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Abstract—
We consider the problem of joint multiplexer-scheduler design

for transmitting independent data streams over a Gaussian
multiple-antenna broadcast channel in which feedback is used to
convey channel state information from receivers to the transmit-
ter. It is known that various low complexity strategies can achieve
the optimal rate scaling as a function of receiver population
size. In this work we develop a simple and efficient quantization
strategy for use on the feedback link of such architectures.

I. INTRODUCTION AND BACKGROUND
There is growing interest in the development of efficient

wireless broadcast systems for distributing independent data
streams to different users over some geographical area. It is
now widely appreciated that the use of a multiple-element
antenna array at the transmitter can, in principle, greatly
increase the capacity of such systems. When the number of
users is no larger than the array size, the system design issues
are rather well-understood. Moreover, when it is desirable for
complexity or other reasons to restrict one’s attention to case of
linear multiplexing, the literature characterizing the associated
performance tradeoffs is particularly extensive.
Recent approaches to this scheduling problem have exam-

ined the scaling behavior of the multiple-antenna broadcast
channel in the large user limit with perfect channel channel
state information [1]–[4] using various interference cancelling
multiplexers and complexity constraints [2], [3], [5]. Here, we
provide a simple architecture for scheduling over the Gaussian
MIMO broadcast channel with quantized feedback. We have
shown [6] the achieved rate of this architecture asymptotically
equals that of the best multiplexer and scheduler. This was
done by showing that there exists a group of users equal
of size equal to the transmit dimension in which the mutual
interference is negligible. In this paper we present a simple
quantization scheme and show that good performance can be
achieved when the number of users is only a small multiple of
the user population. The single user version of the problem was
discussed in [7]. We examine the effects of choosing groups
of various sizes for a large user pool.

II. CHANNEL AND SYSTEM MODEL
The system of interest consists of an m-element transmitter

antenna array and a pool of n destinations (users). The
transmitter has n collections of messages, each such collection
destined for one of the n users. The collections are infinite in
size, corresponding to an infinite backlog.

This work was supported in part by NSF under Grant No. CNS-0434974,
Mitre Corporation, and by HP through the MIT/HP Alliance.

Our discrete-time channel model is a narrowband block
fading one. Specifically, in any particular block, the signal
yj(k) received by user j at time k in response to a signal
x(k) transmitted from the array is of the form

yj(k) = h
†
jx(k) + zj(k) (1)

where zj(k) is independent identically distributed (i.i.d.)
CN(0, 1) noise, and where the (normalized) channel gain
vectors hj have i.i.d. CN(0, 1/2m) elements. The noises and
channel gains are independent from receiver to receiver, and
from block to block.
Any message scheduled for delivery is transmitted within

one block, and the blocks are long so that messages can
be reliably received. Thus each block corresponds to a new
signaling (and hence scheduling) interval. Within each sig-
naling interval, the transmitter sends from its array a group
of messages, one for each of a subset of the user pool. The
transmitter is subject to an average total power constraint of
P , i.e., E

[‖x‖2] ≤ P within each signaling interval. We will
let R(HA) be the achievable rate for the user set A under this
power constraint.
In our model, channel gains in each signaling interval are

known perfectly (i.e., measured to arbitrary accuracy) at the
respective receivers at the beginning of each such interval.
Moreover, a feedback link exists by which individual users
can inform the transmitter of their channel gains (or more
generally quantized versions thereof), also at the beginning
of each associated signaling interval. The users do not know
each other’s channel gains, nor are they able to more generally
share information between each other.
Finally, the performance criterion of interest in this work is

average throughput (i.e., expected sum-rate), and our focus is
on the small n regime (with m fixed).

III. SYSTEM AND PROTOCOL ARCHITECTURE
The architecture of interest is as illustrated in Fig. 1. The

protocol is identical in each signaling interval, so we restrict
our attention to a single arbitrary one. In such an interval, a
subset R of users from the full population U sends a quantized
representation of their respective channel gain vectors to the
transmitter over the feedback link. The associated quantization
codebook C is fixed and the same for all users. Its structure is
such that the codewords c ∈ C all lie on the unit sphere in m
(complex) dimensions, and the quantization rule corresponds
to

ĥj = arg max
c∈C

∣∣c†hj

∣∣ , (2)
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Fig. 1. MIMO system architecture. In each scheduling interval a subset R

of the full user pool U of size n reports quantizations ĤR of its channel
gains to the transmitter via the feedback link using a decentralized (individual)
criterion. From the setR, the transmitter first forms a collection T of candidate
user sets of size m using a pairwise criterion; this is the pre-selection phase.
Next, a set A ∈ T is chosen at random as the active set, whose messages
{uj , j ∈ A} are linearly multiplexed across the array for transmission.

where ĥj denotes the quantization of hj . We let r denote the
number of bits to which a channel gain is quantized, so the
the codebook is of size 2r. We label the codewords in the
codebook C = Cr as c1, c2, . . . , c2r .
With this notation a key figure of merit for the codebook is

its coherence
μ(C) = max

i�=j

∣∣∣c†icj

∣∣∣ . (3)

Another key figure of merit for a codebook in a multi-
user system is the maximum root-mean-square (RMS) inner
product magnitude

μrms(C) = max
j

√∑
i�=j

∣∣∣c†icj

∣∣∣2. (4)

In general, 0 ≤ μ ≤ 1, and, for a given r, smaller values
of μ and μrms correspond to better codes. It is a natural to
consider how large a code can be for a given coherence. In
this direction we have the following bound from [8], [9].
Proposition 1: Let CN ⊂ Cm be an arbitrary code of size

N . If μ = μ(CN ), then

N ≤ 1− μ2k(
k+m−1

k

)−1 − μ2k

for all k such that
(
k+m−1

k

)−1/(2k)
> μ.

This bound can be seen for the case of 4 transmit antennas in
Figure 2.
At each scheduling interval the subset R is determined in a

decentralized manner, i.e., based on an individual evaluation
of each channel gain vector or a predetermined schedule. The
particular criterion we consider corresponds to each user j
computing the squared norm ‖hj‖2 of its channel gain vector,
and the correlation |h†jĥj | between the channel gain vector
and its quantization ĥj . If these factors fall within certain
prescribed ranges, a user will convey its channel gain to the
transmitter. More formally, the particular criterion we consider
corresponds to

Rρ,σ
Δ
=

{
j ∈ U : ‖h2

j‖ ≥ ρ and |h̃jĥ
†
j | ≥ σ

}
, (5)

μ

2r Welch Bound FFT Codes

Fig. 2. A plot Welch bound and the coherence achieved by some FFT codes
of size 4 to 200 in dimension 4. The Welch bound for k = 1 and large k are
plot as dashed lines. The union over all k is plotted as the solid line.

where h̃j = hj/‖hj‖, and where ρ and σ are prescribed
parameters of the protocol. Furthermore, it suffices to restrict
our attention to σ ≥ μ(C).
At the transmitter, there are three relevant stages of pro-

cessing. First, from the set R of reporting users, a collection
T of candidate subsets of size l is formed; this is the pre-
selection phase. Next, one of these subsets, denoted A, is
selected from T at random, and corresponds to the active user
set for the signaling interval. Finally, one message for each of
the active users is selected, and the resulting group of messages
is multiplexed across the array for transmission.
The pre-selection phase is based on simple pairwise evalu-

ation of the vectors in R. The particular criterion we consider
corresponds to

T
(l)
ε,ρ,σ

Δ
=

{
A ⊂ Rρ,σ : |A|= l and |ĥ†i ĥj | ≤ ε, ∀ i �= j ∈ A

}
,

where ε and l are pre-selection parameter chosen based on
knowledge of |Rρ,σ|. In general, the parameters ρ, σ, and ε
— and hence the sets R, T, and A — will all be functions
of n. Our notation will only show this dependency explicitly
when necessary.

IV. QUANTIZATION
We consider codebooks constructed from fast Fourier trans-

form matrices1. This class of codes can be thought of as a
subset of m rows of the 2r × 2r FFT matrix [10]. More pre-
cisely, we let the FFT code with index set g = [g1 g2 . . . gm],
denoted Cfft(g, 2r), be the codebook of size 2r with codewords
taken to be the columns of

1√
m

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

ej π

2r−1 g1 ej π

2r−1 g2 · · · ej π

2r−1 gm

ej π2

2r−1 g1 ej π2

2r−1 g2 · · · ej π2

2r−1 gm

...
...

. . .
...

ej π(2r
−1)

2r−1 g1 ej π(2r
−1)

2r−1 g2 · · · ej π(2r
−1)

2r−1 gm

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

1We note that this theory is much deeper than considered here and that any
FFT code can be considered as the image of a linear code. However, we will
not mention this connection except when helpful in simplifying proofs.
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r g4

2 {1, 2, 3, 4}
3 {1, 2, 3, 5}
4 {1, 3, 4, 8}
5 {1, 2, 6, 13}
6 {1, 2, 50, 54}

Fig. 3. The index sets for the FFT codes with minimal coherence in 4
dimensions for 2, 3, 4, 5 and 6 bit quantization.

These code books are known to achieve the smallest μ for a
given r in very special cases. The index sets that minimize
the coherence for 2, 3, 4, 5 and 6 bit quantization can be seen
in Figure 3.
It is important to note that using this construction the RMS

inner product magnitude is the same for all codewords. That
is,

μrms(Cfft) = max
j

√∑
i�=j

∣∣∣c†icj

∣∣∣2 =

√∑
i�=k

∣∣∣c†ick

∣∣∣2 ∀ck ∈ Cfft

Moreover, the Voronoi regions of every FFT code are isomor-
phic so that under the assumption of uncorrelated Gaussian
channel vectors each users channel vector is equally likely to
be quantized to any code index. Lastly, it is clear from (6) that
the correlation between every two users is only a function of
the magnitude of the d difference of the indices. That is,

|c†icj | = g(|i− j|)
for some function g. We will argue that it is these properties
of FFT based codebooks that make this class of quantizers
valuable when considering the scheduling of users with or
without a complexity constraint. We address this after first
discussing the multiplexing phase of our protocol.

V. MULTIPLEXING
For the multiplexing phase of the protocol, we restrict our

attention to linear multiplexers. Specifically, with u denoting
the vector of m coded symbols uj , j ∈ A for the m active
users, the transmitted signal takes the form

x =
∑
j∈A

ujwj = WAu (7)

where the W is a matrix whose columns are the unit-
norm weight (i.e., beamforming) vectors wj , j ∈ A. We
further restrict our attention to uniform power allocation in
the multiplexing, i.e., E

[|uj |2
]

= P/m for all j ∈ A.
Among linear multiplexers, of primary interest for discus-

sion will be interference-ignoring (II) multiplexers. The weight
matrix in this case takes the form

WII
A = ĤA

where the columns of ĤA are ĥj , j ∈ A. At the other end of
the spectrum are interference-canceling (IC) multiplexers, for
which

WIC
A = ĤA(Ĥ†

A
ĤA)−1. (8)

We will only consider the case of interference-ignoring mul-
tiplexers. It is simple, using the relevant expressions in [6], to

extend the following discussion to the class of interference-
cancelling multiplexers. In the case of interference-ignoring
multiplexers, for a given active set A and channel realization
HA, it is straightforward to verify that the achievable sum rate
satisfies

RII
HA

(n) =
∑
j∈A

log(1 + SINRII
j ) (9)

where
SINRII

j =
P‖hj‖2|σj |2

m + P‖hj‖2‖σc
j‖2

(10)

with σj = ĥ
†
jh̃j and σ

c
j = Ĥ

†
A\jh̃j .

It is clear that the SINR in (10) is dependent on the
correlation between the channel vectors of the set A\j and hj .
Thus, the pre-selection parameters ε and l play an important
role on the rate. We now turn to examining exactly how these
parameters effect the expected sum rate.

VI. PRE-SELECTION
Recall that using our architecture at each scheduling interval

a random number of receivers report a quantized version of
their channel vector. Since the transmitter is not informed of
the magnitude of the receivers channel gain nor the correlation
between the channel gain vector it is sufficient to only consider
the quantization indices that are reported at each interval2.
That is, for pre-selection we only need to consider the random
subset of distinct quantization indices that are reported at each
interval.
Pre-selection may be broken in to two steps. The first step

groups the reporting users by their quantization index and the
second does a pairwise evaluation for each group. We let Q

be the random subset of quantization indices that are reported
at each interval, i.e.

Q =
{
i : ĥj = ci for some j ∈ Rρ,σ

}
.

Remark: If the preselector searches for more than one user,
say l many users, it is of interest to have |Q| 
 l so that a
group of users may be found with low interference. Thus, one
is interested in maximizing the expected number of distinct
code indices at any scheduling interval. It is known that a
uniform probability assignment to the code indices is optimal
[11]. Thus, a code in which Pr(ĥi = cj) = 1/2r maximizes
the expected number of distinct code indices.
Considering FFT based codes it should be clear that the

probability that any user is quantized to any index, say i,
is independent of i since the Voronoi regions are congruent
for FFT based codes3 and since Gaussian random vectors are
isotropic. Thus, if one is interested in maximizing the expected
value of |Q| at any interval and not the coherence, FFT based
quantization code books are optimal. In this direction we have
the following lemma.
Lemma 1: Let Cr be a codebook of size 2r such that for

any user, say user i, it is equally likely that the user’s channel,
hi, is quantized to any codeword. That is, Pr(ĥi = cj) = 1/2r

2Note that had the users channel gains been quantized we can consider a
user with the largest channel gain
3This is also true if we fix σ ≥ μ(C).
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for any cj ∈ Cr. Then, the probability that at any scheduling
interval there are k quantization indices given j users feed
back is

Pr (|Q| = k | |Rρ,σ| = j) =
(2r)k

{
j
k

}
2rj

where (x)k = x(x − 1) · · · (x− k + 1) is the falling factorial
and where

{
j
k

}
is the Stirling number of the second kind4.

Note, however, that even if |Q| is large at a particular
scheduling interval improper choice of ε and l may cause
T

(l)
ε,ρ,σ to be empty. In particular, if the quantization codebook
does not have a sub-code of size l with coherence less than ε
then T

(l)
ε,ρ,σ will always be empty. We let kε(Cr, l) denote the

number of codes of size l with coherence at most ε that can
be constructed from expurgations of Cr, i.e.,

kε(Cr, l) =
∣∣{Clog l ∈ Cr : μ(Clog l) ≤ ε

}∣∣. (11)

In general, the preselector should choose ε and l as to
maximize the expected rate given |Q| and the structure of
C (see [3] for a related discussion in the case of perfect
feedback).
It is quite cumbersome in general to precisely characterize

the trade off between the expected rate for a given choice of ε
and l. We discuss how this may be done in the following but
for now note that for any code we can provide simple bounds
on the pre-selection success probability, Pr(|Tε,ρ,σ| �= 0). In
this direction we note that for FFT codes it is clear that the
probability that any subset of Q of size l is in T

(l)
ε,ρ,σ is

p
(l)
ε|ρ,σ =

kε(Cr, l)(
2r

l

) .

In order to bound the probability that |Tε,ρ,σ| �= 0 we let

E(p, l)
Δ
=

1

l
max

{
p

2(1− p)
, log

(
1 +

p

1− p

)}
. (12)

Then, we have the following lemma from [6].
Lemma 2: Consider a randomly chosen finite set of quanti-

zation indices Q. Then, the probability that Tε,ρ,σ is non-empty
is lower bounded as:

Pr(|Tε,ρ,σ| �= 0) ≥ 1− exp

(
−l

⌊ |Q|
l

⌋
E(p

(l)
ε|ρ,σ, l)

)
(13)

It is clear that the choice of l strongly effects the probability
that Tε,ρ,σ is non-empty in Lemma 2. We now address what
values we should choose for l in pre-selection in terms of the
expected rate.

A. Single User Time Division and Opportunistic Scheduling
We begin by considering the most trivial version of our

architecture where every user feeds back their channel vector
and one user is selected randomly (or via a time division
scheme), i.e. l = 1, ρ = 0 and σ = 0. This choice of

4It is well known that the Stirling numbers of the second kind satisfy the
recurrence relation

nn

k

o
=

nn − 1

k − 1

o
+ k

nn − 1

k

o

We refer the reader to [12] for an excellent introduction to these numbers. We
note that the Stirling numbers of the second kind may similarly be defined
through the relation xn =

P
∞

k=0

˘
n

k

¯
(x)k .

parameters corresponds to single user beamforming with finite
feed back rate. Such a scheme was presented and analyzed in
[13]. In this case, by averaging over the correlation σ1 the
achieved rate is equal to

Rmk(P ) = Eσ1 [C(σ1P )]

where we let C(x) be the ergodic capacity

C(x) = E‖h‖2
[
log

(
1 + x‖h‖2)] .

However, it should be clear that for a sufficiently large
pool of users one can do better than pure time division or
random selection. Indeed, as we have mentioned it is useful
to have the users self-select themselves based on their channel
norms. Such a scheme incurs no additional complexity at the
transmitter and, provided that a user meets the norm constraint
‖h‖2 > ρ, the rate is strictly greater. We define the bounded
ergodic capacity to be

Cρ(P ) = E
[
log

(
1 + P‖h‖2) ∣∣ ‖h‖2 > ρ

]
It is clear that the expected single user rate with a norm
constraint ρ and random selection then becomes

Rsu(ρ) = Pr (Rρ,σ �= 0)Eσ1 [Cρ(σ1P )]

As before, when the user population becomes sufficiently large
this scheme may be improved upon. Consider the case when
the set Q has two quantization indices that correspond to
code vectors with zero correlation. Then, for the interference
ignoring multiplexer the expected rate is

2Eσ1 [Cρ(σ1P/2)]

For large P this is clearly greater than Eσ1 [Cρ(σ1P )]. How-
ever, when the quantization indices are not orthogonal the
question is not as straight forward. We address this more
general question in the following section.

B. Multiple User Scheduling
When there is sufficiently high SNR it is often desirable

to transmit to more than one user. In this case the mutual
interference between users becomes import. That is there is
a trade off between the number of users that we select and
the achieved sum rate. In order to combat mutual interference
the transmitter may preselect groupings of users that have a
low level of interference by choosing ε � 1. However, if ε is
chosen too small the expected sum rate will be approximately
0 due to the low probability that such a set exists.
In the case of the interference ignoring multiplexer we may

lower bound (10) by

SINRII
j ≥ 1 + P

l (|σj |2 + γc
max(ε, l))‖hj‖2

1 + P
l γc

max(ε, l)‖hj‖2
− 1 (14)

=
1 + SIRN

j (σj , ε, l)

1 + SIRD
j (ε, l)

− 1 (15)

where γc
max(ε, l) is the worst possible value of ‖σc

j‖2, i.e.

γc
max(ε, l)

Δ
= min

A,j,H : |T|�=0, A∈T, j∈A

‖σc
j‖2
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and in turn where SIRN
j and SIRD

j are one less than the
numerator and denominator of (14) respectively. Thus, any
user in Tε,ρ,σ (if one exists) has an expected rate at least

R−(ε, l)
Δ
= Eσ1

[
Cρ

(
SIRN

1 (σ1, ε, l)
)]− Cρ

(
SIRD

1 (ε, l)
)
.

Weighting R−(ε, l) by the probability that |T(l)
ε,ρ,σ| �= 0 given

|Q| yields the expected sum rate
Rsum(ε, l)

Δ
= l Pr

(
|T(l)

ε,ρ,σ| �= 0 | |Q| = q
)

R−(ε, l).

Note that the expected rate R−(ε, l) is a decreasing function
of ε while the probability that |T(l)

ε,ρ,σ| �= 0 is increasing in ε.
Asymptotically it is sufficient to fix l = m and to take ε = 0
to asymptotically achieve the optimal rate [6]. However, as
previously noted, in practice for finite n it is better to choose
ε and l based on the knowledge of |Q|. In fact if |Q| is small
then it is best that one take ε = 1 and perform an optimal
search over all sets. However, if |Q| is large this may be too
complex. In this case, the preselector should choose ε and l as
to maximize the expected rate. That is, the preselector chooses

(ε�(q), l�(q)) = argmax
ε,l

Rsum(ε, l).

Then the resulting bound on the rate is then

R−mu(ρ, σ, n) =
∑
i<j

Pr (|Rρ,σ| = j) Pr (|Q| = q | |Rρ,σ| = j)

×Rsum(ε�(q), l�(q))
(16)

Note, however, that this bound uses the worst case value for
the rate. It is natural to ask if this bound in practice is a fair
characterization of the achievable rate and if not whether there
is a simple way to improve on the achievable rate.

VII. IMPROVING PERFORMANCE WITH GREEDY SEARCH
It should be clear that the lower bound on the achievable rate

(16) is close to the achieved rate if for a given ε a large fraction
of the possible subsets of |T(l)

ε,ρ,σ| achieve approximately the
same rate. That is, a large fraction of subsets achieve a rate
approximately equal to Rsum(ε�(q), l�(q)). Note, that (16)
assumes that |Q| is large so that pre-selection is needed.
Otherwise, if |Q| is small one may select a set of users for
transmission by computing the achieved rate for all subsets
of Q and choosing the maximum. Thus, it is reasonable to
assume that |Q| is large and hence |C| is large so that |σj | ≈ 1

or alternatively that h̃j ≈ ĥj for all j. Thus,

σj ≈
∑
i∈A

i�=j

ĥ
†
i ĥj =

∑
qi∈Q(A)

qi �=Q(j)

g(|qi − qj |) Δ
= sj(A)

where we let Q(A) be the set of quantization indices for the
users in the set A. Thus, the sum rate achieved by any set A

is approximately equal to

Ra
mu(A)

Δ
=

∑
j∈A

log

(
1 +

P‖hj‖2|σj |2
|A|+ P‖hj‖2sj(A)

)

Note, that this expression is only a function of the set of
differences |qi − qj | and it is clear that

Ra
mu(A + j) = Ra

mu(A)

for all j ∈ Z. Thus, when computing the rate achieved by a
set A we may first translate A by its minimal element and
then compute the rate. In this direction we let the set ΔA =
A−minj∈A j. Then, we have that Ra

mu(ΔA) = Ra
mu(A). It

is important to note that the cardinality of the collection of
translated user sets is a fraction of the collection of all user
sets. Thus, if one uses a table look up to compute the rate
achieve by a given set a constant speed up can be obtained.
More importantly, however, using translated difference sets
aids in a greedy search. Before proceeding to explain how
this order is useful we note that the authors and others have
reduced the search complexity by relating the scheduling
problem to a search on a random graph [2], [3], [5]. In general
finding maximal sub-structures in a random graph requires
extensive search. However, finding a sub-graph of small size
is much easier. The complexity of this problem is also much
reduced if the underlying graph is strongly regular, which is
the case for FFT based codes. In these cases, applications of
backtracking algorithms work extremely well [14]. By greedily
choosing sets based on the order of the translated sets one can
improve on the worst case bound (16). Providing good bounds
on this approach is the subject of ongoing work.
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