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Abstract— We investigate the problem of broadcasting secret
information to one or more receivers over wireless links in
the presence of potential eavesdroppers. A fast fading channel
model is assumed, with perfect channel state information
(of intended receivers) at the transmitter. Both the case of
independent messages and common message are considered.

For the case of independent messages we propose a scheme
that achieves the sum capacity as the number of receivers goes
to infinity. We note that in the limit of large number of intended
users, capacity scales with the number of intended receivers,
but not with power.

For the case where a common message is broadcasted, we
present a coding scheme that achieves a certain positive rate
independently of the number of intended receivers.

I. I NTRODUCTION

The problem of broadcasting confidential messages, has
been studied for discrete memoryless channels [1], [2] and
for the AWGN channel [3]. In these works, an asymptotic
secrecy requirement is imposed in addition to the require-
ment that the probability of error at the receiver vanishes
as the block length increases. Many generalizations of this
problem have appeared in the literature, including the case
of parallel channels [4], [5], secret key distillation using
correlated sources [6], [7], and, more recently the multiple
access channel with a variety of secrecy constraints [8], [9],
[10].

In the present work, we consider an extension of the
wiretap channel. Our setup is motivated by a variety of ap-
plications that require distribution of secret keys to intended
receivers. As an example, in a pay-TV system a content
provider wishes to broadcast a decryption key to a subset of
users who have subscribed to a particular program. Current
solutions rely on off-line key distribution mechanisms, and
are vulnerable to piracy [11]. Instead, our approach is to
enable a real time key distribution mechanism that uses the
knowledge of physical channel to the intended receivers to
protect the message against potential eavesdroppers. Thisap-
plication requires the multicast of a common secret message
to a set of intended receivers. The users can use the key to
decrypt the program, after which the key becomes useless.
Another application that could potentially benefit from a real
time key distribution solution is sensor networks. In such
systems, it is desirable to update the secret key of each
node periodically. Such applications require broadcasting
of independentmessages to each receiver, under a secrecy
constraint.
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In the present work, we model the wireless links between
the base stations and all the receivers as independent and i.i.d.
Rayleigh faded. Furthermore, we assume that the transmitter
and the intended receiver(s) have perfect channel state infor-
mation (CSI) of the intended links. The eavesdroppers have a
channel that is statistically equivalent to the intended users.
The eavesdroppers have full CSI of the intended receivers
links as well as their own links. The eavesdroppers do not
reveal their channel state to the transmitter and/or intended
receivers. The eavesdroppers do not collude.

A few words on our model and CSI assumptions. It is
unrealistic that the underlying channel changes indepen-
dently in each symbol, since this requires an unusually
large doppler spread. The fast fading model is usually an
idealization of a relaxed delay constraint when one can
code over several channel coherence intervals. Alternately
in a frequency hopping system, one should code over many
channel hops to realize the effect of fast fading. We assume
that a feedback mechanism is available so that the intended
receivers can track the channel coefficients and send them
to the transmitter. Since this mechanism can be potentially
insecure, we assume that the eavesdropper also knows the
coefficients of the intended receivers.

In related works, a quasi-static fading model has been
studied very recently in [12] and an outage secrecy formula-
tion has been proposed. The transmitter knows the channel
gains of both the receiver and the eavesdropper and declares
an outage if the eavesdropper has a stronger channel gain.
The role of multiple antennas in secure communications has
been recently explored from a detection viewpoint in [13]
and from an information theoretic viewpoint in [14], [15],
[16]. These works consider the case of one sender and one
receiver and explore gains from multiple antennas under
different CSI assumptions. Finally in the same conference
where this paper was presented, [17] and [18] presented
a capacity result for the case of one receiver and one
eavesdropper, with the fading coefficients ofboththe receiver
and eavesdropper known to the transmitter. The problem was
reduced to a set of parallel channels and it was shown that
it suffices to use an independent codebook on each parallel
channel.

The rest of the paper is organized as follows. In Section II,
we present the channel model assumed in our analysis. Upper
and lower bounds on the achievable rate with a secrecy
constraint for a single user are provided in Section III. In
Section IV the achievable rate is generalized to the case of
many users with independent messages and its optimality
in the limit of large number of users is established. Finally
Section V considers the case of multicasting a common



message to all the receivers.

II. CHANNEL MODEL

We consider an i.i.d. Rayleigh fading channel [19] model,
with channel gains independent in time and across the users.
The channel model is given by

yk(t) = hk(t)x(t)+zk(t), t = 1,2, . . . ,n k= 1,2, . . . ,K,
(1)

where the indext, denotes the time index and the subscriptk
denotes the user. We assume eachhk(t) to be independently
sampled fromC N (0,1). The noise componentszk(t) are
also i.i.d. and sampled fromC N (0,N). An average power
constraintE[∑n

t=1 |X(t)|2] ≤ nP is imposed. Here the expec-
tation is with respect to the set of messages to be transmitted
and to any additional randomization at the encoder. While
dealing with the case of only one receiver we will drop the
subscriptk in (1).

In addition to theK intended receivers, we assume the
presence of an eavesdropper that has a statistically equivalent
channel model as the receivers. We denote the channel model
by

ye(t) = he(t)x(t)+ze(t), t = 1,2, . . . ,n, (2)

where he(t) and ze(t) are sampled fromC N (0,1) and
C N (0,N) respectively, and are independent of all other
channel gains. Finally, without loss of generality assume that
N = 1. This simply amounts to scaling the power constraint.

We assume that the transmitter has perfect knowledge of
the instantaneous channel gains of all the intended receivers,
but only statistical knowledge of the eavesdroppers channel.
The eavesdropper has perfect channel knowledge of the
instantaneous gains of all the intended receivers as well as
its own channel.

We provide a formal definition for the achievable rate tuple
with independent messages(M1,M2, . . . ,MK) to theK users.
The definition for a common message rate is analogous, and
will be omitted. A lengthn code for our channel model
consists of a set of encoding mappings of the formx(t) =
ft(m1,m2, . . .mK ;ht

1,h
t
2, . . .h

t
K) for t = 1,2, . . . ,n that satisfy

the average power constraint and a set of decoding mappings
m̂j = φ j(yn

j ;h
n
1,h

n
2, . . .h

n
K) for j = 1,2, . . .K.

Definition 1: A rate tuple(R1,R2, . . . ,RK) is achievable if,
for any ε > 0, there is a code of large enough block-length
n such that for eachj = 1,2, . . .K we have the following:
(i) M j is uniformly distributed over{1,2, . . . ,2nRj}, (ii) the
probability of error Pr(M̂ j 6= M j) at each decoder is less
than ε, and (iii) the equivocation of each message at the
eavesdropper satisfies
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n
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M j ;Y
n
e ,Hn

e
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{Hn
k}

K
k=1,{Mk}k6= j

)

≤ ε, j = 1,2, . . .K

(3)

Remarks

• Our definition for secrecy (3) only depends on the
statistical characterization of the eavesdropper. So even
though we only consider one eavesdropper in our setup,

Ne2

H1

Fading

Rec.

Eav.

×

N1

+

H1

Rec.×

N1

+

× +

He1 Ne1

Fading

Rec.

Eav.

× +

Fading

Rec.

Eav.

× +

H2 N2

H3 N3

Eav.

Eav.

Rec.× +

× +

H2 N2

He2

Fig. 1. Parallel channel decomposition of the fading channelwith one
receiver and one eavesdropper. The decomposition on the leftis used in
the achievability scheme when the channel coefficients of theintended
receiver are known to the sender, the receiver and the eavesdropper. The
decomposition on the right is used in the upper bound when the channel
coefficients of both the intended receiver and the eavesdropper are known
to all the nodes.

our proposed coding schemes will be secure against any
number of non-colluding eavesdroppers.

• Our requirement on the normalized mutual information
in (3) can be replaced by a stronger condition as
suggested in Csiszár [20] and Maurer and Wolf [21].
In particular, the normalization byn is not necessary
and we can replace the constantε by a sequenceεn

that tends to zero withn. The coding schemes proposed
in this work can also provide secrecy in this stronger
sense.

III. S INGLE USER: ACHIEVABLE RATES AND UPPER

BOUNDS

In this section we consider the case when there is only
one receiver. The generalization to multiple receivers is
considered in the next section. We denote the channel model
for the intended receiver asy(t) = h(t)x(t)+z(t).

A. Single User: Achievable Rate

We can view the model (1) as a set of parallel channels
in Fig. 1 indexed by the channel gainH of the intended
receiver, which is known globally. Thus in each parallel
channel the intended receiver’s channel is complex Gaussian
while the eavesdropper’s channel is a fading channel. We
propose to use an independent Gaussian codebook on each
parallel channel.

Consider a particular sub-channel where the intended
receivers experiences a gain ofa (i.e. |H|2 = a). Generate
an i.i.d. Gaussian wiretap codebook [3] with powerPa and
rateRI (a,Pa). The powerPa is selected to satisfy the average
power constraintE[Pa] = P. The achievable rate is:

RI (a,Pa) = I(X;Yr)− I(X;Ye,He)

=

[

log(1+aPa)−E[log(1+ |He|
2Pa)]

]+

,
(4)

where we use the notation[v]+
∆
= max(0,v).



From the expression (4), it is clear that our achievable rate
RI (a,Pa) is increasing ina. It is possible to show that ifa

is fixed and greater thanT
∆
= exp(−γ), whereγ = 0.5772 is

the Euler’s constant, the supremum ofRI (a,Pa) is obtained
in the limit Pa → ∞. On the other hand ifa < T, then
supPa>0RI (a,Pa) = 0. Thus for the proposed scheme, the
transmitter will not transmit whenevera < T.

It is possible to improve upon the proposed rate in (4)
by transmitting artificial noise in addition to the intended
codeword. We split the available powerPa into two parts.
Generate an i.i.d. Gaussian wiretap codebook with power
Pu. Before transmission of a codewordUn, generate an i.i.d
Gaussian noise sequenceVn with power Pv, independent of
everything else and not known to the receiver. Our choice of
the powers satisfyPu +Pv = Pa. We transmitXn = Un +Vn.
The received symbols at the intended receiver and eaves-
dropper are

Y(i) = HU(i)+HV(i)+Z(i)

Ye(i) = He(i)U(i)+He(i)V(i)+Z(i)
(5)

Our expression for the achievable rate is given by,

RII (a,Pa) = I(U ;Yr)− I(U ;Ye,He)

=

{

log

(

1+
aPu

1+aPv

)

−E

[

log

(

1+
|He|

2Pu

1+ |He|2Pv

)]}

(6)
We optimize over the choice ofPu andPv. It can be shown

that for anya > 0, we have that supPa
RII (a,Pa) > 0. Thus

secret communication is possible for every choice ofa > 0,
provided the available power is sufficiently large. Note that
the gain from artificial noise should not be very surprising.
As seen in (6), the artificial noise gets amplified by the
channel gain of the receivers and hence there is a net gain
if the channel gain to the intended receiver is small. The
optimal value ofPv is positive only if a < 1. Thus if the
channel gain of the intended receiver is greater than one,
our scheme reduces to the previous one in (4).

To provide an achievable rate for the fading channel
of interest (1), we integrateR(a,Pa) with respect to the
distribution over a and optimize over all possible power
allocations.

RJ(P)= sup
{Pv}:Pv≥0,E[Pv]≤P

∫ ∞

v=0
RJ(v,Pv)exp(−v)dv, J∈{I , II }

(7)
Numerical evaluation in the high SNR limit yields

lim
P→∞

RI (P) = 0.7089 bits/symbol,

lim
P→∞

RII (P) = 0.7479 bits/symbol
(8)

As a final remark, we note that even though our proposed
scheme uses an independent codeword for each parallel
channel, this is not necessary. In particular following [22],
the rate in (7) can also be obtained by using asingleGaussian
wiretap codebook generated i.i.d.C N (0,1) and scaling each
transmitted symbol by the transmit powerPa depending on
the channel state. This reduces the complexity of encoding
and decoding significantly.

B. Single User: Upper Bound

To get an upper bound on the secrecy capacity we consider
a genie aided channel, where in addition to the receiver
channel state, the channel state of the eavesdropper is also
globally known. We can view the system as a set of parallel
channels as in Fig. 1,indexed by the channel gains of the
intended receiver and the eavesdropper(H,He). Each of the
parallel sub-channel is a Gaussian channel where the gains
to the intended receiver and the eavesdropper are fixed. We
have the following claim:

Claim 1: For the channel model (1) with perfect CSI
(H,He) at all the nodes, for an optimal coding scheme (i)
transmit only on sub-channels where|H|2 > |He|

2 (ii) use
an independent Gaussian wiretap codeword on each of the
sub-channel (iii) maximize the power allocation across the
sub-channels.
Proof: See the Appendix.

With the above claim, we get the following expression for
the secrecy capacity of the genie aided channel:

Cfull (P) = Pr(|H|2 ≥ |He|
2)×

sup
PH,He:E[PH,He]≤P

E

[

log
(1+ |H|2PH,He)

(1+ |He|2PH,He)

∣

∣

∣

∣

∣

|H|2 ≥ |He|
2

]

(9)
It can be verified that the objective function in (9) is concave
and hence the KKT conditions are both necessary and
sufficient to specify the optimalPH,He function. To get some
insight, we provide the following numerical upper bound
which is tight in the high SNR limit.

Corollary 1: For anyP > 0

Cfull (P) ≤ 1 bits/symbol (10)
Proof: We note that for|h| ≥ |he|, the term log(1+|h|2P)

(1+|he|2P)
is monotonically increasing inP, and the supremum is given
by log

(

|h|2

|he|2

)

in the limit P→ ∞. Thus from (9)

Cfull (P) ≤ Pr(|H|2 ≥ |He|
2)E

[

log
|H|2

|He|2

∣

∣

∣

∣

∣

|H|2 ≥ |He|
2

]

= loge(2) = 1 bits/symbol
(11)

We note that there is a significant gap between our upper
and lower bounds for the single user case (see (8) and (11)).
This gap however vanishes as the number of users becomes
large as we will see next.

IV. M ULTIPLE RECEIVERS: INDEPENDENTMESSAGES

As in Section II we assume that there areK receivers and
each is interested in an independent message.

Our achievable scheme is simply a time division mul-
tiplexing scheme that selects the best user at each time
and uses independent single user codebooks discussed in
Section III. An expression for the achievable sum-rate is:

RJ
sum,K(P)= sup

{Pv}:Pv≥0,E[Pv]≤P

∫ ∞

v=0
RJ(v,Pv) fK(v)dv, J∈{I , II },

(12)
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Fig. 2. Upper and lower bounds on the sum rate for a system withK=5
users. The lower bound is computed by the two step power allocation rule
in (13) while the upper bound is computed using the optimal water-filling
rule. Note that the bounds are quite close over a wide range ofSNR.

where fK(v) = K exp(−v)(1−exp(−v))K−1 is the probability
distribution of the maximum ofK independent, unit mean,
exponential random variables.

The power allocation in (12), is difficult to compute ana-
lytically. We consider a simpler two step power allocation,
which provides several insights. Furthermore, we will only
consider the achievability schemeRI , since the rateRII is
better only when the channel gain (of the best user) is less
than 1 an even that will happen only rarely if there are
enough users. Let us denote, the channel gain of the best user
as|hmax|

2 ∆
= max1≤i≤K{|hi |

2}. For a given powerP, we select
a thresholdT(P) and transmit with a constant powerP0 only
if |hmax|

2 ≥ T(P). Naturally,P0 = P/Pr(|hmax|
2 > T(P)). An

achievable sum rate can be obtained by maximizing over the
threshold:

RT
sum,K(P) = max

T≥0

{

Pr(|Hmax|
2 ≥ T)×

(

E
[

log(1+ |Hmax|
2P0) | |Hmax|

2 ≥ T
]

−F(P0)
)}

,
(13)

whereF(t)
∆
= E[log(1+ |He|

2t)] = exp
(

1
t

)
∫ ∞

1
t

exp(−x)
x dx, de-

notes the mutual information of the eavesdropper.
An achievable rate for the two-step power allocation

scheme (13) with 5 users is shown in Fig. 2 as a function
of the SNR. We note that the corresponding rate is close to
an upper bound, derived next, over a large range of SNR.
Note that, we expect the two bounds to be close particularly
in the low SNR regime. As the SNR decreases our proposed
scheme transmits only if any user has an unusually large
channel gain. Since the eavesdropper’s channel will not
be equally large, the loss in capacity due to the secrecy
constraint vanishes in the low SNR limit. The fact that the
bounds are quite close in the medium SNR limit is somewhat
surprising. It demonstrates that the gains from exhaustive
waterfilling over the two step power allocation scheme are
not significant even at moderate values of SNR.

To establish the upper bound, we consider a genie aided
channel, where the eavesdropper’s channel is known to the
transmitter and the intended receivers.

Claim 2: If the channel coefficients of all the intended
receivers and the eavesdropper are known to all the nodes
in the system, then the sum capacity of the K user, single
eavesdropper channel, can be obtained by a scheme which:
(a) only transmits to the best user at each time, (b) uses
an independent Gaussian codebook for each fading state
(c) optimizes power allocation across the codebooks via
waterfilling.

Note that Claim 2 is an extension of the opportunis-
tic transmission result [19] to the case of a secrecy con-
straint. We can basically decompose the system into a set
of parallel channels indexed by the channel gain vector
(H1,H2, . . . ,HK ,He) and show that it suffices to use an
independent code for each state and transmit to the best user
on each state.

In what follows, we show the result for two users and two
parallel channels. The extension to the case ofK receivers
andM parallel channels is straightforward.

Consider two parallel Gaussian channels, as shown in
Fig. 3(a), of the form1

Y11 = X1 +N11, Y12 = Y11+N12

Y21 = Y22+N21, Y22 = X2 +N22
(14)

User 2 is degraded user on the first channel, while user 1
is the degraded user on the second channel. Assume that
there is an eavesdropper who receivesYe1 = Y12 + E1 and
Ye2 =Y21+E2. The eavesdropper is degraded with respect to
both the receivers. Assume the noise distribution is given by
Ni j ∼ C N (0,σ2

i j ) andEi ∼ C N (0,µi).
Claim 3: The sum capacity of the parallel Gaussian wire-

tap channel is

Csum= max
β∈[0,1]

log

(

1+
βP

σ2
11

)

− log

(

1+
βP

σ2
11+σ2

12+ µ1

)

+ log

(

1+
(1−β )P

σ2
22

)

− log

(

1+
(1−β )P

σ2
22+σ2

21+ µ2

)

(15)
The sum-capacity is obtained by transmitting to user 1 on
the first channel and to user 2 on the second channel with a
Gaussian wiretap codebook.

To prove the above claim, we first make a simple obser-
vation. Consider a modified channel as shown in Fig. 3(b).
For this channel, user 2 is always degraded with respect to
user 1. The channel model is given by:

Y11 = X1 +N11, Y12 = Y11+N12

Y
′

21 = X2 +N21, Y
′

22 = Y
′

21+N22
(16)

We will refer to the model (14) as the reversely degraded
channel model and to (16) as the degraded channel model.

Lemma 1:The sum capacity of the reversely degraded
parallel channels (14) is upper bounded by the sum capacity
of the degraded parallel channels in (16).

1The physical degradedness condition here can be replaced with the
stochastic degradedness condition, since only the marginaldistribution of
the noise affects the capacity of the broadcast channels.
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Fig. 3. Parallel Gaussian broadcast channels with a degraded eavesdropper. In (a) the channels are reversely degraded while in (b) user 2 is degraded
with respect to user 1.

To verify the above Lemma, it suffices to show that if
(R1,R2) is achievable for the reversely degraded chan-
nel (14), then(R1 + R2,0) is achievable for the degraded
channel (16). This follows since user 1 in the degraded
channel model can always simulate user 2 in the reversely
degraded channel model and so any rate achievable for
user 2 in the reversely degraded model is also additionally
achievable to user 1 in the degraded model.

Lemma 2:The sum capacity of the degraded parallel
broadcast channel is equal to (15).
To verify lemma 2, first note that it suffices to transmit
only to user 1. Since user 1 can simulate user 2, any rate
achievable to user 2 is additionally achievable to user 1. Thus
the problem reduces to the case of Gaussian parallel channels
with one receiver and one eavesdropper. We now invoke the
single user result for parallel channels in Claim 1 to observe
that it suffices to use independent Gaussian codebooks on
each of the channels. Finally, any achievable rate with
independent Gaussian codebooks is also achievable on the
original reversely degraded channel and this completes our
proof.

It follows that the capacity expression with global channel
knowledge of the eavesdropper is given by

Cfull
K (P) = Pr(|Hmax|

2 ≥ |He|
2) max

PHmax,He:E[PHmax,He]≤P

E

[

log
(1+ |H|2PHmax,He)

(1+ |He|2PHmax,He)

∣

∣

∣

∣

∣

|Hmax|
2 ≥ |He|

2

]

(17)

Following a derivation analogous to (9), we compute the
following upper bound, which is tight in the high SNR limit.

Cfull
K (P) ≤ Pr(|Hmax|

2 ≥ |He|
2)E

[

log
|Hmax|

2

|He|2

∣

∣

∣

∣

∣

|Hmax|
2 ≥ |He|

2

]

(18)
We compute the achievable rate and upper bound

from (13) and (18) in Fig. 4. For analytical tractability, the
rate is calculated by taking the limit SNR→ ∞ for a fixed
K. We note that the upper and lower bounds are furthest for
the case of single user and, as the user population increases,
the bounds get closer. Asymptotically the bounds coincide
and we have the following expression for the sum capacity.
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Fig. 4. Upper and lower bounds on the sum rate for fading channels with
perfect secrecy constraint. The sum rate is evaluated in thelimit SNR→ ∞,
but is close for practical values of SNR, see Fig. 2.

Theorem 1:The sum capacity of the fading broadcast
channel with K independent receivers and a total power
P with perfect secrecy constraint satisfies limP→∞C(P) =
log logK + γ +o(1), whereγ = 0.5772 is the Euler-Gamma
constant ando(1) → 0 asK → ∞.

Thus even though our proposed achievable scheme is sub-
optimal for the case of a single receiver, it is asymptotically
optimal as the user population grows.

Remarks:

• The double logarithmic scaling of sum rate with the
number of receivers is a consequence of the multiuser
diversity (see e.g. [19]). We note that the secrecy
constraint preserves the multiuser diversity gain, but the
power gain is lost as in the AWGN wiretap channel [3].

• The two-step power allocation strategy provides a nat-
ural architectural solution. In particular, scheduling al-
gorithms optimized for conventional multiuser diversity
systems can still be used with the secrecy constraint.
The modification required at the scheduling layer is
that transmission must be done only if the channel of
the selected user is sufficiently strong. Moreover, the
transmitted information must be protected via a wiretap



code instead of a conventional channel code.
• Our analysis has focussed on the case of statistically

equivalent users and eavesdroppers. Generalizations to
the case when some receivers are stronger than others
are straightforward. Both our upper and lower bounds
can be generalized to this situation.

V. M ULTIPLE USERS: COMMON INFORMATION

In this section, we consider a scenario when each of
the K receivers is interested in a common confidential
message. The problem of multicasting common information
has received less attention than the problem of broadcasting
independent messages in systems without a secrecy con-
straint. Transmitter CSI in general does not appear to signif-
icantly improve the common message rate over a flat power
allocation based scheme (that does not require transmitter
CSI). In contrast, when we have to multicast confidential
information, it is necessary that the knowledge of channel
coefficients be taken into account so as to selectively serve
the intended users. A scheme based on flat power allocation
will naturally reveal the message to the eavesdroppers. How
can the transmitter CSI be taken into account efficiently?
One ad-hoc solution is to transmit only when the channel
gains ofall the users are sufficiently large. With independent
fading however, it will be only rarely (with sufficiently many
receivers) that all the users simultaneously experience a
strong channel. The achievable rate will decay exponentially
with the number of users.

One might naturally wonder how the multicasting secrecy
capacity scales with the number of intended receivers. Since
we are limited by the single user upper bound (9), the
capacity cannot increase with the number of receivers. The
best we can hope for is that the capacity is a constant,
independent of the number of receivers. In what follows we
propose a scheme that also achieves a rate independent of
the number of intended receivers. This establishes that the
capacity does not decay with the number of receivers.

A. Case of two receivers

We first present the scheme for the case of two receivers.
The generalization to multiple receivers will be presented
subsequently.

We first define a few parameters.

• R
∆
= E[log(1+ |H|2P)||H|2 > T]−E[log(1+ |He|

2P)]

• Rw
∆
= E[log(1+ |He|

2P)]

• T: threshold for transmission.

• p
∆
= Pr(|H|2 ≥ T)

• n0
∆
= p2n, n1

∆
= p(1− p)n

Codebook Generation: We use two independent Gaussian
codebooksC0,C1 as shown in Fig. 5. The codebookC0

is a (n0,2n0R) code constructed as follows. We generate
2n0(R+Rw) codewords i.i.d.C N (0,P) and randomly partition
them into 2n0R bins. There are 2n0Rw codewords per bin.

The codebookC1 is a (n1,2n1R) code, with 2n1(R+Rw) i.i.d.
C N (0,P) codewords randomly partitioned into 2n1R bins.

Our common message is of the form(W0,W1). The
messageW0 is uniformly distributed over the indices
{1,2, . . .2n0R} while the messageW1 is uniformly distributed
over the indices{1,2, . . .2n1R}. Accordingly, the overall rate
is: n0

n
R+

n1

n
R= pR. (19)

We note that our construction forC0 andC1 is analogous to
the Gaussian wiretap codebook construction [3].

Encoding: We select randomly a codewordUn0
0 for mes-

sageW0 from the set of all codewords associated with this
message. For messageW1 we select two codewordsUn1

1 and
Un1

2 uniformly and independently of one another as shown
in Fig. 5 (potentially these codewords might be the same).
At each time depending on the state of the channel, we
select one of the codewords according to the table below
and transmit its subsequent symbol.

Channel State Selected Codeword
(a) |H1|

2 ≥ T & |H2|
2 ≥ T Un0

0
(b) |H1|

2 ≥ T & |H2|
2 ≤ T Un1

1
(c) |H1|

2 ≤ T & |H2|
2 ≥ T Un1

2
(d) |H1|

2 ≤ T & |H2|
2 ≤ T /0

The transmission stops when the we have transmitted exactly
n0 symbols ofUn0

0 and n1 symbols each ofUn1
1 and 2 Un1

2 .
Because of global CSI of the state, all the receivers know
the current state of the system and accordingly know which
codeword the transmitted symbol belongs to.

Decoding: Decoder 1 observes(Yn0
r0 ,Yn1

r1 ,Yn1
r2 ) correspond-

ing to the codewords(Un0
0 ,Un1

1 ,Un1
2 ). Since the codewords

Un0
0 and Un1

1 are transmitted whenever|H1|
2 ≥ T, user 1

is able to decode these codewords with high probability.
Thus user 1 recovers the message(W0,W1). User 2 is able
to recover the codewordsUn0

0 and Un0
2 and therefore the

message(W0,W1).
Secrecy Analysis: Let us denote the observed sequence

at the eavesdropper as(Yn0
e,0,Y

n1
e,1,Y

n1
e,2), where Yn0

e,0 is the
eavesdroppers observation of codewordUn0

0 , and Yn1
e,i , for

i = 1,2 are the eavesdroppers observations of codewordsUn1
i .

We first note that form our construction of codebooksC0 and
C1, we have that for any fixedε > 0 and sufficiently large
n0 andn1 that

I(W0,Y
n0
e,0) ≤ n0ε I(W1;Yn1

e,1) ≤ n1ε I(W1;Yn1
e,2) ≤ n1ε,

(20)
To establish the condition of perfect secrecy we wish to

upper bound the following quantityI(W0,W1;Yn0
e,0,Y

n1
e,1,Y

n1
e,2).

I(W0,W1;Yn0
e,0,Y

n1
e,1,Y

n1
e,2) = I(W0;Yn0

e,0)+ I(W1;Yn1
e,1,Y

n1
e,2)

≤ I(W1;Yn1
e,1,Y

n1
e,2)+n0ε

(21)

The first equality above holds from the fact thatW0 and
W1 are mutually independent and the codebooksC0 andC1

2It may be necessary to skip transmission in a few time-slots in this
process before all the states have occurred the desired number of times.
This will incur a small overhead in rate, but this loss vanishes as the block
length becomes large. This will be discussed in more detail in the full paper.
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Fig. 5. Coding scheme for the two user multicasting case. Two independent Gaussian codebooks are generated, one for messageW0 and one for message
W1. The length of the codewords aren0 andn1 respectively. We generate 2ni (R+Rw) codewords i.i.d.C N (0,P) and partition into 2ni R bins. For message
W0, we select one codewordUn0

0 from the bin ofW0. For W1, we select two codewordsUn1
1 andUn1

2 , independently and uniformly from the bin ofW1. A
symbol ofUn0

0 is transmitted whenever|H1|
2 ≥ T and |H2|

2 ≥ T. A symbol ofUn1
1 is transmitted whenever|H1|

2 ≥ T and |H2|
2 < T, while a symbol of

Un1
2 is transmitted whenever|H1|

2 < T and |H2|
2 ≥ T.

are generated independent of one another. It remains to upper
boundI(W1;Yn1

e,1,Y
n1
e,2).

I(W1;Yn1
e,1,Y

n1
e,2) = h(Yn1

e,1,Y
n1
e,2)−h(Yn1

e,1,Y
n1
e,2|W1)

= h(Yn1
e,1,Y

n1
e,2)−h(Yn1

e,1|W1)−h(Yn1
e,2|W1)

(22)

≤ h(Yn1
e,1)+h(Yn1

e,2)−h(Yn1
e,1|W1)−h(Yn1

e,2|W1)

≤ I(W1;Yn1
e,1)+ I(W1;Yn1

e,2) ≤ 2n1ε

Here (22) follows from the fact that the codewordsUn1
1 and

Un1
2 are chosen conditionally independent givenW1 hence

Yn1
e,1 andYn1

e,2 are conditionally independent givenW1.
Thus we have shown that by choosing a sufficiently large

block length, we can keep the eavesdropper in almost perfect
equivocation, while the rate of the common message is given
by (19). We summarize our result below.

Claim 4: An achievable rate for the two user multicasting
system is given by

Rcommon,2(P) = max
T≥0

{

Pr(|H|2 ≥ T)×

(

E
[

log(1+ |H|2P) | |H|2 ≥ T
]

−F(P)
)}

,
(23)

whereF(t)
∆
= E[log(1+ |He|

2t)] = exp
(

1
t

)
∫ ∞

1
t

exp(−x)
x dx, de-

notes the mutual information of the eavesdropper.
We next show that this rate is achievable for any number

of receivers.

B. Many Receivers

Our extension of the multicasting scheme to the case of
K intended receivers requires us to deal with many more
states. Accordingly, we introduce the following additional
definitions:

• The channel is said to be instate Si , i = 0,1, . . .K, if
exactly i of the K users have channel gains above the
thresholdT.

• A configuration Qki in stateSi , for k= 1,2, . . .Di denotes
the labelling of which users have channel above the
threshold when in stateSi . Note that there areDi =
(K

i

)

total configurations when in stateSi .
• A user is said to beactive if his channel exceeds the

threshold. When in stateSi , a user is active inAi=
(K−1

i−1

)

different configurations.
• The probability of being in configurationQki of state

i is given by qi
∆
= pi(1− p)K−i , where p

∆
= Pr(|H|2 ≥

T). Also let ni = qin, be the expected fraction of time
configurationQki occurs.

We will transmit a separate message in each such stateSi .
Let the message beWi . Thus our common message is of the
form (W1,W2, . . . ,WK). For the rest of this section we focus
on transmission of messageWi .

Codebook Generation:
We propose to use a concatenated codebook as shown in

Figure 6.
• For each of the configurationQki we generate a Gaus-

sian wiretap codebookCki which is a (ni ,2niR) code.
Each codebook is generated via random partitioning as
in the two user case (c.f. Fig. 5). This constitutes our
inner code.

• We select a maximum distance separable (MDS) code
over a fieldF2nqi R with parameters(Ai ,Di). This forms
our outer code.

Encoding
• The messageWi is split into Ai sub-messages

(Wi1, . . .WiAi ). Each of the sub-messagesWi j is an in-
dependent binary information sequence of lengthnqiR.

• We view eachWi j as a symbol over this fieldF2nqi R and
map the tuple(W1i , . . .WAi i) to a (V1i , . . . ,VDi i) using the
outer erasure code.

• Each sequenceVki is mapped to a codewordUni
ki via the

inner wiretap codeCki. A symbol ofUni
ki is transmitted
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Fig. 6. A concatenated coding scheme for multicasting confidential messages in stateSi . The message is broken down intoAi bit sequences of length
nqiR. By treating these as elements ofF2nqi R, a (Ai ,Di) erasure code is applied. Each of the resulting output symbol is then mapped to a wiretap codeword,
as shown and then output during a specific configuration. Eachchannel above represents one such configuration. Each receiver can decodeAi different
codewords in the configurations he is active. Then using the outer erasure code, the original message can be recovered. An eavesdropper observes all the
Di codewords over fading channels, but still has almost perfectequivocation.

whenever we are in configurationQki.

Decoding Let us denote the observations at receiver
j to be (Yni

r j1, . . . ,Y
ni
r jD i

) corresponding to the codewords
(Uni

1i , . . . ,U
ni
Di i

). With high probability, userj can recover all
theAi the codewords which are transmitted in configurations
where he is active. Using the outer MDS erasure code, the
messageWi can thus be recovered.

Secrecy Analysis: The eavesdropper observes all the
codewords over a fading channel. Let(Ynqi

jie be the output se-
quence at the eavesdropper when codewordUni

ji correspond-
ing toVji is transmitted. From the wiretap code construction,
it follows that I(Vi j ;Y

nqi
i je ) ≤ nqiε. We wish to show that for

sufficiently largen, I(Wi ;
⋃

j Y
nqi
i je ) ≤ ε ′ for any givenε ′.

I(Wi ;
⋃

j

Ynqi
i je ) = I(Vi1,Vi2, . . . ,ViD i ;Y

nqi
i1e , . . . ,Ynqi

iD ie
) (24)

= h(Ynqi
i1e , . . . ,Ynqi

iD ie
)−h(Ynqi

i1e , . . . ,Ynqi
iD ie

|Vi1,Vi2, . . . ,ViD i )

= h(Ynqi
i1e , . . . ,Ynqi

iD ie
)−∑

j
h(Yn

i je|Vi j ) (25)

≤ ∑
j

I(Ynqi
i1e ;Vi j ) ≤ Dinqiε

Here (24) follows from the fact that theVi1 . . .ViD i is a one
to one function ofWi and (25) from the fact that{Yn

i je} j are
conditionally independent given{Vi j } j . Finally, observe that
the common message rate for the proposed scheme is given
by:

Rcommon=
K

∑
i=1

AiqiR (26)

=
K

∑
i=1

(

K−1
i −1

)

pi(1− p)K−iR= pR, (27)

which is the same rate in (23).
Theorem 2:An achievable rate for multicasting a confi-

dential common message toK receivers is given by (23).

The achievable rate is constant, independent of the number
of intended receivers.

Note on the overhead information

Note that each active user at a given time, has to know
the state and the configuration of the system at that time. In
our model, we have assumed global CSI knowledge, so that
each receiver knows this information for free. In practice,
the transmitter has to send the configuration information
explicitly. If there areK users in the system, there areK +1
possible states and at-most

(K
K
2

)

configurations. The amount

of overhead is of the order of log
(K

K
2

)

, which increases
linearly in the number of users.

The significance of this overhead depends on how quickly
the underlying channel changes. If the channel is changing
every symbol, then this overhead could be huge, since we
need to transmitK bits per symbol. In practice however,
if one uses a slow frequency hopping scheme, then the
transmitter will spend a certain fraction of time in each
narrow-band sub-channel. During this period, the configu-
ration information will be broadcasted first. Thereafter the
wire-tap codeword of the corresponding configuration will
be transmitted.

We believe that at least in the high SNR situations, the
overhead information may not be the bottleneck. The main
justification for this is that this information does not haveto
be secure. So unlike the secrecy rate, its rate increases with
the power. Hence it can be broadcasted at a much higher rate
than confidential messages.

VI. CONCLUSION

The problem of secure broadcasting in an i.i.d. Rayleigh
fading environment is investigated. Throughout we assume
that the channel state of the intended receivers are known
globally to all the nodes, including the eavesdroppers. On
the other hand the channel state information of the eaves-
dropping nodes are only known to the eavesdroppers and



not revealed to the transmitter or receivers. Upper and lower
bounds have been derived for the case of one sender and
one receiver. For the case of independent messages, a coding
scheme which is asymptotically optimal in the sum rate as
the number of receivers grows is presented. For the case
of a common message, a concatenated coding scheme is
presented that has an achievable rate that is independent of
the number of receivers interested in the message.

APPENDIX

We consider two parallel Gaussian channels; the gener-
alization toM parallel channels is straightforward. Also for
simplicity we only consider real channels. The generalization
to complex channels is immediate.

We wish to show that it suffices to use an independent
Gaussian codebook on each parallel channel where the eaves-
dropper is degraded with respect to the intended receiver
and transmit nothing if the eavesdropper is stronger than
the intended receiver. We first consider the case where the
intended receiver is stronger than the eavesdropper on both
the channels. Recall that it suffices to use a physically
degraded model as below.

Y1 = X1 +Z1, Ye1 = Y1 +Ze1

Y2 = X2 +Z2, Ye2 = Y2 +Ze2
(28)

whereZ1 ∼N (0,σ2
1), Z2 ∼N (0,σ2

2), Ze1 ∼N (0,σ2
e1) and

Ze2 ∼ N (0,σ2
e2).

Claim 5: The secrecy capacity of the above channel with
two parallel sub-channels is

C = sup
β∈[0,1]

{

1
2

log

(

1+
βP

σ2
11

)

−
1
2

log

(

1+
βP

σ2
11+σ2

e1

)

+
1
2

log

(

1+
(1−β )P

σ2
2

)

−
1
2

log

(

1+
(1−β )P

σ2
2 +σ2

e2

)}

(29)

Note that the achievability scheme is to use independent
Gaussian codebooks on the two parallel channels. We only
have to show the converse. LetW be the transmitted mes-
sage. Assume that there exists a lengthn block code with
2nR messages. From the secrecy constraint, we have that
I(W;Yn

e1,Y
n
e2) ≤ nεn for some sequenceεn → 0 as n → ∞.

Let nR= H(W) By Fano’s inequality, we have

nR≤ I(W;Yn
1 ,Yn

2 )+nεn

≤ I(W;Yn
1 ,Yn

2 )− I(W;Yn
e1,Y

n
e2)+2nεn

≤ I(W;Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)+2nεn (30)

Now let Xn
1 and Xn

2 denote the transmitted sequences
on the two channels. Due to the sum power constraint,
there exists aβ ∈ [0,1] such that∑n

i=1E[X2
1i ] ≤ nβP and

∑n
i=1E[X2

2i ]≤ n(1−β )P. We use this to further simplify (30).

nR≤ I(W;Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)+2nεn

= h(Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)−h(Yn

1 ,Yn
2 |Y

n
e1,Y

n
e2,W)+2nεn

≤ h(Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)−h(Yn

1 ,Yn
2 |Y

n
e1,Y

n
e2,W,Xn

1 ,Xn
2 )+2nεn

= h(Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)−h(Zn

1,Zn
2|Z

n
1 +Zn

e1,Z
n
2 +Zn

e2)+2nεn

(31)

= h(Yn
1 ,Yn

2 |Y
n
e1,Y

n
e2)−h(Zn

1|Z
n
1 +Zn

e1)−h(Zn
2|Z

n
2 +Zn

e2)+2nεn

(32)

≤ h(Yn
1 |Y

n
e1)+h(Yn

2 |Y
n
e2)

−h(Zn
1|Z

n
1 +Zn

e1)−h(Zn
2|Z

n
2 +Zn

e2)+2nεn

= h(Yn
1 |Y

n
e1)−h(Zn

1|Z
n
1 +Zn

e1)

+h(Yn
2 |Y

n
e2)−h(Zn

2|Z
n
2 +Zn

e2)+2nεn

Here (31) follows from the channel model (28) and (32) from
the independence of the noise process across the channels.
We will provide an upper bound forh(Yn

1 |Y
n
e1)−h(Zn

1|Z
n
1 +

Zn
e1). The derivation of the upper bound forh(Yn

2 |Y
n
e2)−

h(Zn
2|Z

n
2 + Zn

e2) is analogous. Together, these bounds will
yield the claim.

h(Yn
1 |Y

n
e1)−h(Zn

1|Z
n
1 +Zn

e1) ≤
1
2

log

(

1+
βP

σ2
1

)

−
1
2

log

(

1+
βP

σ2
1 +σ2

e1

)

.

(33)

We first note that sinceZn
1 andZn

e1 are i.i.d. and independent,
we have

h(Zn
1|Z

n
1 +Zn

e1) = h(Zn
1)+h(Zn

e1)−h(Zn
1 +Zn

e1)

= nlog2πe
σ2

1 σ2
e1

σ2
1 +σ2

e1

(34)

We now upper boundh(Yn
1 |Y

n
e1) as follows:

h(Yn
1 |Y

n
e1) ≤

n

∑
i=1

h(Y1i |Ye1i)

=
n

∑
i=1

h(Y1i |Y1i +Ze1i)

≤
n

∑
i=1

h(Y1i −αMMSE,i(Y1i +Ze1i)) (35)

≤
n

∑
i=1

log2πe

(

(P1i +σ2
11)σ2

e1

P1i +σ2
11+σ2

e1

)

≤ nlog2πe

(

(1
n ∑n

i=1P1i +σ2
1)σ2

e1
1
n ∑n

i=1P1i +σ2
1 +σ2

e1

)

(36)

≤ nlog2πe

(

(βP1 +σ2
1)σ2

e1

βP1 +σ2
1 +σ2

e1

)

(37)

HereαMMSE,i in (35) is the constant in the linear MMSE
estimation ofY1i from Y1i + Ze1i . Finally combining (37)
with (34) gives (38). In an analogous fashion, it can be shown
that

h(Yn
2 |Y

n
e2)−h(Zn

2|Z
n
2 +Zn

e2) ≤
1
2

log

(

1+
(1−β )P

σ2
2

)

−
1
2

log

(

1+
(1−β )P

σ2
2 +σ2

e2

)

,

(38)



and this completes the proof of Claim 5.
It remains to show that if the eavesdropper is stronger

on any sub-channel then the transmitter should not transmit
on such sub-channels and use independent codewords on
those channels where the intended receiver is stronger than
eavesdropper. To see this, suppose we make the intended
receiver as strong as the eavesdropper on any sub-channel
where he is originally weaker. Clearly, the capacity of this
channel can only be larger than the original channel. But
on this new channel, the eavesdropper is degraded with
respect to the intended receiver on every sub-channel. So by
Claim 5, it suffices to use independent code-books on each
parallel channel. However, on any parallel channel where
the eavesdropper is as strong as the intended receiver, the
secrecy capacity is zero. So it suffices to only transmit on
sub-channels where the intended receiver is stronger than
the eavesdropper. But this scheme can also, be used on the
original channel, thus establishing its optimality.
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