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Abstract— We consider communication over the Gaussian mul-
tiple access channel (MAC) with unknown set of active users. The
proposed multiple access strategy is distributed and achieves a
maximum sum rate point on the boundary of the capacity region
for this channel for any set of active users S simultaneously, as if
S were known at the transmitters. The proposed coding scheme
splits each user into a set of virtual users, each of which can
be decoded using a single-user decoder at the receiver instead of
having to decode all users jointly. We also present a generalization
of this scheme to the case where the channel gains differ between
users and each user only knows its own channel gain.

I. INTRODUCTION AND MOTIVATION

Consider a set of users, each having a queue of messages
that it wants to transmit through a wireless channel to some
central base station. This base station is allowed to occa-
sionally broadcast a short beacon signal to keep the users
synchronized. Whenever a user detects the beacon signal,
it starts transmitting a codeword corresponding to the first
message in its queue, if it is not empty. As soon as the base
station is able to decode all the messages currently being
transmitted, it emits again a beacon, indicating that the current
round of communication is over and starting the next one.

Note that this setup is rather decentralized and there are
various degrees of uncertainty the users face. First, while each
user knows if it currently has a message to transmit, it knows
neither which nor how many other users are transmitting at the
same time. Moreover, the channel gains can differ across users.
Assuming the gain of the uplink and downlink channel are the
same, as would be the case with, e.g., time division duplex,
each user can infer the gain of its link from the strength of the
beacon signal it received. The users are, however, ignorant of
the channel gains of the other users. As the wireless medium is
shared among all the users, these issues result in an uncertainty
about the amount of interference each user will experience
during any communication round.

We propose a multiple access strategy for this setup using
successive decoding of the different users. That is, the decoder
at the base station can use several single-user decoders in
succession and does not need to decode all transmitting users
jointly. At the same time, this scheme is optimal in the sense
that it achieves the maximum possible sum rate for the case
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where the set of transmitting users as well as all the link
qualities were known to all users. That is, neither the lack of
knowledge about the link qualities or number and identity of
interfering other users nor the requirement of using successive
decoding at the base station result in a loss of achievable rate.

Throughout most of this paper, we assume that the single-
user codes used in the successive decoding scheme above are
(rateless) capacity achieving codes. This simplifies the analysis
and allows to isolate the impact of successive decoding on the
performance of the system. We will, however, briefly discuss
how practical rateless single-user codes can be used within
this architecture.

Rate-splitting is a technique for the multiple access chan-
nel (MAC) which is designed for use in conjunction with
successive decoding [1]. In [1] both the number as well as
the identity of the users is fixed and known to each user.
The case where the identity of the users is not known, but
their number is fixed and known, has been investigated in [2]
and more recently in [3]. In there it is assumed that the
channel gain is identical for each user. As the number of
transmitting users is known, this implies that every user knows
the amount of interference it will experience. This differs from
the setup considered here, in which the unknown number as
well as the unknown channel gains of interfering users result
in uncertainty about the amount of interference. Queueing and
scheduling aspects in a setup similar to the one described in
this paper are analyzed in [4] and [5] respectively.

The remainder of this paper is organized as follows. In
Section II, the problem setup is formalized, and some notation
is introduced. Section III describes the proposed multiple
access scheme and establishes the main result of this paper.
Section IV contains concluding remarks.

II. PROBLEM FORMULATION

The scenario of interest can be modelled as communication
over a Gaussian MAC. We first consider the case where all the
channel gains are equal to one. As will be shown in Section III-
A, the general case can be reduced to this setup. There are K
total users out of which a subset S �= ∅ is active. That is,
only the users in the set S are using the channel. At time t
(assumed to be discrete here) the received signal is

Yt =
∑
s∈S

Xs,t + Zt,
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where {Zt}∞t=1 is a sequence of i.i.d. Gaussian random vari-
ables with zero mean and unit variance, independent of the
channel inputs. The set S is known to the receiver; however,
the transmitters know only whether they are in S or not (i.e.,
transmitter s only knows if s ∈ S), but do not know the set
S in general.

A code for this channel defines for every possible user
s an encoding function (or codebook) fs : {1, . . . , M} →
R

∞ mapping the message ms of user s into an infinite
sequence of channel symbols fs(ms) satisfying an average
power constraint P . The index ms of the codeword to be sent
by transmitter s is chosen with uniform probability over the
set {1, . . . , M}. The receiver consists of 2K−1 decoders, each
of them for a specific set of active users S.

Each of these decoders is specified by a (deterministic)
decoding time TS and a decoding function φS : R

TS →
{1, . . . , M}|S| mapping the sequence {Yt}TS

t=1 into an estimate

{m̂s}s∈S � φS
(
{Yt}TS

t=1

)

of the messages sent by each active user. The triple({fs}K
s=1, {TS}S , {φS}S

)
specifies a coding scheme.

The average probability of error ē of a coding scheme is
defined as

ē � max
S

ē(S),

ē(S) � Pr

[ ⋃
s∈S

{m̂s �= ms}
∣∣∣S

]
,

and the rate of communication if S is the set of active users
is

RS � log M

TS
.

Every coding scheme results in a 2K − 1 tuple of rates
{RS}S . A rate tuple {RS}S will be called achievable if there
exists a sequence of coding schemes indexed by M with rate
converging to {RS}S and such that limM→∞ ē = 0.

From a purely information theoretic point of view, the
communication problem described above can be solved using
standard results. Note first that the optimal input distribution
for each active user s is the same for all sets S (namely, zero
mean Gaussian with variance P ). As, moreover, the number
of different sets S is finite, there exists a code and a joint
decoder achieving any rate

RS < CS � 1
2|S| log

(
1 + |S|P )

(1)

simultaneously for all S as if S were known at the transmitters.
In other words, there exists a coding scheme operating for
every S at the equal rate point on the boundary of the capacity
region of the ordinary Gaussian MAC with known S at the
transmitters as defined for example in [6].

The coding scheme described in the last paragraph has,
however, the disadvantage of requiring a joint decoder. That
is, in the worst case K codes have to be decoded jointly,
resulting in an unacceptably large decoding complexity. In
the next section, we will describe a lower complexity coding

scheme, building on the rate-splitting approach [1] and its
generalization in [2], which allows the use of multiple single-
user decoders at the receiver instead of a joint decoder.

III. RATELESS CODES

In this section, we construct a rateless code which uses
several single-user decoders at the receiver instead of one
joint decoder. We require this coding scheme to achieve rates
arbitrarily close to CS simultaneously for all sets S of active
users. In other words, we want the decoding times TS to satisfy

TS ≤ log M

CS − ε
(2)

for an arbitrary ε > 0 and M large enough. Observe from (1)
and (2) that the requirement on TS depends on S only through
|S|.

We split each user s into L virtual users. For each s, virtual
user l uses a codebook with Ml codewords. We require that∏L

l=1 Ml = M , i.e., that the total number of messages for
each user s is M . The codewords of virtual user l of user s are
created as infinite length sequences of independent Gaussian
random variables with mean zero and variance Pl(t) for the
t-th symbol in the sequence, subject to the constraint that

L∑
l=1

Pl(t) = P (3)

for all times t. A power allocation {Pl(t)}l,t will be called
valid if Pl(t) ≥ 0 for all t, l and (3) is satisfied for all t. The
codewords of all virtual users of each user s are added to form
the codeword of that user. At time TS , the decoder φS first
decodes layer L of virtual users for all s ∈ S, regarding all
other virtual users (of the same and all other users in S) as
noise. The decoded codewords of the virtual users in layer L
are then subtracted from the received signal, and the decoder
continues in the same manner with layer L − 1 of virtual
users until all virtual users have been decoded. Hence the
decoder φS consists of L|S| single-user decoders, which are
used successively.

Note that for finite L this decoding procedure is suboptimal,
as it regards all codewords of virtual users in the same layer
as noise, whereas some of them could have been subtracted
off the received signal after decoding. It does allow, however,
to choose the encoders {fs}K

s=1 to be identical for each user
s, which is necessary due to the distributed nature of the
problem. Moreover, we show in the sequel that this scheme
can approach optimality as the number of virtual users L goes
to infinity.

We first consider power allocations that are constant across
time (i.e., Pl(t) = Pl for all virtual users l and times t).
Lemma 1 shows that as M → ∞ and L → ∞ a power
allocation {Pl}l can be found such that for every possible set
of users S there exists a decoding time TS and a splitting
of messages {Ml}l with the following two properties: All
messages can be reliably decoded at time TS , and the rate
RS is close to CS in the sense of (2). Note that the choice of
{Ml}l is allowed to depend on the set of active users S. As
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in an actual system {Ml}l would have to be chosen before
communication begins and without knowing S, the power
allocation given by Lemma 1 can not be used to guarantee
optimal communication for all possible sets S simultaneously.
This problem is addressed in Theorem 2. It states that as
M → ∞ and L → ∞ a time varying power allocation
{Pl(t)}l,t and a splitting of messages {Ml}l can be found such
that for every possible set of users S there exists a decoding
time TS with the following two properties: All messages can
be reliably decoded at time TS , and the rate RS is close to
CS in the sense of (2).

The first lemma generalizes and strengthens a result
from [2]; part of the proof follows along the lines of the one
there.

Lemma 1. For a valid {Pl}l and S there exists TS and {Ml}l

such that limM→∞ ē(S) = 0 and

lim
L→∞

lim
M→∞

RS = CS ,

if and only if limL→∞ Pl = 0 for all l ∈ N. Moreover, for any
finite L

CS − lim
M→∞

RS ≤ P

4
sup

l
Pl

(
|S| + 1

1 − Pl

)
.

Proof. Call RS the rate of the above scheme as M → ∞ and
L → ∞. Using genie aided decoder arguments as in [1], the
highest achievable rate with successive decoding as described
above is

lim
L→∞

lim
M→∞

RS = lim
L→∞

L∑
l=1

1
2

log(1 + xl),

where

xl � Pl

1 + (|S| − 1)Pl + |S|∑l−1
i=1 Pi

.

Consider

L∑
l=1

1
2

log(1 + xl) =
1
2

L∑
l=1

∞∑
k=1

(−1)k+1

k
xk

l

=
1
2

L∑
l=1

xl +
1
2

L∑
l=1

∞∑
k=2

(−1)k+1

k
xk

l . (4)

For the second term, we get

∣∣∣∣12
L∑

l=1

∞∑
k=2

(−1)k+1

k
xk

l

∣∣∣∣ ≤ 1
2

L∑
l=1

∞∑
k=2

1
k

P k
l

≤ 1
4

L∑
l=1

P 2
l

∞∑
k=0

P k
l

=
1
4

L∑
l=1

Pl
Pl

1 − Pl

≤ P

4
sup

l

Pl

1 − Pl
, (5)

which converges to zero if limL→∞ Pl = 0 for all l ∈ N. For
the first term in (4) we have

xl ≥ Pl

1 + |S|∑l
i=1 Pi

and hence if limL→∞ Pl = 0 for all l ∈ N

lim
L→∞

lim
M→∞

RS = lim
L→∞

1
2

L∑
l=1

xl

≥ lim
L→∞

1
2

L∑
l=1

Pl

1 + |S|∑l
i=1 Pi

=
1
2

∫ P

y=0

1
1 + |S|y dy (6)

=
1

2|S| log(1 + |S|P )

= CS .

For finite L, the approximation error in (6) is upper bounded
by

L∑
l=1

1
4
P 2

l max
y∈[0,P ]

∣∣∣∣ d

dy

1
1 + |S|y

∣∣∣∣

=
L∑

l=1

1
4
P 2

l max
y∈[0,P ]

|S|(
1 + |S|y)2

=
L∑

l=1

|S|
4

P 2
l

≤ P |S|
4

sup
l

Pl.

Together with (5) this implies that

CS − lim
M→∞

RS ≤ P |S|
4

sup
l

Pl +
P

4
sup

l

Pl

1 − Pl

≤ P

4
sup

l
Pl

(
|S| + 1

1 − Pl

)
.

Conversely, if there exists some l such that Pl ≥ δ > 0 then
it is easily seen that just by decoding this layer suboptimally,
we will always get a rate RS strictly below CS for all L.

As the codewords for each virtual user are a sequence of
independent random variables and as the channel is mem-
oryless, the direct part of Lemma 1 can be seen to apply
also to the case where the power allocation is time varying.
We use this kind of power allocation in the following. More
precisely, we choose powers Pl(t) constant on each time
interval {1, T1}, {T1 + 1, T2}, . . . , {TK−1 + 1, TK} where
Tk � TS for any S such that |S| = k. We denote the power
for virtual user l in time interval k by Pl(Tk). The splitting
of the messages is done uniformly, i.e., we set Ml = M1/L

for all l.
For the first time interval, choose Pl(T1) such that

1
2

log
(

1 +
Pl(T1)

1 +
∑l−1

i=1 Pi(T1)

)
=

R1

L
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for all l and some constant R1. For subsequent time intervals,
we allocate powers Pl(Tk) such that

k∑
j=1

∆Tj

2Tk
log

(
1 +

Pl(Tj)

1 + (k − 1)Pl(Tj) + k
∑l−1

i=1 Pi(Tj)

)

=
Rk

L
(7)

for all l, constants Rk and with ∆Tj � Tj − Tj−1, T0 � 0.
From Lemma 1, it is clear that if a valid power allocation
of this type exists such that all powers Pl(Tj) converge to
zero as L → ∞, then we can, for any k, make Rk arbitrarily
close to CS for all S such that |S| = k by choosing M and
L large enough. The next theorem establishes that a power
allocation of this type exists and hence that the above scheme
is asymptotically in M and L optimal for all sets of active
users S simultaneously. Even though the theorem only claims
existence of such a power allocation, its proof is constructive in
the sense that it gives an algorithm to find such an allocation.

Theorem 2. For Ml = M1/L there exists a valid {Pl(Tk)}l,k

and {TS}S such that limM→∞ ē = 0 and for all S
lim

L→∞
lim

M→∞
RS = CS .

Proof. Identify Rk in (7) as RS for any S such that |S| = k.
Using Lemma 1, we then only have to show that a valid power
allocation satisfying (7) exists and that limL→∞ Pl(Tk) = 0
for all l and k.

Note first that limL→∞ Rk/L = 0 for any power allocation
satisfying (7). That is, the rate in each layer of virtual users
goes to zero. Assume then that there exists a δ > 0 such that
for all L we have Pl(Tk) ≥ δ for at least one l ∈ {1, . . . , L}
and some k ∈ {1, . . . , K}. Then we get from (7)

Rk

L
≥ ∆Tk

2Tk
log

(
1 +

Pl(Tk)

1 + (k − 1)Pl(Tk) + k
∑l−1

i=1 Pi(Tk)

)

which is bounded away from zero. Hence there exists some
sequence k(L) such that limL→∞ Rk(L)/L > 0, contradict-
ing the fact that all layers have the same rate. Thus if a
valid power allocation satisfying (7) exists it must satisfy
limL→∞ Pl(Tk) = 0 for all l ∈ N and k ∈ {1, . . . , K}.

We will show by induction that such a valid power allocation
exists. Clearly, we can find a power allocation such that (7) is
satisfied for k = 1 with T1 = log(M)/(C{s} − ε) for some
ε > 0. Assume then we have fixed decoding times {Tj}k−1

j=1

and that the result holds up to that point. That is, we have
chosen valid powers Pl(Tj) for j ∈ {1, . . . , k − 1} such that
for each layer l (7) is satisfied for some Rk−1. Define

δl(k) � Tk−1Rk−1

L
−

k−1∑
j=1

∆Tj

2
log

(
1 +

Pl(Tj)

1 + (k − 1)Pl(Tj) + k
∑l−1

i=1 Pi(Tj)

)
.

By the induction hypothesis δl(k) ≥ 0 for all l ∈ {1, . . . , L}.
Using the fact that Tk−1Rk−1 = TkRk, we get from (7) that

we have to find a power allocation such that

∆Tk

2
log

(
1+

Pl(Tk)

1+(k−1)Pl(Tk) + k
∑l−1

i=1 Pi(Tk)

)
= δl(k).

Solving for Pl(Tk), we find

Pl(Tk) =


 exp

(
2δl(k)/∆Tk

) − 1

1 −
(

exp
(
2δl(k)/∆Tk

) − 1
)
(k − 1)




×
[
1 + k

l−1∑
i=1

Pi(Tk)
]
. (8)

Note that exp
(
2δl(k)/∆Tk

) − 1 ≥ 0. Consider now∑L
l=1 Pl(Tk) as a function of ∆Tk as defined through (8).

Let B be the greatest value of ∆Tk such that

1 −
(

exp
(
2δl(k)/∆Tk

) − 1
)
(k − 1) ≥ 0,

holds for all l ∈ {1, . . . , L} with equality for at least one l.
It is easily checked that B > 0.

∑L
l=1 Pl(Tk) is a continuous

function of ∆Tk over (B,∞) with lim∆Tk→B

∑L
l=1 Pl(Tk) =

∞ and lim∆Tk→∞
∑L

l=1 Pl(Tk) = 0. Hence there exists ∆T ∗
k

such that
∑L

l=1 Pl(Tk) = P . Moreover, for ∆Tk ∈ (B,∞),
we have Pl(Tk) ≥ 0 for all l ∈ {1, . . . , L}. Hence choosing
∆Tk = ∆T ∗

k results in a valid power allocation for time slot
k. Even though ∆T ∗

k is in general not an integer, we can make
the rounding error as small as desired by choosing M large
enough. This concludes the induction step.

Figure 1 shows the fraction of capacity CS achievable with
this scheme as a function of number of layers L used. As
expected the number of layers needed to achieve a fixed
fraction of capacity increases with the number of active users
|S|. It can, however, be observed from the same figure that,
even for |S| as large as 20, only a moderate number of layers is
needed to operate at a rate close to capacity. For example, for
|S| = 20 and 20 layers, more than 90% of the sum capacity
can be achieved. Note also that the rate loss incurred for a
fixed finite number of layers L depends only on the number
of active users |S|, and not on the number of potential active
users K. In other words, the system can be designed very
conservatively (assuming a large number of potential users K)
without having to pay a penalty (at least in terms of achievable
rate).

A. Arbitrary Channel Gains

In this section, we remove the restriction that all channel
gains are equal to one. That is, each user has now an associated
(constant) channel gain. As each user knows its own channel
gain, this is equivalent to imposing a possibly different average
power constraint P̃s for each user s ∈ S. We assume that for
all s ∈ S we have P̃s = L̃sP for some L̃s ∈ N. Split each
user s into L̃s virtual users. This results in a set S̃ of active
virtual users each with identical power constraint P . We can
now use the coding scheme described in the last section to
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Fig. 1. Fraction of capacity CS achievable as a function of number of layers
(virtual users) L for different numbers of active users |S|. The nominal SNR
(i.e., without interference) is 0 dB.

achieve a rate RS̃ arbitrarily close to CS̃ . Hence each user
s ∈ S can transmit at a rate arbitrarily close to

L̃sCS̃ =
L̃s

2|S̃| log
(
1 + |S̃|P )

.

We have∑
s∈S

L̃sCS̃ =
1
2

log
(
1 + |S̃|P )

=
1
2

log
(

1 +
∑
s∈S

P̃s

)
,

and hence the above scheme achieves a maximum sum rate
point on the boundary of the achievable rate region of the
Gaussian MAC.

Note that with this procedure not all users are communi-
cating at the same rate. As each user is split into a number
of virtual users proportional to its average power constraint,
this implies that the relative rate a user can communicate at is
also proportional to its average power constraint. For example,
when two users are active both with equal average power
constraint P they are both able to communicate at the same
rate, say R. When two users are active, but this time the first
user has an average power constraint of P and the second user
has a constraint of 2P , the first user is able to communicate
at some rate R̃ whereas the second user achieves a rate 2R̃.
Note that R̃ �= R in general in this situation.

There is also a tradeoff between the accuracy P with which
different power levels can be approximated and the number of
virtual users L̃s we need to split each user into. If P is chosen
very small, L̃s will be very large for many users s, resulting in
a higher decoding complexity. As, however, in any practical
system the actual channel gains (or, equivalently, the power
constraints in our setup) can only be estimated within a certain
precision, a nonzero P can always be chosen such that the
approximation error is negligible compared to the estimation
error.

B. Practical Rateless Codes

Up to this point, we have assumed that every virtual user
uses a capacity achieving single-user code. More precisely,
the codewords of virtual user l of user s are created as infinite
length sequences of independent Gaussian random variables
with mean zero and variance Pl(t) for the t-th symbol in
the sequence. In a real system, we have to replace this with
a practical rateless code satisfying a time varying power
constraint.

The design of such a code is simplified by the fact that the
power allocated to each virtual user vanishes as the number
of these users grows. This makes it possible to use simple
practical codes and efficient decoding techniques described
in [7]. These codes are constructed from a single good “base”
code of a fixed blocklength (say n) for the standard additive
white Gaussian noise channel with constant power constraint.
The codeword corresponding to message m in the rateless code
is constructed by repeating a scaled and “dithered” version of
the codeword corresponding to message m in the base code.
Decoding is performed by combining blocks of length n of
the received sequence into a single vector of length n, which
is then decoded using the decoder for the base code. For a
detailed description of this construction and an analysis of its
performance, see [7].

IV. CONCLUSION

We have described a communication scheme for the Gaus-
sian MAC, achieving a maximum sum rate point on the
boundary of the capacity region for this channel for any set of
active users S simultaneously, even when S is unknown at the
transmitters. The proposed coding scheme splits each user into
a set of virtual users, each of which can be decoded using a
single-user decoder at the receiver instead of having to decode
all users jointly. The presented solution also generalizes easily
to the case where the channel gains differ between users and
each user only knows its own channel gain.
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