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The MIMOME Channel

Ashish Khisti and Gregory Wornell

Abstract— The MIMOME channel is a Gaussian wiretap
channel in which the sender, receiver, and eavesdropper allhave
multiple antennas. We characterize the secrecy capacity asthe
saddle-value of a minimax problem. Among other implications,
our result establishes that a Gaussian distribution maximizes
the secrecy capacity characterization of Csisźar and Körner
when applied to the MIMOME channel. We also determine a
necessary and sufficient condition for the secrecy capacityto
be zero. Large antenna array analysis of this condition reveals
several useful insights into the conditions under which secure
communication is possible.

I. I NTRODUCTION

Multiple antennas are a valuable resource in wireless com-
munications. Recently there has been a significant activity
in exploring both the theoretical and practical aspects of
wireless systems with multiple antennas. In this work we
explore the role of multiple antennas for physical layer
security, which is an emerging area of interest.

The wiretap channel [1] is an information theoretic model
for physical layer security. The setup has three terminals —
one sender, one receiver and one eavesdropper. The goal is
to exploit the structure of the underlying broadcast channel
to transmit a message reliably to the intended receiver, while
leaking asymptotically no information to the eavesdropper.
A single letter characterization of the secrecy capacity, when
the underlying channel is a discrete memoryless broadcast
channel, has been obtained by Csiszár and Körner [2]. An
explicit solution for the scalar Gaussian case is obtained
in [3].

In this paper we consider the case where all the three
terminals have multiple antennas and naturally refer to it as
multiple input, multiple output, multiple eavesdropper (MI-
MOME) channel. In this setup we assume that the channel
matrices are fixed and known to all the three terminals. While
the assumption that the eavesdropper’s channel is known
to both the sender and the receiver is obviously a strong
assumption, we remark in advance that our solution provides
ultimate limits on secure transmission with multiple antennas
and could be a starting point for other formulations where
the eavesdropper’s channel may not be known to the sender
and the receiver.

The main result of this paper is a characterization of the
secrecy capacity of the MIMOME channel as the saddle
value of a minimax problem. Our approach does not rely
on the Csiszár and Körner capacity expression, but instead
is based on the technique used in characterizing the sum
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rate of the MIMO broadcast channel (see, e.g., [4] and its
references). We first develop a minimax expression that upper
bounds the secrecy capacity and subsequently establish the
tightness of this bound for the MIMOME channel.

The case where the channel matrices of intended receiver
and eavesdropper are square and diagonal follows from the
results in [5]–[8] that consider secure transmission over
fading channels. The difficulty of optimizing the Csiszár and
Körner expression for the general case has been reported
in [9]–[11] and achievable rates have been investigated. The
approach used in the present paper has been used in our
earlier work [12], [13] to establish the secrecy capacity for
two special cases: the case when the intended receiver has a
single antenna (MISOME case) and the MIMOME secrecy
capacity in the high SNR regime. This upper bounding
approach was independently conceived by Ulukus et. al. [14]
and further applied to the 2x2x1 case [15]. Finally, a related
approach for the MIMOME channel, is developed indepen-
dently in [16]. Also it is interesting to note that this upper
bounding approach has been empirically observed to be tight
for the problem of broadcasting two private messages to two
receivers when each receiver has a single antenna [17]. For
this setup a single letter characterization is not known for
the discrete memoryless case [18], [19]

II. CHANNEL MODEL

We denote the number of antennas at the sender, the
receiver and the eavesdropper bynt, nr andne respectively.

yr(t) = Hrx(t) + zr(t)

ye(t) = Hex(t) + ze(t),
(1)

where Hr ∈ Cnr×nt and He ∈ Cne×nt are channel
matrices associated with the receiver and the eavesdropper.
The channel matrices are fixed for the entire transmission
period and known to all the three terminals. The additive
noisezr(t) andze(t) are circularly-symmetric and complex-
valued Gaussian random variables. The input satisfies a
power constraintE

[

1
n

∑n

t=1 ||x(t)||
2
]

≤ P.
A rateR is achievable if there exists a sequence of lengthn

codes, such that the error probability at the intended receiver
and 1

n
I(w ; yn

e ) both approach zero asn → ∞. The secrecy
capacity is the supremum of all achievable rates.

III. MIMOME S ECRECY CAPACITY

Our main result is the following characterization of the
secrecy capacity of the MIMOME wiretap channel.

Theorem 1:The secrecy capacity of the MIMOME wire-
tap channel is

C = min
KΦ∈KΦ

max
KP∈KP

R+(KP,KΦ), (2)
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whereR+(KP,KΦ) = I(x; yr | ye) with x ∼ CN(0,KP)
and

KP ,

{

KP

∣

∣

∣

∣

∣

KP � 0, tr(KP) ≤ P

}

, (3)

and where[z†r , z
†
e]
† ∼ CN(0,KΦ), with

KΦ ,

{

KΦ

∣

∣

∣

∣

∣

KΦ =

[

Inr
Φ

Φ
†

Ine

]

, KΦ � 0

}

=

{

KΦ

∣

∣

∣

∣

∣

KΦ =

[

Inr
Φ

Φ
†

Ine

]

, σmax(Φ) ≤ 1

}

.

(4)

Furthermore,1 the minimax problem in (2) has a saddle point
solution (K̄P, K̄Φ) and the secrecy capacity can also be
expressed as,

C = R+(K̄P, K̄Φ) = log
det(I + HrK̄PH

†
r)

det(I + HeK̄PH
†
e)

. (5)

A. Connection with Csiszár and Körner Capacity

A characterization of the secrecy capacity for the non-
degraded discrete memoryless broadcast channelpyr,ye|x is
provided by Csiszár and Körner [2],

C = max
pu,px|u

I(u; yr) − I(u; ye), (6)

where u is an auxiliary random variable (over a certain
alphabet with bounded cardinality) that satisfiesu → x →
(yr, ye). As remarked in [2], the secrecy capacity (6) can
be extended in principle to incorporate continuous-valued
inputs. However, directly identifying the optimalu for the
MIMOME case is not straightforward.

Theorem 1 indirectly establishes an optimal choice ofu

in (6). Suppose that(K̄P, K̄Φ) is a saddle point solution to
the minimax problem in (2). From (5) we have

R+(K̄P, K̄Φ) = R−(K̄P), (7)

where

R−(K̄P) , log
det(I + HrK̄PH

†
r)

det(I + HeK̄PH
†
e)

is the achievable rate obtained by evaluating (6) foru =
x ∼ CN(0, K̄P). This choice ofpu , px|u thus maximizes (6).
Furthermore note that

K̄P ∈ argmax
KP∈KP

log
det(I + HrKPH

†
r)

det(I + HeKPH
†
e)

(8)

where the setKP is defined in (3). Unlike the minimax
problem (2) the maximization problem (8) is not a convex
optimization problem since the objective function is not
a concave function ofKP. Even if one verifies that̄KP

satisfies the optimality conditions associated with (8), this
will only establish thatK̄P is a locally optimal solution.
The capacity expression (2) provides a convex reformulation

1In the remainder of this paper,I denotes an identity matrix and0
denotes the matrix with all zeros. The dimensions of these matrices will be
suppressed and will be clear from the context. Also we use thesuperscript
† to denote the hermitian conjugate of a matrix.

of (8) and establishes that̄KP is a globally optimal solution
in (8).2

B. Structure of the optimal solution

As we establish in Section IV-D, if(K̄P, K̄Φ) is a saddle
point solution to the minimax problem, ifS is any matrix
that has a full column rank matrix and satisfiesK̄P = SS

†

and if Φ̄ is the cross-covariance matrix between the noise
random variables (c.f. (4)), then

HeS = Φ̄
†
HrS. (9)

The condition in (9) admits an intuitive interpretation.
From (4)Φ̄ is a contraction matrix i.e., all its singular values
are less than or equal to unity. The column space ofS is the
subspace in which the sender transmits information. So (9)
states that no information is transmitted along any direction
where the eavesdropper observes a stronger signal than the
intended receiver. The effective channel of the eavesdropper,
HeS, is a degraded version of the effective channel of the
intended receiver,HrS.

IV. PROOF OFTHEOREM 1

Our proof involves two main parts. First we show that
the right hand side in (2) is an upper bound on the secrecy
capacity. Then we examine the optimality conditions asso-
ciated with the saddle point solution to establish (7), which
completes the proof since

C ≤ R+(K̄P, K̄Φ) = R−(K̄P) ≤ C.

That the right hand side in (2) is an upper bound on the
secrecy capacity has already been established:

Lemma 1 ( [12], [13]): An upper bound on the secrecy
capacity for the MIMOME channel is

C ≤ min
KΦ∈KΦ

max
KP∈KP

R+(KP,KΦ), (10)

whereKP andKΦ are defined in (3) and (4) respectively.
Hence it suffices to establish (7), which we do in the

remainder of this section. We divide the proof into several
steps, which are outlined in Fig. 1.

A. Existence of the Saddle Point

Our first step is to show that for the minimax problem
in (2), a saddle point solution exists, i.e., there exists a point
(K̄P, K̄Φ) with K̄P ∈ KP andK̄Φ ∈ KΦ, such that for any
KP ∈ KP andKΦ ∈ KΦ, we have that

R+(KP, K̄Φ) ≤ R+(K̄P, K̄Φ) ≤ R+(K̄P,KΦ). (11)

Towards this end, we show the following convexity prop-
erties of the objective function.

Claim 1: For any fixed KP ∈ KP, the function
R+(KP,KΦ) is convex inKΦ. For any fixedKΦ ∈ KΦ,
the functionR+(KP,KΦ) is concave inKP.

2The “high SNR” case of this problem i.e.,

maxK∈K∞ log
det(HrKH

†
r
)

det(HeKH
†
e)

is known as the multiple-discriminant-

function in multivariate statistics and is well-studied; see, e.g., [20].



Saddle Point:(K̄P, K̄Φ)

K̄Φ ∈ arg min
KΦ

R+(K̄P,KΦ)

K̄P ∈ arg max
KP

R+(KP, K̄Φ)

K̄P ∈ arg max
KP

h(yr − Θ̄ye)

Φ̄
†
HrS = HeS ⇒ R+(K̄P, K̄Φ) = R−(K̄P)

Fig. 1. Key steps in the Proof of Theorem 1. In section IV-A we establish that
the minimax problem has a saddle point(K̄P, K̄Φ) . Section IV-B obtains
a condition satisfied by(K̄P, K̄Φ) via the KKT conditions associated with
the noise covariance, while section IV-C obtains another condition that
(K̄P, K̄Φ) satisfy, by first showing that̄KP is also an optimal covariance
of another MIMO channel. Combining these two conditions we show in
Section IV-D that the upper and lower bounds coincide.

Proof: Recall that R+(KP,KΦ) = I(x; yr, ye) −
I(x; ye), with x ∼ CN(0,KP) and [z†r z†e]

† ∼ CN(0,KΦ).
For the convexity inKΦ, note that,I(x; ye) does not depend
onKΦ, andI(x; yr, ye) is known (see e.g., [21]) to be convex
in KΦ. For the concavity inKP, note that whenKΦ ≻ 0,
we can express

R+(KP,KΦ) = log detΛ(KP) − log detKΦ, (12)

where

Λ(KP) , I + HrKPH
†
r−

(Φ + HrKPH
†
e)(I + HeKPH

†
e)

−1(Φ† + HeKPH
†
r) (13)

is the Schur compliment of the matrix
[

I + HrKPH
†
r Φ + HrKPH

†
e

Φ
† + HeKPH

†
r I + HeKPH

†
e

]

. (14)

Since the Schur complement is jointly concave in the con-
stituent matrices [22, page 21, Corollary 1.5.3], which in
turn are linear inKP, it follows that Λ(KP) is concave in
KP and hence from the composition theorem we have that
R+(KP,KΦ) is concave3 in KP. The case whenKΦ is
singular, can be handled via the singular value decomposition
of Φ, and will be treated in the full paper.

Notice that both the domain setsKP andKΦ are convex
and compact, hence the existence of a saddle point solution
(K̄P, K̄Φ) is established via the minimax theorem [23].

In the sequel, we definēΦ via

K̄Φ =

[

Inr
Φ̄

Φ̄
†

Ine

]

. (15)

3The concavitiy result can also be established via [25, pg. 506, Theorem
16.9.1], by observing thatI + HeKPH

†
e is a minor of the matrix in (14).

B. Least favorable noise condition

From (11), we have that

K̄Φ ∈ arg min
KΦ∈KΦ

R+(K̄P,KΦ). (16)

The optimality conditions associated with (16) yield the
following.

Lemma 2:Suppose that(K̄P, K̄Φ) is a saddle point solu-
tion to the minimax problem in (2). Then

(Hr − Θ̄He)K̄P(Φ̄
†
Hr − He)

† = 0. (17)

whereΦ̄ is as defined via (15) and

Θ̄ = (HrK̄PH
†
e + Φ̄)(I + HeK̄PH

†
e)

−1. (18)

We will see subsequently, that (17) has a useful structure,
which can be combined with the optimality condition as-
sociated withK̄P. The proof is most direct when the noise
covarianceK̄Φ at the saddle point is non-singular. Hence we
will establish (17) in this special case first and then consider
the case when̄KΦ is singular.

1) K̄Φ is non-singular.:The Lagrangian associated with
the minimization (16) is

LΦ(KΦ,Υ) = R+(K̄P,KΦ) + tr(ΥKΦ), (19)

where the dual variable

Υ =

[

nr ne

nr Υ1 0

ne 0 Υ2

]

(20)

is a block diagonal matrix corresponding to the constraint
that the noise covarianceKΦ must have identity matrices
on its diagonal. The associated Karush-Kuhn-Tucker (KKT)
conditions yield

∇KΦ
R+(K̄P,KΦ)

∣

∣

K̄Φ

+ Υ = 0,

where

∇KΦ
R+(K̄P,KΦ)

∣

∣

K̄Φ

(21)

= ∇KΦ

[

log det(KΦ + HtK̄PH
†
t)−log det(KΦ)

]

∣

∣

∣

∣

K̄Φ

= (K̄Φ + HtK̄PH
†
t)

−1 − K̄
−1
Φ , (22)

with the convenient notation

Ht =

[

Hr

He

]

, (23)

which in turn implies that

HtK̄PH
†
t = K̄ΦΥ(K̄Φ + HtK̄PH

†
t). (24)

The relation in (17) follows from (24) through a straightfor-
ward computation that exploits the block diagonal structure
of Υ, which we provide in Appendix I.



2) K̄Φ is singular: When the noise covariancēKΦ is
singular, as we now show, (24) still holds. Note that this
will complete the proof, since the steps in Appendix I that
simplify (24) do not require that̄KΦ be non-singular.

In the singular case we define another optimization prob-
lem whose optimality conditions yield (24). An analogous
approach has been taken earlier by Yu [4] for dealing with
singular noise for the MIMO broadcast channel.

Suppose that
K̄Φ = WΩ̄W

†, (25)

whereW is a matrix with orthogonal columns, i.e.,W
†
W =

I andΩ̄ is a non-singular matrix. We first note that it must
also be the case that

Ht = WG, (26)

i.e., the column space ofHt is a subspace of the column
space ofW. If this were not the case, by receiving a signal
in the null space ofW, one can obtain arbitrarily high rate,
i.e.,

max
KP∈KP

R+(KP, K̄Φ) = ∞, (27)

which contradicts that̄KΦ is a saddle point solution.
Now observe that̄Ω in (25) is a solution to the following

minimization problem,

min
Ω∈KΩ

RΩ(Ω),

RΩ(Ω) = log
det(GK̄PG

† + Ω)

det(Ω)
,

KΩ =

{

Ω

∣

∣

∣

∣

∣

WΩW
† =

[

Inr
Φ

Φ
†

Ine

]

� 0

}

.

(28)

Indeed Ω̄ is a feasible point for (28). Also withzΩ ∼
CN(0, Ω), one can show that

RΩ(Ω) = R+(K̄P,WΩW
†) + log det(I + HeK̄PH

†
e),
(29)

from which the optimality of̄Ω readily follows. The optimal-
ity conditions associated with the minimization problem (28)
give

Ω̄
−1

− (GK̄PG
† + Ω̄)−1 = W

†
ΥW,

⇒ GK̄PG
† = Ω̄W

†
ΥW(Ω̄ + GK̄PG

†)
(30)

whereΥ has the block diagonal form in (20). Multiplying the
left and right and side of (30) withW andW

† respectively
and using (25) and (26) we have that

HtK̄PH
†
t = K̄ΦΥ(K̄Φ + HtK̄PH

†
t), (31)

which coincides with (24).

C. Optimal Input Covariance Property

Given that(K̄P, K̄Φ) is a saddle point solution in (2) we
have from (11) that

K̄P ∈ argmax
KP∈KP

R+(KP, K̄Φ). (32)

We show that (32) in turn implies the following property.

Lemma 3:Suppose that̄KP = SS
†, whereS has a full

column rank. Then provided(Hr − Θ̄He) 6= 0, the matrix

M = (Hr − Θ̄He)S (33)

has a full column rank, wherēΦ andΘ̄ are defined via (15)
and (18), respectively.

The rest of this subsection is devoted to the proof of
Lemma 3, and accordingly we assume that the saddle point
solution (K̄P, K̄Φ) satisfies(Hr − Θ̄He) 6= 0. As with
Lemma 2, the proof is most direct when̄KΦ is non-singular.
Hence we will treat this case first and consider the case when
K̄Φ is singular subsequently.

1) K̄Φ is non-singular: In this case, we can write the
optimality condition (32) as

K̄P ∈ arg max
KP∈KP

R+(KP, K̄Φ)

= argmax
KP∈KP

h(yr | ye)

= argmax
KP∈KP

h (yr − Θ(KP)ye) , (34)

whereΘ(KP) = (HrKPH
†
e + Φ̄)(HeKPH

†
e + I)−1 is the

linear minimum mean squared estimation coefficient ofyr

given ye. Instead of directly working with the optimality
conditions associated with (34) we reformulate the problem
as below.

Claim 2: Suppose that̄KΦ ≻ 0 and define

H(KP) , h(yr − Θ̄ye) = log det(Γ(KP)), (35)

where

Γ(KP) , I + Θ̄Θ̄
†
− Θ̄Φ̄

†
− Φ̄Θ̄

†
+

(Hr − Θ̄He)KP(Hr − Θ̄He)
†. (36)

Then,

K̄P ∈ arg max
KP∈KP

H(KP). (37)

Remark 1:The objective function in (37) is similar to the
one in (34), but withΘ̄ fixed, i.e., the variables̄Θ andKP

are decoupled in (37). This key step enables us to work with
the simpler objective function in (37) and complete the proof.

Proof: To establish (37) note that sinceH(·) is a
concave function inKP ∈ KP and differentiable overKP,
the optimality conditions associated with the Lagrangian

LΘ(KP, λ,Ψ) = H(KP) + tr(ΨKP) − λ(tr(KP) − P ),
(38)

are both necessary and sufficient. ThusKP is an optimal
solution to (37) if and only if there exists aλ ≥ 0 and
Ψ � 0 such that

(Hr − Θ̄He)
†[Γ(KP)]−1(Hr − Θ̄He) + Ψ = λI,

tr(ΨKP) = 0, λ(tr(KP) − P ) = 0,
(39)

whereΓ(·) is defined in (36). These parameters forK̄P are
obtained from the optimality conditions associated with (32).



SinceR+(KP, K̄Φ) is differentiable at eachKP ∈ KP

wheneverK̄Φ ≻ 0, K̄P satisfies the associated KKT condi-
tions — there exists aλ0 ≥ 0 andΨ0 � 0 such that

∇KP
R(KP, K̄Φ)

∣

∣

∣

∣

∣

K̄P

+Ψ0 = λ0I

λ0(tr(K̄P) − P ) = 0, tr(Ψ0K̄P) = 0.

(40)

We show in Appendix II that

∇KP
R(KP, K̄Φ)

∣

∣

∣

K̄P

=(Hr−Θ̄He)
†[Λ(K̄P)]−1(Hr−Θ̄He),

(41)
where Λ(·), defined in (13), satisfies satisfies4

Λ(K̄P) =
Γ(K̄P). Hence the first condition in (40) reduces to

(Hr − Θ̄He)
†[Γ(K̄P)]−1(Hr − Θ̄He) + Ψ0 = λ0I. (42)

Comparing (40) and (42) with (39), we note that
(K̄P, λ0,Ψ0) satisfy the conditions in (39), thus establish-
ing (37).

Claim 3: Suppose that̄KΦ ≻ 0 and K̂P be any optimal
solution to

K̂P ∈ arg max
KP

H(KP). (43)

Suppose thatSP is a matrix with a full column rank such
that

K̂P = SPS
†
P (44)

then (Hr − Θ̄He)SP has a full column rank.
Note that the claim in Lemma 3 follows from Claim 2 and
Claim 3. It remains to prove Claim 3.

Proof: The proof is based on the so called water-filling
principle [25]. From (43), we have

K̂P =

argmax
KP∈KP

log det(I+J
− 1

2 (Hr−Θ̄He)KP(Hr−Θ̄He)
†
J
− 1

2 ),

(45)

whereJ , I + Θ̄Θ̄
†
− Θ̄Φ̄

†
− Φ̄Θ̄

†
≻ 0, i.e., K̂P is an

optimal input covariance for a MIMO channel with white
noise and matrixHeff , J

− 1

2 (Hr − Θ̄He). We can now
consider the usual water-filling properties associated with
K̂P to establish that(Hr−Θ̄He)SP has a full column rank.

Let rank(Heff) = ν and let us denote the non-zero
singular values (in non-increasing order) byσ1, σ2, . . . , σν .
Let Σ0 = diag(σ1, . . . , σν), and

Σ =

[

ν nt−ν

ν Σ0 0

nr−ν 0 0

]

, (46)

be such that

Heff = AΣB
† = A1Σ0B

†
1, (47)

4To verify this relation, note thatΓ(KP) is the variance ofyr − Θ̄ye.
When KP = K̄P, note thatΘ̄ye is the MMSE estimate ofyr given ye

andΓ(KP) is the associated MMSE estimation error.

is the singular value decomposition ofHeff whereA andB

are unitary matrices inCnr×nr andCnt×nt and

A =
[

ν nr−ν

A1 A2

]

, B =
[

ν nt−ν

B1 B2

]

. (48)

From (45) we have that

K̂P ∈ arg max
KP

log det(I + HeffKPH
†
eff)

= argmax
KP

log det(I + AΣB
†
KPBΣ

†
A

†)

= argmax
KP

log det(I + B
†
KPBΣ

†
Σ) (49)

SinceB is unitary, we have thatB†
KPB ∈ KP and hence

it follows from (49) that

F , B
†
K̂PB ∈ argmax

KP

log det(I + KPΣ
†
Σ). (50)

We now show that any suchF is diagonal andFii = 0 for
i > ν. From the Hadamard inequality [25, Section 16.8], we
have that

log det(I+FΣ
†
Σ)≤

nt
∑

i=1

log(1+Fiiσ
2
i )=

ν
∑

i=1

log(1+Fiiσ
2
i ),

(51)
with equality if and only if the matrixFΣ

†
Σ is a diagonal

matrix. We now show that any optimalF in (50) has the
form

F =

[

ν nt−ν

ν F0 0

nt−ν 0 0

]

(52)

whereF0 is a diagonal matrix. Clearly any optimalF attains
the upper bound in (51), hence it follows that (1)

∑ν

i=1 Fii =
P , and Fii = 0 for i > ν and (2) FΣ

†
Σ is a diagonal

matrix. The first condition, together with the fact thatF � 0

imples that the lower diagonal matrix in (52) is zero, while
the second condition implies that the off-diagonal matrices
in (52) are zero and thatF0 is diagonal.

From (50), we have that

K̂P = BFB
† = B1F0B

†
1 (53)

and hence for anySP that has a full column rank and
satisfies (44), we have

col(SP) ⊆ col(B1) = Null⊥(Heff) = Null⊥(Hr − Θ̄He),

which implies that(Hr − Θ̄He)SP has a full column rank.

2) K̄Φ is singular: The case when̄KΦ is singular can
be handled by considering an appropriately reduced channel
matrix. In this caseΦ̄ hasd ≥ 1 singular values equal to
unity and hence we can express its SVD as

Φ̄ =
[

U1 U2

]

[

I 0

0 ∆

] [

V
†
1

V
†
2

]

(54)

whereσmax(∆) < 1.
First we obtain some conditions that are satisfied when the

saddle point noise covariance is singular.



Claim 4: Suppose that(K̄P, K̄Φ) is a saddle point solu-
tion to the minimax problem in (2) and the singular value
decomposition of̄Φ is given as in (54). Then we have that

U
†
1zr

a.s.
= V

†
1ze (55a)

U
†
1Hr, = V

†
1He, (55b)

R+(KP, K̄Φ) = I(x;U†
2yr | ye), ∀ KP ∈ KP. (55c)

Proof: To establish (55a), we simply note that

E[U†
1zrz

†
eV1] = U

†
1Φ̄V1 = I,

i.e., the Gaussian random variablesU†
1zr and V

†
1ze are

perfectly correlated. Next note that

R+(KP, K̄Φ) = I(x; yr|ye)

= I(x;U†
1yr,U

†
2yr|ye)

= I(x;U†
2yr,U

†
1yr − V

†
1ye|ye)

= I(x;U†
2yr,U

†
1Hrx − V

†
1Hex|ye).

Since K̄Φ is a saddle point solution, we must have
maxKP

R+(KP, K̄Φ) < ∞ and henceU†
1Hr = V

†
1He,

and R+(K̄P, K̄Φ) = I(x;U†
2yr | ye), establishing (55b)

and (55c).
Thus withĤr = U

†
2Hr, and ẑr = U

†
2zr and

ŷr = U
†
2yr = Ĥrx + ẑr, (56)

we have from (55c), that

K̄P ∈ argmax
KP

I(x; ŷr | ye). (57)

SinceΦ̂ = E[ẑrz
†
e] ≺ I, it follows from (57) and Claim 2

that
K̄P ∈ argmax

KP

Ĥ(KP) (58)

where

Ĥ(KP) = h(ŷr − Θ̂ye),

Θ̂ = U
†
2(HrK̄PH

†
e + Φ̄)(I + HeK̄PH

†
e)

−1.

Along the lines of Claim 3 we then have that

(Ĥr − Θ̂He)S = U
†
2(Hr − Θ̄He)S

has a full column rank, which in turn establishes that(Hr −
Θ̄He)S has a full column rank.

D. Saddle Value

We use the results from Lemma 2 and Lemma 3 to
establish (7). To invoke Lemma 3, we will first assume that
the saddle point solution(K̄P, K̄Φ) is such thatHr−Θ̄He 6=
0 and treat the caseHr − Θ̄He = 0 subsequently. Note that
from Lemma 2 we have that

(Hr − Θ̄He)SS
†(Φ̄

†
Hr − He)

† = 0, (59)

and sinceM = (Hr − Θ̄He)S has a full column rank, (59)
reduces to

Φ̄
†
HrS = HeS. (60)

The difference between the upper and lower bounds is
given by

∆R = R+(K̄P, K̄Φ) − R−(K̄P)

= I(x; yr | ye) − [I(x; yr) − I(x; ye)]

= I(x; ye | yr). (61)

If K̄Φ ≻ 0, then I(x; ye | yr) = h(ye | yr) − h(ze | zr)
and

h(ye | yr)

= log det(I + HeK̄PH
†
e−

(HeK̄PH
†
r + Φ̄

†
)(HrK̄PH

†
r + I)−1(HrK̄PH

†
e + Φ̄))

= log det(I + HeK̄PH
†
e − Φ̄

†
(HrK̄PH

†
r + I)Φ̄)

= log det(I− Φ̄
†
Φ̄) = h(ze | zr), (62)

where we have used the relation (60) in simplifying (62).
This shows that the difference∆R in (61) is zero, thus
establishing (7) whenever̄KΦ is non-singular.

To establish the result when̄KΦ is singular, note that from
(55a) and (55b) in Claim 4,

∆R = I(x; ye | yr),

= I(x;V†
2ye | yr), (63)

which is zero as shown below.

h(V†
2ye | yr)

= log det(I + V
†
2HeK̄PH

†
eV2 − (V†

2HeK̄PH
†
r + ∆

†
U

†
2)

(I + HrK̄PH
†
r)

−1(HrK̄PH
†
eV2 + U2∆)) (64)

= log det(I + ∆
†
U

†
2HrK̄PH

†
rU2∆

− ∆
†
U

†
2(I + HrK̄PH

†
r)U2∆)

= log det(I − ∆
†
∆)

= h(V†
2ze | U

†
2zr) = h(V†

2ze | zr), (65)

where we have used from (60) that

V
†
2Φ̄

†
HrS = V

†
2HeS ⇒ ∆

†
U

†
2HrS = V

†
2HeS,

in simplifying (64) and the equality in (65) follows from
the fact thatU†

1zr is independent of(U†
2zr,V

†
2ze). This

establishes (7) when̄KΦ is singular.
It remains to consider the case when the saddle point

solution (K̄P, K̄Φ) is such that

Θ̄He = Hr. (66)

In this case, we show that the saddle value and hence the
capacity is zero. From (18),̄Θ = (Φ̄ + HrK̄PH

†
e)(I +

HeK̄PH
†
e)

−1, hence we have

Θ̄ + Θ̄HeK̄PH
†
e = Φ̄ + HrK̄PH

†
e. (67)

Substituting (66) in (67), we have that̄Φ = Θ̄, and using
this relation it can be verified thatR+(K̄P, K̄Φ) = 0. This
completes the proof of Theorem 1.



V. ZERO-CAPACITY CONDITION AND SCALING LAWS

The conditions onHr and He for which the secrecy
capacity is zero have a simple form.

Lemma 4:The secrecy capacity of the MIMOME channel
is zero if and only if

σmax(Hr,He) , sup
v∈Cnt

||Hrv||

||Hev||
≤ 1. (68)

We omit the proof of this condition due to space constraints.
The quantityσmax(Hr,He) is the largest generalized singu-
lar value of the channel matrices [26]. Analysis of the zero-
capacity condition in the limit of large number of antennas
provides several useful insights we develop below.

For our analysis, we use the following convergence prop-
erty of the largest generalized singular value for Gaussian
matrices.

Fact 1 ( [27], [28]): Suppose thatHr andHe have i.i.d.
CN(0, 1) entries. Let nr, ne, nt → ∞, while keeping
nr/ne = γ andnt/ne = β fixed. If β < 1, then the largest
generalized singular value of(Hr,He) converges almost
surely to

σmax(Hr,He)
a.s.
→ γ









1 +

√

1 − (1 − β)
(

1 − β
γ

)

1 − β









2

.

(69)

By combining Lemma 4 and Fact 1, one can deduce the
following condition for the zero-capacity condition.

Corollary 1: Suppose thatHr andHe have i.i.d.CN(0, 1)
entries. Suppose thatnr, ne, nt → ∞, while keeping
nr/ne = γ and nt/ne = β fixed. The secrecy capacity5

C(Hr,He) converges almost surely to zero if and only if
0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1, and

γ ≤ (1 −
√

2β)2. (70)

Figs. 2 and 3 provide further insight into the asymptotic
analysis for the capacity achieving scheme. In Fig. 2, we
show the values of(β, γ) where the secrecy rate is zero.
If the eavesdropper increases its antennas at a sufficiently
high rate so that the point(β, γ) lies below the solid
curve, then secrecy capacity is zero. The MISOME case
corresponds to the vertical intercept of this plot. The secrecy
capacity is zero, ifβ ≤ 1/2, i.e., the eavesdropper has
at least twice the number of antennas as the sender. The
single transmit antenna (SIMOME) case corresponds to the
horizontal intercept. In this case the secrecy capacity is zero
if γ ≤ 1, i.e., the eavesdropper has more antennas than the
receiver.

In Fig. 3, we consider the scenario where a total of
T ≫ 1 antennas are divided between the sender and the
receiver. The horizontal axis plots the rationr/nt, while the

5We assume that the channels are sampled once, then stay fixed for the
entire period of transmission, and are revealed to all the terminals.

vertical axis plots the minimum number of antennas at the
eavesdropper (normalized byT ) for the secrecy capacity to
be zero. We note that the optimal allocation of antennas, that
maximizes the number of eavesdropper antennas happens
at nr/nt = 1/2. This can be explicitly obtained from the
following minimization

minimize β + γ

subject to, γ ≥ (1 −
√

2β)2, β ≥ 0, γ ≥ 0.
(71)

The optimal solution can be easily verified to be
(β∗, γ∗) = (2/9, 1/9). In this case, the eavesdropper needs
≈ 3T antennas for the secrecy capacity to be zero. We
remark that the objective function in (71) is not sensitive to
variations in the optimal solution. If fact even if we allocate
equal number of antennas to the sender and the receiver, the
eavesdropper needs(3+2

√
2)

2 T ≈ 2.9142 × T antennas for
the secrecy capacity to be zero.
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APPENDIX I
LEAST FAVORABLE NOISE PROPERTY

Substituting forK̄Φ andHt in (24) and carrying out the
block matrix multiplication gives

HrK̄PH
†
r = Υ1(I + HrK̄PH

†
r) + Φ̄Υ2(Φ̄

†
+ HeK̄PH

†
r)

HrK̄PH
†
e = Υ1(Φ̄ + HrK̄PH

†
e) + Φ̄Υ2(I + HeK̄PH

†
e)

HeK̄PH
†
r = Φ̄

†
Υ1(I + HrK̄PH

†
r) + Υ2(Φ̄

†
+ HeK̄PH

†
r)

HeK̄PH
†
e = Φ̄

†
Υ1(Φ̄ + HrK̄PH

†
e) + Υ2(I + HeK̄PH

†
e).

(72)
Eliminating Υ1 from the first and third equation above,

we have

(Φ̄
†
Hr − He)K̄PH

†
r = (Φ̄

†
Φ̄− I)Υ2(Φ̄

†
+ HeK̄PH

†
r).
(73)

Similarly eliminatingΥ1 from the second and fourth equa-
tions in (72) we have

(Φ̄
†
Hr−He)K̄PH

†
e = (Φ̄

†
Φ̄−I)Υ2(I+HeK̄PH

†
e). (74)

Finally, eliminatingΥ2 from (73) and (74) we obtain (17).

APPENDIX II
KKT CONDITION

First note that,

∇KP
R+(KP, K̄Φ)

= H
†
t(HtKPH

†
t + K̄Φ)−1

Ht − H
†
e(I + HeKPH

†
e)

−1
He.
(75)

Substituting forHt andK̄Φ from (23) and (15),

(K̄Φ + HtK̄PH
†
t)

−1

=

[

I + HrK̄PH
†
r Φ̄ + HrK̄PH

†
e

Φ̄
†
+ HrK̄PH

†
e I + HeK̄PH

†
e

]−1

=

[

Λ
−1 −Λ

−1
Θ̄

−Θ̄
†
Λ

−1 (I+HeK̄PHe)
−1+Θ̄

†
Λ

−1
Θ̄

]−1

,
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Fig. 2. Zero-capacity condition in the(β, γ) plane. The capacity is zero for any
point below the curve, i.e., the eavesdropper has sufficiently many antennas to
get non-vanishing fraction of the message, even when the sender and receiver
fully exploit the knowledge ofHe.
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Fig. 3. The minimum number of eavesdropping antennas per sender plus
receiver antenna for the secrecy capacity to be zero, plotted as a function
of nr/nt.

where we have used the matrix inversion lemma (e.g., [29]),
and Λ , Λ(K̄P) is defined in (13), and̄Θ is as defined
in (18). Substituting into (75) and simplifying gives

∇KP
R+(KP, K̄Φ)

∣

∣

∣

∣

K̄P

=H
†
t(K̄Φ + HtK̄PH

†
t)

−1
Ht − H

†
e(I + HeK̄PH

†
e)

−1
He

= (Hr − Θ̄He)
†[Λ(K̄P)]−1(Hr − Θ̄He)

as required.
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