
1814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

Correspondence

Carbon Copying Onto Dirty Paper

Ashish Khisti, Student Member, IEEE, Uri Erez, Member, IEEE,
Amos Lapidoth, Fellow, IEEE, and Gregory W. Wornell, Fellow, IEEE

Abstract—A generalization of the problem of writing on dirty paper is
considered in which one transmitter sends a common message to multiple
receivers. Each receiver experiences on its link an additive interference (in
addition to the additive noise), which is known noncausally to the trans-
mitter but not to any of the receivers. Applications range from wireless
multiple-antenna multicasting to robust dirty paper coding.

We develop results for memoryless channels in Gaussian and binary spe-
cial cases. In most cases, we observe that the availability of side information
at the transmitter increases capacity relative to systems without such side
information, and that the lack of side information at the receivers decreases
capacity relative to systems with such side information. For the noiseless
binary case, we establish the capacity when there are two receivers. When
there are many receivers, we show that the transmitter side information
provides a vanishingly small benefit. When the interference is large and
independent across the users, we show that time sharing is optimal. For
the Gaussian case, we present a coding scheme and establish its optimality
in the high signal-to-interference-plus-noise limit when there are two re-
ceivers. When the interference power is large and independent across all
the receivers, we show that time-sharing is again optimal. Connections to
the problem of robust dirty paper coding are also discussed.

Index Terms—Common information, dirty paper coding, Gel’fand–
Pinsker channels, multiple-input/multiple-output (MIMO) broadcast
channel, writing on dirty paper.

I. INTRODUCTION

The study of communication over channels controlled by a random
state parameter known only to the transmitter was initiated by Shannon
[21]. Shannon considered the case where the state sequence is known
causally at the encoder. Subsequently, Gel’fand and Pinsker [10] ana-
lyzed the case where the state sequence is available noncausally. The
noncausal model has found application in diverse areas, ranging from
coding for memory with defects [12], [18], to digital watermarking [3],
[4], [20], and to coding for the multiple-input/multiple-output (MIMO)
broadcast channel [1], [25].

Costa [6] considered a version of the Gel’fand–Pinsker model in
which there is an additive white Gaussian interference (“dirt”), which
constitutes the state, in addition to independent additive white Gaussian
noise. The key result in this “dirty paper coding” scenario is that there is
no loss in capacity if the interference is known only to the transmitter.
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By contrast, there has been very limited work to date on multiuser
channels with state parameters known to the transmitter(s). In an early
work in this area, Gel’fand and Pinsker [11] show that the Gaussian
broadcast channel with independent messages incurs no loss in capacity
if the interference sequences are known noncausally to the transmitter.
Some other multiuser settings are also discussed. The degraded broad-
cast channel with independent messages and state sequence known to
the transmitter either causally or noncausally is examined in [23]. Other
works on multiuser channels with state parameters include [17], [2],
[16], [13], and [22].

This correspondence examines the common-message broadcast
channel, which we refer to as the multicast channel. Specifically, we
consider a scenario in which one transmitter broadcasts a common
message to multiple receivers. In addition to additive noise, associated
with the link to each receiver is a corresponding additive interference.
The collection of such interferences is thus the (random) state of the
multiuser channel. In our model, the transmitter has perfect noncausal
knowledge of all these interference sequences, but none of the receivers
have knowledge of any of them. This model and its generalizations
arise in a variety of multiple-antenna wireless multicasting problems
as well as in applications of robust dirty paper coding where only
imperfect knowledge of the state is available to the transmitter.

The capacity of some binary versions of such multicast channels is
reported in [14], [15]. For more general channels, [24] reports achiev-
able rates for broadcasting common and independent messages over
a discrete memoryless channel with noncausal state knowledge at the
transmitter. The case of two-user Gaussian channels with jointly and
individually independent and identically distributed (i.i.d.) Gaussian
interferences on each link is also considered in [24], for which it is
conjectured that in the limit of large interference, time sharing between
the two receivers is optimum even when both are only interested in a
common message. Among other results, in this correspondence we es-
tablish that this conjecture is true. We upper-bound the capacity of the
Gaussian channel and show that it approaches the time-sharing rate in
this limit. In addition, we also present a coding scheme that is asymp-
totically optimal in the limit of high signal-to-interference-plus-noise
(SINR) ratio.1

An outline of the correspondence is as follows. Section II presents
the general multicast channel model of interest. The binary special
cases of interest are analyzed in Section III, and the Gaussian special
cases of interest are analyzed in Section IV. Finally, Section V con-
tains some conclusions and directions for future work. The proofs of
the converses are deferred to the Appendices.

II. MULTICAST CHANNEL MODEL

The K-user multicast channel of interest is defined as follows.

Definition 1: A K-user discrete memoryless multicast channel with
random parameters consists of an input alphabet X , output alphabets
Y1;Y2; . . . ;YK for receivers 1; 2; . . . ; K , respectively, and a state al-
phabet S . For a given state sequence sn = (s1; s2; . . . ; sn) such that
si 2 S and input xn = (x1; x2; . . . ; xn) such that xi 2 X , the channel
outputs are distributed according to

p(yn1 ; y
n

2 ; . . . ; y
n

K jx
n
; s
n) =

n

i=1

p(y1i; y2i; . . . yKijxi; si) (1)

1Throughout this work, symbol refers to a real symbol.
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where ynk = (yk1; yk2; . . . ; ykn), for all yki 2 Yk , k = 1; 2; . . . ; K .
Moreover, p(sn) =

i
p(si). The particular realization sn is known

noncausally to the transmitter before using the channel, but not to any
of the K receivers.

It is worth emphasizing that the above definition includes the
case where the channel of User k is controlled by its own state
snk . In such cases, the joint state is, with slight abuse of notation,
sn = (sn1 ; s

n
2 ; . . . ; s

n
K), so that p(si) = p(s1i; s2i; . . . ; sKi).

The capacity of the channel of Definition 1 is defined as follows.

Definition 2: A (2nR; n) code consists of a message set Wn =
f1; 2; . . . 2nRg, an encoder fn : Wn � Sn ! Xn, and K decoders
gk;n : Yn

k !Wn for k = 1; . . . ; K . The rate R is achievable if there
exists a sequence of codes such that for W uniformly distributed over
Wn we have

lim
n!1

Pn
e = lim

n!1
Pr

K

k=1

fgk;n(Y
n
k ) 6= Wg = 0: (2)

Note that the error probability in (2) is averaged over all state sequences
and messages. The capacity C is the supremum of achievable rates.

In the remainder of the correspondence, we focus on special cases
of the memoryless channel in Definition 1. In particular, we focus on
binary and Gaussian cases in which the state is an additive interference.
While we believe that our techniques also apply to the general channel
model in Definition 1, we will not consider it further.

III. NOISELESS BINARY CASE

We first consider the noiseless binary special case of Definition 1.
Specifically, the channel outputs Y n

1 ; Y
n
2 ; . . . ; Y

n
K depend on the input

Xn and the states Sn1 ; S
n
2 ; . . . ; S

n
K according to

Y n
k = Xn � Snk (3)

where Xi; Ski 2 f0; 1g, and � denotes symbol-by-symbol
modulo-two addition (i.e., EXCLUSIVE-OR). In (3), the memoryless case
of interest corresponds to the requirement that the (S1i; S2i; . . . ; SKi)
for i = 1; 2; . . . ; n form an i.i.d. sequence of K-tuples. In particular,
for each i, the variables fS1i; S2i; . . . ; SKig may in general be sta-
tistically dependent, and do not need to be identically distributed. As
a result, we express our results in terms of the properties of a generic
K-tuple in this sequence, which we denote by (S1; S2; . . . ; SK).

Note that with only a single receiver (K = 1), the capacity is trivially
1 (bit per channel use),2 which is achieved by interference precancella-
tion, i.e., by choosing Xn = Sn � Bn, so that Y n = Bn, where Bn

is the bit representation for the message W . As we will now develop,
when there are multiple receivers, capacity is generally less than this
ideal single-user rate.

A. The Case of K = 2 Receivers

The case of two receivers, which is depicted in Fig. 1, is the simplest
nontrivial scenario since perfect interference precancellation is not pos-
sible simultaneously for both users.

One lower bound on the two-user capacity corresponds to a time-
sharing approach that precancels the interference of one of the receivers
at a time, yielding a rate of RTS = 1=2. Another lower bound corre-
sponds to ignoring the interference at the transmitter, i.e., treating each
of the channels as a binary-symmetric channel. This strategy yields a

2From now on, except in the case of ambiguity, the units of “bits per channel
use” will be omitted.

Fig. 1. Two-user memoryless, noiseless, binary multicast channel with additive
interference. The encoder maps messageW into codewordX . The state takes
the form of interference sequences S and S . Each channel output Y =
X � S , where � denotes symbol-by-symbol modulo-two addition, is de-
coded to produce message estimate Ŵ .

rate of RIS = 1�maxfH(S1);H(S2)g. It turns out that the former
bound is only tight when S1 and S2 are independent and B(1=2), and
the latter bound is only tight when both S1 and S2 are B(0).3

A coding theorem for the channel is as follows.

Theorem 1: The capacity of two-user noiseless, memoryless, binary
channel with additive interference is given by

C = 1�
1

2
H(S1 � S2): (4)

Proof: A converse is provided in Appendix I. The achievability
argument is detailed as follows.

1) Select 2nR codewords randomly according to an i.i.d.B(1=2) dis-
tribution in a codebook C of rate R strictly less than the capacity
(4). Denote these codewords as Bn(1);Bn(2); . . . ; Bn(2nR), so
a message w is represented by codeword Bn(w).

2) Select a sequenceAn by flipping a fair coin for each symbol index
(the realization of which is also known at the decoders [26]). Se-
lect the set A1 of symbol indices where Ai = 1, and precancel
the interference at those indices for user 1, and precancel the in-
terference at the remaining indices A2 (with Ai = 0) for user 2.
Specifically, the transmitted sequence is of the form

Xi(w) =
Bi(w)� S1i i 2 A1

Bi(w)� S2i i 2 A2.
(5)

With this encoding, receiver 1 then observes a version of Bn(w)
where jA1j symbols are correct, and the remaining jA2j symbols are
corrupted by interferenceS1i�S2i, i 2 A2, corresponding to a binary-
symmetric channel with crossover probability q0 = PrfS1�S2 = 1g.
Receiver 2 experiences the opposite effect. Thus, for large n we have,
since jA1j=n ! 1=2

1

n
I(Bn;Y n

k jA
n)!

1

2
+

1

2
(1�H(S1 � S2)); k = 1; 2 (6)

which isC in (4). As the mutual information expression in (6) indicates,
the decoding of Y n

k to the message Ŵk is done by using the knowledge
ofA1 andA2 (i.e.,An) at the decoders. In particular, receiver 1 selects
a codeword which agrees with the received symbols in the set A1 and
which is typical with noise S1 � S2 with the symbols in the set A2.
For decoder 2, the order of the sets is reversed. As long as R � C , Ŵk

equals W with high probability.

Fig. 2 shows the performance gains of optimal coding relative to time
sharing and disregarding the side information. In particular, the achiev-
able rate in the case of independent interferences is plotted as a function

3We use B(q) to denote a Bernoulli random variable with parameter q i.e.,
Pr(S = 1) = q, Pr(S = 0) = 1 � q.
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Fig. 2. Achievable rates for the two-user noiseless binary multicast channel with i.i.d. interferences, as a function of the strength of the interference. Capacity is
indicated by the solid curve, time-sharing performance is indicated by the horizontal dashed line, and the performance of a system that ignores the side information
is indicated by the downward sloping dashed curve.

of the strength of the interference as measured by q = PrfS1 = 1g =
PrfS2 = 1g.

Three immediate conclusions can be drawn from Theorem 1.
First, transmitter-only side information incurs a penalty relative to
system-wide side information unless S1 and S2 are completely depen-
dent random variables, i.e., unless S2 = S1 or S2 = S1. Second, time
sharing is strictly suboptimal except when S1 and S2 are independent
B(1=2) random variables. We emphasize that, by contrast, when there
are independent messages for each of the receivers in Fig. 1, time
sharing between the receivers is optimal and there is no loss in the
capacity region with side information only at the transmitter. Finally,
ignoring the side information at the transmitter is strictly suboptimal
except when H(S1) = H(S2) = 0.

We make a few additional observations.
Some Further Remarks:

1) The achievability argument can also be obtained via a more di-
rect, but perhaps less intuitive route as follows. First note that a
straightforward extension of the random binning argument for the
single user case [10] shows that the following rate is achievable
for the K-user multicast channel with random parameters

RK = max
p(U jS);p(XjU;S)

fmin
k
I(U ;Yk)� I(U ;S)g: (7)

Here U is an auxiliary random variable (over some alphabet U )
that satisfies the Markov constraint U $ (X;S) $ Yk for k =
1; 2; . . . ; K .
For the two-user binary channel, the following choice of
U yields the achievability of (4). Let the alphabet of U be
U = f	1;	2;	3;	4g.

U = A f	1 (X � S1) + 	2 (X � S1)g

+ �A f	3 (X � S2) + 	4 (X � S2)g (8)

where X is B(1=2) random variable, independent of S1 and S2,
and A is also B(1=2) that is independent of X , S1, and S2, and
where�� denotes the complement of a (binary-valued) variable.

2) For the code construction outlined above the transmitter does not
require noncausal knowledge of the interference. We emphasize,
however, this result is specific to the noiseless binary channel
model.

3) It is straightforward to verify that random linear codes are suffi-
cient to achieve the capacity of Theorem 1. It suffices to use an
argument analogous to that used by Gallager for the binary sym-
metric channel [9, Sec. 6.2].

4) Theorem 1 can be readily generalized to the case of state se-
quences that are not in general i.i.d. In this case, the term H(S1�
S2) in (4) is simply replaced with the entropy rate of Sn1 � Sn2 .

5) Our bounding technique can also be extended in the presence of
noise. For the channel model

Y1 =X � S1 � Z1

Y2 =X � S2 � Z2

where Z1 and Z2 are mutually independent and identically dis-
tributed Bernoulli random variables and independent of all other
variables, we can show that a rate

R = 1�
1

2
H(S1 � S2 � Z1)�

1

2
H(Z1)

is achievable and an upper bound is given by

R+ = 1�
1

2
H(S1 � S2)�

1

2
H(Z1):

Note that time sharing is again optimal in the special case when
S1 and S2 are independent B(1=2) random variables.

B. The Case of K > 2 Receivers

When there are more than two receivers further losses in capacity
ensue, as we now develop. Specifically, we have the following bounds
on capacity.
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Fig. 3. Upper bound and lower bounds on the capacity of the three-user noiseless binary multicast channel, as a function of the strength of the interference.
The solid curves depict the two bounds of (9). The horizontal dashed line indicates the performance of time sharing, while the other dashed curve indicates the
performance of a strategy in which the side information is ignored by the transmitter.

Theorem 2: The capacity of the K-user noiseless binary channel in
which the generic S1; S2; . . . ; SK are mutually independent and iden-
tically distributed4 is bounded according to

R� � C � R+ (9a)

where

R+=1�
1

K
H(S1 � S2; S1 � S3; . . . ; S1 � SK) (9b)

R� = max 1�H(S1);1� 1�
1

K
H(S1 � S2) : (9c)

Proof: The upper bound (9b) is established in Appendix II. The
lower bound (9c) is obtained via a direct generalization of the code con-
struction (5) in the case of two users. Specifically, it suffices to consider
a code construction that divides each codeword into K equally sized
blocks and precancels the interference for a different user in each of the
blocks. Each user then experiences one clean block and K � 1 noisy
blocks governed by a binary-symmetric channel with crossover proba-
bility q0 = PrfS1 � S2 = 1g as before.

In general, the lower and upper bounds in (9) do not coincide.5 How-
ever, the associated rate gap is often small in practice. Fig. 3 illustrates
the gap for the case K = 3.

The rate gap also decays to zero in the limit of largeK , which follows
readily from Theorem 2. In particular, C ! 1 � H(S) as K ! 1,
where S denotes a generic random variable with the distribution of the
Sk . To see this, it suffices to recognize that when S1; S2; . . . ; SK are
i.i.d.

1�
1

K
H(S) �

1

K
H(S1 � S2; S1 � S3; . . . ; S1 � SK)

�H(S): (10)

4The upper bound does not require this assumption. The assumption is merely
used to simplify the expression for the lower bound.

5A slightly improved lower bound appears in [14], but it, too, does not match
the upper bound.

As K !1, the lower and upper bounds in (10) converge, so that the
upper bound on capacity (9b) converges toR+ = 1�H(S). However,
this rate is achievable by simply treating the interference as noise at the
receivers, so it is the limiting capacity. It should be emphasized that this
implies that when the number of receivers is large, the side information
available to the transmitter is essentially useless.

We can also use (10) to bound the rate penalty associated with ig-
noring side information as a function of the number of receivers K . In
particular, the gap is at most H(S)=K .

Finally, we can use Theorem 2 to establish that in the limit of large
interference, time sharing is optimal for every K . Specifically, when
Sk � B(1=2), the capacity is C = 1=K and is achieved through time
sharing. To see this, it suffices to specialize the upper bound in (9b).
Specifically, S1 � Sk for k = 2; 3; . . . ; K are independent B(1=2)
random variables, so the joint entropy is K � 1.

IV. GAUSSIAN CASE

In this section, we consider a memoryless Gaussian extension of
Definition 1 and incorporate an average power constraint on the input.
Unless otherwise stated, we restrict to the two-user (K = 2) case. In
the scenario of interest, depicted in Fig. 4, the state is additive, and the
associated interferences Snk are zero-mean white Gaussian sequences
of powerQ. We first focus on the case of independent interferences and
consider the case of correlated interferences in Section IV-B. In addi-
tion, each receiver’s link also has a zero-mean additive white Gaussian
noise Znk of power N . Thus, the observation at receiver k takes the
form

Y n

k = Xn + Snk + Znk ; k = 1; 2: (11)

Our power constraint takes the form

1

n
E

n

i=1

X2

i (W;S
n

1 ; S
n

2 ) � P (12)

where the expectation is taken over the ensemble of messages and in-
terference sequences. Finally, note that without loss of generality, we



1818 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007

may setN = 1, and interpret P as the signal-to-noise ratio (SNR), and
Q as the interference-to-noise ratio (INR).

For this channel, we present the following bounds on the capacity.

Theorem 3: An upper bound on the Gaussian multicast channel ca-
pacity is

C � minfRI
+; R

II
+g (13)

where 6,7

RI
+=

1
4
log(1 + P ) + 1

4
log

P+Q+1+2
p
PQ

Q
; Q � 4

1
4
log 1+P

Q=4+1
+ 1

4
log

P+Q+1+2
p
PQ

Q=4+1
; Q < 4

(14)

RII
+=

1
2
log

1+P+Q+2
p
PQ

1+Q=2
; Q�2

1
2
log

1+P+Q+2
p
PQp

2Q
� 1

4
log Q

2P+2

+

; Q>2:

(15)

We have presented two different upper bounds denoted by RII
+ and

RI
+ since neither bound dominates the other, over all values of (P;Q).

The two bounds have been derived by slightly different methods. The
bound RI

+ is obtained by observing that the channel is nontrivial even
if we set one of the interferences (say S1) to 0. Furthermore, it is pos-
sible to show that an upper bound on this modified channel is also an
upper bound on the Gaussian multicast channel of interest. A complete
derivation of this upper bound is presented in Appendix IV. The ex-
pression forRII

+ is obtained by directly applying a chain of inequalities
on the Gaussian multicast channel and its derivation is presented in Ap-
pendix III.

We remark here that the upper bounds are explicit expressions of the
following maximization:

RI
+ = min

�2[�1;1]

1

4
log

1+P

1 + �
+
1

4
log

P+Q+ 1 + 2
p
PQ

Q=2 + 1� �

(16)

RII
+ = min

�2[�1;1]

1

2
log

P +Q+ 2
p
PQ+ 1

(1 + �)(Q+ 1� �)

� 1

4
log

Q

2P + (1 + �)

+

: (17)

Theorem 4: A lower bound on the Gaussian multicast channel ca-
pacity is

R�=

1
2
log 1 + P

Q=2+1
; Q=2 < 1

1
2
log P+Q=2+1

Q
+ 1

4
log Q

2
; 1� Q=2< P + 1

1
4
log(1 + P ); Q=2 � P + 1.

(18)
Proof: The lower bound8 (18) is an explicit expression of the fol-

lowing maximization:

R� = max
f(P ;P ):P �0;P �0;P +P �Pg

R(PA; PD) (19a)

6All logarithms are to the base 2 in this work. Also the notation [f ] refers
to max(f; 0) in (15) and throughout the correspondence.

7The trivial upper bound of log(1+P ) is sometimes tighter than these two
bounds, particular in the limit of very small P .

8Our lower bound for Q=2 < 1 was also independently reported by Costa
[5].

with

R(PA; PD)
1

2
log 1+

PA
PD +Q=2 + 1

+
1

4
log (1 + PD) :

(19b)
Accordingly, we show the achievability of (19b). The proposed

scheme combines superposition coding, dirty paper coding, and time
sharing, and exploits a representation of the interferences in the form

Sn1 =An +Dn

Sn2 =An �Dn (20)

where

An =(Sn1 + Sn2 )=2

Dn =(Sn1 � Sn2 )=2: (21)

We list the main steps for codebook generation, encoding, and de-
coding. The probability of error analysis will be omitted as it is based
on standard typicality arguments. See, e.g., [7].

Codebook Generation: The idea is to generate three codebooks.
There is one common codebook which both the users share and two
private codebooks which are intended for the corresponding user. More
specifically we follow the following steps,

1) Decompose the message W into two submessages WA and WD

and divide the power P into two powers PA and PD so that P =
PA + PD . Message WA will be decoded by both the receivers
while messageWD will be decoded by only one receiver at a time.
We will transmit it twice so that both the receivers can decode (see
encoding and decoding rules below for a further description).

2) Generate a codebook CA for WA where the codewords Un
A are

sampled from i.i.d. a Gaussian distribution UA = XA + �AA.
Here XA is Gaussian N (0; PA), independent of A, and �A =
PA=(P + Q=2 + 1). A total of 2nI(U ;Y ) codewords are thus
generated and randomly partitioned into 2nI(U ;A) bins. The rate
of this codebook, I(UA; Yi)� I(UA;A) can be shown to be9

RA =
1

2
log 1 +

PA
PD +Q=2 + 1

: (22)

3) Generate two codebooks C(1)D and C(2)D for WD for the two re-
ceivers as follows. For C(1)D , the codewords Un

D are sampled from
i.i.d. Gaussian distribution UD = XD + �D((1 � �A)A +
D), where XD is Gaussian N (0; PD), independent of A and D,
and �D = PD=(PD + 1). Generate 2nI(U ;Y ;U ) such code-
words and partition them into 2nI(U ;A;D) bins. Follow analo-
gous construction for codebook C(2)D . The rate of each codebook10

I(UD;Yi; UA)� I(UD;A;D) can be shown to be

RD =
1

2
log(1 + PD): (23)

Encoding: We transmit a superposition of two sequences corre-
sponding to WA and WD as follows.

1) To encode a message WA, find a codeword Un
A in the bin of WA,

such that Xn
A = Un

A � �AA
n satisfies a power constraint of PA.

By construction, such a codeword exists with high probability.
2) To encode WD , we decide whether to send it to user 1 or 2.

The users are served alternately. When we decide to send it to
user 1, we select a codeword Un

D in the bin of codebook C(1)D

corresponding to message WD such that

Xn
D = Un

D � �Df(1� �A)A
n +Dng

9Using a symmetry argument or otherwise, note that I(U ;Y ) =
I(U ;Y ), so we use the generic term I(U ;Y ) to denote either of these.

10Notice that the codebooks can be the same for two users. For notational
convenience while dealing with the two users we keep the codebooks separate.
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Fig. 4. Two-user Gaussian multicast channel model with additive interference.
The encoder maps message W into codeword X . The state takes the form of
interference sequences S and S . Each channel output Y = X + S +
Z is decoded to produce message estimate Ŵ . The interference and noise
sequences are i.i.d. and mutually independent. Furthermore,S ; S � N (0; Q)
and Z ;Z � N (0;1).

satisfies a power constraint of PD . When we decide to transmit
to user 2, we select a codeword UnD in the bin of codebook C(2)D

corresponding to message WD such that

Xn
D = UnD � �Df(1� �A)An �Dng

satisfies the power constraint of PD . Since there are 2nI(U ;A;D)

codewords in each bin, such a codeword exists with high proba-
bility.

3) Send the superposition Xn = Xn
A + Xn

D , which has power P ,
over the channel.
Decoding: The decoding exploits successive cancellation (strip-

ping) and proceeds as follows.
1) Decode UnA from Y n

1 or Y n
2 treatingXn

D as part of the noise. The
received signals are of the form

Y n
1 =Xn

A +An + (Dn + Zn1 +Xn
D)

=UnA + (1� �A)An + (Dn + Zn1 +Xn
D)

Y n
2 =Xn

A +An + (�Dn + Zn2 +Xn
D)

=UnA + (1� �A)An + (�Dn + Zn2 +Xn
D):

Since Dn + Zni + Xn
D is an i.i.d. Gaussian N (0; PD + Q=2 +

1) sequence, independent of An, our choice of rate RA in (22)
ensures that the resulting ŴA equalsWA with high probability at
both the receivers.

2) Subtract the decoded UnA from each of Y n
1 and Y n

2 , so that the
residual signals ~Y n

i = Y n
i � UnA are of the form

~Y n
1 =Xn

D + ((1� �A)An +Dn) + Zn1 (24)
~Y n
2 =Xn

D + ((1� �A)An �Dn) + Zn2 : (25)

The rate RD in (23) ensures that UnD can be decoded from
either ~Y n

1 or ~Y n
2 so that the resulting ŴD equals WD with high

probability at the corresponding receiver. Specifically, for the
fraction of time that the transmitter encodes WD for interference
(1 � �A)A

n + Dn, user 1 can recover WD , while for the
fraction of time that the transmitter encodes WD for interference
(1� �A)An �Dn, user 2 can recover WD .

From this coding strategy, we see that the average rate delivered to
each receiver is identical, i.e., RA + (1=2)RD. Maximizing this rate
over the choices of PA and PD subject to the constraint P = PA+PD
optimizes the lower bound, whence (19a).

From (18), we obtain several useful insights. First, note that in the
high-INR regime (Q=2 � P + 1), our lower bound reduces to time
sharing, while in the low-INR regime (Q=2 � 1) it reduces to dirty
paper coding with respect to An. In the moderate interference regime,
our bound shows that one can generally achieve a gain over these two
strategies by a superposition coding approach that combines them.

The behavior of the bounds as a function of INR is depicted in Fig. 5
for a fixed SNR of P = 33 dB. When the INR is very small (Q� 1),
Fig. 5 reflects the rather obvious fact that the side information can be
ignored by the transmitter without sacrificing rate. Similarly, when the
INR is large (Q� 1), Fig. 5 reflects that time sharing between the two
users achieves the capacity. More generally

lim
Q!1

C � lim
Q!1

RI
+ = lim

Q!1
RII

+ =
1

4
log(1 + P ) (26)

which can be achieved by time sharing between the two users and doing
Costa dirty paper coding for each user being served. We note that this
result settles the conjecture made in [24].

Perhaps more interestingly, our proposed achievable rate is optimal
in the limit of high SINR. The behavior of the bounds as a function
of SNR is depicted in Fig. 6 for a fixed INR of Q = 15 dB. We note
that the expression forRII

+ coincides withR� in this limit. Note that the
baseline schemes (namely, time sharing and ignoring side information)
do not achieve a rate particularly close to capacity, but the superposition
dirty paper coding strategy corresponding to our lower bound does.
More generally, we can show that

lim
P!1

(C �R�) � lim
P!1

(RII
+ �R�) = 0: (27)

To verify (27) for Q � 2, since P ! 1, the middle case of the
lower bound (18) applies which we can alternately express in the form

R� =
1

2
log

P +Q=2 + 1p
2Q

: (28)

Comparing (28) with the upper bound (15) we have

RII
+ �R� =

1

2
log

P +Q+ 1 + 2
p
PQp

2Q
� 1

2
log

P +Q=2 + 1p
2Q

(29)
which in the limit P ! 1 gives (27). The case Q � 2, can be simi-
larly verified. We summarize the optimality properties in the following
corollary.

Corollary 1: For the Gaussian multicast channel in Fig. 4, the pro-
posed achievable rate in Theorem 4 is optimal in the limit of high SINR
(P ! 1; Q is fixed). For Q > 2 it can be expressed as C(P ) =
1
2
log Pp

2Q
+ o(1), where o(1)! 0 as P !1. For Q � 2 it can

be expressed as C(P ) = 1
2
log P

1+Q=2
+ o(1). Finally, for the case

of fixed P andQ!1, time sharing between the two users is optimal
and the capacity can be expressed as C(P ) = 1

4
log(1 + P ) + o(1),

where o(1) ! 0 as Q ! 1.

Finally, we show in Appendix III-C that a universal constant that
bounds the difference between our upper and lower bounds is given by

sup
P;Q

RII
+ �R� =

1

2
log

3

2
+
p
2 = 0:7716: (30)

We conclude this section with a few additional observations.
Some Further Remarks:

1) Extension to K receivers: Our upper-bounding technique for RII
+

in (15) can be extended to the case of K receivers each with in-
dependent interference. We show in Appendix III-D that the fol-
lowing upper bound holds for the case of K receivers:

RK+ � 1

2
log(P +Q+ 1 + 2 PQ)� K � 1

2K
logQ

� 1

2K
logK � 1

2K
log

Q

K(P + 1)

+

: (31)

By taking the limit Q ! 1 in (31), one can verify that time
sharing is optimal for any number of users in the high-INR limit.
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Fig. 5. Upper and lower bounds on the capacity of the two-user Gaussian multicast channel, as a function of INRQ for an SNR P = 33 dB. The upper two
curves depict the two upper bounds from (14) and (15). The marked line is the achievable rate in (18). The horizontal dashed line indicates the performance
of time sharing, while the other dashed curve indicates the performance of a strategy in which the side information is treated by the transmitter as additional
noise on each link.

Fig. 6. Upper and lower bounds on the capacity of the two-user Gaussian multicast channel, as a function of SNR P for an INRQ = 15 dB. The upper two
curves depict the two upper bounds in (14) and (15). The achievable rate in (18) is also shown. The dashed curve indicates the performance of time-sharing,
while the dash-dotted curve indicates the performance of a strategy in which the side information is treated by the transmitter as additional noise on each link.

2) Feedback does not help much. As discussed in Appendices III-B
and IV-B, the expressions for RI

+ and RII
+ in (16) and (17)

continue to hold in the presence of perfect causal feedback,
provided we set � to equal the actual correlation between the
noise terms—and do not optimize over it.

3) The capacity-achieving strategy for the binary channel does not
extend immediately to the Gaussian channel. While one might
speculate that an adaptation of the achievability approach in The-
orem 1 for the Gaussian channel would improve on the lower
bound (19a) in Theorem 4, the obvious generalizations do not.

In particular, strategies which precancel the interference in part of
the codeword for each user achieved lower rates than our super-
position dirty paper coding.

A. Correlated Interferences and Robust Dirty Paper Coding

Consider the a memoryless Gaussian point-to-point channel model
with output

Y
n

= X
n

+ S
n

+ Z
n (32)
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where Xn is the channel input subject to power constraint P , Sn is
a white Gaussian interference sequence of power Q not known to de-
coder, and Zn is a white Gaussian noise sequence of unit power. When
the interference Sn is perfectly known to the encoder, Costa’s dirty
paper coding is capacity achieving. However, in many applications,
only imperfect knowledge ofSn is available to the encoder. One special
case is the case of causal knowledge considered by Shannon. Another
is the case of noisy noncausal knowledge. For these kinds of general-
izations, there is interest in understanding the capacity of such channels
and the structure of the associated capacity-achieving codes, which we
refer to as robust dirty paper codes.

It is often natural to analyze such problems via their equivalent
Gaussian multicast model. As an illustration, suppose that the inter-
ference in (32) is of the form Sn = �Sn0 where Sn0 N (0; QIII) is
known to the encoder but � is not. Then if � is from a finite alphabet
(or can be approximated as being so), i.e., � 2 f�1; �2; . . . ; �Kg, the
problem is equivalent to a Gaussian multicast problem with K users
where the interference for the kth user is �kSn0 .

From this example it is apparent that for at least some applications,
there is a need to accommodate correlated interferences in the Gaussian
multicast model. In what follows, we focus on that case where there are
two receivers i.e., � 2 f�1; �2g. Extensions to the case of more than
two receivers are possible, but will not be explored.

We first provide a general upper bound for the case of correlated,
jointly Gaussian interference sequences and then specialize it to the
case of scaled interferences. The general upper bound might be of in-
dependent interest and is derived in Appendix V.

Theorem 5: Consider a two-receiver channel model Y n
i = Xn +

Sni + Zn for i = 1; 2 when Zn is i.i.d. N (0; 1) noise, Sn1 and Sn2
are i.i.d. jointly Gaussian with marginal distributions N (0;Q1) and
N (0;Q2), respectively, and suppose that the distribution of S1 � S2
is N (0;Qd). An upper bound on the common message rate for this
channel under a power constraint P at the transmitter is given by

RC
+ =

2

i=1

1

4
log(P +Qi + 1 + 2 PQi)� T (Qd) (33)

where

T (Qd) =

1
4
log(Qd); Qd > 4

1
2
log 1 + Q

4
; Qd � 4:

(34)

We note that the upper bound is of most interest in the high-SINR
limit i.e., when we fix Q1, Q2. and take P ! 1.

Corollary 2: In the high-SINR limit (Q1; Q2 fixed, P ! 1), the
upper bound on the case of correlated interferences in Theorem 5 can
be written as

RC
+ =

1

2
log(P )� T (Qd) + o(1) (35)

where the term o(1) approaches 0 as P ! 1 and Q1; Q2 fixed and
T (Qd) is given in (34).

To establish an achievable rate, we will consider a modification to
our lower bound in Theorem 4 which considers the case of independent
interferences. To deal with the case of correlated interferences, we will
require that the encoder and decoders have access to a common source
of randomness which will be used as a dither sequence.

Consider a superposition dirty paper coding strategy analogous to
that in the proof of the lower bound in Theorem 4, whereby we decom-
pose the interferences according to (20). In this case, we have that (21)
specializes to

An =�A S
n
0

Dn =�D Sn0 (36)

where

�A =(�1 + �2)=2

�D =(�1 � �2)=2: (37)

When we turn to implement the encoding step in the proof of the
lower bound of Theorem 4, in which An is treated as interference and
Dn as additional noise, the results of [6] cannot be directly applied
since the interference and noise sequences are now correlated. Fortu-
nately, this correlation does not cost us in terms of achievable rate if
we assume that the encoder and decoder(s) have access to a source of
common randomness in the form of a dither sequence. In particular,
for the lattice coding strategy in [8], correlation between the interfer-
ence and noise sequences does not change the achievable rate relative to
the case when the noise and interference sequences are independent.11

With this scheme, we obtain the following lower bound.

Theorem 6: An achievable rate for our example multicast channel
with correlated interferences and common randomness at the encoder
and decoders is given by

C�(P ) � max
f(P ;P ):P �0;P �0;P +P �Pg

R�(PA; PD) (38a)

where

R�(PA; PD) =
1

2
log 1 +

PA
1 +Qd=4 + PD

+
1

4
log (1 + PD)

(38b)
where Qd (�1 � �2)

2Q is the variance of S1 � S2.

Optimizing over PA and PD , gives the following achievable rate:

R�
�(P ) =

1
2
log 1 + P

1+Q =4
; Qd < 4

1
2
log P+1+Q =4p

Q
; 4 � Qd � 4(P + 1)

1
4
log(1 + P ); Qd � 4P + 4:

(39)

We note that in the limit of high SINR, our expression for R�
� in

(39) is given by R�
� = 1

2
log(P ) � T (Qd) + o(1), where T (Qd) is

given as in (34). This coincides with the upper bound in (35) and thus
establishes the optimality of our scheme in the high-SINR limit.

Corollary 3: The proposed achievable rate in Theorem 6 is
optimal in the limit of high SINR (fixed Q1; Q2, P ! 1) i.e.,
limP!1C�(P ) � R�

�(P ) = 0.

V. CONCLUDING REMARKS

We introduced the multicast channel model and analyzed the spe-
cial cases of binary and Gaussian channels with additive interference.
Our main observation in this work is that unlike the single user case,
the lack of side information at the receiver strongly limits capacity. We
show that in both the binary and Gaussian cases if the interfering se-
quences are independent, time sharing is optimal in the limit of large

11The common dither sequence is necessary in [8] since the result is for an
arbitrary interference sequence. We believe that in our case, common random-
ness may not be necessary—but this fact remains to be shown.
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interference. Also certain achievable rates and their optimality prop-
erties have been discussed. The capacity has been established for the
two-user noiseless binary case and for the Gaussian case in the high
SINR limit.

It may be possible to extend the upper bounding techniques in this
correspondence to more general channel models and perhaps also
sharpen the results for the Gaussian and binary cases. We emphasize,
however, that the proposed bounds indicate an important engineering
insight that there is a significant loss in dealing with more than one
interference sequence at the transmitter, even when they are correlated.
An interesting direction of future work would be to investigate the
connections of this result with a recent result on MIMO broadcast
channel with imperfect channel state information at the transmitter
[19], where again it was shown that lack of perfect channel state
information strongly limits the broadcast channel capacity.

APPENDIX I
PROOF OF THE CONVERSE IN THEOREM 1

We have to show that for any sequence of (2nR; n) codes with
Pn
e ! 0, we must have R � C , where C is defined in (4).
Since each receiver is able to decode the message, we have from

Fano’s inequality

H(W jY N
k ) � n"n; for k = 1; 2 (40)

where "n is a sequence that approaches 0 as n ! 1. We can use
Fano’s inequality to bound the rate as

nR =H(W )

=H(W jY n
1 ) + I(W ;Y n

1 )

�n"n +H(Y n
1 )�H(Y n

1 jW ) (41)

�n"n +

n

j=1

H(Y1j)�H(Y n
1 jW ) (42)

�n"n + n�H(Y n
1 jW ) (43)

where (41) follows by using the Fano inequality (40), (42) follows from
the chain rule and the fact that conditioning reduces the entropy, and
(43) follows from the fact that Y1j is binary valued. We can similarly
bound the rate on the second user’s channel as

nR � n"n + n�H(Y n
2 jW ): (44)

Combining (43) and (44), we obtain

nR �n�maxfH(Y n
1 jW );H(Y n

2 jW )g+ n�n

�n�
1

2
fH(Y n

1 jW ) +H(Y n
2 jW )g+ n�n

�n�
1

2
H(Y n

1 ; Y
n
2 jW ) + n�n (45)

�n�
1

2
H(Y n

1 � Y
n
2 jW ) + n�n (46)

=n�
1

2
H(Sn1 � S

n
2 ) + n�n (47)

=n 1�
1

2
H(S1 � S2) + �n (48)

where (45) follows from the fact that conditioning reduces entropy,
(46) follows from the fact that Y n

1 � Y n
2 is a deterministic function

of (Y n
1 ; Y

n
2 ), (47) follows from the fact that Y1 � Y2 = S1 � S2, and

(48) follows from the fact that both S1 and S2 are i.i.d. so the joint
entropy of the sequence Sn1 � Sn2 is the sum of the individual terms.

APPENDIX II
PROOF OF UPPER BOUND (9b) IN THEOREM 2

The upper bound mirrors the converse for two-user case. In partic-
ular, following the same steps as in the two-user case to derive (45), we
have that any achievable rate satisfies

nR � n�
1

K
H(Y n

1 ; Y
n
2 ; . . . ; Y

n
K jW ) + n�n: (49)

Proceeding from (49) we obtain

nR � n�n � n�
1

K
H(Y n

1 ; Y
n
2 ; . . . ; Y

n
K jW )

=n�
1

K
H(Y n

1 ; Y
n
1 � Y

n
2 ; . . . ; Y

n
1 � Y

n
K jW ) (50)

=n�
1

K
H(Xn � S

n
1 ; S

n
1 � S

n
2 ; . . . ; S

n
1 � S

n
K jW )

=n�
1

K
H(Sn1 � S

n
2 ; . . . ; S

n
1 � S

n
K jW )

�
1

K
H(Xn � S

n
1 jS

n
1 � S

n
2 ; . . .S

n
1 � S

n
K ;W )

=n�
n

K
H(S1 � S2; . . . ; S1 � SK)

�
1

K
H(Xn � S

n
1 jS

n
1 � S

n
2 ; . . .S

n
1 � S

n
K ;W )

�n�
n

K
H(S1 � S2; . . . ; S1 � SK) (51)

where (50) follows from the fact that the mapping

(Y n
1 ; Y

n
2 ; . . .Y

n
K)! (Y n

1 ; Y
n
1 � Y

n
2 ; . . . ; Y

n
1 � Y

n
2 )

is invertible, and (51) follows from the fact that Sn1 ; S
n
2 ; . . .S

n
K are all

i.i.d. and independent of W .

APPENDIX III
PROOF OF UPPER BOUND (15) IN THEOREM 3

We now derive (15) for RII
+. We first note that the capacity

of the channel only depends on the marginal distributions
p(Y n

1 jX
n; Sn1 ; S

n
2 ) and p(Y n

2 jX
n; Sn1 ; S

n
2 ) and not on the joint

distribution p(Y n
1 ; Y

n
2 jX

n; Sn1 ; S
n
2 ). Allowing correlation between

the noise Z1 and Z2 does not change capacity. Specifically, we have
the following.

Lemma 1: Let Pn
e be the probability of decoding error in (2). If

Pn
e is bounded away from zero for a certain correlation between Z1

and Z2 then it is bounded away from zero for any other correlation
between Z1 and Z2.

Proof: The argument is essentially the same as given in [7, Ch. 14,
p. 454]. We repeat it here for completeness. Let P 1;n

e and P 2;n
e denote

the error probabilities in decoding at receiver 1 and 2, respectively. We
have

P
1;n
e = Pr (g1(Y

n
1 ) 6=W )

P
2;n
e = Pr (g2(Y

n
2 ) 6=W )

P
n
e = Pr

k=1;2

fgk(Y
n
k ) 6=Wg :

Next, note that

maxfP 1;n
e ; P

2;n
e g � P

n
e � P

1;n
e + P

2;n
e (52)

where the left inequality in (52) follows from the fact that by definition
Pn
e � P k;n

e for k = 1; 2, and the right inequality follows from the
union bound. In turn, note that bothP 1;n

e andP 2;n
e do not depend on the

correlation between Z1 and Z2. Accordingly, both the left- and right-
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hand terms in (52) do not depend on the correlation between Z1 and
Z2. In particular, if Pne is bounded away from 0 for some correlation
between Z1 and Z2, then necessarily one of P 1;n

e and P 2;n
e is bounded

away from zero. Thus, the probability of error is bounded away from
zero for all possible correlations.

In the rest of the appendix we will fix E[Z1Z2] = � and derive an
upper bound. Thereafter, we will optimize over �, to tighten the upper
bound. We will need the following additional properties of Z1 and Z2,
which are readily computed.

Lemma 2: Let Z1 and Z2 be standard normal, jointly Gaussian
random variables with correlation �. Define Z� (Z1�Z2)=

p
2 and

Z+ (Z1 + Z2)=
p
2. Then Z+ and Z� are independent zero-mean

Gaussian random variables with variances 1+� and 1��, respectively.

To obtain our upper bound we show that a sequence of (2nR; n)
codes that can be decoded by both the receivers with Pn

e ! 0 must
satisfy R � RII

+ in (17). Note that our power constraint is of the form
E[X2

i ] � Pi with n

i=1
Pi � nP .

Suppose R1 and R2 denote the rates at which the two receivers can
reliably decode the common message. The rate of the common message
must satisfy R � min(R1;R2).

From Fano’s inequality, we have that for some sequence "n, which
approaches 0 as n ! 1

H(W jY n
k ) � n"n; for k = 1; 2: (53)

We first upper-bound R1 as

nR1<I(W ;Y n
1 ) + n�n

=h(Y n
1 )� h(Y n

1 jW ) + n�n

�
n

i=1

h(Yi)� h(Y n
1 jW ) + n�n (54)

�
n

i=1

1

2
log 2�e(Pi+1+Q+2 PiQ)�h(Y n

1 jW )+ n�n

(55)

� n

2
log 2�e(P + 1+Q+ 2 PQ)� h(Y n

1 jW ) + n�n

(56)

where (54) follows from the chain rule and the fact that conditioning
reduces entropy, and (55) follows from the fact that each Yi has a vari-
ance no larger than Pi + 1 +Q+ 2

p
PiQ and its differential entropy

can be upper-bounded by that of a Gaussian random variable (RV). Fi-
nally, (56) is a consequence of Jensen’s inequality.

Similarly, applying the above chain of inequalities on user 2, we have

nR2 � n

2
log 2�e(P +1+Q+2 PQ)�h(Y n

2 jW )+n�n: (57)

Now we can find an upper bound on the common information rate
using (56) and (57)

nR=nmin(R1; R2) � n

2
(R1 +R2)

� n

2
log 2�e(P + 1+Q+ 2 PQ)� 1

2
h(Y n

1 jW )

� 1

2
h(Y n

2 jW ) + n"n

� n

2
log 2�e(P+1+Q+2 PQ)� 1

2
h(Y n

1 ; Y
n
2 jW )+ n"n

(58)

where the last inequality (58) follows from the fact that conditioning
reduces the differential entropy.

We now need to lower-bound h(Y n
1 ; Y

n
2 jW ). In what follows, we

will also use the notation Sn+ =
S +S
p
2

and Sn� =
S �S
p
2

. Note that
S+ and S� are mutually independent, Gaussian N (0;Q).

h(Y n
1 ; Y

n
2 jW )

=; h
Y n
1 � Y n

2p
2

;
Y n
1 + Y n

2p
2

W (59)

= h(Sn� + Zn
�;
p
2Xn + Sn+ + Zn

+jW ) (60)

= h(Sn�+Z
n
�jW )+h(

p
2Xn+Sn+ + Zn

+jW; Sn� + Zn
�) (61)

= h(Sn� + Zn
�) + I(Sn+;

p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�)

+ h(
p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�; S

n
+) (62)

� h(Sn� + Zn
�) + I(Sn+;

p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�)

+ h(
p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�; S

n
+; X

n) (63)

= h(Sn� + Zn
�) + I(Sn+;

p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�)

+ h(Zn
+): (64)

The preceding steps are justified as follows. In (59), we have used the
fact that the differential entropy is invariant to a transformation of unit
determinant. We substitute for Y1 and Y2 in (60). Equation (61) follows
from the chain rule. In (62), we first drop the conditioning over W in
the first term, since (Sn�; Z

n
�) are jointly independent ofW and expand

the second term. Finally, (63) follows from the fact that conditioning on
Xn further reduces the differential entropy while (64) is a consequence
from Zn

+ being independent of (Xn; Sn+; S
n
�; Z

n
�;W ).

Since Sn�; Z
n
+; Z

n
� are all i.i.d. Gaussian with powers Q, 1+ �, and

1 � �, respectively, we have from (64)

h(Y n
1 ; Y

n
2 jW ) � I(Sn+;

p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�)

+
n

2
log 2�e(Q+ 1� �) +

n

2
log 2�e(1 + �): (65)

It remains to lower-bound the mutual information term in (65). We
first note that since Sn+ is independent of (W;Sn�; Z

n
�) one can drop

the conditioning in the mutual information expression.

Lemma 3: For each n � 1 and for any distribution
p(XnjSn�; Sn+;W ) such that n

i=1
E[X2

i ] � nP . The mutual
information term in (65) can be lower-bounded as

I(Sn+;
p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�)

� I(Sn+;
p
2Xn + Sn+ + Zn

+) � n

2
log

Q

2P + 1 + �

+

:

(66)

Proof: The left-hand inequality follows immediately by ex-
panding I(Sn+;

p
2Xn + Sn+ + Zn

+jW; Sn� + Zn
�) and using the fact

that Sn+ is independent of (Sn�; Z
n
�;W ).

The right-hand side is a consequence of the rate-distortion theorem
for i.i.d. Gaussian sources. Note that

E

n

i=1

(
p
2Xi + Z+i)

2 � n(2P + 1 + �):

Thus, if the right inequality were violated, for a certain distribution
p(XnjSn+), we could use it as a test channel in quantizing a n-di-
mensional i.i.d. Gaussian source and do better than the rate distortion
bound. Alternately, note that

I(Sn+;
p
2Xn + Sn+ + Zn

+)

=h(Sn+)� h(Sn+j
p
2Xn + Sn+ + Zn

+)

=h(Sn+)� h(
p
2Xn + Zn

+j
p
2Xn + Sn+ + Zn

+) (67)
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�h(Sn+)� h(
p
2Xn + Zn+) (68)

�h(Sn+)�
n

i=1

h(
p
2Xi + Z+;i) (69)

� n

2
logQ�

n

i=1

1

2
log(2Pi + 1 + �) (70)

� n

2
logQ� n

2
log(2P + 1 + �) (71)

=
n

2
log

Q

2P + 1 + �
: (72)

Here (67) follows from the fact that h(XjY ) = h(Y � XjY ), (68)
from the fact that removing the conditioning on

p
2Xn + Sn

+ + Zn
+

only increases the differential entropy, (69) follows from the chain
rule, (70) follows from the fact that the differential entropy with a
fixed variance is maximized for a Gaussian distribution, and (71) fol-
lows from Jensen’s inequality. Combining (72) with the trivial bound
I(Sn

+;
p
2Xn + Sn

+ + Zn
+) � 0, we establish (66).

Substituting, (66), (65) into (58), we get

R � 1

2
log

P +Q+ 1 + 2
p
PQ

(Q+ 1� �)(1 + �)

� 1

4
log

Q

2P + 1+ �

+

+ "n: (73)

Finally, since � is a free parameter of choice, we can select it to be the
value that minimizes (73) and thus, (17) follows. To obtain the tightest
possible bound we can optimize over the value of �. We obtain (15) by
selecting the following choice for �:

��(Q) =
Q=2; if Q � 2

1; if Q > 2.
(74)

A. Gains From Feedback

In the presence of feedback, the transmitted symbol at time i depends
on the past output, i.e., xi = f(w; yi�11 ; yi�12 ; sn). In this situation,
Z+;i is still independent of (W;Zn

�; S
n;Xi

1). This condition suffices,
for deriving the bounds in (58), (65), and (66). Lemma 1 does not hold,
however, since now the joint distribution between noise sequences does
matter in the probability of error. So while the expression (73) holds,
one cannot optimize over �, but must select the value to be the actual
correlation coefficient in the channel.

B. Universal Gap Between Upper and Lower Bounds

In this subsection, we verify (30), the gap between upper and lower
bounds for all values of P and Q. We consider three different cases.

For Q � 2, we have

RII
+ �R� =

1

2
log

P +Q+ 1 + 2
p
PQ

P + 1 +Q=2
: (75)

It can be verified that the maximum for P � 0 and 0 � Q � 2
occurs for Q = 2 and P = 1=4(9 � p

17). The maximum value is
1=2 log((5 +

p
17)=4) � 0:5947.

For the case 2 � Q � 2(P +1), the difference is also given by (75).
The supremum is attained when we setQ = 2(P+1) and let P !1.
The supremum value is 1=2 log((3 + 2

p
2)=2) � 0:7716.

Finally, for the case Q � 2(P + 1), the difference between the
bounds is given by

RII
+ �R� =

1

2
log

P +Q+ 1 + 2
p
PQ

Q
:

The supremum is obtained by takingQ = 2(P+1) and lettingP !1
and again equals 1=2 log((3 + 2

p
2)=2).

C. The Case of K Receivers

We consider the case where there are K receivers. To get an upper
bound, we assume perfect correlation between the noise sequences, i.e.,
receiver k = 1; 2; . . .K gets Y n

k = Xn + Sn
k + Zn, where the in-

terferences Sn
k are mutually independent and i.i.d. N (0;Q) and Zn is

i.i.d. N (0; 1).
To upper-bound the common rate for the case of K receivers, first

note that the derivation that leads to (58) can be straightforwardly gen-
eralized to yield

nR � n

2
log 2�e(P +Q+ 1 + 2 PQ)

� 1

K
h(Y n

1 ; Y
n
2 ; . . .Y

n
K jW ) + n"n: (76)

We now consider generalizing our derivation for (65) to lower-bound
h(Y n

1 ; Y
n
2 ; . . .Y

n
K jW ). Let us consider a set of K orthogonal vectors

vvv1; vvv2; . . . vvvK , where vvv1 = 1p
K
[1; 1; . . . ; 1] and vvv2; . . .vvvK are arbi-

trarily chosen. Let YYY n = (Y n
1 ; Y

n
2 ; . . . ; Y

n
K) denote the K–tuple of

received sequences.

Claim 1: The component-wise inner product of YYY n with
vvv1; . . . ; vvvK satisfies

hYYY n; vvv1i =
p
KXn +

p
KZn + Tn

1

hYYY n; vvvji =Tn
j ; for j = 2; 3; . . .K (77)

where Tn
1 ; T

n
2 ; . . .T

n
K are mutually independent, i.i.d. Gaussian

N (0;Q) sequences.
Proof: The expression for hYYY n; vvv1i can be verified by direct sub-

stitution. Here Tn
1 = 1p

K
(Sn

1 + Sn
2 + � � � + Sn

K). Since vvvj and vvv1
are mutually orthogonal for j � 2, we have K

i=1
vji = 0. Hence,

hYYY n; vvvji = K

i=1
vjiS

n
i . We denote Tn

j = K

i=1
vjiS

n
i . Since the

Sn
j are mutually independent and i.i.d. and vvvj are mutually orthogonal

it follows that Tn
j are all mutually independent and i.i.d. N (0;Q).

We can now lower-bound h(Y n
1 ; Y

n
2 ; . . . Y

n
K jW ) in a manner anal-

ogous to the derivation in (65)

h(Y n
1 ; Y

n
2 ; . . .Y

n
K jW )

=h(hYYY n
1 ; vvv1i ; hYYY n

2 ; vvv2i ; . . . hYYY n
K ; vvvKi jW ) (78)

=h(
p
KXn +

p
KZn + Tn

1 ; T
n
2 ; . . . ; T

n
K jW ) (79)

=h(Tn
2 ) + � � �+ h(Tn

K)

+ h(
p
KXn +

p
KZn + Tn

1 jT n
2 ; . . . ; T

n
K ;W ) (80)

=
n(K � 1)

2
log 2�eQ+ h(

p
KXn +

p
KZn + Tn

1 jW; fTn
j gKj=2)

(81)

=
n(K � 1)

2
log 2�eQ+ h(

p
KXn +

p
KZn + Tn

1 jW; fTn
j gKj=1)

+ I(Tn
1 ;
p
KXn +

p
KZn + Tn

1 jT n
2 . . .Tn

K ;W ) (82)

� n(K � 1)

2
log 2�eQ+

n

2
log 2�eK

+ I(Tn
1 ;
p
KXn +

p
KZn + Tn

1 jT n
2 . . .Tn

K ;W ) (83)

� n(K�1)

2
log 2�eQ+

n

2
log 2�eK +

n

2
log

Q

K(P+1)

+

: (84)

The justification for the preceding steps is as follows. In (78) we have
used the fact that the differential entropy is invariant to a rotation, while
(79) follows from Claim 1. In (80) and (81) we have used the fact that
Tn
j are mutually independent, i.i.d., and independent of W . Equation

(83) follows by additionally conditioning the entropy term in (82) with
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Fig. 7. Two-user Gaussian Channel with one-interference sequences. We de-
rive the upper bound on the capacity of this channel and show that this is also
an upper bound for the two-interference channel in Fig. 4. Here only receiver 2
experiences additive white Gaussian interference of variance Q.

Xn and using the fact thatZn is independent of (W;Xn; Tn1 ; . . .T
n

K).
Finally, (84) follows from fact that sinceTn1 is independent of fTnj gKj=2
and W we can use an argument analogous to that in Lemma 3 to have

I(Tn1 ;
p
KXn +

p
KZn + Tn1 jT n

2 . . .TnK ;W )

� n

2
log

Q

K(P + 1)

+

:

Finally, substituting (84) in (76), we obtain (31).

APPENDIX IV
PROOF OF UPPER BOUND (14) IN THEOREM 3

Our proof is structured as follows. We derive an upper bound for a
particular single-interference Gaussian channel, and reason that the ca-
pacity of the two-interference channel of interest in Theorem 3 cannot
be higher.

As shown in Fig. 7, the single-interference channel is one in which
Sn1 = 0 and Sn2 = Sn. Only the second receiver experiences interfer-
ence.

The subsequent two lemmas establish that an upper bound on the
capacity of the single-interference channel is also an upper bound on
the capacity of the two-interference channel in Fig. 4.

Lemma 4: Suppose that for the single-interference channel
model in Fig. 7, the encoder and decoder 1 have access to a source of
common randomness �, which is independent of the message W and
(S;Z1; Z2). Then, the capacity of the single-interference Gaussian
channel is at least as large as the channel with two independent
interferences in Fig. 4.

Proof: The proof follows by observing that using the source of
common randomness �, we can generate an i.i.d. Gaussian N (0;Q)
sequence SnC , for any value of n. This sequence is independent of all
other channel parameters and is known to both the encoder and decoder
1. It is used to simulate the two independent interference channel as fol-
lows. Decoder 1 simply adds this sequence to the received output, and
ignores its knowledge in decoding. The encoder has to deal with two
sequences (SnC ; S

n), both i.i.d. Gaussian N (0;Q). With this transfor-
mation, any coding scheme for the two-interference channel in Fig. 4
can be used over this channel with arbitrarily small probability of error.

Lemma 5: A source of common randomness�, which is indepen-
dent of the message W and the channel parameters (S;Z1; Z2) cannot
increase the capacity of the single-interference channel in Fig. 7.

Proof: Our proof is analogous to the proof that common random-
ness does not increase the capacity in the single-user case in [8]. We
argue that for any sequence of codes, given a stochastic encoder and
decoder that depends on the shared random variable �, there exists a
deterministic encoder and decoder with a smaller probability of error.

Given the message m and state sequence sn, and a realization � of
the shared random variable, the encoding function (cf. Definition 1)
is given by xn = f(m; sn; �). Similarly, the decoding functions are
given by m̂k = gk(y

n
k ; �) for k = 1; 2; . . . ; K . The average proba-

bility of error for the rate R randomized code is then defined by

Pn;randomized
e

=
1

2nR

2

m=1

E�

y :9k:g (y ;�) 6=m s

p(sn)p(ynjf(m; sn; �))

=E�
1

2nR

2

m=1y :9k:g (y ;�)6=m s

p(sn)p(ynjf(m; sn; �))

=E� Pr

K

k=1

fg(Y n
k ; �) 6= Wg � = �

where the second equality follows by interchanging the expectation
and summation over m, and the third equality follows by observing
that given a realization of the random variable �, the encoding and de-
coding are both deterministic and we can use the definition of the av-
erage probability of error in (2). Finally, note that there must be some
value of � for which the term inside the expectation is minimized. We
can design the encoding and decoding function for this deterministic
value of � and our probability of error will be lower than the average.
Thus, having access to common randomness cannot decrease the prob-
ability of error for the channel of interest.

Lemmas 4 and 5 imply that an upper bound on the capacity of the
single-interference channel in Fig. 7 is also an upper bound on the two
independent-interference channel in Fig. 4. So we will derive an upper
bound for the former.

Invoking the result of Lemma 1, we can let E[Z1Z2 ] = �, where
� 2 [�1; 1] will be optimized later. As in Appendix III, define Z�
(Z1 � Z2)=

p
2 and Z+ (Z1 + Z2)=

p
2.

Suppose R1 and R2 denote the rates at which the two receivers can
reliably decode the common message. The rate of the common mes-
sage must satisfy R � min(R1;R2). Similar to our derivation in Ap-
pendix III, we use Fano’s inequality to bound R1 and R2 as

nR1 � n

2
log 2�e(P + 1)� h(Y n

1 jW ) + n�n (85)

nR2 � n

2
log 2�e(P + 1+Q+ 2 PQ)� h(Y n

2 jW ) + n�n:

(86)

Our bound for R follows the derivation analogous to that for (58) and
is given by

nR � n

4
log 2�e(P + 1 +Q+ 2 PQ)

+
n

4
log 2�e(P + 1)� 1

2
h(Y n

1 ; Y
n
2 jW ) + 2n"n: (87)

It remains to lower-bound the joint-entropy term in (87)

h(Y n
1 ; Y

n
2 jW )

=h
Y n
1 + Y n

2p
2

;
Y n
1 � Y n

2p
2

W (88)

=h
p
2Xn + Zn

+ +
1p
2
Sn;� 1p

2
Sn + Zn

� W

=h � 1p
2
Sn + Zn

� W
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+ h
p
2Xn + Zn+ +

1p
2
Sn W;� 1p

2
Sn + Zn

�

�h � 1p
2
Sn + Zn

�

+h
p
2Xn+Zn+ +

1p
2
Sn W;� 1p

2
Sn + Zn

�
; Sn;Xn

(89)

=h � 1p
2
Sn + Zn

�
+ h(Zn+) (90)

=
n

2
log 2�e

Q

2
+ 1� � +

n

2
log 2�e (1 + �) : (91)

In the preceding steps, (88) follows from the fact that differential trans-
formation is invariant under a pure rotation, (89) follows from the fact
that the pair (Sn; Zn

�
) is independent of W and conditioning on addi-

tional terms only reduces the second term, while (90) follows from the
fact that Zn+ is independent of all other variables in the second term.

Substituting (91) into (87) and rearranging, we get

R � 1

4
log

1 + P

1 + �
+
1

4
log

P +Q+ 1 + 2
p
PQ

Q=2 + 1� �
+"n: (92)

Thus, we have shown the expression for (16). To obtain the tightest
bound we minimize the right-hand side of the above over �. The tightest
bounds is obtained with the choice

��(Q) =
Q=4; if Q � 4

1; if Q > 4.
(93)

Substituting this value of �, in (92) yields (14).

A. Gains From Feedback

As noted in Appendix III-B, in the presence of causal feedback it still
holds that Z+;i is independent of (W;Zn

�
; Sn;Xi

1). It can be verified
that with this condition, the derivation that leads to (91) continues to
hold and the upper bound in (92) remains valid. One cannot however
optimize over � in the presence of feedback as Lemma 1 fails to hold
in the presence of feedback.

APPENDIX V
CASE OF CORRELATED INTERFERENCES

In this appendix, we present the derivation of the upper bound in
Theorem 5. The derivation is a minor modification of the derivation
for the case of independent interferences. So only the steps that need
to be modified will be presented. As in the statement of the theorem,
we assume that S1 � N (0; Q1), S2 � N (0;Q2); and S1 � S2 �
N (0;Qd).

We first note that using Fano’s inequality and the steps that lead to
(58) in Appendix III, an upper bound on the common rate can be shown
to be

nR � 1

2
h(Y n

1 ) +
1

2
h(Y n

2 )� 1

2
h(Y n

1 ; Y
n
2 jW ) + n"n: (94)

Using the power constraint, we upper-bound

h(Y n
i ) � n

2
log 2�e(P +Qi + 1 + 2 PQi); for i = 1; 2:

It remains to lower-bound the joint entropy term. In what follows, we
denote Zn

+ =
Z +Z

2
and Zn

�
= Zn

1 � Zn
�

. Note that Zn
+ and Zn

�

are mutually independent and i.i.d. samples fromN (0; (1+�)=2) and
N (0; 2(1� �)), respectively.

h(Y n
1 ; Y

n
2 jW )

=h Y n
1 � Y n

2 ;
Y n
1 + Y n

2

2
jW (95)

=h Sn1 � Sn2 + Zn
�
;Xn +

Sn1 + Sn2
2

+ Zn
+jW

=h(Sn1 �Sn2 +Zn
�
)

+ h Xn +
Sn1 + Sn2

2
+ Zn

+jW; Sn1 � Sn2 + Zn
�

(96)

�h(Sn1 � Sn2 + Zn
�
) + h(Zn

+)

=
n

2
log 2�e(Qd + 2(1� �)) +

n

2
log 2�e

1 + �

2
: (97)

Here (95) follows from the fact that the transformation
1 �1
1=2 1=2

has unit determinant and the differential entropy is invariant to this
transformation, (96) from the fact that Sn1 �Sn2 +Zn

�
is independent of

W and (97) from the fact that Zn
+ is independent of all other variables.

The optimal value of �, which yields the largest value for the lower
bound is given by �� = min(1;Qd=4) and the corresponding lower
bound is given by

h(Y n
1 ; Y

n
2 ) � n log(2�e) 1 + Q

4
; if Qd � 4

n

2
log(2�e)2Qd; if Qd > 4.

(98)

Finally, substituting (98) in (94) gives us the expression in (33).

ACKNOWLEDGMENT

The authors thank two anonymous reviewers for their insightful
comments which helped to improve the quality of the correspondence.

REFERENCES

[1] G. Caire and S. Shamai (Shitz), “On the achievable throughput of a
multi-antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory,
vol. 49, no. 7, pp. 1691–1706, Jul. 2003.

[2] Y. Cemal and Y. Steinberg, “The multiple-access channel with partial
state information at the encoder,” IEEE Trans. Inf. Theory, vol. 51, no.
11, pp. 3992–4003, Nov. 2005.

[3] B. Chen and G. W. Wornell, “Quantization index modulation: A
class of provably good methods for digital watermarking and infor-
mation embedding,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp.
1423–1443, May 2001.

[4] A. S. Cohen and A. Lapidoth, “The Gaussian watermarking game,”
IEEE Trans. Inf. Theory, vol. 48, no. 6, pp. 1639–1667, Jun. 2002.

[5] M. H. M. Costa, private communication.
[6] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol.

IT-29, no. 3, pp. 439–441, May 1983.
[7] T. M. Cover and J. A. Thomas, Elements of Information Theory. New

York: Wiley, 1991.
[8] U. Erez, S. Shamai (Shitz), and R. Zamir, “Capacity and lattice strate-

gies for cancelling known interference,” IEEE Trans. Inf. Theory, vol.
51, no. 11, pp. 3820–3833, Nov. 2005.

[9] R. G. Gallager, Information Theory and Reliable Communication.
New York: Wiley, 1968.

[10] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random
parameters,” Probl. Pered. Inform. (Probl. Inf. Transm.), vol. 9, no. 1,
pp. 19–31, 1980.

[11] S. I. Gel’fand and M. S. Pinsker, “On Gaussian channels with random
parameters,” in Proc. Int. Symp. Information Theory, Tashkent,
U.S.S.R., Sep. 1984, pp. 247–250.

[12] C. Heegard and A. El Gamal, “On the capacity of computer memory
with defects,” IEEE Trans. Inf. Theory, vol. IT-29, no. 5, pp. 731–739,
Sep. 1983.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 5, MAY 2007 1827

[13] S. A. Jafar, “Capacity with causal and noncausal side information—A
unified view,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5468–5475,
Dec. 2006.

[14] A. Khisti, “Coding Techniques for Multicasting,” M.S. thesis, MIT,
Cambridge, MA, 2004.

[15] A. Khisti, U. Erez, and G. Wornell, “Writing on many pieces of dirty
paper at once: The binary case,” in Proc. Int. Symp. Information Theory,
Chicago, IL, Jun./Jul 2004, p. 535.

[16] Y.-H. Kim, A. Sutivong, and S. Sigurjonsson, “Multiple user writing
on dirty paper,” in Proc. Int. Symp. Information Theory, Chicago, IL,
Jun./Jul. 2004, p. 534.

[17] S. Kotagiri and J. N. Laneman, “Achievable rates for multiple access
channels with state information known at one encoder,” in Proc. 42nd
Annual Allerton Conf. Communication, Control, and Computing, Mon-
ticello, IL, Oct. 2004.

[18] A. V. Kuznetsov and B. S. Tsybakov, “Coding in a memory with de-
fective cells,” Probl. Pered. Inform. (Probl. Inf. Transm.), vol. 10, pp.
52–60, Apr.-Jun. 1974.

[19] A. Lapidoth, S. Shamai (Shitz), and M. Wigger, “On the capacity of
fading MIMO broadcast channels with imperfect transmitter side-in-
formation,” in Proc. 43rd Annual Allerton Conf. Communication, Con-
trol, and Computing, Monticello, IL, Sep. 2005.

[20] P. Moulin and J. A. O’Sullivan, “Information-theoretic analysis of in-
formation hiding,” IEEE Trans. Inf. Theory, vol. 49, no. 3, pp. 563–593,
Mar. 2003.

[21] C. E. Shannon, “Channels with side information at the transmitter,”
IBM J. Res. Devel., vol. 2, pp. 289–293, Oct. 1958.

[22] S. Sigurjonsson and Y. H. Kim, “On multiple user channels with causal
state information at the transmitters,” in Proc. IEEE Int. Symp. Infor-
mation Theory, Adelaide, Australia, Sep. 2005, pp. 72–76.

[23] Y. Steinberg, “Coding for the degraded broadcast channel with random
parameters, with causal and noncausal side information,” IEEE Trans.
Inf. Theory, vol. 51, no. 8, pp. 2867–2877, Aug. 2005.

[24] Y. Steinberg and S. Shamai (Shitz), “Achievable rates for the broadcast
channel with states known at the transmitter,” in Proc. IEEE Int. Symp.
Information Theory, Adelaide, Australia, 2005, pp. 2184–2188.

[25] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity
region of the Gaussian multiple-input multiple-output broadcast
channel,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 3926–3964, Sep.
2006.

[26] J. Wolfowitz, Coding Theorems of Information Theory. New York:
Springer-Verlag, 1964.

Achievable Error Exponents for the Private
Fingerprinting Game
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Abstract—Fingerprinting systems in the presence of collusive attacks
are analyzed as a game between a fingerprinter and a decoder on the one
hand, and a coalition of two or more attackers on the other hand. The
fingerprinter distributes, to different users, different fingerprinted copies
of a host data (covertext), drawn from a memoryless stationary source,
embedded with different fingerprints. The coalition members create a
forgery of the data while aiming at erasing the fingerprints in order
not to be detected. Their action is modeled by a multiple-access channel
(MAC). We analyze the performance of two classes of decoders, associated
with different kinds of error events. The decoder of the first class aims
at detecting the entire coalition, whereas the second is satisfied with the
detection of at least one member of the coalition. Both decoders have
access to the original covertext data and observe the forgery in order to
identify member(s) of the coalition. Motivated by a worst case approach,
we assume that the coalition of attackers is informed of the hiding strategy
taken by the fingerprinter and the decoder, while they are uninformed
of the attacking scheme. Achievable single-letter expressions for the two
kinds of error exponents are obtained. Single-letter lower bounds are also
derived for the subclass of constant composition codes. These lower and
the upper bounds coincide for the error exponent of the first class. Further,
for the error of the first kind, a decoder that is optimal is introduced, and
the worst case attack channel is characterized.

Index Terms—Coding with side information, error exponents, infor-
mation hiding, fingerprinting, private watermarking, randomized code,
steganography, universal decoding, watermarking.

I. INTRODUCTION

In fingerprinting systems, several copies of the same host data are
embedded with different fingerprints (that designate, e.g., the different
digital signatures or serial numbers of the copies they are provided
with) and distributed to different users. The fingerprints identify one
of many users in order to enable copyright protection. In this situation,
two or more users can form a coalition, and collusive attacks on the
fingerprinting system are possible and have to be taken into account in
the code design. Each of the coalition members contributes his distinct
fingerprinted copy in order to create a better forgery. Hence, the finger-
printing problem can be thought of as a game between the fingerprinter
and the coalition of attackers.

As mentioned in [33], the fingerprinting game is closely related to
(and is actually an extension of) the watermarking game, that in turn
can be modeled as a coded communication system equipped with side
information, for a single user as opposed to one of many users. Wa-
termarking systems have been studied from the information-theoretic

Manuscript received February 10, 2005; revised June 7, 2006. The mate-
rial in this correspondence was presented in part at the Canadian Workshop on
Information Theory 2005, Montreal, QC, Canada, June 2005. This work was
performed while A. Somekh-Baruch was with the Department of Electrical En-
gineering, Technion–Israel Institute of Technology, Haifa, Israel.

A. Somekh-Baruch was with the Department of Electrical Engineering, Tech-
nion–Israel Institute of Technology, Haifa, Israel. She is now with the Depart-
ment of Electrical Engineering, Princeton University, Princeton, NJ, 08544 USA
(e-mail: anelia@princeton.edu).

N. Merhav is with the Department of Electrical Engineering, Technion–
Israel Institute of Technology, Technion City, Haifa 32000, Israel (e-mail:
merhav@ee.technion.ac.il).

Communicated by K. Kobayashi, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2007.894632

0018-9448/$25.00 © 2007 IEEE


