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Abstract— This paper is motivated by the following problem.
Consider an image we want to compress. The appropriate
distortion measure with respect to which we compress the image
is specified by the human visual system. This distortion measure
can only be experimentally determined and our knowledge
about it will hence be only partial.

This leads us to consider the general problem of lossy source
coding with partial knowledge about the distortion measure.
More precisely, the distortion measure is only known at a
number of sampling points. We describe several measures for
the loss we incur through the lack of full knowledge of the true
distortion measure, each with a different operational meaning.
We give an asymptotically tight characterization of this loss
in terms of three key parameters: The number of sampling
points, the dimensionality of the source, and the smoothness
assumptions on the distortion measure.

I. I NTRODUCTION

Background and Motivation. In most applications of data
compression involving a human observer, the distortion mea-
sure, with respect to which compression is to be performed,
is not known explicitly. Rather, it is the human perception,
which defines the relevant distortion measure, and we can
only gain partial knowledge of it through experiments. We
are hence facing a problem of lossy source coding with
partial knowledge about the distortion measure.

Consider first the classic problem of describing a se-
quence of independent identically distributed random vari-
ables{Xi}i≥1 within distortion D, using the (single-letter)
distortion measureρ. The smallest number of bits needed
for such a description is given by the rate distortion function
(see, e.g., [1])

Rρ(D) , inf
Q:E(ρ(X,Y ))≤D

I(P,Q),

where P ∈ P(X ) is the marginal distribution of theXi,
I(P,Q) denotes mutual information, and where the mini-
mization is over all conditional distributionsQ ∈ P(Y|X ).

For a given distortion measureρ, Rρ(D) can be computed
either analytically or using numerical methods. As we have
argued before,ρ might be only partially known. For example,
if {Xi}i≥1 represent images that we want to compress then
the appropriateρ is specified by the human visual system.
In this caseρ can only be experimentally determined and
will never be fully known. In other words, instead of full
knowledge ofρ, we only know thatρ belongs to some class
of distortion measures.
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Our goal is to quantify the loss incurred in rate due to
the partial knowledge ofρ in such situations. Specifically,
we model the human perception by assuming thatρ belongs
to a certain class of well-behaved functions, denoted byΓ.
Further, in our setup we expect to learnρ by interaction with
humans. Let the class of functions that are in accordance with
the firstn interactions beΓn, with Γ0 = Γ andΓn ⊂ Γn−1

for all n ≥ 1. If we want to guarantee that the description
of {Xi}i≥1 is within a distortionD with respect to (the
unknown)ρ ∈ Γn, we will have to design a source code that
operates well simultaneously for all distortion measures in
Γn. The smallest number of bits per symbol needed for such
a description is given by [2], [3]

RΓn
(D) = inf

Q:E(ρ(X,Y ))≤D∀ρ∈Γn

I(P,Q). (1)

Equation (1) holds unconditionally ifX and Y are finite
alphabets; it holds under some technical condition for infinite
alphabets (see [3] for the details). Given this, there are several
ways to measure the loss in terms of rate we incur by the
partial knowledge ofρ. As the first criterion, we look at
the distance betweenRΓ(D) and Rρ(D) for ρ ∈ Γ. As a
second criterion, we measure the distances betweenRρ(D)
for differentρ ∈ Γn. Our goal is to characterize the behavior
of the loss in rate as a function of the number of interactions
(or samples)n of ρ we have at our disposition. We obtain
tight characterization of the asymptotic behavior of the loss.

We note that the problem of lossy source coding with
respect to a class of distortion measures has been investigated
in [2] and [3] as mentioned above. A variation of this
setup, in which the true distortion measure is unknown at
the encoder but known at the decoder, is considered in [4]
and [5]. In all of these papers, the set of distortion measures
with respect to which we seek universality is fixed. This
differs from the problem considered in this paper as here
a good sampling procedure is required to be designed; as a
consequence the set of possible distortion measures decreases
in the number of samplesn, and the emphasis here is on the
asymptotic behavior inn.

Problem Formulation. Let the source alphabetX be [0, 1]m

and the reconstruction alphabetY be some finite set (i.e.,
|Y| < ∞). The distributionP of the source{Xi}i≥1 is
assumed to admit a densityp such that1/Mp ≤ p(x) ≤
Mp,∀x ∈ X , for some0 < Mp < ∞. Define for a Lebesgue-
measurable functionf on X the Lq(X ) norm as

‖f‖Lq(X ) ,

{

( ∫

x∈X
|f(x)|qdx

)1/q
if 1 ≤ q < ∞,

ess supx∈X |f(x)| if q = ∞.



Lq(X ) is the space of all measurable functionsf onX such
that ‖f‖Lq(X ) is finite. For λ ∈ Z

m
+ let |λ| =

∑m
i=1 λi

and Z
m
+j , {λ ∈ Z

m
+ : |λ| = j}. Denote by∂λ ,

∂λ/∂λ1x1 · · · ∂
λmxm the (weak) derivative of order|λ|. The

Sobolev spaceW l
q(X ) is defined as the space of functions

f ∈ Lq(X ) such that∂λf is defined for allλ ∈ Z
m
+ with

|λ| ≤ l, and such that the norm

‖f‖W l
q(X ) ,

l
∑

j=0

∑

λ∈Z
m
+j

‖∂λf‖Lq(X )

is finite. In this paper, we consider the class of distortion
measures

Γ , Γl , {ρ : ‖ρ(·, y)‖W l
q(X ) ≤ K,

‖ρ(·, y)‖L∞(X ) ≤ B,∀y ∈ Y},

for someB,K < ∞, and with 1 ≤ q ≤ ∞, l ∈ N and
lq > m. This last condition ensures thatW l

q(X ) is a subspace
of the space of continuous functionsC(X ) (by the Sobolev
Embedding Theorem [6, Chapter 3.1]). The above models
the fact that there isinherent smoothness in the human
perception. Note that we assume that all functions inΓ are
bounded, i.e., for allρ ∈ Γ, ρ : X × Y → [0, B], for some
B < ∞.

Under these assumptions the sufficient condition for (1) to
hold is satisfied. ByDρ(r) and DΓ(r), we denote the dis-
tortion rate functions corresponding toRρ(D) and RΓ(D),
respectively.

Next, we introduce two measures for the width1 of Γ. Let

∆(ρ1, ρ2, r) , |Dρ1
(r) − Dρ2

(r)|

for ρ1, ρ2 ∈ Γ, r ≥ 0. As everyρ ∈ Γ is bounded byB, we
have∆(ρ1, ρ2, r) ≤ B. With slight abuse of notation, define
∆(Γ, ρ, r) as

∆(Γ, ρ, r) , DΓ(r) − Dρ(r)

for ρ ∈ Γ, r ≥ 0. Figure 1 illustrates these definitions. Call

r

∆(ρ1, ρ2, r)

Rρ1
(D)

B

D

Rρ2
(D)

Fig. 1. Distance∆(ρ1, ρ2, r) between two distortion measures.

1The terminology is chosen following the concept ofn-widths in approx-
imation theory. For more details aboutn-widths and the related notion of
ǫ-complexity, see for example [7] and [8].

Sn = Xn × Yn the set of all possiblen sampling points.
Given sn = {(xi, yi)}1≤i≤n ∈ Sn, let φn : Γ × Sn → R

n

denote the mapping of(ρ, sn) to {ρ(xi, yi)}1≤i≤n. For a
ρ ∈ Γ, let

Γ(ρ, sn) , {ρ̃ ∈ Γ : φn(ρ̃, sn) = φn(ρ, sn)},

i.e., Γ(ρ, sn) is the set of all distortion measures inΓ that
coincide with the true distortion measuresρ at all sampling
pointssn. Define

ε1(Γ, n) , inf
sn∈Sn

sup
ρ∈Γ
r≥0

∆(Γ(ρ, sn), ρ, r).

Intuitively, ε1(Γ, n) is the price we pay in terms of distortion,
by designing a source code which works simultaneously for
all ρ ∈ Γ. We define a second measure for the width ofΓ

ε2(Γ, n) , inf
sn∈Sn

sup
ρ∈Γ

ρ̃∈Γ(ρ,sn)
r≥0

∆(ρ, ρ̃, r).

In words,ε2(Γ, n) measures the price we pay by calculating
Rρ̃(D) with respect to the worst̃ρ ∈ Γ based on partial
knowledge of the actual distortion measureρ.

From the definitions ofε1(·, ·) andε2(·, ·), it is clear that
ε2(·, ·) ≤ ε1(·, ·). However, as we shall see the asymptotic
behavior of both of these losses is exactly the same. The
notion of ε1(·, ·) is operationally more useful. We introduce
the definition of ε2(·, ·) as it will be useful in our proof
technique along with the above inequality.

Main Results. We obtain asymptotically tight characteriza-
tion of the errorsε1(·, ·) andε2(·, ·) as well as the algorithm
that achieves this optimal performance.

Recall the definition ofΓl as

Γl , {ρ : ‖ρ(·, y)‖W l
q(X ) ≤ K,

‖ρ(·, y)‖L∞(X ) ≤ B,∀y ∈ Y},

for someK,B < ∞, and with 1 ≤ q ≤ ∞, l ∈ N and
lq > m.

Theorem 1. For i ∈ {1, 2} as n → ∞

εi(Γ
l, n) = Θ(n−l/m).

Theorem 1 characterizes the asymptotic behavior of the
loss εi(Γ

l, n) in terms of the dimensionality of the source
m, the number of samplesn of the distortion measure, and
the smoothness assumptions about the class of distortion
measures as captured byl. Interestingly, the asymptotic loss
is the same for both measuresε2(Γ

l, n) andε1(Γ
l, n). Thus,

at least asymptotically, there is no additional penalty to be
paid by designing a source code which works simultaneously
for all possible distortion measures which agree with the true
distortion measure at the sampling points.

By definition, we have assumed that the sampling scheme
is non-adaptive, i.e., the choice of then-th sampling point
does not depend on the evaluation ofρ at the firstn − 1
sampling points. It is natural to ask whether an adaptive



sampling strategy improves the performance. More formally,
let S

A
n (ρ) be the set of all sampling points of the form

{(

x1, y1

)

,
(

x2(ρ(x1, y1)), y2(ρ(x1, y1))
)

, . . .
}

.

Define the corresponding width measures

εA
1 (Γ, n) , sup

ρ∈Γ
inf

sn∈SA
n (ρ)

sup
r≥0

∆(Γ(ρ, sn), ρ, r),

εA
2 (Γ, n) , sup

ρ∈Γ
inf

sn∈SA
n (ρ)

sup
ρ̃∈Γ(ρ,sn)

r≥0

∆(ρ, ρ̃, r).

The following will be an immediate corollary of Theorem 1.

Corollary 2. For i ∈ {1, 2} as n → ∞

εA
i (Γl, n) = Θ(n−l/m).

Organization. The rest of the paper is organized as follows.
In Sections II and III, we present the proof of Theorem
1. Specifically, Section II provides an upper bound on
ε1(·, ·), ε2(·, ·), while Section III provides a matching lower
bound. In Section IV, we present the proof of Corollary 2.
Finally, in Section V we present our conclusions.

II. PROOF OFTHEOREM 1: UPPERBOUND

There are several difficulties evaluatingεi(Γ, n), i ∈
{1, 2}. First, we have to solve a minimax problem (min-
imizing over all sampling strategies, maximizing over all
distortion measures and rates). Second,∆(ρ1, ρ2, r), the
function over which we optimize, is not given explicitly,
but rather as a solution of an optimization problem itself.
Moreover, for most input distributionsP and distortion
measuresρ, the distortion rate functionDρ(r) cannot be
calculated analytically. Instead, we prove a “continuity”
property of the distortion rate function in the space ofΓ.
This, along with a sampling-reconstruction algorithm, leads
to the desired result.

Lemma 3. For some positive constant c1, n ≥ n1, and i ∈
{1, 2}

εi(Γ
l, n) ≤ c1n

−l/m.

Proof: From the definition, it is easy to see that
ε2(Γ

l, n) ≤ ε1(Γ
l, n). Hence, it suffices to prove the result

for ε1(Γ
l, n).

To this end, assume there exists asn ∈ Sn and aδ ≥ 0
such that for allQ ∈ P(Y|X ), ρ ∈ Γl, ρ̃ ∈ Γl(ρ, sn) we
have|E(ρ(X,Y )) − E(ρ̃(X,Y ))| ≤ δ. Then for allD ≥ 0

{Q ∈ P(Y|X ) : E(ρ(X,Y )) ≤ D − δ}

⊂ {Q ∈ P(Y|X ) : E(ρ̃(X,Y )) ≤ D∀ρ̃ ∈ Γl(ρ, sn)}.

Hence for allρ ∈ Γl and allD ≥ 0

RΓl(ρ,sn)(D) = inf
Q:E(ρ̃(X,Y ))≤D∀ρ̃∈Γl(ρ,sn)

I(P,Q)

≤ inf
Q:E(ρ(X,Y ))≤D−δ

I(P,Q)

= Rρ(D − δ).

From this, we get

ε1(Γ
l, n) ≤ sup

ρ∈Γl,r≥0

∆(Γl(ρ, sn), ρ, r) ≤ δ.

Hence it suffices to show that such asn and δ exist and to
characterize the dependency onn of the latter.

Note that, for anysn ∈ Sn, Q ∈ P(Y|X ), ρ ∈ Γl and
ρ̃ ∈ Γl(ρ, sn) we have

|E(ρ(X,Y )) − E(ρ̃(X,Y ))|

≤
∑

y∈Y

∫

x∈X

p(x)Q(y|x)|ρ(x, y) − ρ̃(x, y)|dx

≤
∑

y∈Y

∫

x∈X

Mp|ρ(x, y) − ρ̃(x, y)|dx

≤ |Y|Mp

∥

∥‖ρ − ρ̃‖L1(X )

∥

∥

L∞(Y)
. (2)

Theorem 4.2 in [9] (see also [10, Proposition 5.2, Theorem
6.1]) asserts that forn ≥ n1 there existss∗n ∈ Sn andρ∗ ∈
Γl(ρ, s∗n) such that

‖ρ∗ − ρ̃‖L1(X ) ≤ c̃1n
−l/m

for all ρ̃ ∈ Γl(ρ, s∗n) and some positive constantc̃1. As ρ ∈
Γl(ρ, s∗n), we get from this

‖ρ−ρ̃‖L1(X ) ≤ ‖ρ−ρ∗‖L1(X )+‖ρ∗−ρ̃‖L1(X ) ≤ 2c̃1n
−l/m.

With this, we can continue (2) as

|E(ρ(X,Y )) − E(ρ̃(X,Y ))| ≤ 2|Y|Mpc̃1n
−l/m

, c1n
−l/m , δ,

for n ≥ n1. This completes the proof of Lemma 3.
The proof of Lemma 3 uses as a central tool an algorithm

for the reconstruction of a function from its samples as given
in [9] and [10]. This algorithm divides the unit cubeX
into smaller cubes of size2−k. Within each such subcube
a number of sampling points are chosen to allow unique
interpolation by a polynomial of degreel. k is chosen such
that the total number of sampling points is at mostn. The
resulting reconstruction (calledρ∗ in the proof of Lemma 3)
is thus a piecewise polynomial.

III. PROOF OFTHEOREM 1: LOWER BOUND

Lemma 4 below provides a lower bound to the loss
εi(Γ

l, n), i ∈ {1, 2} with the same asymptotic behavior
as the upper bound in Lemma 3. This shows that the
reconstructionρ∗ (as defined in the proof of Lemma 3) of
the unknown distortion measureρ is asymptotically optimal.

Lemma 4. For some positive constant c2 and i ∈ {1, 2}

εi(Γ
l, n) ≥ c2n

−l/m.

Proof: Sinceε1(Γ
l, n) ≥ ε2(Γ

l, n) it suffices to prove
the result for ε2(Γ

l, n). To this end consider any set of
sampling pointssn ∈ Sn. Theorem4.3 in [9] (see also [10,
Theorem 6.1]) asserts that for a givensn = {(xi, yi)}1≤i≤n,
there exists a functionf satisfying‖f‖W l

∞
(X ) ≤ 1 and such

that f(x) ≥ 0, f(xi) = 0 for all i ∈ {i, . . . , n}, and

‖f‖L1(X ) ≥ c̃2n
−l/m



for some constant̃c2. Let M , min{B,K/2}, and define
two functionsρ∗ andρ:

ρ∗(x, y) , M(1 − f(x)), for all x ∈ X ,y ∈ Y,

ρ(x, y) , M, for all x ∈ X ,y ∈ Y.

Note that bothρ and ρ∗ are elements ofΓl and that
ρ∗(xi, yi) = ρ(xi, yi) for all i ∈ {1, . . . , n}. We have
Dρ(r) = M and

Dρ∗(r) = M
(

1 −

∫

x∈X

p(x)|f(x)|dx
)

, D∗

for all r ≥ 0. D∗ can be upper bounded as

D∗ ≤ M
(

1 −
1

Mp
‖f(x)‖L1(X )

)

≤ M
(

1 −
1

Mp
c̃2n

−l/m
)

, M − c2n
−l/m.

Putting this together, we get

∆(ρ, ρ∗, r) = M − D∗ ≥ c2n
−l/m.

Now, by definition ρ ∈ Γl and by constructionρ∗ ∈
Γl(ρ, sn). Hence,

sup
ρ∈Γl

ρ̃∈Γl(ρ,sn)
r≥0

∆(ρ, ρ̃, r) ≥ c2n
−l/m. (3)

Since (3) holds true for allsn ∈ Sn, we have

ε2(Γ
l, n) = inf

sn∈Sn

sup
ρ∈Γl

ρ̃∈Γl(ρ,sn)
r≥0

∆(ρ, ρ̃, r) ≥ c2n
−l/m.

This completes the proof of Lemma 4.
The proof of Lemma 4 is based on the construction of a

functionf ∈ W l
q(X ) which vanishes at a prescribed number

of sampling points as described in [9] and [10]. This con-
struction divides the unit cubeX into 2mn subcubes. As the
number of sampling points isn, at least(2m − 1)n of these
subcubes do not contain any sampling point. The function
f is constructed by placing a smooth “bump function”φ in
each empty subcube such that the support ofφ is entirely
within this subcube.

IV. PROOF OFCOROLLARY 2

We have seen that with non-adaptive sampling the loss
εi(Γ

l, n) behaves asn−l/m for largen for both i ∈ {1, 2}.
The next corollary shows that even with adaptive sampling
we obtain the same asymptotic behavior. Thus, at least in
an asymptotic sense, there is no benefit to be gained from
adaptive sampling.

Corollary 5 (Corollary 2). For i ∈ {1, 2} as n → ∞

εA
i (Γl, n) = Θ(n−l/m).

Proof: By definition εA
i (Γl, n) ≤ εi(Γ

l, n) for
i ∈ {1, 2}. By Theorem 1, we hence haveεA

i (Γl, n) =
O(n−l/m) for i ∈ {1, 2} asn → ∞.

As εA
2 (Γl, n) ≤ εA

1 (Γl, n), it suffices to show a corre-
sponding lower bound forεA

2 (Γl, n). But this follows now
from the proof of Lemma 4. Indeed, ifρ(x, y) = M for
all x ∈ X , y ∈ Y, the adaptive sampling strategy will
result in a set of sampling points{(xi(ρ), yi(ρ))}1≤i≤n.
We can now construct aρ∗ which equalsρ at these point,
exactly as we have done in the proof of Lemma 4. Thus
εA
2 (Γl, n) = Ω(n−l/m) asn → ∞, concluding the proof.

V. CONCLUSION

In this paper, we have looked at the problem of lossy
source coding with partial knowledge about the distortion
measure. More precisely, the distortion measure is only
known at n sampling points. We have described several
measures for the loss we incur through the lack of full
knowledge of the true distortion measure, each with a differ-
ent operational meaning. We have characterized the behavior
of this loss in terms of three key parameters: The number
of sampling pointsn, the dimensionality of the sourcem,
and the smoothness assumptions on the distortion measure
(quantified by the numberl of its derivatives with bounded
Lq norm).

The asymptotic behavior for each of the different loss
measures considered isΘ(n−l/m) asn → ∞. The fact that
these fairly different operational meanings (computationof
rate distortion function for the worst case versus construction
of universal source code, fixed sampling points versus adap-
tive sampling) have the same asymptotic behavior, suggests
that then−l/m scaling of the loss is somewhat robust with
respect to small changes in the model assumptions.
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