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Abstract— We develop and analyze a simple, low-complexity
system architecture for scheduling over a Gaussian multiple-input
multiple-output (MIMO) broadcast channel with infinite message
backlogs. In the system of interest, there is a transmitter with
m antennas, and n receiving users, where n � m. We show
that the proposed architecture is strongly asymptotically optimal
with respect to average throughput. We further characterize the
feedback requirements of the architecture, and highlight various
tradeoffs available to the system designer.

I. INTRODUCTION AND BACKGROUND

There is growing interest in the development of efficient
wireless broadcast systems for distributing independent data
streams to different users over some geographical area. It is
now widely appreciated that the use of a multiple-element
antenna array at the transmitter can, in principle, greatly
increase the capacity of such systems; see, e.g., [1]. When the
number of users is no larger than the array size, the system
design issues are rather well-understood. Moreover, when it
is desirable for complexity or other reasons to restrict one’s
attention to case of linear multiplexing, the literature char-
acterizing the associated performance tradeoffs is particularly
extensive; see, e.g., [2]–[4].

By contrast, comparatively little is known about how to
design efficient systems when the number of users becomes
large relative to the array size, and in particular the nature
of the fundamental tradeoffs between throughput, complexity,
and feedback in such settings. Ultimately, the underlying
scheduling problem is rather different and in many ways richer
than that of more traditional networks.

There is a growing literature on the problem of MIMO
scheduling — see, e.g. [5] and references there in. Within this
domain, much of the recent work has focused on examining
the throughput scaling behavior in the large user pool regime
under various system complexity constraints and with the
assumption of perfect channel channel state information at
the transmitter [6]–[9]. In this paper, we develop a simple
feedback-based scheduling architecture and establish that it
achieves a strong form of asymptotic throughput optimality.

II. CHANNEL AND SYSTEM MODEL

The system of interest consists of an m-element transmitter
antenna array and a pool of n destinations (users). The
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transmitter has n collections of messages, each such collection
destined for one of the n users. The collections are infinite in
size, corresponding to an infinite backlog.

Our discrete-time channel model is a narrowband block
fading one. Specifically, in any particular block, the signal
yj(k) received by user j at time k in response to a signal
x(k) transmitted from the array is of the form

yj(k) = h
†
jx(k) + zj(k) (1)

where zj(k) is independent identically distributed (i.i.d.)
CN(0, 1) noise, and where the (normalized) channel gain
vectors hj have i.i.d. CN(0, 1/2m) elements. The noises and
channel gains are independent from receiver to receiver, and
from block to block.

Any message scheduled for delivery is transmitted within
one block, and the blocks are long so that messages can be reli-
ably received. Thus each block corresponds to a new signaling
(and hence scheduling) interval. Within each signaling interval,
the transmitter sends from its array a group of messages, one
for each of a subset of the user pool. The transmitter is subject
to an average total power constraint of P , i.e., E

[
‖x‖2

]
≤ P

within each signaling interval.
In our model, channel gains in each signaling interval are

known perfectly (i.e., measured to arbitrary accuracy) at the
respective receivers at the beginning of each such interval.
Moreover, a feedback link exists by which individual users
can inform the transmitter of their channel gains (or more
generally quantized versions thereof), also at the beginning
of each associated signaling interval. The users do not know
each other’s channel gains, nor are they able to more generally
share information between each other.

Finally, the performance criterion of interest in this work is
average throughput (i.e., expected sum-rate), and our focus is
on the large n regime (with m fixed).

III. SYSTEM AND PROTOCOL ARCHITECTURE

The architecture of interest is as illustrated in Fig. 1. The
protocol is identical in each signaling interval, so we restrict
our attention to a single arbitrary one.

In such an interval, a subset R of users from the full pop-
ulation U send a quantized representation of their respective
channel gain vectors to the transmitter over the feedback link.
The associated quantization codebook C is fixed and the same
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Fig. 1. MIMO system architecture. In each scheduling interval a subset R

of the full user pool U of size n reports quantizations ĤR of its channel
gains to the transmitter via the feedback link using a decentralized (individual)
criterion. From the set R, the transmitter first forms a collection T of candidate
user sets of size m using a pairwise criterion; this is the pre-selection phase.
Next, a set A ∈ T is chosen at random as the active set, whose messages
{uj , j ∈ A} are linearly multiplexed across the array for transmission.

for all users. Its structure is such that the codewords c ∈ C

all lie on the unit sphere in m (complex) dimensions, and the
quantization rule corresponds to

ĥj = arg max
c∈C

∣∣c†hj

∣∣ , (2)

where ĥj denotes the quantization of hj . We let r denote the
number of bits to which a channel gain is quantized, so the
the codebook is of size 2r. We label the codewords in the
codebook C = Cr as c1, c2, . . . , c2r . With this notation a key
figure of merit for the codebook is its coherence

µ(C) = max
i�=j

∣∣∣c†icj

∣∣∣ . (3)

In general, 0 ≤ µ ≤ 1, and, for a given r, smaller values of µ
correspond to better codes.

The subset R is determined in a decentralized manner, i.e.,
based on an individual evaluation of each channel gain vector.
Specifically, each user j computes the squared norm ‖hj‖

2 of
its channel gain vector, and the correlation |h†

jĥj | between the
channel gain vector and its quantization ĥj . If these factors
fall within certain prescribed ranges, a user will convey its
channel gain to the transmitter. The particular criterion we
consider corresponds to

Rρ,σ
∆
=

{
j ∈ U : ρ− ≤ ‖h2

j‖ ≤ ρ+ and |h̃†
jĥj | ≥ σ

}
, (4)

where h̃j = hj/‖hj‖, and where ρ+, ρ−, and σ are pre-
scribed parameters of the protocol. Furthermore, it suffices to
restrict our attention to σ ≥ µ(C). In the special case where
no quantization is used, the criterion (4) specializes to that
corresponding to

Rρ
∆
=

{
j ∈ U : ρ− ≤ ‖hj‖

2 ≤ ρ+
}
. (5)

At the transmitter, there are three relevant stages of pro-
cessing. First, from the set R of reporting users, a collection

T of candidate subsets of size1 m is formed; this is the pre-
selection phase. Next, one of these subsets, denoted A, is
selected from T at random, and corresponds to the active user
set for the signaling interval. Finally, one message for each of
the active users is selected, and the resulting group of messages
is multiplexed across the array for transmission.

The pre-selection phase is based on simple pairwise evalu-
ation of the vectors in R. The particular criterion we consider
corresponds to

Tε,ρ,σ
∆
=

{
A ⊂ Rρ,σ : |A|=m and |ĥ†

i ĥj | ≤ ε, ∀ i �= j ∈ A
}
,

(6)
where ε is another prescribed parameter of the protocol. In the
special case where no quantization is used, the criterion (6)
specializes to

Tε,ρ
∆
=

{
A ⊂ Rρ : |A| = m and |h̃†

i h̃j | ≤ ε, ∀ i �= j ∈ A
}
.

(7)
In general, the parameters ρ+, ρ−, σ, and ε — and hence

the sets R, T, and A — will all be functions of n. Our notation
will only show this dependency explicitly when necessary.

For the multiplexing phase of the protocol, we restrict our
attention to linear multiplexers. Specifically, with u denoting
the vector of m coded symbols uj, j ∈ A for the m active
users, the transmitted signal takes the form

x =
∑
j∈A

ujwj = WAu (8)

where the W is a matrix whose columns are the unit-
norm weight (i.e., beamforming) vectors wj , j ∈ A. We
further restrict our attention to uniform power allocation in
the multiplexing, i.e., E

[
|uj |

2
]

= P/m for all j ∈ A.
Among linear multiplexers, of primary interest will be

interference-cancelling (IC) — i.e., zero-forcing — multiplex-
ers. The weight matrix in this case takes the form

W
IC
A = ĤA(Ĥ†

A
ĤA)−1, (9)

where the columns of ĤA are ĥj , j ∈ A. At the other end
of the spectrum are interference-ignoring (II) multiplexers, for
which W

II
A

= ĤA. For both classes of multiplexer, when there
is no quantization, it suffices to replace ĤA in WA with H̃A,
the matrix whose columns are h̃j , j ∈ A.

IV. PRELIMINARIES

We begin with a fairly strong notion of optimality of an
architecture.

Definition 1: An architecture S(P, m) is said to be strongly
asymptotically optimal (with respect to average throughput)
if there exists a sequence of protocols P(1), P(2), . . . ∈
S(P, m) such that the corresponding average throughputs
R(1), R(2), . . . of these protocols satisfies

lim
n→∞

[
R∗(n) − R(n)

]
= 0, (10)

1With our emphasis on asymptotics, it is sufficient to consider subsets
of size m; when not operating in the regime where the asymptotics apply,
a generalization that allows the subset size to be a parameter l is more
appropriate. See [7] for insights on the choice of l.
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where R∗(n) is the best rate achievable by any protocol for
the channel and system model of interest.

Note that replacing (10) with the condition

lim
n→∞

[
log R∗(n) − log R(n)

]
= 0 (11)

corresponds to a much weaker notion of optimality. To date,
most work on asymptotic optimality has focused on this
weaker rate-ratio convergence2, limiting the practical value of
the associated results.

To see this weakness, let us define the signal-to-
interference+noise ratio SINR(n) of the protocol via

SINR(n)
∆
= 2R(n)/m − 1. (12)

Then weak convergence of rates in the sense of (11) can be
obtained even when the SINR gap in dB is asymptotically
infinite, i.e., SINR∗(n)/SINR(n) → ∞. By contrast, strong
convergence of rates in the sense of (11) ensures that the SINR
gap in dB is asymptotically zero.

As our main result, we show that the simple, low com-
plexity, decentralized protocol architecture of Section III is
strongly asymptotically optimal in the sense of Definition 1
for the channel and system model of Section II.

More specifically, we show that the average throughput
achievable by this architecture converges in the sense of (10)
to

R∗
+(n) = m log (1 + SINR∗(n)) + o(1) (13)

with
SINR∗(n) =

P log n

m2
, (14)

which, as shown in [6], is an asymptotic upper bound on
R∗(n), i.e., limn→∞

[
R∗

+(n) − R∗(n)
]
≥ 0.

The average throughput achievable for a given sequence of
protocols in our architecture can be expressed in the form

R(n) = E [RHA
] , (15)

where the expectation is taken over both the channel realiza-
tions and the randomization in the selection of the set A ∈ T,
and where RHA

denotes the rate achieved for a particular
active set A.

A bound on the rate gap associated with (15) can be
readily obtained when there exists, as will be the case in
our development, a rate bound R−(n) such that RHA

(n) ≥
R−(n) for all A ∈ T. In particular, in this case, we may write

R(n) ≥ (1 − p∅(n))R−(n), with p∅(n)
∆
= Pr{|T| = 0},

whence

R∗(n) − R(n) ≤
[
R∗(n) − R−(n)

]
+

[
p∅(n)R−(n)

]
. (16)

Thus to show strong asymptotic optimality, it suffices to show
that each of the two terms in brackets in (16) approach zero as
n → ∞. We now describe suitable choices for R−(n) for the
particular multiplexers of interest. In the sequel, when there is

2We note that strong convergence of random beamforming has recently
been shown in [10].

risk of confusion, we use superscripts II and IC to distinguish
R(n), R−(n), SINR(n), and other quantities for the interfer-
ence ignoring and cancelling multiplexers, respectively.

A. Throughput Lower Bounds

Consider first the case of interference-ignoring multiplexers.
In this case, for a given active set A and channel realization
HA, it is straightforward to verify that the achievable sum rate
satisfies

RII
HA

(n) =
∑
j∈A

log(1 + SINRII
j ) (17)

where

SINRII
j =

P‖hj‖
2σ2

j

m + P‖hj‖2‖σc
j‖

2
(18)

with
σj = ĥ

†
jh̃j , and σ

c
j = Ĥ

†
A\jh̃j . (19)

The case for which there is no quantization corresponds to
setting ĥj = h̃j in (18) and (19), so that σj = 1 and σ

c
j =

H̃
†
A\jh̃j .
To obtain a lower bound on RII(n), we define the following

(deterministic) lower bound on SINRII
j :

SINRII
−(n)

∆
= min

A,j,H : |T|�=0, A∈T, j∈A

SINRII
j , (20)

from which we obtain, via (17) and (15),

RII(n)

1 − p∅(n)
≥

E
[
RII

HA

]
1 − p∅(n)

≥ m log(1 + SINRII
−(n)) (21)

for any A ∈ T. In turn, via (12), we obtain

SINRII(n) ≥
(
1 + SINRII

−(n)
)1−p∅(n)

− 1. (22)

In the absence of quantization there is a corresponding spe-
cialization of SINRII

−(n).
Considering next the case of interference-cancelling multi-

plexers, it can be verified that, for a given active set A and
channel realization HA, the achievable sum rate satisfies

RIC
HA

(n) =
∑
j∈A

log(1 + SINRIC
j ), (23)

where, letting Φ̂A = Ĥ
†
A
ĤA, we have

SINRIC
j =

P‖hj‖
2|σ̃j |

2

Tr(Φ̂
−1

A ) + P‖hj‖2‖σ̃c
j‖

2
(24)

with

σ̃j =
σj − σ

c
j
†
Φ̂

−1

A\jσ̂
c
j

σ̂j − σ̂
c
j
†Φ̂

−1

A\jσ̂
c
j

(25)

and

σ̃
c
j = σ

c
j − σj

[
Φ̂A\j − σ̂

c
jσ̂

c
j
†
]−1

σ̂
c
j , (26)

which, in turn, are defined in terms of

σ̂j = ĥ
†
jĥj = 1 (27)
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and

σ̂
c
j = Ĥ

†
A\jĥj . (28)

When there is no quantization we have Φ̂A = ΦA =
H

†
A
HA; σ̂j = σj so σ̃j = 1; and σ̂

c
j = σ

c
j so σ̃

c
j = 0.

While for the case without quantization a natural bound
analogous to (20) is immediate, for the case with quantization
it is more convenient to develop an alternative. To this end,
we obtain3

SINRIC
j ≥ γj

∆
=

P‖hi‖
2
[
|σj |τj −

√
1 − |σj |2λmin

]2

+

Tr(Φ̂
−1

A )τ2
j + P‖hj‖2(1 − |σj |2)λmax

(29)
where [x]+ = max{0, x} and where λmin and λmax are, re-
spectively, the minimum and maximum eigenvalues of Φ̂A\j ,
and where

τj = λmin − ‖σ̂c
j‖

2. (30)

Hence, defining

SINRIC
− (n)

∆
= min

A,j,H : |T|�=0, A∈T, j∈A

γj , (31)

which is deterministic, we obtain

RIC(n) ≥ (1 − p∅(n))m log
(
1 + SINRIC

− (n)
)

(32)

whence, via (12),

SINRIC(n) ≥
(
1 + SINRIC

− (n)
)1−p∅(n)

− 1. (33)

V. MAIN RESULTS:
FEEDBACK WITHOUT QUANTIZATION

We now develop the key characteristics of our architecture
in the absence of quantization effects.

A. Feedback Requirements

We first characterize the amount of feedback required by the
protocol as a function of the parameter settings. For this case,
we view Nρ = |Rρ| as a measure of the feedback link capacity
requirement. Observe that Nρ is a binomial random variable
with mean E [Nρ] = npρ. Since pρ is the probability that a
user feeds back its channel gain vector, we have, from (5),
that pρ = Γ(2m, mρ−) − Γ(2m, mρ+) with Γ(·, ·) denoting
the incomplete gamma function.

We have the following theorem.
Theorem 1: Let ρ+(n) = (log n)/m and ρ−(n) = ρ+(n)−

(log α(n))/m where m log log n ≤ log α(n) = o(log n). Then

E [Nρ] = 2mα(n)(1 − o(1)) + O(1/n) (34)
From this theorem we see that the choice of α(n) =
em(ρ+(n)−ρ−(n)) effectively controls the amount of feedback
required by the system.

3As will become apparent, the appeal of γj as a bound is its simple form
as σj → 1.

B. Selection Failure Probability

We next characterize the probability p∅ that the pre-selection
phase of the protocol yields no candidate sets.

Theorem 2: Let ρ+(n) and ρ−(n) be as in Theorem 1. Then
provided 0 ≤ ε(n) ≤ 1 we have

p∅(n) ≤ e−E[Nρ]β(n)/m, (35)

where

log β(n) = 2(m − 1)2 log

(
ε(n)

2

)
(36)

This theorem characterizes the manner in which successful
pre-selection depends on the interference control parameter ε
and the feedback parameter ρ.

C. Architecture Optimality

Finally, we establish that our architecture is strongly asymp-
totically throughput optimal.

Theorem 3: Let ρ+(n) = (log n)/m. If an interference-
cancelling multiplexer is used, also let ρ−(n) = (log n)/m−
log log n, and ε(n) = 2/(logn)1/(2(m−1)). If an interference-
ignoring multiplexor is used, let ρ−(n) = (log n)/m −[
4(m − 1)2 − 1

]
log log n and ε(n) = 2/(logn)2. Then

in both cases the protocol sequence Pε,ρ(n) with average
throughputs Rε,ρ(n) and SINRε,ρ(n) satisfies

R∗(n) − Rε,ρ(n) = O

(
log log n

n2

)
, (37)

SINR∗(n)

SINRε,ρ(n)
− 1 = o(1). (38)

Moreover, with this protocol sequence, the feedback link must
support, on average,

E
[
N IC

ρ

]
= 2m(log n)m(1 + o(1)) + O(1/n) (39)

E
[
N II

ρ

]
= 2m(log n)4(m−1)2+1(1 + o(1)) + O(1/n) (40)

users, depending on which multiplexer is used.
From Theorem 3 we see that while the use of a cruder

multiplexer does not incur a penalty in strong throughput
optimality, there is a significant price to be paid in terms
of the feedback requirement. In particular, in both cases the
number of users who must report their channel gains in any
scheduling interval is sub-linear, but their sub-linear growth
rates are different.

VI. MAIN RESULTS:
FEEDBACK WITH QUANTIZATION

We now generalize our optimality results to the case in
which the feedback is quantized.

A. Feedback Requirements

Our result from Section V-A generalizes rather naturally.
Since the protocol uses r-bit quantization for each channel
gain to be fed back, the total feedback per scheduling interval
is rNρ,σ bits, where Nρ,σ = |Rρ,σ|.
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Now Nρ is similarly a binomial random variable with mean
E [Nρ,σ] = npρ,σ. Since pρ,σ is the probability that a user
feeds back its channel gain vector, we have from (4) that

pρ,σ = pρpσ (41)

where pρ is as defined in Section V-A and

pσ = Pr{|h̃jĥ
†
j | ≥ σ} = 2r(1 − σ2)m−1, (42)

with the right-hand equality following from the protocol
constraint that σ ≥ µ(C), with, as in (3), µ(C) denoting
the coherence of the code. Hence, (41) and (42) imply that
the expected aggregate feedback per scheduling interval is
proportional to

E [Nρ,σ] = E [Nρ] 2
r(1 − σ2)m−1. (43)

B. Selection Failure Probability

We next characterize the probability p∅ that the pre-selection
phase of the protocol yields no candidate sets, generalizing our
result of Section V-B to the case where there is quantization.

Theorem 4: Let ρ+(n) and ρ−(n) be as in Theorem 1. Then
for any fixed ε ≥ 0 we have

p∅(n) ≤ e−E[Nρ,σ]pε|ρ,σ/m (44)

where E [Nρ,σ] is as in (43), and where4

pε|ρ,σ =
kε(Cr)(

2r

m

)
m∏

i=2

(
1 −

i − 1

2r

)
, (45)

with kε(Cr) denoting the number of codes of size m with
coherence at most ε that can be constructed from expurgations
of Cr, i.e.,

kε(Cr) =
∣∣{Clog m ∈ Cr : µ(Clog m) ≤ ε

}∣∣. (46)
This theorem characterizes the manner in which successful
pre-selection depends not only on the feedback parameters
(ρ, σ) and the interference control parameter ε, but also on
the properties of the quantization codebook Cr.

C. Architecture Optimality

Finally, we have that our architecture is also strongly asymp-
totically throughput optimal when the feedback is quantized.

Theorem 5: Let ε(n) ≡ 0, let ρ+(n) = (log n)/m,
ρ−(n) = (log n)/m−(2m−1)/m · log log n, and let σ2(n) =
1 − 1/ log2 n. Furthermore, choose a quantization codebook
Cr such that it contains at least one orthonormal basis, i.e.,
k0(Cr) ≥ 1. Finally, select the interference-cancelling mul-
tiplexer. Then the protocol sequence Pε,ρ,σ(n) with average
throughputs Rε,ρ,σ(n) and SINRε,ρ,σ(n) satisfies

R∗(n) − Rε,ρ,σ = O

(
log log n

nψr

)
, (47)

SINR∗(n)

SINRε,ρ,σ(n)
− 1 = o(1) (48)

4Note that pε|ρσ = Pr{A ∈ Tε,ρ,σ | A⊂ Rρ,σ}.

where ψr = 2r+1pε|ρ,σ. Moreover, with this protocol se-
quence, the aggregate rate the feedback link must support,
on average, is

E [Nρ,σ] = 2r+1m log n(1 + o(1)) + O(1/n). (49)
That one can also get such throughput optimality for the

case of interference-ignoring multiplexers follows immediately
from the fact that when ε(n) ≡ 0 the interference-cancelling
and interference-ignoring multiplexers are identical. However,
the feedback requirements continue to differ.

For any particular choice of multiplexer, we can also com-
pare the feedback requirement scaling with and without quan-
tization — e.g., (39) and (49) in the case of an interference-
cancelling multiplexer. As this case reveals, and as is true more
generally, we see that the number of users reporting back their
channel gains scales much more slowly when quantization is
used. This is because the common quantization is effectively
providing sufficient coordination to enable some pre-selection
to happen at the receiver.

We also emphasize that the parameter choices in Theorem 5
(and Theorem 3 earlier) are sufficient but not necessary for
throughput optimality. And in particular different parameter
choices will lead to different tradeoffs between the conver-
gence rate and feedback requirement. However, in the case of
quantization, it is worth noting that ε(n) → 0 is necessary.

Finally, it is also worth remarking that an implication of
the theorem is that a large codebook (fine quantization) is not
required for strong asymptotic throughput optimality — indeed
an orthonormal codebook of size m is sufficient. However,
the convergence rates do depend on the size and structure of
the codebook, and thus quantization codebook design is an
important aspect of the overall system design in practice. Such
issues are the focus of ongoing work.
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