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The MIMOME Channel

Ashish Khisti and Gregory Wornell

Abstract—The MIMOME channel is a Gaussian wiretap  rate of the MIMO broadcast channel (see, e.g., [4] and its
channel in which the sender, receiver, and eavesdropper dflave  references). We first develop a minimax expression thatruppe
multiple antennas. We characterize the secrecy capacity &b 5nds the secrecy capacity and subsequently establish the
saddle-value of a minimax problem. Among other implicatiors, tiaht f this b d for the MIMOME ch |
our result establishes that a Gaussian distribution maximies ~('9NNESS OF IS bound for the - channeil. )
the secrecy capacity characterization of Csisz and Korner The case where the channel matrl_ces of intended receiver
when applied to the MIMOME channel. We also determine a and eavesdropper are square and diagonal follows from the
necessary and sufficient condition for the secrecy capacitto  results in [5]-[8] that consider secure transmission over
be zero. Large antenna array analysis of this condition revals fading channels. The difficulty of optimizing the Csiszada
several useful insights into the conditions under which sere Ki ion for th | has b ted
communication is possible. Korner expression for the general case has been reporte

in [9]-[11] and achievable rates have been investigated. Th
. INTRODUCTION approach used in the present paper has been used in our
. o earlier work [12], [13] to establish the secrecy capacity fo

Multiple antennas are a valuable resource in wireless COMgyq gpecial cases: the case when the intended receiver has a
munications. Recently there has been a significant aCtiVi%ingle antenna (MISOME case) and the MIMOME secrecy
in_ exploring both th_e theor_etical and practical_aspects Qf‘apacity in the high SNR regime. This upper bounding
wireless systems with mgltlple antennas. In thls_ work W& pproach was independently conceived by Ulukus et. al. [14]
explore the role of multiple antennas for physical layeqnq fyrther applied to the 2x2x1 case [15]. Finally, a relate
security, which is an emerging area of interest. approach for the MIMOME channel, is developed indepen-

The wiretap channel [1] is an information theoretic modelienty in [16]. Also it is interesting to note that this upper
for physical layer secgnty. The setup has three terminals “ounding approach has been empirically observed to be tight
one sender, one receiver and one eavesdropper. The gogliSihe problem of broadcasting two private messages to two

to exploit_the structure of_ the underlying broadcas_t Chhnnf’eceivers when each receiver has a single antenna [17]. For
to transmit a message reliably to the intended receiveilewhig,is setup a single letter characterization is not known for

leaking asymptotically no information to the eavesdroppefye giscrete memoryless case [18], [19]
A single letter characterization of the secrecy capacihgmv '

the underlying channel is a discrete memoryless broadcast Il. CHANNEL MODEL
channel, has been obtained by Csiszar and Korner [2]. AnWe denote the number of antennas at the sender, the
explicit solution for the scalar Gaussian case is obtainegceiver and the eavesdroppery n, andn, respectively.
in [3]. . _ y: (1) = Hyx(t) + z.(t)

In this paper we consider the case where all the three (1)
terminals have multiple antennas and naturally refer tsit a Ye(t) = Hex(t) + ze(?),
multiple input, multiple output, multiple eavesdropperli¢M where H, € C™*"* and H. € C"<*"t are channel
MOME) channel. In this setup we assume that the channelatrices associated with the receiver and the eavesdropper
matrices are fixed and known to all the three terminals. Whil€he channel matrices are fixed for the entire transmission
the assumption that the eavesdropper’s channel is knoweriod and known to all the three terminals. The additive
to both the sender and the receiver is obviously a stroripisez.(t) andz.(t) are circularly-symmetric and complex-
assumption, we remark in advance that our solution provideglued Gaussian random variables. The input satisfies a
ultimate limits on secure transmission with multiple amas power constraintz [1 3™ ||x(¢)|?] < P.
and could be a starting point for other formulations where A rateR? is achievable if there exists a sequence of length
the eavesdropper’s channel may not be known to the send@des, such that the error probability at the intended vecei

and the receiver. and %I(W;y‘?) both approach zero as — oo. The secrecy
The main result of this paper is a characterization of theapacity is the supremum of all achievable rates.
secrecy capacity of the MIMOME channel as the saddle 1. MIMOME SECRECY CAPACITY

value of a minimax problem. Our approach does not rely

. i . . . Our main result is the following characterization of the
on the Csiszar and Korner capacity expression, but idstea : .
. . . .. Secrecy capacity of the MIMOME wiretap channel.
is based on the technique used in characterizing the SUMr oorem 1:The secrecy capacity of the MIMOME wire
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where R, (Kp,Ka) = I(x;y: | ye) with x ~ €N(0,Kp) of (8) and establishes th&p is a globally optimal solution

and in @)F
Kp = {KP Kp =0, tr(Kp) < P} ; (3)  B. Structure of the optimal solution
_ As we establish in Sectidn IVAD, ifKp, Ks) is a saddle
and whereiz{, z{]" ~ EN(0,Ks), with point solution to the minimax problem, B is any matrix
I P that ha_s a full column rank matrix and satisfi€s = SST
Ko 2 {Kq) Ks = [‘;T 7 ] , Kg = 0} and if ® is the cross-covariance matrix between the noise
e random variables (c. , then
n 4) d iables (c.f(14)), th
_ {K@ Ko — [fg; I‘I’]  oman(®) < 1}, H.S — &'H,S. )

The condition in [P) admits an intuitive interpretation.
Furthermord the minimax problem ir({2) has a saddle poinirom [2)® is a contraction matrix i.e., all its singular values
solution (Kp,K¢) and the secrecy capacity can also bgye |ess than or equal to unity. The column spac8 & the
expressed as, subspace in which the sender transmits information.[$o (9)
det(I + H,KpH}) states that no information is transmitted along any dioecti
det(I+ H.K HT)' (5) yvhere the eayesdropper obgerves a stronger signal than the
etrpPte intended receiver. The effective channel of the eavesdmpp

H.S, is a degraded version of the effective channel of the
A. Connection with Csigz and Korner Capacity intended receiver,S.

A characterization of the secrecy capacity for the non-
degraded discrete memoryless broadcast champel,, is

C = RJF(KP,Kq)) = log

IV. PROOF OFTHEOREM[]

provided by Csiszar and Koérner [2], Our proof involves two main parts. First we show that
the right hand side in{2) is an upper bound on the secrecy
C= pff}gj{uf(u;yr) — I(u; ye), ( capacity. Then we examine the optimality conditions asso-

ciated with the saddle point solution to establish (7), Whic

where v is an auxiliary random variable (over a certamCompletes the proof since

alphabet with bounded cardinality) that satisfies—» x —
(Ve,ve). As remarked in [2], the secrecy capacily (6) can C <R,(Kp,Ks)=R_(Kp) <C.
be extended in principle to incorporate continuous-valued
inputs. However, directly identifying the optimal for the
MIMOME case is not straightforward.

Theoren(l indirectly establishes an optimal choiceuof
in (6). Suppose thatKp, Ks) is a saddle point solution to

That the right hand side il](2) is an upper bound on the
secrecy capacity has already been established:

Lemma 1 ( [12], [13]): An upper bound on the secrecy
capacity for the MIMOME channel is

the minimax problem in[{2). Froni](5) we have C< min max Ry(Kp Ka), (10)
_ _ T KaeKs KpeXKp
B (Kp, Ka) = R-(Kp) % whereXp andXg are defined in[{3) and4) respectively.
where P Hence it suffices to establish](7), which we do in the
R_(Kp) £ log det(I + HrprHr) remainder of this section. We divide the proof into several
det(I + H.KpHI) steps, which are outlined in Figl 1.

is the achievable rate obtained by evaluatihy (6) dor=

= . : LN A. Exist f the Saddle Point
x ~ CN(0,Kp). This choice ofp,, py|, thus maximized(6). X|s-ence © ) e waddie Fom o
Furthermore note that Our first step is to show that for the minimax problem

in (@), a saddle point solution exists, i.e., there exist®iatp

Kp € argmaxlog det(I + H.KpHI) (8) (Kp,Ko) with Kp € Kp andKg € Kg, such that for any
Krexp  det(I+HKpHI) Kp € Kp andKs € Ks, We have that

where the setKp is defined in [(B). Unlike the minimax
problem [[2) the maximization problerhl (8) is not a convex
optimization problem since the objective function is not Towards this end, we show the following convexity prop-
a concave function ofKp. Even if one verifies thaKp erties of the objective function.
satisfies the optimality gonditions associated with (8)s th Claim 1: For any fixed Kp € Xp, the function
will only establish thatKp is a locally optimal solution. Ry (Kp,Kg) is convex inKg. For any fixedKg € K,
The capacity expressiohl(2) provides a convex reformuiatiqhe functionR, (Kp,Kg) is concave inKp.

R (Kp,Ks) < Ry (Kp,Kg) < Ry (Kp,Kg). (11)

lin the remainder of this papel, denotes an identity matrix and 2The “high SNR” case of this problem ie.
denotes the matrix with all zeros. The dimensions of theseicea will be det(H, KH]) . ) .
suppressed and will be clear from the context. Also we usestiperscript  MAXKeX o 108 det(H.KHD) known as the multiple-discriminant-
T to denote the hermitian conjugate of a matrix. function in multivariate statistics and is well-studie@es e.g., [20].



Saddle Point{Kp, Ka) B. Least favorable noise condition

\ From [11), we have that
Kp € argmax Ry (Kp, Ks) Ky € arg Kglé?cq, Ry (Kp,Ka). (16)
Xp
- - The optimality conditions associated with {16) yield the
Kqs € arg{minfhr Kpr.Ks) y following.
P — —, . .
_ _ Lemma 2:Suppose thatKp, K¢ ) is a saddle point solu-
Kr € argxIEaXh(yr ~6ye) tion to the minimax problem if12). Then
/ (H, - OH.)Kp(®'H, - H.)' = 0. (17)
®'H,S =H.S = R, (Kp,Ks) = R_(Kp) where® is as defined vid(15) and

_ _ _ © = (H,KpH] + ®)(I+HXKpH!)"'.  (18)
Fig. 1. Key steps in the Proof of Theorem 1. In secfion IV-A wtablish that
the minimax problem has a saddle poj#€p, K4) . Sectiof1V-B obtains

a condition satisfied byKp, Kg) via the KKT conditions associated with .
the noise covariance, while sectifn 1V-C obtains anothendition that We will see subsequently, th&t {17) has a useful structure,

(Kp, Kg) satisfy, by first showing thaKp is also an optimal covariance which can be combined with the optimality condition as-
gfe;?gr%“ﬂwa?tﬁgafggr (a:r?g]fgwgf’btgjﬁgst‘(’:v;n%?gg't'ons Wevein  sociated withKp. The proof is most direct when the noise
covarianceK ¢ at the saddle point is non-singular. Hence we
will establish [I¥) in this special case first and then cogsid
Proof. Recall that R, (Kp,Ka) = I(x;y,,y.) — € case wheis is singular.
I(x;y.), with x ~ CN(0,Kp) and [z} zI]t ~ CN(0,Ka). 1) K4 is non-singular.: The Lagrangian associated with
For the convexity ifKs, note that(x; y.) does not depend the minimization[(Ib) is

onKg, andI(x;y;,y.) is known (see e.g., [21]) to be convex B _
in Kg. For the concavity ifkp, note that wheriK g > 0, L2(Ke,T) = R (Kp,Ke) +tr(YKe), (19

WE can express where the dual variable
Ri(Kp,Kg) =logdet A(Kp) — logdet Kg,  (12) ne o me
no | Y1 O
where r=_r [ 0 T, } (20)
A(Kp) 21+ H,KpH! - is a block diagonal matrix corresponding to the constraint

; o1t ; that the noise covariancKgs must have identity matrices
(® + H,KpH{)(I+ HKpH{)" (' + H.KpH]) (13) ¢ jts diagonal. The associated Karush-Kuhn-Tucker (KKT)

is the Schur compliment of the matrix conditions yield

I+HKpH &+ HKpHI " Vice Ry (Kp,Ka)| g + Y =0,
&'+ HKpH{ I+HKpH] | where
Since the Schur complement is jointly concave in the con= -
stituent matrices [22, page 21, Corollary 1.5.3], which inrbK*‘R*(KPvK@)‘K@ (21)
turn are linear inKp, it follows thg_tA(Kp) is concave in — Vi, [logdet(Kq> i HthHI)—logdet(Kq,)H
Kp and hence from the composition theorem we have that Ko
Ri(Kp,Ks) is concav@ in Kp. The case wheKg is = (Kg +HthHT)‘1 _K! (22)
singular, can be handled via the singular value decompasiti ! *
of ®, and will be treated in the full paper. B with the convenient notation
Notice that both the domain sefép and Xs are convex H
and compact, hence the existence of a saddle point solution H, = {Hr] , (23)
(Kp,Kg) is established vja the minimax theorem [23]. ©
In the sequel, we defin@ via which in turn implies that
Ko — EIT:T ICI)} (15) HKpH| = K¢ Y (K + HKpH]). (24)

The relation in[(I]7) follows from{24) through a straightfor
3The concavitiy result can also be established via [25, pg, 56eorem Ward computat|on th?-t e?<pI0|ts the. block diagonal struetur
16.9.1], by observing that + H.KpH{ is a minor of the matrix in[{14). of X', which we provide in Appendii I.



2) Kg is singular: When the noise covariancKg is Lemma 3:Suppose thaKp = SST, whereS has a full
singular, as we now show_(P4) still holds. Note that thigolumn rank. Then providetH, — ©®H.) # 0, the matrix
will complete the proof, since the steps in Appendix | that B
simplify (Z4) do not require thaK 4 be non-singular. M = (H, — ©H,)S (33)

In the singular case we define another optimization prob- - _ ) ,
lem whose optimality conditions yield [24). An analogoud@s 2 full column rank, wherd and® are defined via(15)
approach has been taken earlier by Yu [4] for dealing witA"d [I8), respectively.

singular noise for the MIMO broadcast channel. The rest of this su_bsection is devoted to the proof qf
Suppose that i i LemmaB,_and_ accordllngly we assume that the sadd_le point
Ky = WOWT, (25) solution (Kp, Kos) sf':1t|sf|es(}_Ir — G)H_e) _;é 0. A§ with
_ o _ Lemmad2, the proof is most direct whédy, is non-singular.
whereW is a matrix with orthogonal columns, .8 "W = Hence we will treat this case first and consider the case when
I and2 is a non-singular matrix. We first note that it mustg, is singular subsequently.
also be the case that 1) Ko is non-singular: In this case, we can write the
H, - WG, (26) optimality condition [[(3R) as
i.e., the column space df; is a subspace of the column Kp € argmax R, (Kp,Kg)
space ofW. If this were not the case, by receiving a signal KpeXe
in the null space oW, one can obtain arbitrarily high rate, = aggn;?x h(y: | ye)
ie., pete
o) — =argmaxh (y; — O(Kp)ye.), 34
hax Ry (Kp,Kg) = oo, (27) irg ma: (yr — ©(Kp)ye) (34)
which contradicts thaKg is a saddle point solution. where©(Kp) = (H,KpH] + ®)(H.KpH] + I)~! is the
Now observe thaf2 in (25) is a solution to the following linear minimum mean squared estimation coefficientyof
minimization problem, given y.. Instead of directly working with the optimality
min Ro(Q), conditions associated with {34) we reformulate the problem
as below.
det(GKpG' + Q im 2: K i
Ra(€2) = log et( pG' + )7 Claim 2: Suppose thaKg >~ 0 and define
det () (28) N B
I & H(Kp) = h(y: — Oye) = log det(I'(Kp)), (35)
Kao={Q | WQW' = [ =0
¢ { LPT Inc:| - } where

Indeed Q is a feasible point for[{28). Also witheg ~
CN(0,€2), one can show that

Ro(Q) = R (Kp, WQWT) + log det(I + H.KpH]),

I(Kp)21+6060' - 03" - 36"+
(H, — ©H,)Kp(H, — ©H,)". (36)

(29) Then,
from which the optimality of2 readily follows. The optimal- Kp € Arg max H(Kp). (37)
ity conditions associated with the minimization probl€d)2  Rremark 1: The objectivpe function in(37) is similar to the
gve one in [3%), but with® fixed, i.e., the variable® andKp
Q' — (GKpGl + Q) = WiTW, are decoupled i (37). This key step enables us to work with

=t et _ =t (30) the simpler objective function ifiL(87) and complete the jiroo
= GKpG' = QW TW(Q + GKpG') Proof: To establish [(37) note that sinc&(:) is a

whereY has the block diagonal form ia{R0). Multiplying the concave function ifKp € Kp and differentiable ovefp,

left and right and side of (30) witW and W respectively the optimality conditions associated with the Lagrangian

and using[(2b) and (26) we have that

Lo(Kp, A\, ¥) = H(Kp) + tr(TKp) — A(tr(Kp) — P),

H,KpH] = Ko Y (Ko + HKpH]), (31) (38)
which coincides with[[24). are both necessary and sufficient. THd$ is an optimal
. . solution to [37) if and only if there exists a > 0 and
C. Optimal Input Covariance Property ¥ > 0 such that
Given that(Kp, Kg) is a saddle point solution if](2) we ~ox 1t . _
have from [(TL) that (H; — ©H.)'[I'(Kp)]" (H; — ©H,) + ¥ = AL (39)
_ _ tI’(‘I’Kp) = 07 /\(tr(Kp) — P) = 0,
Kp € argmax R, (Kp,Kg). (32)
KpeXp

. S _ whereT'(-) is defined in[(3B). These parameters ¥p are
We show that[(32) in turn implies the following property. obtained from the optimality conditions associated W) (3



Since R, (Kp,Kg) is differentiable at eaclip € Kp

is the singular value decomposition Hf.z where A andB

wheneverK s >~ 0, Kp satisfies the associated KKT condi-are unitary matrices it *™ and C™*"+ and

tions — there exists ag > 0 and ¥, = 0 such that
Vi R(Kp, K@) e = |

Ke

tI‘(\I/()KP) = 0.

(40)
No(tr(Kp) — P) = 0,
We show in Appendix]I that

Vi, R(Kp,Kg)|  =(H,—OH,)'[A(Kp)]"'(H,—OH,),

Kp

(41)
where A(-), defined in [(IB), satisfies satisfled (Kp) =
I'(Kp). Hence the first condition in{#0) reduces to

(H, — OH,)'[[(Kp)] ' (H, — OH,) + ¥( = \I. (42)
Comparing [(4D) and [(42) with [(B9),

we note that

v Ny—V v

[A1 Ay |, B= [ B
From [45%) we have that

ng—v

A= B, |. (48)

Kp € arg max log det(I + HCH-KPHZH)
Xp

= argmaxlogdet(I + AXB'KpBXTAT)
Xp

= argmax log det(I + BTKpBXX) (49)
Xp

SinceB is unitary, we have thaB'KpB € Xp and hence
it follows from (49) that

F 2 B'KpB € argmaxlogdet(I+ KpXiX).  (50)
Xp

(Kp, Ao, ¥,) satisfy the conditions in(39), thus establish-We now show that any such is diagonal and; = 0 for

ing (32). [ |

¢ > v. From the Hadamard inequality [25, Section 16.8], we

Claim 3: Suppose thaKe =~ 0 andKp be any optimal have that

solution to

Kp € arg max H(Kp).
Kp

(43)

log det(T+F2E) <) “log(14+Fi07) =Y _log(1+Fii0}),
i=1 i=1
(51)

Suppose thaBp is a matrix with a full column rank such with equality if and only if the matri@ XX is a diagonal

that
Kp = SpS}, (44)

then (H, — ®H,)Sp has a full column rank.

Note that the claim in Lemmi@ 3 follows from Clainh 2 and

Claim[3. It remains to prove Claifd 3.

Proof: The proof is based on the so called water-fillin

principle [25]. From [[4B), we have
Ky —
argmaxlogdet(l—i—J_%(Hr—(:)He)Kp(Hr—@He)TJ—%)’
KpeXp

(45)

where] 21+ 060" — 68" — 36" ~ 0, i.e,, Kp is an

matrix. We now show that any optim® in (50) has the
form

v Fo O
ng—v 0 0

whereF is a diagonal matrix. Clearly any optimRl attains

(52)

%he upper bound i (31), hence it follows that {T}_ | F;; =

P, andF; = 0 fori > v and (2)FX'S is a diagonal
matrix. The first condition, together with the fact tiat- 0
imples that the lower diagonal matrix ih{52) is zero, while
the second condition implies that the off-diagonal matrice
in (G2) are zero and thdt, is diagonal.

From [50), we have that

Kp = BFB' = B,F(B! (53)

optimal input covariance for a MIMO channel with white
noise and matrixH.¢ £ J~z(H, — ©H,). We can now and hence for anySp that has a full column rank and
consider the usual water-filling properties associated witsatisfies[(44), we have

Kp to establish thatH, — ©H.)Sp has a full column rank.

o 1L N 1L -
Let rank(H.z) = v and let us denote the non-zero col(Sp) C col(B1) = Null™ (Hegr) = Null™(H, — ©Ho),

singular values (in non-increasing order) by, os,...,0,.  which implies that(H, — ©H,)Sp has a full column rank.
Let ¥y = diag(o1,...,0,), and m
L 2) K is singular: The case wherKg is singular can
» CO be handled by considering an appropriately reduced channel
=" { 0 ], (46) matrix. In this case® hasd > 1 singular values equal to
o 0 0 . .
unity and hence we can express its SVD as
be such that T
i ®=[U1 Uy [I 0} [V%] (54)
H. = AXB = A, %(BI, (47) 0 A V]

“To verify this relation, note thaF'(Kp) is the variance of; — Oye.
WhenKp = Kp, note that®y, is the MMSE estimate of. given y.
andI'(Kp) is the associated MMSE estimation error.

whereo,.x(A) < 1.
First we obtain some conditions that are satisfied when the
saddle point noise covariance is singular.



Claim 4: Suppose thatKp, Kg) is a saddle point solu-

The difference between the upper and lower bounds is

tion to the minimax problem in{2) and the singular valuegiven by

decomposition of® is given as in[(54). Then we have that

Ulz, 22 Vig, (55a)
UlH,, = VIH,, (55b)
R+(KP1 K‘P) = I(X, U;yr | yE)a v KP € j<:P' (55C)

Proof: To establish[{53a), we simply note that
E[Ulzzlv]=Ul®V, =1,

i.e., the Gaussian random variablﬁ‘s}zr and VIzc are
perfectly correlated. Next note that

Ri(Kp,Ka) = I(x;y:|ye)
= I(x; Uly,, Uly.|y.)
= I(x; Uly,, Uly, — Viycly.)
= I(x; Uly,, Ul H,x — VHex|ye).

Since K3 is a saddle point solution, we must have

maxg, R, (Kp,Kg) < oo and henceUJ{Hr = VIHC,
and R, (Kp,Kg) = I(x;Uly, | y.), establishing[{58b)

and [B5E). [ |
Thus with H, = U}H,, and2, = Ulz, and
§r = Uy, = Hix + 2., (56)
we have from[(55c), that
Kp € argmax I(x; §r | ye)- (57)

Kp

Since® = E[2,z!] < 1, it follows from (57) and Claini
that

Kp € arg max H(Kp)
Xp

(58)

where
H(Kp) = h(§: — Oye),
O = Ul (H,KpH] + ®)(I + H.KpH]) ",
Along the lines of Claini38 we then have that
(H, — ©H,)S = U}(H, — ©H,)S

rlas a full column rank, which in turn establishes tfit, —
®H,)S has a full column rank.

D. Saddle Value

We use the results from Lemnid 2 and Lemfja 3 to

AR =R, (Kp,Ks) — R_(Kp)
=1(x;¥r | Ye) = [1(X;¥x) —
=1(X;Ye | Yr)-

I(X; Ye)]
(61)

If Ko >~ 0, thenI(x;ye | yr) = h(Ye | ¥r) — h(ze | 2:)
and

h(ye | yr)
= log det(I + H.KpH/ —

(HKpH! + &")(H,KpH! + 1) (H,KpH! + &))
= logdet(I + H.KpH! — &' (H,KpH + I)®)

= log det(I — i)Ti)) = h(z | z;), (62)

where we have used the relatidn](60) in simplifying](62).
This shows that the differencAR in (1) is zero, thus
establishing[{[7) whenevd s is non-singular.

To establish the result whdss is singular, note that from

(G53) and[(58b) in Clairhl4,
AR = I(x;ye | yr)s
= I(x; V;ye | yr),

which is zero as shown below.

h(Viye | y:)
= log det(I + VIH.KpHIV, — (VIH.KpH! + ATUI)
(I+H,KpH)){(H,KpH!V, + UyA)) (64)
= logdet(I+ ATUIH, KpHIU,A
- A'UJ(1+ H,KpH!)U,A)
= logdet(I— ATA)
= h(Viz. | Ulz,)

(63)

h(Viz.|z), (65)

where we have used from (60) that
vie'H,s = VIH.S = ATUIH,S = VIH.S,

in simplifying (64) and the equality in((65) follows from
the fact thatUJ{zr is independent of(ngr,ngC). This
established{7) wheKg is singular.

It remains to consider the case when the saddle point
solution (Kp, Ks) is such that

OH, = H,. (66)

establish[{I7). To invoke Lemnid 3, we will first assume that

the saddle point solutiofKp, K¢ ) is such thaH, —©H. #
0 and treat the casH, — ®H, = 0 subsequently. Note that
from Lemma2 we have that

(H, — ©H,)ss!(®'H, - H.)! =0, (59)

and sinceM = (H, — ®H,)S has a full column rank[{59)
reduces to

$'H,S = H.S. (60)

In this case, we show that t[le sad(_jle vaIU(_e and hence the
capacity is zero. From[(18)9 = (® + H,KpH])(I +
H.KpH{)~!, hence we have

© + ©H KpH! = & + H, KpH]. (67)

Substituting [(66) in[(87), we have th& = ©, and using
this relation it can be verified thak, (Kp,Kgs) = 0. This
completes the proof of Theorenh 1.



V. ZERO-CAPACITY CONDITION AND SCALING LAWS vertical axis plots the minimum number of antennas at the
The conditions onH, and H. for which the secrecy eavesdropper (normalized k) for the secrecy capacity to

capacity is zero have a simple form. be zero. We note that the optimal allocation of antennas, tha
Lemma 4: The secrecy capacity of the MIMOME channelMaximizes the number of eavesdropper antennas happens
is zero if and only if at n,/ny = 1/2. This can be explicitly obtained from the
following minimization
[ H. v ]

Omax (Hy, He) £ su
max( Ty e) ve(CI?lt ||HCV||

< 1. (68) minimize 3 +

subject to, v > (1 —+/28)%, >0, v > 0.
We omit th_e proof of this cpndition due to space cons?raints. The optimal solution can be easily verified to be
The quantityo,,.x(H,, H) is tlhe largest gener_allzed SiNgU- (3« ~*) = (2/9,1/9). In this case, the eavesdropper needs
lar value of the channel matrices [26]. Analysis of the zerox, 37 antennas for the secrecy capacity to be zero. We
capacity condition in the limit of large number of antennagemark that the objective function iR (71) is not sensitive t
provides several useful insights we develop below. variations in the optimal solution. If fact even if we alldea
For our analysis, we use the following convergence propsqual number of antennas to the sender and the receiver, the

erty of the largest generalized singular value for Gauss'aéhvesdropper neec@*éﬂ)T ~ 2.9142 x T antennas for

matrices. :
th tyto b .
Fact 1 ([27], [28]): Suppose thaH, andH., have iid. = oo ooy capaciy fo be zero

eN(0,1) entries. Letn,,n.,n; — oo, while keeping ACKNOWLEDGEMENT

ny/ne = v andny/ne = 3 fixed. If 5 < 1, then the largest ~ Ami Wiesel provided a numerical optimizer to evaluate
generalized singular value ofH,,H.) converges almost the saddle point expression in TheorEm 1.

surely to

(71)

APPENDIX I
2 LEAST FAVORABLE NOISE PROPERTY
1+ 1—(1—5)(1—ﬁ) - i . .
as. gl Substituting forK¢ andH; in (24) and carrying out the
Umax(Hra He) - ’Y . . .. . .
1-p block matrix multiplication gives

69) HKpHf =Y (I+HKpH)+ 3Y,(d" + H.KpH))
H,KpH! = Y1(® + H,KpH!) + ®Y>(I + H.KpH))
By pombining_ Lemmd}4 and Fakl 1 one can deduce th?ICKPHT = <i>T'I‘1(I + H,KpH]) + T2(<i>T +H.KpH])
following condition for the zero-capacity condition. T B ot - !
Corollary 1: Suppose tha, andH, have i.i.d.CN(0,1) HKpH] = &Y (& + HKpH]) + To(I + HKpH]).
entries. Suppose that,,n.,n — oo, while keeping o ) ) ) (72)
ne/ne = v and n/n. = J fixed. The secrecy capacﬂy Eliminating Y; from the first and third equation above,
C(H,,H.) converges almost surely to zero if and only ifV€ have
0<f<1/2,0<y<1,and (®'H, - H)KpH! = (8'® - 1)Y»(®' + H.KpHI).
2 (73)
v=( \/%) ' (70) Similarly eliminatingY'; from the second and fourth equa-
tions in [72) we have
Figs.[2 and B provide further insight into the asymptotic , = + _ —t = _
analysis for the capacity achieving scheme. In Fig. 2, we'® H, — Ho)KpH[ = (2'@ - DY, (I+ H.KpHY). (74)
show the values of3,v) where the secrecy rate is zero.Finally, eliminatingY, from (73) and [(74) we obtaif (17).
If the eavesdropper increases its antennas at a sufficiently
high rate so that the points,~) lies below the solid
curve, then secrecy capacity is zero. The MISOME case
corresponds to the vertical intercept of this plot. The segr a
capacity is zero, if3 < 1/2, i.e., the eavesdropper has Vk, R (Kp,Kqs)
a_t least twice_ the number of antennas as the sender. The HI(HthHI —i—Kp)_lHt . HZ(I‘F HerHl)_lﬂe-
single transmit antenna (SIMOME) case corresponds to the (75)
horizontal intercept. In this case the secrecy capacitgis z  Substituting forH; andKq from (23) and [(1b),
if v <1, i.e., the eavesdropper has more antennas than the _ i1
receiver. (Ko + H:KpHy)
In Fig. [3, we consider the scenario where a total of I+HKpHl &+ HKpH] !
T > 1 antennas are divided between the sender and the — LI,T + H,KpH! I+HcKle}
receiver. The horizontal axis plots the ratip/n., while the Al A6

~6'A"! (I+H.KpH.) ' +©'A'0

APPENDIXII
KKT CONDITION

First note that,

-1

5We assume that the channels are sampled once, then stay dixtef
entire period of transmission, and are revealed to all thmitals.




0.4 05 0.6 0.7 0.8 0.9 1
y= nr/nE

29

28

2.7

2.6

)

n +n

~ 25

ne/(

24

23

22 q

21 q

0.4 0.6 0.8 1

nr/n‘

1.2 1.4 16 18 2

Fig. 2. Zero-capacity condition in tHg, ) plane. The capacity is zero for any Fig. 3. The minimum number of eavesdropping antennas pedeseplus
point below the curve, i.e., the eavesdropper has sufflgiemany antennas to receiver antenna for the secrecy capacity to be zero, glatea function
get non-vanishing fraction of the message, even when thiesemd receiver of n,/ns.

fully exploit the knowledge oH..

where we have used the matrix inversion lemma (e.g., [29])13] A. Khisti and G. W. Wornell, “Secure transmission with

and A £ A(Kp) is defined in [(IB), and® is as defined
in (I8). Substituting into[{45) and simplifying gives

Vi, R+ (Kp,Ks) |
Kp
—H!(K, + H,KpH!) 'H, — H/(I + H.KpH!) 'H,
= (H, — ©H,)'[A(Kp)] "} (H, — OH,)

as required.

(8]
El
[10]

REFERENCES

[1] A. D. Wyner, “The wiretap channel,Bell Syst. Tech. Jvol. 54, pp.
1355-87, 1975.

[2] I. Csiszar and J. Korner, “Broadcast channels withfictemtial mes-
sages,"IEEE Trans. Inform. Theoryol. 24, pp. 339-348, 1978.

[3] S. K. Leung-Yan-Cheong and M. E. Hellman, “The Gaussiaretap
channel,”IEEE Trans. Inform. Theoryol. 24, pp. 451-56, 1978.

[4] W. Yu, “Uplink-downlink duality via minimax duality,”IEEE Trans.
Inform. Theory vol. 52, pp. 361-374, Feb. 2006.

[5] Y. Liang, H. V. Poor, and S. Shamai, “Secure communicataver
fading channels,IEEE Trans. Inform. Theorysubmitted.

[6] Z.Li, R. Yates, and W. Trappe, “Secrecy capacity of inelegeent par-
allel channels,” inProc. Allerton Conf. Commun., Contr., Computing
2006.

[7] A.Khisti, A. Tchamkerten, and G. W. Wornell, “Secure Bdrasting,”
Submitted to IEEE Trans. Inform. Theory, Special Issue @orimation
Theoretic SecurityFeb. 2007.

P. Gopala, L. Lai, and H. E. Gamal, “On the secrecy capatfifading
channels,"IEEE Trans. Inform. Theorysubmitted, 2006.

R. Negi and S. Goel, “Secret communication using argfigioise,”
in Proc. Vehic. Tech. Conf2005.

Z. Li, W. Trappe, and R. Yates, “Secret communicatioma wulti-
antenna transmission,” iRorty-First Annual Conference on Informa-
tion Sciences and Systems (ClSZltimore, MD, Mar. 2007.

[11] S. Shaifee and S. Ulukus, “Achievable rates in GausiédsO
channels with secrecy constraints,”Rmnoc. Int. Symp. Inform. Theary
June 2007.

A. Khisti, G. W. Wornell, A. Wiesel, and Y. Eldar, “On th@aussian

MIMO wiretap channel,” inProc. Int. Symp. Inform. ThearNice,

2007.

[12]

[14]
[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]
[26]

[27]

(28]

[29]

multiple antennas: The MISOME wiretap channelSubmitted
Aug. 2007, IEEE Trans. Inform. Theory, available online,
http://arxiv.org/abs/0708.4219

S. Ulukus, “Personal communication.” 2007.

S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrepaciy of the
Gaussian MIMO wire-tap channel: The 2-2-1 chann#EE Trans.
Inform. Theory sept, submitted 2007.

O. Frederique and B. Hassibi, “The secrecy capacithefax2 MIMO
wiretap channel,” inProc. 45th Allerton Conf. on Communication,
Control and ComputingMontecillo, IL, 2007.

R. Liu and V. Poor, “Multiple antenna secure broadcastravireless
networks,” http://arxiv.org/abs/0705.11832007.

R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Dideranemory-
less interference and broadcast channels with confidemizgsages:
Secrecy capacity regionsfEEE Trans. Inform. TheoryFeb. 2007,
submitted, http://arxiv.org/abs/cs/0702099.

N. Cai, “Private capacity of broadcast channelSgneral Theory of
Information Transfer and Combinatorics, Lecture Notes mn(uter
Science vol. 4123, 2006.

S. Wilks, Mathematical Statistics John Wiley, 1962.

S. N. Diggavi and T. M. Cover, “The worst additive noisader a
covariance constraint/EEE Trans. Inform. Theoryol. IT-47, no. 7,
pp. 3072-3081, 2001.

R. Bhatia, Positive Definite Matrices Princeton Press, 2007.

D. P. Bertsekas, A. Nedic, and A. Ozdagl&pnvex Analysis and
Optimization Athena Scientific, 2003.

R. A. Horn and I. Olkin, “When does\* A = B*B and why does
one want to know?The American Mathematical Monthlyol. 103,
pp. 470-482, 1996.

T. M. Cover and J. A. Thomaglements of Information ThearyJohn
Wiley and Sons, 1991.

G. Golub and C. F. V. LoanMatrix Computations (3rd ed) Johns
Hopkins University Press, 1996.

J. W. Silverstein, “The limiting eigenvalue distriliorh of a multivariate
F- matrix,” SIAM Journal on Mathematical Analysigol. 16, pp. 641—
646, 1985.

Z. D. Bai and J. W. Silverstein, “No eigenvalues outste support
of the limiting spectral distribution of large dimensionedandom
matrices,” Annals of Probability vol. 26, pp. 316-345, 1998.

K. Petersen and M. Pedersen, “The Matrix Cookbook,” tSeyber,
2007.



	Introduction
	Channel Model
	MIMOME Secrecy Capacity
	Connection with Csiszár and Körner Capacity
	Structure of the optimal solution

	Proof of Theorem ??
	Existence of the Saddle Point
	Least favorable noise condition
	 is non-singular.
	 is singular

	Optimal Input Covariance Property
	 is non-singular
	  is singular

	Saddle Value

	Zero-Capacity Condition and Scaling Laws
	Appendix I: Least Favorable Noise Property
	Appendix II: KKT Condition
	References

