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Abstract— We study the information theoretic limits of com-
munication over asynchronous discrete memoryless channels. The
transmitter starts sending a block codeword of length N at a
time ν uniformly distributed within the interval [1, 2, . . . , L]. We
assume that the receiver knows L but not ν. We give a scaling
law of L with respect to N for which reliable communication can
be achieved. Specifically, we propose a communication scheme
with the property that, unless the asynchrony level L grows at
least as eNC , where C denotes the capacity of the synchronized
channel, arbitrary low error probability can be achieved. If L
grows sub-exponentially in N , the capacity is the same as that
of the ordinary synchronized channel. Further, we provide a
lower bound to the error probability given a certain channel,
codebook, and asynchrony level. This bound together with our
scheme shows that, in certain cases, the condition L ≤ eNC(1−δ)

for any δ > 0 is an asymptotic necessary and sufficient condition
for reliable communication. Finally we extend our analysis to a
simple scenario where communication is carried over a Gaussian
channel with antipodal signaling +

√
P and −√

P . We show that
a necessary condition on the amount of power needed in order to
guarantee reliable communication is that P must scale as 1

N
log L

when L → ∞.

I. INTRODUCTION

In information theoretic analysis, a common assumption is

that “whenever the transmitter speaks the receiver listens.” In

other words, in general, there is the assumption of perfect

synchronization between the transmitter and the receiver, and

basic quantities, such as the channel capacity and coding delay,

are defined under this hypothesis. In practice this assumption

is rarely fulfilled; due to the bursty nature of the information

source, the transmitter may start emitting at random moments,

and the receiver needs a certain period of time to realize that

the transmitter has started to emit information.

Here we consider communication over general discrete

memoryless channels. The basic question we address is how
does a lack of synchronization between the transmitter and
receiver affect the set of achievable rates? In particular, we

study a communication setting where the transmitter starts

emitting a block codeword of length N at a time ν that

is unknown to the receiver and uniformly distributed over

the interval [1, 2, . . . , L]. The parameter L defines the level

of asynchrony between the transmitter and receiver and is

assumed to be known to the receiver. Before time ν and after
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time ν + N − 1 (i.e., before and after the message is sent) we

assume that a constant sequence of known symbols is sent or,

alternatively, that an independent identically distributed (i.i.d.)

random input sequence is sent. The receiver, using a sequential

decoder, makes a decision so as to minimize the delay between

ν and the decoding time τ , while keeping the error probability

below a certain value.

Our main result shows that the capacity of the asynchronous

channel is the same as the capacity of the ordinary channel

provided that L is sub-exponential in the block length. Further,

an achievable error exponent is computed. Our analysis reveals

that reliable communication is possible even if L grows expo-

nentially in N , provided that the growth rate is below capacity

and that the rate is below a certain threshold. Conversely,

we establish a lower bound on the error probability in terms

of the channel, the codebook, and the asynchrony level, and

evaluate a precise condition on L for the binary symmetric

and the Gaussian channels such that the probability of error

is asymptotically bounded away from zero.

The problem we address in this paper is closely related to

the problem of detection and isolation of abrupt changes in

a stochastic system (see, e.g., [2], [3]). An instance of that

problem is as follows. Let {Pm}M
m=0 be a set of probability

measures on Y∞, each Pm being characterized by its family

of conditional probabilities {Pm
Y1

, Pm
Y2|Y1

, Pm
Y3|Y 2

1
, · · · }. A de-

coder observes a sequence Y1, Y2, . . . where Y1, Y2, . . . , Yν−1

are generated according to P 0 while Yν , Yν+1, . . . are gen-

erated according to a certain Pm with m ∈ {1, 2, . . . ,M}.

The decoder consists of a sequential test (τ, φ), where τ is a

stopping rule whose decision to stop at time n depends on Y n
1 ,

and where φ denotes a terminal decision rule that accepts one

of the post-change distributions. For example, (τ, φ) = (n, m)
indicates that the post-change distribution Pm is decoded at

time n. Without knowing the value of the change-point ν, the

goal of the decoder is to react as quickly as possible after the

change point, i.e., to minimize the detection delay (τ − ν)+,

while keeping the probability of a decoding error below a

certain threshold. Thus, our synchronization problem takes the

form of a detection and isolation problem in which the change

in distribution is induced by the transmitted message.

The main difference between our problem and the detection

and isolation problem is that in our setting the change in distri-

bution occurring at time ν has limited duration (only up to time
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ν+N−1). Further, in the detection and isolation problem, the

pre- and post-change distributions are given and the problem

is only a decoding problem. In the synchronization setting,

the pre-change distribution is given but, in addition, there

is the problem of finding codewords inducing post-change

distributions with “good detection and isolation properties.”

Also, and to the best of our knowledge, optimal decoding rules

for the detection and isolation problem where obtained only in

the case where the number M is fixed, and in the limit where

the probability of error tends to zero.1 Informally, we may

say that optimal decoding rules for the detection and isolation

problem have been obtained only in the “zero rate” regime.

II. THE PROBLEM AND MAIN RESULT

We consider discrete-time communication over a discrete

memoryless channel. We implicitly assume that the time scale

of the transmitter and the receiver are “synchronized,” i.e.,

time zero is the same for both of them. We assume that the

transmission of a particular codeword of length N may start at

any time ν, uniformly distributed in the interval [1, 2, . . . , L].
We assume that the choice of the message to be conveyed

is independent of ν and that the receiver does not know the

value of ν but knows L. At time i, the receiver gets a symbol

Yi that, conditioned on ν and L, is distributed according to

the conditional probability of the channel Q(·|xi,ν(m)), where

xi,ν(m) is defined as

xi,ν(m) = a for i ∈ [1, ν − 1]
xi,ν(m) = ci−ν+1(m) for i ∈ [ν, ν + N − 1]

xi,ν(m) = a for i ≥ ν + n . (1)

The symbol a is known to the receiver. The symbol ci(m)
denotes the i-th symbol of the block codeword cN (m) for

message m. When no message is sent we may also consider

that an i.i.d. random input sequence is sent, rather than

a constant sequence of symbols (see Section III-B for an

example). As in the detection and isolation problem discussed

the previous section, the decoder consists of a sequential test

(τ, φ), where τ is a stopping rule and where φ denotes a

terminal decision rule.

Transmission is restricted to only one message. Indeed,

since there is no feedback, the receiver has no means to

inform the transmitter when a decision has been made. If

feedback were available it would allow the sending of multiple

messages, also using variable length codes. However, includ-

ing feedback in our setting introduces significant subtleties

to the analysis. In fact, the simplest setting would be to

have a noiseless feedback since, if the feedback were noisy,

the use of variable length codes would become problematic

precisely because of the problem of synchronization between

1Here optimal decoding rules refer to sequential tests yielding minimum
error probability given a certain delay.

the transmitter and the receiver.2 To avoid this circular problem

we omit feedback in our study. Nonetheless, and as in the

rateless coding setting, we may suppose in practice that a one-

bit perfect feedback link is available so that multiple messages

can be sent.

Our goal can be phrased as one of characterizing the

maximum achievable error exponent with respect to the time

it takes the decoder to react to a sent message, i.e., (τ − ν)+.

In this direction, we first define the decoding error probability

as

P(E) =
1
L

1
M

M∑
m=1

L∑
l=1

Pm,l(E), (2)

where the subscripts m,l indicate that the probability is condi-

tioned on the event that message m starts being sent at time

l. Then we define the average rate

R =
lnM

E(τ − ν)+
, (3)

where

E(τ − ν)+ =
1
L

1
M

M∑
m=1

L∑
l=1

Em,l((τ − ν)+) . (4)

We say that the error exponent E and the rate R are asymp-

totically achievable if there exists a sequence (labeled by the

number of messages) of block codes and sequential tests such

that

R = lim
M→∞

lnM

E(τ − ν)+
(5)

and

E ≥ lim inf
n→∞ − 1

E(τ − ν)+
ln P(E) . (6)

Implicitly in (5) and (6) we also allow the asynchrony level

L to increase with M . Indeed, when L is fixed the problem

is not particularly interesting: a decoder that makes a decision

at time L + N − 1 incurs no loss in either R or E due to

asynchrony. Thus, we instead consider the situation where L
scales with the number of messages M and write L = L(M).

Our main result stands in the following theorem:

Theorem 1 Suppose that δ � lim supM→∞
ln L(M)

ln M < ∞.
For any discrete memoryless channel Q with capacity C, and
for any rate R ∈ [0, C], the error exponent C − R(1 + δ) is
achievable. �

The key implication of this theorem is that, unless the

asynchrony level L has an exponential growth rate with respect

to the block length that is higher or equal than C(Q), reliable

communication can be guaranteed at sufficiently low rate.

2Suppose that the forward and the reverse channel have zero error capacity
equal to zero and that multiple messages have to be sequentially sent. Since
the reverse channel is noisy, if the receiver makes a decision on the basis of a
stopping time τ , it is not clear how the transmitter and the receiver can agree
upon what has to be sent at time τ + 1: starting a new message or continue
to send bits with respect to the previous message.
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Also notice that, even though the transmitter emits a block

codeword, an error exponent higher than the sphere packing

bound can be achieved at rates close to capacity (provided

that δ = 0). This seems to violate the fact that the sphere-

packing exponent cannot be surpassed when the transmitter

and the receiver are synchronized. This apparent contradiction

is resolved by observing that even though the transmitter emits

a block codeword of length N from time ν, the receiver uses a

sequential decoder. This in turn allows us to achieve decoding

delays τ − ν smaller on average than N while keeping

the probability of error close to that obtained by maximum

likelihood decoding at the end of the message transmission,

i.e., at time ν + N − 1.

We now describe the communication scheme that asymptot-

ically yields the error exponent claimed in the theorem. The

codewords {cN (m)}M
m=1 are randomly generated so that the

ci(m)’s (i ∈ {1, . . . , N} and m ∈ {1, . . . ,M}) are i.i.d.

samples according to the capacity-achieving distribution of

the channel. For a pair (xn, yn) let us denote by P̂(xn,yn)

the empirical distribution of (xn, yn), i.e., P̂(xn,yn)(x, y) =
1
n

∑n
i=1 11(x,y)(xi, yi). Also, given a distribution P on X ×Y

we write I(P ) for the mutual information induced by P . The

decoding rule is chosen according to the following stopping

time

τ = inf

{
n ≥ 1 : ∃m ∈ M and l ∈ {1, . . . , N} so that

min
k∈[1,...,l]

[
kI(P̂ck(m),yn−l+k

n−l+1
) + (l − k)I(P̂cl

k+1(m),yn
n−l+k+1

)
]

≥ α lnM

}
(7)

where α > 1 is some fixed constant. At time τ the decoder

declares the message for which the minimum of the sum of the

mutual informations that defines τ exceeds α lnM . If multiple

messages satisfy this condition the decoder picks the one with

the smallest index. Loosely speaking, the decoder makes a

decision as soon as there exist l last symbols (l ∈ {1, . . . , N})

that have “empirical mutual information” with one of the

codewords that exceeds a certain threshold. Our choice of the

decision rule in (7) is a consequence of our analysis of the

error event occurring when Y n
n−l+1 is induced partly by noise

and partly by the transmitted codeword.

Observe that our communication scheme does not subdivide

the synchronization problem into a detection problem followed

by a message isolation problem: detection and isolation are

treated jointly. Also note that the above decoder is universal

in the sense that its decision does not rely on the statistics of

the channel under use. In fact this decoder is an extension of

a universal decoder introduced in [4, eq. (10)] for the ordinary

synchronized setting. As for that decoder, it can be shown that

our new decoder (asymptotically) achieves a rate R equal to

C(Q)/α, where α is the constant appearing in (7).

Y (1) Y (2) . . . . . . Y (s)

Fig. 1. Parsing of the received sequence into s blocks of length N .

III. LOWER BOUND ON THE ERROR PROBABILITY

WITHOUT SYNCHRONIZATION

Given a channel Q, a codebook {cN (m)}M
m=1, and a level

of asynchrony L, we first derive a general lower bound on

the probability of error. This lower bound appears to be quite

complicated but can in principle be numerically evaluated. We

then turn to a simple example — the binary symmetric channel

with only two possible messages — and derive a simple

sufficient condition on the growth rate of L as function of the

block length N for the error probability to be asymptotically

bounded away from zero. This sufficient condition, in the limit

of vanishing crossover probability in the channel, also becomes

necessary. Extending our analysis to the Gaussian channel with

peak power constraint P , we derive a necessary condition on

P as function of N and L so that the error probability is

asymptotically vanishing.

A. General case

It might be tempting to conjecture that “if L grows faster

than eNC then the error probability is asymptotically bounded

away from zero.” To convince oneself that this claim is wrong

in general, it suffices to consider a channel and a noise input

symbol a that doesn’t produce all the possible channel output

symbols (e.g., consider the Z channel). In this case, by starting

each message with a short prefix (say of length
√

N ) that does

not use any of the noise symbols that appear before and after

transmission, one can easily show that there is no rate loss by

lack of synchronization, no matter how large L is.

In order to derive a lower bound on the probability of error,

we assume that the decoder makes a decision by observing

a sequence Y of maximal length L + N − 1. Further, let us

optimistically assume that the decoder knows that the message

was sent in one of the s = �(L + N − 1)/N� time slots of

duration N as shown in Fig. 1. We have

P(E) ≥ 1
M

1
s

M∑
m=1

s∑
l=1

Pm,l(E), (8)

where Pm,l(E) denotes the probabilities of error given that

message m is sent in the l-th slot of size N . The maximum

likelihood decoder yields for any m′

Pm,l(E) ≥ Pm,l

(
Pm′(Y )
Pm(Y )

> 1
)

. (9)

Now letting Y (i) denote the sequence of length N occurring

in the i-th slot in Y , we obtain

Pm,i(Y ) = Q(Y (i)|cN (m))
∏
j �=i

Q(Y (j)|aN ), (10)
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where a denotes the symbol that is sent when no message is

sent. Therefore we obtain

Pm,l

(
Pm′(Y )
Pm(Y )

> 1
)

= Pm,l

(
1
s

∑s
i=1 Q(Y (i)|cN (m′))

∏
j �=i Q(Y (j)|aN )

1
s

∑s
i=1 Q(Y (i)|cN (m))

∏
j �=i Q(Y (j)|aN )

> 1

)

= Pm,l

⎛
⎝∑s

i=1
Q(Y (i)|cN (m′))

Q(Y (i)|aN )∑s
i=1

Q(Y (i)|cN (m))
Q(Y (i)|aN )

> 1

⎞
⎠ , (11)

or, equivalently,

Pm,l

(
Pm′(Y )
Pm(Y )

> 1
)

= Pm,l

(
s∑

i=1

Zi > 0

)
, (12)

where we defined Zi = Q(Y (i)|cN (m′))
Q(Y (i)|aN )

− Q(Y (i)|cN (m))
Q(Y (i)|aN )

. By

symmetry (12) is the same for any l ∈ {1, . . . , s} and hence,

for any m′ �= m

Pm,l(E) ≥ Pm,1

(
s∑

l=2

Zl > −Z1

)
. (13)

Under Pm,1, all the Zi’s are independent and are all iden-

tically distributed with mean zero, except for Z1 that has a

negative mean. Unfortunately the analysis of the random walk

{∑n
i=2 Zi}n≥2 is cumbersome and no simple general lower

bound on Pm,1 (
∑s

i=2 Zi > −Z1) could be found. However,

using the Chernoff bound we obtain

Pm,1

(
s∑

i=2

Zi > −Z1

)

≥ sup
t∈R

sup
q>0

[1 − (Em,1e
−qZ2)s−1]eqt]Pm,1(Z1 ≥ t) .

(14)

Finally from (8) we obtain

P(E) ≥
1
M

M∑
m=1

max
m′ �=m

sup
t∈R

sup
q>0

[1 − (Em,1e
−qZ2)s−1]eqt]Pm,1(Z1 ≥ t) .

(15)

B. Binary symmetric channel

We consider communication over a binary symmetric chan-

nel with only two possible messages, A and B. When no mes-

sage is sent, the channel outputs are random (i.i.d. Bernoulli

1/2) bits. One can show that the codewords yielding the lowest

error probability are cN (A) = (0, 0, . . . , 0) and cN (B) =
(1, 1, . . . , 1). From Section III-A we get

P(E) ≥ PA,1

⎛
⎝ s∑

j=2

Zj > −Z1

⎞
⎠ . (16)

Letting ki denote the number of ones observed in the i-th slot

of size N of the received sequence, an easy computation yields

PA,1

(
s∑

i=2

Zi > −Z1

)

≥ PA,1

(
s∑

i=2

uki − uN(s)−ki > uN(s) − 1

)
, (17)

where u � (1−ε)/ε, and where we write N(s) since the block

length can be chosen as a function of the uncertainty level.

Note that to further lower bound the term on the right hand

side of (17) we need to analyze the random walk
∑s

i=2 uki −
uN(s)−ki , since under PA,1 the ki (i ∈ {2, . . . , s}) are i.i.d.

Applying the Central Limit Theorem for triangular arrays (see,

e.g., [1, p. 326]) we have that

1√
(s − 1)Var(uk2 − uN(s)−k2)

s∑
i=2

uki − uN(s)−ki (18)

converges to a normal standard random variable provided that

the Lindeberg condition

EA,1

⎛
⎝ (uk2 − uN(s)−k2)2

Var(uk2 − uN(s)−k2)
11 |uk2−uN(s)−k2 |√

(α−1)Var(uk2−uN(s)−k2 )
>ε

⎞
⎠ = o(1)

(19)

is satisfied as s → ∞. A straightforward computation shows

that (19) is equivalent to

1
s

(
2

1+ 1
u2

)N(s)

1 −
(

2
u+ 1

u

)N(s)
= o(1) (20)

as s → ∞. It can then be easily checked that under the same

condition (20), the quantity

1√
(s − 1)Var(uk2 − uN(s)−k2)

(uN(s) − 1) (21)

tends to zero as s → ∞. Therefore from (16), (17), (18), (20),

and (21) we conclude that if (20) is satisfied then P(E) is lower

bounded by a quantity that tends to 1/2 as s → ∞. One can

finally check that, in the limit where ε → 0, the condition (20)

implies that if s grows faster than eN(1+o(1))C , vanishing error

probability cannot be asymptotically guaranteed. One then

further deduces that, in the limit ε → 0, our theorem is tight in

the sense that, given our noise model, reliable communication

can be achieved if and only if L = o(eN(1−δ)C) for some

δ > 0.

C. The Gaussian channel

A similar approach as for the binary symmetric channel can

be applied to the Gaussian channel where we now allow also

the power to scale with the asynchrony level. Suppose that

there is only two possible messages with codewords cN (A) =√
P (1, 1, . . . , 1) and cN (B) = −√

P (1, 1, . . . , 1). We assume
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that the noise symbol a equals to zero. One can show that, for

P = P (L) > 1
2 log 3, as L → ∞

1
L

eN(L)(P (L)− 1
2 log 3) = o(1) (22)

the probability of error is asymptotically bounded away from

zero. Condition (22) is perhaps most useful in the regime when

(log L)/N tends to a constant, in which case it gives a lower

bound on the minimum amount of power needed for reliable

communication given by 1
N log L.

IV. CONCLUSION

We have shown that a sufficient condition under which the

lack of synchronization does not affect the set of achievable

rates for discrete memoryless channels is that lnL is negligible

compared to lnM . In certain cases this condition is also

necessary.

By extending our analysis to the Gaussian channel, we

showed that a proper scaling of the power as a function of the

asynchrony level and of the block length is needed in order

to guarantee reliable communication.
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