszair and Korner [3] who characterized
the secrecy capacity for the non-degraded discrete memoryless
wiretap channel (with transition probability p(Yr, Ye IX))

Cs = max I(U; Yr)- I(U; Ye), (1)
p(U),Xff(U)

where U is an auxiliary random variable over a certain
alphabet and f (.) is a stochastic mapping from U to X. While
the secrecy capacity (1) naturally extends to the continuous
alphabet case, the optimal choice of U and f(.) are not clear
a priori.

In the present paper, we develop an upper bound on the
MIMO wiretap secrecy capacity, that enables us to characterize
the secrecy capacity in the high signal-to-noise-ratio (SNR)
limit for the general MIMO wiretap channel and at any SNR
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for the special case when the intended receiver has only
one antenna (the MISO case). Perhaps more interestingly,
the optimal capacity achieving scheme admits a geometrical
interpretation. Suppose Hr C C'X`t and He C C'Xlt
denote the channel matrices of the intended receiver and the
eavesdropper. An optimal strategy is to perform a generalized-
singular-value-decomposition (GSVD) of the pencil (Hr, He)
(see e.g., [4], [5]) to reduce the system into a set of paral-
lel channels and then use an independent Gaussian wiretap
codebook on the resulting channels. In the case of the MISO
channel, the optimal scheme (at any SNR) is to beamform
along the direction of the generalized eigenvector of the pencil
(It + PH/1Hr, It + PH HHe), where P denotes the SNR.
While the capacity achieving schemes require that the

transmitter exploit the knowledge of both Hr and He, the
knowledge of He may not be available to the transmitter
in practice. Motivated by this consideration, we study an
'artificial noise" (AN) based scheme that does not require
the knowledge of He. The proposed scheme performs a
singular value decomposition of Hr, transmits information
along the directions corresponding to non-zero singular values
of Hr, and transmits artificial noise in the null space of Hr.
We characterize the achievable rate and the associated loss
with respect to the high SNR secrecy capacity. Somewhat
surprisingly, the AN scheme is nearly optimal for the MISO
case in the high SNR limit. Our analysis provides new insights
into the artificial noise based scheme which was studied in [6]
via monte-carlo simulations.
The AN scheme extends naturally to the block fading

channels when only the intended receiver's channel state
information (CSI) is known to the sender and statistical
knowledge of the eavesdropper's channel is available. We
provide an achievable rate expression for the MISO case. More
interestingly, in the i.i.d. block Rayleigh fading MISO model,
as we increase the number of antennas at the sender and
the eavesdropper while keeping their ratio fixed, the secrecy
capacity approaches zero if and only if the ratio of the number
of eavesdropper antennas to transmitter antennas is at least
two.

II. CHANNEL MODEL

With the exception of Section VII, we focus on the deter-
ministic Gaussian channel model

yr(t) Hrx(t) + zr(t) t= 1,2,. N (2)
Ye(t) =Hex(t) + ze()
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where H C Cn-"t and He C C',-", are the deterministic
channel matrices of the intended receiver and the eavesdropper.
Note that in our model, the number of antennas at the
transmitter, the intended receiver and the eavesdropper is
denoted by nt, nr and ne respectively. We assume that the
noise vectors zr(t) and ze(t) have i.i.d. CAV(O, 1) components,
and are independently sampled for each t. The input signal
must satisfy an average power constraint E[ lXl2] < P.
A secrecy rate R is achievable if there exist a sequence of
(N, 2NR) codes such that for W uniformly distributed in the
set [1, 2, ... , 2NR], the error probability at intended receiver
approaches zero and the equivocation at the eavesdropper
k H(W YyN) approaches k H(W) as N --> o.
Throughout this paper, unless otherwise stated, we use the

following notation: for a matrix M, MH will denote the
hermitian conjugate while Mt will denote its pseudo-inverse.
The matrix Opxq denotes a matrix of dimension p x q while
all entries are zeros, while Ot denotes a zero column vector
of length t. The matrix Ip denotes the p x p identity matrix.
For convenience we will designate hnr, hn, and Ine by 'r, It
and Je respectively.

III. UPPER BOUND ON SECRECY CAPACITY

We develop an expression for the upper bound on the
secrecy capacity of the MIMO channel (2) which will be used
to establish several results in the subsequent sections.
We define two sets: pA{Kp Tr(Kp) < P,Kp > 0}

is the set of feasible input covariance matrices and /Co

{KD KD [4 H ] Kb > 0} is the set of admissi-

b e noise covariance matrices.
Theorem 1: An upper bound on the secrecy capacity for the

MIMO channel model (2) is

R+= min max R+(Kp,Kp) = max min R+(Kp, K4),
K41GC,KpCG1p Kp GlpKD GC1

(3)
A

where R+(Kp,K) -I(X; Yr Y) is evaluated for X
CJV(O, Kp) and for a joint distribution of (Zr, Ze), such that
the vector [ZrH ZeH]H CAV(O, KD).
Proof Outline: We only sketch the main steps of the proof,
which will be provided in [7]. First, following Wyner [1], an
upper bound on secrecy capacity for any memoryless channel
is R+ = maxp(X)C7p I(X; Yr Ye) , where P is the set of all
feasible input distributions. We further tighten this bound by
evaluating it for the worst-case joint distribution of (Zr, Ze)
in tCo i.e., RI+ minKC,Gk, maxP(X)C7 I(X; Yr Ye)
Next it can be verified that for each Kb, the optimal
p(X) is Gaussian and hence it suffices to restrict the set
P to Gaussian distributions. The resulting upper bound
R+ = minK,,Gk X.maxKp EEkp R+(Kp ,Kp) provides the first
half of (3). Furthermore, one can show using standard methods
that R+(Kp, Kb) is a convex function in Kb for each fixed
Kp and concave in Kp for each fixed Kp. Since the sets
CD and /Cp are convex and compact, the minimax theorem
establishes the existence of a saddle point and the order of
maximization and minimization can be switched.

U
The following alternative representation of the upper bound

in (3) is more convenient in our subsequent proofs.
Corollary 1: An upper bound on the secrecy capacity is

R = min min max log
r+FFH -FH-FDH+M

K,bGk1 FECrx-e Kpelp |KD|
where M = (Hr -FHe)Kp(Hr -FHe)H.

(4)IV. GSVD BASED SCHEME

To provide our achievable scheme, it is convenient to
introduce the GSVD (generalized singular value decomposi-
tion [4], [5]) of the pair (Hr, He). Intuitively, this transform
decomposes the system into a set of parallel independent
channels, which can then be encoded separately. This is
analogous to the case of no eavesdropper, where the singular
value decomposition (SVD) reduces the system into a set of
parallel channels. The GSVD, unlike the SVD, is not unitary,
and hence there is an associated power loss.

Definition ] (GSVD): Given Hr e Cn,xnt and He (Cnexnt
there exist unitary matrices jr C (Con4xn e e Cnxn>< and
et Cntxnt and a non-singular lower-triangularl matrix Q C
Ckxk with k = rank{[H.f H, ]H} such that

4j§'Hr't =Er[Q 1,Okxnt-kk, q!fHe't =Ze [Q 1,Okxnt-kl,
(5)

where Zr and Se have the form

r<a
Y"r = Dr )

lp

(Ikp-s
yIe = De )

Ob
: (6)

with p = dim(Null(Hr)'INull(He)) and s = rank(Hr)-p.
The matrices 0a and Ob denote zero matrices with dimensions
(nr-p- sx k-p- s) and (ne+p-k x p) and can be possibly
void if either dimension is zero. Furthermore the matrices
Dr = diag{r1, r2, ....,rs} and De = diag{eC, e2, ..., e5 } are
diagonal matrices such that 0 < rl < r2, . . ., < rs < 1 and
1 > Cl >e2 ... >es >O and r2 + e2 = 1, for all < j< s.
The (non-trivial) generalized singular values are defined as

J;i = re with O < or, <_ (J2 < *- <_ Os < CO.
Theorem 2: The high SNR secrecy capacity of the MIMO

wiretap channel is given by the following: If NU1i(Hr)1 n
Null(He) = { },

lim CMIMO (P)
P-ooCx (7)E log o2,

j:7j >1

else, let p = dim{Null(He) n NUll(Hr,)} > 0 then

CMIMO(P) E logO+log Ir+HrHTH/J +o(1)Ir+pHHHl+(
(8)

where o(l) -> 0 as P -> oc and H1 e Cntxnt is the
projection matrix onto Null(He).

'The gsvd(.) command in MATLAB does not enforce a lower triangular
structure on Q but instead sets 4Jt = However, it can be easily modified
for our definition by performing the LQ decomposition of Q-1
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Remark 1: The dimension of the subspace Sd
Null(Hr)1 0 Null(He) can be viewed as the number of
degrees of freedom of the MIMO wiretap channel. Note that
the secrecy capacity can be positive even when there are no
available degrees of freedom. This distinction between zero
capacity and having no degrees of freedom will also appear
in the fading case, when the sender only has the intended
receiver's CSI.
Remark 2: The result in Theorem 2 can also be used to

establish the necessary and sufficient condition that the secrecy
capacity is zero. In particular, for any P > 0, CMJMO (P) =
0 if and only if (a) Null(Hr)1 NUll(He) = { } and (b)
oKj 1 for j 1, 2,. . ., s. Note that this remark provides a
generalization of the condition for the scalar Gaussian case that
the secrecy capacity is zero if and only if the eavesdropper's
channel is noisier than the intended receiver's channel.
Remark 3: In the absence of an eavesdropper, i.e., when

He On,x nt, our capacity expression reduces to

CMJMO(P) = log 1r + PHrHrH + o(l), which is simply
the high SNR MIMO capacity.

To establish the main ideas in the proof of Theorem 2 it
is instructive to consider the case when He has a full column
rank. The proof of the case when He does not have a full
column rank is along the same lines, but requires us to exploit
the lower triangular structure of Q to explicitly characterize
HrHl via the GSVD and is provided in the full version [7].
Proof (Full rank case): When He has a full column rank,

note that p = 0, k = nt and the expressions for Zr and Se
simplify as

'nt -s

Er (_1nT-sxnt-s

Dr ) Ye De

On.(-ntx s

It can be readily verified that

Hr,H t r (Tr SnXsnt -s snT-sXs ° n-sXne-nt
\ sXnt-s XsXn2-nt

(10)
with E = DrDe- = diag{ i,...,1 c}. Note that the non-
zero singular values of HrHt are also the generalized singular
values of (Hr, He).

Achievability: To establish the achievability, we identify
a particular choice of U and X in (1). Select random
variables UT, UT±,...., Us i.i.d. CJV(0, aP) where T is the
smallest value of j such that oj > 1 and select a =

(s1-±i)HQHI in order to satisfy E[ lX 21] < P. Set U =

[0 .... 0, UT, UT+1, . ., Us]H and

X = HQ Lnt-s (11)

With these choice of parameters, we have

L DrU
+

)

Ont-s

Ye = e DeU + Ze
n, -nt

(12)

Since 4,r and T4e are unitary,
s I +aPr2

I(U; Yr) -I(U; Ye) =E log 1 + aPe2
J=T J

s

S log osj -o(1),
j=T

(13)
where o(1) 0 as P ;oc.

Converse: We select a specific choice of F and Jb in the
upper bound expression in (4): select F = HrHt which gives
M 0 and (4) reduces to

R+ min log lJr + FFH -FH FbHI F = HHt
K,D1C Jr kDH HH

(14)
Recall that from (10) we can write F ='rZF4' H and select
= Tr A T 'H, where

AO On,,-sxnt-s °n,-sxs °nT,-sXn,-nt)
AsXnt-s A Osxnr-nt

and A is diagonal with ii = min i, , i = 1,2, ... s.
Our choice for Jb is clearly feasible and furthermore substitut-
ing in (14)

j IS+2 -2AR+ log I
_S

A2 5 logcj2.
j:uj > 1

(15)

This establishes the converse for the full rank case. U

V. MISO CASE

We refer to the case when nr = 1 as the MISO case. In
this case, we characterize the secrecy capacity at any SNR.
To emphasize this special case, we will denote the intended
receiver's channel vector hr., i.e., (2) specializes to

Yr =hjrX+Zr (16)

Ye HeX+Ze.

H Theorem 3: The secrecy capacity of the channel (16) is
given by:
CMJS (P) = [log Amax(It + Phrhff,It + PHfHHe)]+

(17)
where Amax(, ) denotes the largest generalized eigenvalue of
the pencil (I + PhrhH, I + PHe"H,). The capacity is ob-
tained by beamforming along the direction of the generalized
eigenvector of this pencil and using a scalar Gaussian wiretap
code.

Achievability: The achievability follows by evaluating (1)
for X = vU, where U - CJV(0, P) and v is a generalized
eigenvector of the pencil (I + PhrhH, I + PHeHHe) corre-
sponding to Amax(,. )-

Converse: In the MISO special case, the upper bound in
Corollary 1 reduces to

+ ~~1+ 0l2 20H@+M
R = minmax log 1 _ 2

,D, 0 K _I )I1+0~~2 -20H.D+P h'r _He"0~2=minlog 1 2 (8)
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where the second equality follows from the fact that the maxi-
mum over Kp is attained for Kp x (hr- H0)(hr_ H' 0)H.
For Amax(*,) > 1, evaluating (18) for =h=ivHev and
0 Amax(, *>), we have that R+ < log Amax( ) as required.
Remark 4: In the MISO case, beamforming is optimal at

any SNR, and regardless of the number of eavesdropping
antennas. However the beamforming direction depends on both
hr and He. In the high SNR regime the optimal direction
approaches zero-forcing i.e., H.'hr (whenever it is non-
zero). In the low SNR regime, it approaches an eigenvector
corresponding to the largest eigenvalue of hrhH _ H'He,
and not the "matched-filtering" direction of hr.
We conclude with some Corollaries to Theorem 3.

Corollary 2: In the high SNR regime, the MISO secrecy
capacity is given by:

cMSO(P) _flog (P H hrl2)] +0(1), H hr,# Ont,
l [logAmax(4rhh'HHHe)] ± + o(1) otherwise,

(19)
where o(l) 0 as P -* ox.

Corollary 3: In the low SNR regime, we have

lim CM VSJ(P [Amax(hrhr - He )] (20)

VI. ARTIFICIAL NOISE BASED SCHEME

The capacity achieving schemes in Theorem 2 and 3 use
the knowledge of He for selecting the transmit directions.
We study a suboptimal scheme where the transmit directions
are chosen without the knowledge of He. The knowledge of
He is used in selecting the rate however. This scheme readily
generalizes to the ergodic fading channel model treated in the
next section, where only the CSI of the intended receiver is
available.
Our proposed scheme is as follows. Let Hr = UrTWVrI

be the compact singular value decomposition of Hr i.e., with
d = rank(Hr), T e Ridjd, while Ur e Cn-xd and V e
(fntlxd have unitary columns. Let V = [VIi Vn] be a nt x
nt unitary matrix and denote its columns by v1, V2... ,Vnt.
Let B1, B2, ... , Bnt be i.i.d. CJV(0, Pt) random variables with
Pt = P/nt. We set U = (B1, B2,. .,BBd) and set

nt

X = E Bjvj (21)
j=1

Note that we can interpret the symbols B1, B2,... ,Bd as
information symbols, while the symbols Bd+1, Bn, as
"artificial noise".
Remark 5: The proposed scheme (21) has been studied

in [6] in the context of MISO fading channels where the term
artificial-noise has been coined. Their study is however based
on monte-carlo simulations. To our knowledge, the present
work is the first one to provide an analytical study of this
scheme. By comparing the achievable rate for this scheme
and with the secrecy capacity in Theorem 2, we can develop
some new insights into these schemes.
We first establish an achievable rate for the artificial noise
scheme by evaluating (1) for our choices of U and X in (21).

Proposition 1: Let Hr = UrT>VrH be the compact SVD
representation of Hr. The achievable rate corresponding to
the AN scheme is

RAN(P) =log1 Ir + PtHrH' +log |V.'(It+PtHfHe) -Vr
(22)

where Pt = P/nt.
Note that the expression in (22) captures the intuitive fact
that the eavesdropper "projects" the received signal into the
subspace of Vr. We next do a high SNR analysis of (22) to
compare it with the capacity in Theorem 2.

Theorem 4: Suppose that Hr and He are such that
rank(Hr) = nr and rank(He) = min(ne, nt). The achievable
rate for the AN scheme in the high SNR limit is given as
follows: If rank(He) = nt, we have that

lim RAN (P)
P-ooCx

(23)S log O2,
j=1

otherwise if rank(H6) = nr < nt and HrHB 0fl,Xflt,
then

RAN(P) = log Ir +-HrHeHf +Elogo2+o(l),
nit I:lg (

(24)
where (71, (2, . s, are the (non-trivial) generalized singular
values of the pair (Hr, He) and o(l) -> 0 as P --> oc.
The proof follows from a Taylor series expansion of (22).

Note that one can also obtain qualitatively similar results when
rank(Hr) = nt. The technical constraint that the matrices
be either full row rank or full column rank is satisfied with
probability 1 if the entries of Hr and He are sampled from
i.i.d. CJV(0, 1) distribution.
Remark 6: The expressions (23) and (24) for the achievable

rate for the AN scheme in Theorem 4 can be easily compared
with the corresponding expressions for the secrecy capacity in
Theorem 2. The suboptimality of the artificial noise scheme
is due to the fact that (23) and (24) include singular values
which take value in (0, 1) and contribute negatively to the
summation.
The AN scheme is nearly optimal for the MISO case.
Corollary 4: In the high SNR limit, the loss incurred by

the AN scheme for the MISO case (16) is,

lim CMISO (P)
P--Xoo

Rmiso(P 0fo rank(He) = nt,
AN (P) {lognt, HHhr O8Ont.

(25)

Remark 7: We provide example plots that compare the
performance of RAN (P) with the capacity in Figure 1.
In this example, we have randomly selected (real val-
ued) h = [_0.5465, -0.8468, -0.2463], and He =

0 0840 01199 0. I955 in the left plot and He =
-0.8542 -0.0653 -0.1497

[ 0.6630 -0.1199 -0.5955
-0.8542 -0.0653 -0.1497 in the right plot. The
-1.2013 0.4853 -0.4348 J
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Fig. 1. Comparison of achievable secrecy rate for the artificial noise based
scheme with the secrecy capacity. The dotted line is the rate for the AN scheme
while the solid line is the capacity. The choices of the channel matrices are
specified in the Remark 7.

right plot corresponds to the full rank case, while the left plot
corresponds to the case when H.'hr :t 0. The actual values
of hr and He do not affect the qualitative nature of the plots.
Remark 8: Corollary 4 reveals a rather unexpected fact that

the knowledge of the eavesdropper's channel for beamforming
does not provide dramatic gains at least in the high SNR limit.
In particular, the AN scheme provides a rate of CMSO (P/lnt)
in the high SNR regime. Thus the price for not knowing
the eavesdropper's channel is a multiplicative increase in the
power. In this sense, the artificial noise scheme simulates
transmission along the direction of optimal eigenvector by
using additional power.

VII. FADING CHANNELS

In this section we extend the model (2) to allow Hr (t)
and He (t) to vary with time. We assume that the realization
of Hr (t) is known to the sender (and the receiver), while
only the statistical characterization of He (t) is available. The
eavesdropper has access to both He (t) and Hr (t).
We study achievable rates for the block fading channel

model i.e., the channel matrices Hr(t) and He(t) are constant
for a duration of T symbols and change independently across
coherence periods. In the limit of large coherence periods, the
variable rate coding scheme in [8] can be naturally combined
with the artificial noise based scheme. In what follows, we
state our results only for the MISO case, but the extensions to
the MIMO case are analogous.

Proposition 2: In the limit of large coherence period i.e.,
T -> oc, an achievable rate for the MISO fading channel is
given by

RAN (P) max E[R_ (hr,He, P(hr))]' (26){P(h, ) EcP}

the average power constraint, and

AF(P(h r)r h )R_ (hr,~He,~P(hr)) logAm,ax ~ hrhj§'I PrHfjHe

+log(1+p( nt~ )

(27)
Furthermore in the high SNR regime if ne > nt, we have

lim RAN(P) = E [ [log Amax (hr hr HH He)]+].
P---CXD

and if ne < nt,

lim {RAN(P)-og-1 E[log <IH hr, 21]
The achievable rate in (27) depends only on the statistical
distribution of hr and He and naturally the secrecy capacity
decreases as we increase ne with nt fixed.

Theorem 5: Suppose that hr and He are sampled indepen-
dently from a Rayleigh fading distribution. Consider the limit
that nrr -> oc and nre -> oc with '- = , held fixed. For
any Q > 2, the secrecy capacity approaches zero at any SNR.
Conversely, for any /3 < 2 and sufficiently large SNR, the
achievable rate for the artificial noise based scheme is positive.

Remark 9: Note that the rate R_(hr,He,P(hr)) in (27)
is non-negative. Accordingly, for any finite value of ne the
secrecy capacity is non-zero. However for any fixed nt, as
nre -> oc, observe that R_ (hr, He, P(hr)) -> 0 almost surely.
Theorem 5 states that if we allow nt to increase simultaneously
with nr then the ratio of nt/nr must be at least 1/2 for the
secrecy capacity to remain positive as nle °.
Remark 10: The requirement that nt > lie for the MISO

secrecy capacity to be positive admits a simple intuitive
explanation. In the artificial noise scheme, the sender will
beamform to the intended receiver and transmit artificial noise
in the remaining nt-1 directions. The eavesdropper will need
nt-1 antennas to cancel the artificial noise and an additional
nt antennas to do receiver beamforming to enjoy the same
signal strength as the intended receiver. Thus a total of 2nt -1
will be required for the eavesdropper to be better than the
intended receiver.
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where P is the set of all feasible power allocations that satisfy
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