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Abstract— This paper is motivated by the following problem. Our goal is to quantify the loss incurred in rate due to
Consider an image we want to compress. The appropriate the partial knowledge op in such situations. Specifically,
distortion measure with respect to which we compress the image v model the human perception by assuming thbelongs
is specified by the human visual system. This distortion measure . .
can only be experimentally determined and our knowledge toa cert.aln class of well-behaved functlgns, depote@by
about it will hence be only partial. Further, in our setup we expect to learty interaction with

This leads us to consider the general problem of lossy source humans. Let the class of functions that are in accordande wit
coding with partial knowledge about the distortion measure. the firstn interactions bed’,,, with 'y =TI andI’,, c I',,_;
More precisely, the distortion measure is only known at a for 4jl 5, > 1. If we want to guarantee that the description

number of sampling points. We describe several measures for . oy . . .
the loss we incur through the lack of full knowledge of the true of {Xi}i>1 is within a distortion D with respect to (the

distortion measure, each with a different operational meaning. Unknown)p € 1",?, we will have to deSigr' asource code tha_t
We give an asymptotically tight characterization of this loss operates well simultaneously for all distortion measures i

in terms of three key parameters: The number of sampling T',,. The smallest number of bits per symbol needed for such
points, the dimensionality of the source, and the smoothness a description is given by [2], [3]

assumptions on the distortion measure.

I. INTRODUCTION Ry, (D) = Q:E(p(x}l)l)fgmpernI(RQ)- 1)

Background and Motivation. In most applications of data Equation (1) holds unconditionally if¢ and Y are finite

compression involving a human observer, the diStortion'meﬁlphabets; it holds under some technical condition for it&in

Sure, with respect_t(_) which compression 1S to be performeglphabets (see [3] for the details). Given this, there arersé¢
is not known explicitly. Rather, it is the human percepuonwayS to measure the loss in terms of rate we incur by the
which defines the relevant distortion measure, and we caj i, knowledge ofp. As the first criterion, we look at

only gain partial knowledge of it through experiments. Wi he distance betweeRr (D) and R,(D) for p € T. As a

are .hence facing a problem 'of Iqssy source coding Wity .onq criterion, we measure the distances betwagib)

partial k_nowle_zdge about th? distortion measure. - for differentp € T",,. Our goal is to characterize the behavior
Consider first the classic problem of describing a S€s the |oss in rate as a function of the number of interactions

qguence of independent identically distributed random-varkOr samples): of p we have at our disposition. We obtain

ables{X;}>, within distortion D, using the (single-letter) tight characterization of the asymptotic behavior of theslo
distortion measure. The smallest number of bits needed We note that the problem of lossy source coding with
for such a description is given by the rate distortion funeti respect to a class of distortion measures has been investiga
(see, e.g., [1]) in [2] and [3] as mentioned above. A variation of this
R,(D) £ inf I(P,Q), setup, in which the true distortion measure is unknown at
Q:E(p(X,Y))<D the encoder but known at the decoder, is considered in [4]
where P € P(X) is the marginal distribution of thet;, —2and [S]- Inall of these papers, the set of distortion measure
I(P,Q) denotes mutual information, and where the miniW_'th respect to which we see_k unlve_rsallfcy is fixed. This
mization is over all conditional distributiong € P(y|.x).  differs from the problem considered in this paper as here
For a given distortion measupe R, (D) can be computed a good sampling procedure is requweq to be designed; as a
either analytically or using numerical methods. As we havEonseauence the set of possible distortion measures desrea
argued beforey might be only partially known. For example, I the number of samples, and the emphasis here is on the
if {X;}:>1 represent images that we want to compress thetryMPtotic behavior im.
the appropriatey is specified by the human visual systemprgpiem Formulation. Let the source alphabeét be[0, 1]
In this casep can only be experimentally determined andyng the reconstruction alphabt be some finite set (i.e.,
will never be fully known. In other words, instead of full Y| < o). The distribution P of the source{X;};>; is
knowledge ofp, we only know thatp belongs to some class g35sumed to admit a densiy such thatl/M, < p@) <

of distortion measures. M,,Yz € X, for some) < M, < oc. Define for a Lebesgue-
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L,(X) is the space of all measurable functiohen X such S,, = &A™ x V" the set of all possible: sampling points.
that || f||.,cx) is finite. For A € Z7 let [\ = >, \;  Givens, = {(zi, i)} 1<i<n € Sn, let ¢, : T x S, — R”

and Z7, £ {X € Z7 : [\ = j}. Denote byp* £ denote the mapping ofp,s,) to {p(z;, yi)}1<i<n. FOr a
oo My - O M, the (weak) derivative of orden|. The p €T, let

Sobolev spacéV/(X) is defined as the space of functions A (- _ . B

f € Ly(X) such that? is defined for all\ € 27 with L(p:sn) S 4P €12 6n(p5n) = énlpssn)},

|A| <1, and such that the norm i.e., T'(p,s,) is the set of all distortion measures ihthat
. coincide with the true distortion measurgst all sampling
||f||W(;(X) L Z Z ||8)\f||Lq(X) pOIntSSn. Define
J=0 A€zt e1(,n) = ing sup A(T'(p,sp), py7)-
. .. . . . . SpESn T
is finite. In this paper, we consider the class of distortion ’éo
measures

Intuitively, 1 (T, n) is the price we pay in terms of distortion,
by designing a source code which works simultaneously for
T2 2 (). p(- <K . :
{o = lloC 9wy < K all p € I'. We define a second measure for the widtH of
Hp('ay)HLoo(X) SB,VyEJ}}, A . B
eo(Tyn) = inf  sup Alp,p, 7).

for some B, K < oo, and withl < ¢ < oo, | € N and sn€Sn  per
lg > m. This last condition ensures that! () is a subspace ”61;(2”(35”)
of the space of continuous functiod§ X’) (by the Sobolev
Embedding Theorem [6, Chapter 3.1]). The above mode
the fact that there ignherent smoothness in the human
perception. Note that we assume that all function$'iare
bounded, i.e., foralp € T, p: X x Y — [0, B], for some
B < .

Under these assumptions the sufficient condition for (1) t
hold is satisfied. ByD,(r) and Dr(r), we denote the dis-
tortion rate functions corresponding 1#0,(D) and Rr(D),
respectively.

Next, we introduce two measures for the wititf I'. Let  Main Results. We obtain asymptotically tight characteriza-

tion of the errors (-, -) andey(-, ) as well as the algorithm

|E words,e2(I', n) measures the price we pay by calculating
5(D) with respect to the worsp € T' based on partial
knowledge of the actual distortion measure

From the definitions of,(-,-) andea(:,-), it is clear that
ea(+,+) < e1(,-). However, as we shall see the asymptotic
Behavior of both of these losses is exactly the same. The
notion of e, (-, -) is operationally more useful. We introduce
the definition ofey(-,-) as it will be useful in our proof
technique along with the above inequality.

s _
Alpr, p2,m) = |Dpu (1) = Dy, (7)] that achieves this optimal performance.
for p1,p2 € T, » > 0. As everyp € I is bounded byB, we Recall the definition of as
have A(p1, p2,7) < B. With slight abuse of notation, define L
AL, p,r) as = {p o y)lwea) < K,

||p(ay)HLoo(X) < Bavy € y}a

. . for some K, B < oo, and withl < ¢ < o0, !l € N and
for p € I, » > 0. Figure 1 illustrates these definitions. Calllq > m.

A(T, p,7) & Dr(r) — Dp(r)

Theorem 1. For i € {1,2} asn — o©
(I, n) = O(n~1m).

Theorem 1 characterizes the asymptotic behavior of the
losse;(I'',n) in terms of the dimensionality of the source
m, the number of samples of the distortion measure, and
the smoothness assumptions about the class of distortion
measures as captured byinterestingly, the asymptotic loss
is the same for both measuregT’, n) ande; (I'!,n). Thus,
at least asymptotically, there is no additional penalty ¢o b
" D paid by designing a source code which works simultaneously
for all possible distortion measures which agree with the tr
distortion measure at the sampling points.
Fig. 1. DistanceA(py, o2, 7) between two distortion measures. By definition, we have assumed that the sampling scheme

. _ _ _ o is non-adaptive, i.e., the choice of theth sampling point
The terminology is chosen following the conceptaividths in approx-

imation theory. For more details aboutwidths and the related notion of does DOt depend Or_] the evaluation FOb't the firstn — 1 .
e-complexity, see for example [7] and [8]. sampling points. It is natural to ask whether an adaptive




sampling strategy improves the performance. More formallfrrom this, we get
" X .
let S/} (p) be the set of all sampling points of the form eThn) < sup AT p,sn), p,r) < 0.

{(561791)7(952(,0(3317yl))ayz(P($17y1)))7---}- ) ) pErtr=0 .
_ _ _ Hence it suffices to show that suchsa andé exist and to
Define the corresponding width measures characterize the dependency orof the latter.
A A Note that, for anys,, € S,,, Q € P(Y|X), p € I'" and
r - f Al n)y st )s ~
T Soup I S AT (8n). 1) 5 € T'(p,5,) we have
A .
ey (I'yn) =sup  inf sup  A(p,p,r E(p(X,Y)) —E(p(X,Y
2(lyn) 2 2P s, 28400 el e (0,9, 7)- [E(p(X,Y)) — E(p(X,Y))|
20 <Y [ p@Qulptay) - pleo.)lde
The following will be an immediate corollary of Theorem 1. yeY fe"
Corollary 2. For i € {1,2} asn — oo <> M,|p(z,y) — plz,y)|dz
yey JTEX

Al o\ “l/m
g (I",n) =6(n ). < |VIMy[llp - /3||L1(X)HLOO(3/)' )
Organization. The rest of the paper is organized as followsTheorem 4.2 in [9] (see also [10, Proposition 5.2, Theorem
In Sections Il and I, we present the proof of Theorenf.1]) asserts that fon > n; there exists), € S, andp* €
1. Specifically, Section Il provides an upper bound o’ (p,s;) such that
e1(+,-),e2(+, ), while Section Il provides a matching lower
bound. In Section IV, we present the proof of Corollary 2.

Finally, in Section V we present our conclusions. for all 5 € T(p,s;,) and some positive constadt. As p €
I'(p,s?), we get from this

l0* = Allzagay < éan

Il. PROOF OFTHEOREM1: UPPERBOUND ~ N . - - _lm
lo=pllr,x) < lo=p" Ly ) +lp" =BllLy () < 26m7 ™.

There are several difficulties evaluating(T',n), i € ] ] ]
With this, we can continue (2) as

{1,2}. First, we have to solve a minimax problem (min-
imizing over all sampling strategies, maximizing over all E(p(X,Y)) —E(p(X,Y))| < 2|y|Mp51n4/m
distortion measures and rates). Secodd,s, p2,7), the a “im a5
function over which we optimize, is not given explicitly, —an o
but rather as a solution of an optimization problem itselffor n > n;. This completes the proof of Lemma 3. &
Moreover, for most input distributiond® and distortion The proof of Lemma 3 uses as a central tool an algorithm
measuresp, the distortion rate functiorD,(r) cannot be for the reconstruction of a function from its samples aswive
calculated analytically. Instead, we prove a “continuity”in [9] and [10]. This algorithm divides the unit cub&
property of the distortion rate function in the spaceldf into smaller cubes of siz&*. Within each such subcube
This, along with a sampling-reconstruction algorithm,dea a number of sampling points are chosen to allow unique
to the desired result. interpolation by a polynomial of degrdek is chosen such
that the total number of sampling points is at mastThe
resulting reconstruction (callegt in the proof of Lemma 3)

is thus a piecewise polynomial.

Lemma 3. For some positive constant ¢, n > nq, and i €
{1,2}
e(Tn) < eyn™t/m™,
o o [1l. PROOF OFTHEOREM 1: LOWER BOUND
leOf' Frc;m the deﬁmpon, .'t is easy to see that Lemma 4 below provides a lower bound to the loss
go(T ,n)l < e1(I"",n). Hence, it suffices to prove the resultgi(rl n),i € {1,2} with the same asymptotic behavior
for El(r,’n)' , as the upper bound in Lemma 3. This shows that the
To this end, assume there exists,ac S, and ad > 0 reconstructionp* (as defined in the proof of Lemma 3) of

such that for allQg € PV|Y), p € I, p € T'(p,s,) we the unknown distortion measupeis asymptotically optimal
have|E(p(X,Y)) — E(5(X,Y))| < 6. Then for allD > 0 [eIS asymp y optimal.

Lemma 4. For some positive constant ¢, and ¢ € {1, 2}

{Q € POIX)  E(p(X,Y)) < D -3} T—

c{Q e P|X):E(p(X,Y)) < DVpeTllpsy)} , , ,
{@ (V1) = E(p( )) < Db (p:5n)} Proof: Sincee; (I, n) > e5(I', n) it suffices to prove

Hence for allp € T* and allD > 0 the result fore,(T,n). To this end consider any set of
] sampling pointss,, € S,,. Theorem4.3 in [9] (see also [10,
Rri(ps,) (D) = Q:E(ﬁ(xy)glf)vﬁew(p,sn) I(P,Q) Theorem 6.1]) asserts that for a given= {(xi, i) }1<i<n,
< inf 1(P,Q) there exists a functiorf satisfying|| f|[w: (x) <1 and such
T QE(p(X,Y)<D-§ that f(z) >0, f(z;) =0 for all i € {3,...,n}, and

:RP(D—(S) Hf”L > Czn l/m



for some constang,. Let M £ min{B, K/2}, and define
two functionsp* and p:

p*(z,y) & M(1— f(z)), forallzeXyec),
o(z,y) & M, forallz e X,y € Y.

Note that bothp and p* are elements ofl! and that
P (zi,yi) = plzi,y;) for al ¢ € {1,...,n}. We have
D,(r) =M and

Dy r) = (1 | _ p@)lf(@)dr) £ D

T

for all » > 0. D* can be upper bounded as
N 1
D < (1= 3l @) co)

1
S M(l — ﬁpéQTl_l/m)
2N — an_l/m.

Putting this together, we get
A(p,p*,r) = M — D* > con™V/™,

Now, by definition p € T and by constructionp* ¢
I''(p,s,). Hence,

sup  Ap, p,r) > con” ™. 3)
pel!
pPEL! (p.5n)
r>0
Since (3) holds true for al,, € S,,, we have
e2(T',n) = inf  sup  Alp,p,r) > con /™.
sn€S, !
pel’
PET! (p.sn)
r>0

This completes the proof of Lemma 4. |
The proof of Lemma 4 is based on the construction of

function f € W!(X) which vanishes at a prescribed number

of sampling points as described in [9] and [10]. This con
struction divides the unit cub& into 2"'n subcubes. As the
number of sampling points is, at least(2™ — 1)n of these

As e4(I'",n) < ("', n), it suffices to show a corre-
sponding lower bound forZ' (T?, ). But this follows now
from the proof of Lemma 4. Indeed, ji(x,y) = M for
all z € X, y € Y, the adaptive sampling strategy will
result in a set of sampling point§(z;(p),yi(p)) }1<i<n-

We can now construct @* which equalsp at these point,
exactly as we have done in the proof of Lemma 4. Thus
2Tl n) = Q(n~Y™) asn — oo, concluding the proof.m

V. CONCLUSION

In this paper, we have looked at the problem of lossy
source coding with partial knowledge about the distortion
measure. More precisely, the distortion measure is only
known at n sampling points. We have described several
measures for the loss we incur through the lack of full
knowledge of the true distortion measure, each with a differ
ent operational meaning. We have characterized the beahavio
of this loss in terms of three key parameters: The number
of sampling pointsn, the dimensionality of the source,
and the smoothness assumptions on the distortion measure
(quantified by the numbaer of its derivatives with bounded
L, norm).

The asymptotic behavior for each of the different loss
measures considered &n /™) asn — oo. The fact that
these fairly different operational meanings (computatidn
rate distortion function for the worst case versus conssoc
of universal source code, fixed sampling points versus adap-
tive sampling) have the same asymptotic behavior, suggests
that then—%/™ scaling of the loss is somewhat robust with
respect to small changes in the model assumptions.
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