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Abstract—A framework is developed for analyzing capacity gains from
user cooperation in slow-fading wireless networks when the number of
nodes (network size) is large. The framework is illustrated for the case of
a simple multipath-rich Rayleigh-fading channel model. Both unicasting
(one source and one destination) and multicasting (one source and several
destinations) scenarios are considered. We introduce a meaningful notion
of Shannon capacity for such systems, evaluate this capacity as a function
of signal-to-noise ratio (SNR), and develop a simple two-phase cooperative
network protocol that achieves it. We observe that the resulting capacity is
the same for both unicasting and multicasting, but show that the network
size required to achieve any target error probability is smaller for unicas-
ting than for multicasting. Finally, we introduce the notion of a network
“scaling exponent” to quantify the rate of decay of error probability with
network size as a function of the targeted fraction of the capacity. This
exponent provides additional insights to system designers by enabling a
finer grain comparison of candidate cooperative transmission protocols in
even moderately sized networks.

Index Terms—Ad hoc networks, cooperative diversity, multicasting,
outage capacity, scaling laws, sensor networks, wireless networking.

I. INTRODUCTION

Cooperative diversity has been proposed as an attractive approach to
combatting slow fading in wireless networks [8], [13]. Spatially dis-
tributed nodes provide an opportunity to create a distributed virtual
antenna array and can provide substantial gains in slow fading envi-
ronments. There has been a significant interest in studying these gains
recently; see, e.g., [1], [2], [9], [10], [12], and the references therein.

A convenient channel model for such problems, as has been widely
adopted in the literature, is a quasi-static one in which the parameters
are known to the receivers, but not to the transmitters. In such sce-
narios, the classical Shannon capacity is typically zero due to the posi-
tive probability of the channel experiencing an arbitrarily deep fade, so
performance is instead quantified in terms of outage capacity, which de-
scribes the achievable rate subject to a constraint on the level of outage
probability that can be tolerated [11].

Outage analysis applies to a host of multiterminal extensions of
such basic channel models as well [14], although the expressions
become more cumbersome. To address this, diversity–multiplexing
tradeoff analysis provides a suitably coarser scale characterization
of such systems by focusing on the high signal-to-noise ratio (SNR)
regime and examining how outage probability scales with SNR in this
regime for different transmission rates [16].
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Diversity–multiplexing tradeoff analysis has also proven useful in
analyzing a host of simple network problems. For example, [15] ex-
tends the analysis to the multiple-access channel, while [8] extends the
analysis to the cooperative diversity channel.

While such analysis of cooperative diversity has proven popular,
much of the work has been limited to systems in which for a given mes-
sage there is effectively only a single destination node and a relatively
small number of potential relay nodes to participate in the transmission.

In the present correspondence, we develop an alternative framework
within which to examine cooperative protocols. First, our emphasis is
on the multicasting scenario in which there is one message in the net-
work, but generally multiple destination nodes. We will focus on two
extreme special cases of this scenario. One is when all nodes in the
network are to receive the message, which for convenience we gener-
ically refer to as multicasting. The other is when exactly one node in
the network is to receive the message, which we refer to as unicasting.

Second, our framework examines the scenario in which the number
of nodes in the network is large. This will allow us to examine the
associated asymptotic scaling behavior of cooperative networks. As a
by-product, we do not need to restrict our attention to high SNR anal-
ysis. Indeed, we fix the noise power, normalize the channel statistics,
and contrain the total power transmitted in the network. This allows us
to parameterize our results in terms of the associated SNR.

Within this framework, we analyze the relationship between trans-
mission rate and the associated error probability. Providedwe use codes
of sufficiently long block lengths, outage probability dominates the
error probability. Specifically, the associated outage event is that not all
the intended recipients are able to decode the message. Not suprisingly,
avoiding outage in multicasting is more difficult than in unicasting.

As our main result, we show that under a multipath-rich Rayleigh-
fading network model, a notion of Shannon capacity can be developed.
Specifically, there exists a nonzero capacity (dependent on SNR) such
that for all rates below capacity, the error probability can be made ar-
bitrarily small provided the network is sufficiently large. Conversely,
for all rates above capacity, the error probability is bounded away from
zero regardless of network size. Our achievability result is based on a
simple two-phase cooperative network protocol we develop. By con-
trast, when one precludes the possibility of cooperation, the associated
capacity is of course zero. Interestingly, our analysis also reveals that
despite the fact that multicasting outage behavior is dominated by the
worst node, the multicasting and unicasting capacities thus defined are
identical. Not surprisingly, we also show that for a fixed number of
nodes, the probability of outage is still much smaller in unicasting than
in multicasting.

We further show that finer scale characterizations of behavior are
possible too. In particular, we define a notion of network scaling ex-
ponent that characterizes the rate of decay of error probability with
network size as a function of the targeted fraction of capacity. Within
this analysis, we see, among other insights, that the exponent of our
capacity-achieving protocol is quite small for rates that exceed half the
network capacity.

While our results are specific to our multipath-rich Rayleigh-fading
model, we believe that the associated framework is useful more broadly
in the analysis of user cooperation gains in large networks with more
realistic—if more complicated—models. Indeed, ultimately our results
more generally suggest that just as system analysis asymptotic in block
length or SNR has proven useful, so can one that is asymptotic in net-
work size.

The remainder of the correspondence is organized as follows. Sec-
tion II introduces the network model of interest. The capacity result is
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stated in Section III. It is established by providing a converse in Sec-
tion IV and an achievability argument in Section V. The scaling of the
outage probability with the number of nodes is discussed in Section VI,
and the network scaling exponent is introduced in Section VII. Finally,
Section VIII contains some concluding remarks and directions for fu-
ture work.

II. SYSTEM MODEL

We consider a system withK receiving nodes and one source node.
For convenience, we label the source node as node 0, and the receiving
nodes as f1; 2; . . . ; Kg. Of course, in practice, different nodes in the
network can act as source nodes over orthogonal time or frequency
bands as discussed in [8]. However, for analysis, it suffices to focus on
a single configuration.

We assume a narrowband, slow fading channel passband channel
model corresponding to a multipath-rich propagation environment. In
particular, the channel gains hjk between arbitrary distinct pairs of
nodes (j; k) are independent and identically distributed (i.i.d.) random
variables from a zero-mean, unit-variance circularly symmetric com-
plex Gaussian distribution. In turn, the signal received at node k at time
i is given by

yk(i) =
j2T (i)

hjk xj(i) + zk(i) (1)

where T (i) is the set of nodes transmitting at time i, where xj(i) is
the symbol transmitted by node j at time i, and where zk(i) denotes
circularly symmetric complex i.i.d. Gaussian noise of power N0. Fur-
thermore, the noises among the different receivers are mutually inde-
pendent.

In our model, nodes are subject to a half-duplex constraint, i.e., a
node cannot transmit and receive simultaneously. Thus, associated with
every valid protocol is a set of binary variables of the formDk(i) that
specifies at time i whether node k is transmitting (Dk(i) = 1) or
receiving (Dk(i) = 0).

The source sends one of M possible messages to the destination
node(s) over n channel uses (i.e, i = 1; 2; . . . ; n). The channel gains
between all pairs of nodes remains fixed over this duration. In our
model, the channel gain hjk is known to the receiving node k but not
to the transmitting node j.

We further restrict our attention to protocols in which relay nodes
cannot revert to receive mode once they begin transmitting, i.e., if
Dk(i) = 1 for some node k and i < n then Dk(j) = 1 for all
i � j � n. This restriction precludes protocols in which transmitting
nodes effectively learn and exploit the network channel gains in their
encodings.

Finally, for simplicity, we adopt a long-term sum power constraint
across the nodes in our model. In particular, with Xj(i) for j 2 T (i)
denoting the (complex-valued) symbol being transmitted by node j at
time i, we impose an expected sum power constraint of the form

E
1

n

n

i=1 k2T (i)

jXk(i)j
2 � P (2)

where the expectation is taken over the ensemble of channel realiza-
tions and the set T (i), as well as any other randomized aspects of the
protocol. Indeed, one will want to consider protocols in which the set
T (i) depends on the realized channel gains.

The power constraint (2) is a rather natural one for systems in which
there are ergodic channel variations but a stringent delay constraint that
requires transmission of any particular message within a single coher-
ence interval. Indeed, although we do not satisfy the sum power con-
straint during the transmission of an individual message, the expecta-
tion in (2) ensures that it will be satisfied with high probability over

a sufficiently long sequence of messages. Nevertheless, we remark in
advance that the results of the correspondence do not change when the
we require the sum power constraint to be met with high probability
in every coherence interval, and our capacity-achieving protocol can
be readily extended to this case. Ultimately, the expected power con-
straint merely simplifies the exposition.

The preceding discussion characterizes an admissible protocol for
our analysis, which we formalize in the following definition.

Definition 1: An admissible protocol �K consists of a set of indi-
cator functions fDk(i)g 2 f0; 1g, which determines whether node
k is transmitting or receiving at time i; a set of encoding functions
f�k(i)g 2 , which determines the symbol produced by node k at
time i; and a set of decoding functions f kg 2 f1; 2; . . . ;Mg, which
determines the message decisions produced by node k at time n. These
functions are further constrained by their usage as described below.

During the initialization phase of the protocol, the source node 0
selects message W 2 f1; 2; . . . ;Mg for transmission. The protocol
chooses a priori the sequence D0(i) for i = 1; 2; . . . ; n. Without loss
of generality,D0(1) = 1 andDk(1) = 0 for k = 1; 2; . . . ; K . More-
over, the collections of observations Yk at each node k are initialized:
Yk = ;.

At time i, for 1 � i < n, if D0(i) = 1, then source node 0 uses
encoding function �0(i) to mapW into a transmitted complex-valued
symbol x0(i).

If node k 2 f1; 2; . . . ; Kg is in transmit mode at that time (i.e.,
Dk(i) = 1), the encoding function �k(i) at node k maps Yk and the
complex-valued channel gains fhjk; j = 0; 1; . . . ; Kg into a trans-
mitted complex-valued symbol xk(i), which is transmitted over the
channel.

If, instead, the node is in receive mode (i.e., Dk(i) = 0), then it
collects the complex-valued measurement yk(i) and updates its set of
received symbols via Yk := Yk [ fyk(i)g. If i = n, the decoding
function  k at node k maps Yk and the complex-valued channel gains
fhjk; j = 0; 1; . . . ; Kg into a decision Ŵk . Note that without loss of
generality, Dk(n) = 0 for at least one value of k. If i < n, the node
makes a decision whether to switch to transmit mode for the remaining
duration. If it decides to switch, it setsDk(j) = 1 for i+ 1 � j � n;
otherwise, it sets Dk(i + 1) = 0.

A cooperation-free protocol is a special case of the preceding defi-
nition.

Definition 2: A cooperation-free admissible protocol is one for
which only the source node transmits, i.e.,Dk(i) = 0 for 1 � k � K

and 1 � i � n.

III. CODING THEOREMS

We now develop the relationship between transmission rate and error
probability for such protocols, in the limit of large network sizes.

We begin with a meaningful definition of capacity.

Definition 3: A rateR is achievable for the unicasting (respectively,
multicasting) system if for every network sizeK , there exists an admis-
sible protocol �K with nK channel uses andMK = 2n R messages
such that the probability that the destination node (respectively, any
node) fails to decode the message approaches zero as K ! 1. The
(unicasting or multicasting) capacity C is the supremum of all achiev-
able rates.

With this definition, we have the following coding theorem, which
is our main result.
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Theorem 1: The unicasting andmulticasting capacities are identical
and given by1

C = log 1 +
P

N0

(3)

whereP is as defined in (2) andN0 is the noise power as defined via (1).

Before presenting our proof of this result, we note that to achieve
capacity—indeed, any nonzero rate—requires the use of cooperation.
Formally, we have the following result.

Theorem 2: The capacity of cooperation-free admissible protocols
for both unicasting and multicasting is

Cnc = 0 (4)

whenever P in (2) is finite and N0 in (1) is nonzero.
Proof: From Definition 2, a destination node must decode di-

rectly from the source transmission. Since the channel is a Rayleigh-
fading channel with P=N0 < 1, there exists a strictly positive prob-
ability of outage—and hence, probability of error—for every positive
transmission rate R. Since these probabilities are independent of K ,
(4) follows.

We now proceed to the proof of Theorem 1. Since we consider large
block lengths, error probability is dominated by outage probability.
Specifically, we consider blocks long enough that the probability of
error when there is no outage is negligible compared to the outage prob-
ability. Thus, in the error analysis in our proof, we restrict our attention
to outage probability.

IV. PROOF OF CONVERSE PART

We develop a converse via a simple upper bound on the achievable
rate R of Definition 3. In particular, suppose a genie conveys the mes-
sage W to nodes 1; 2; . . . ; K � 1 and only destination node K re-
mains to be served. Thus, nodes 0; 1; . . . ; K�1 can coordinate to send
the message to destination node K . This is clearly a multiple-input
single-output (MISO) antenna system with K antenna elements and
channel knowledge only at the receiver. Thus, for a given rate R, a
lower bound on the outage probability for the MISO channel is a lower
bound on that for both unicasting and multicasting systems. We let
EMISO

K denote the MISO channel outage event.
To develop such a bound, we first note that it suffices to restrict the

input distribution to i.i.d. Gaussian.

Lemma 1 (Teletar [14]) : The outage capacity of the slow-fading
MISO channel withK transmit antennas in i.i.d. Rayleigh fading with
total power constraint P is achieved by an input distribution with co-
variance matrix diag(P1; P2; . . . ; PK) where K

j=1
Pj = P:

We now establish the following lemma.

Lemma 2: Let � > 0 be arbitrary, and let

R = log 1 +
P

N0

+ �

for a K-antenna MISO channel. Then the outage probability
Pr EMISO

K is bounded away from zero, i.e.,

inf
K

Pr EMISO

K > 0: (5)

1Unless otherwise indicated, all logarithms are base 2.

Fig. 1. The two-phase cooperative multicasting protocol. In phase 1 (left), the
source node (square) broadcasts at a high rate and only a small fraction (solid)
of the many destination nodes (discs) are able to decode. In phase 2 (right),
these nodes cooperatively broadcast the message to the remaining nodes using
a suitable space–time code.

Proof: Let P �

1 ; P
�

2 ; . . . ; P
�

K ; be the power allocations that mini-
mize the outage event for the selected rate. The corresponding mutual
information is given by

I = log 1 +
1

N0

K

i=1

P �

i jhiK j
2 : (6)

For outage event EMISO

K = fR > Ig, we have

PrfEMISO

K g = 1� Pr(I � R)

� 1�
E log 1 + 1

N

K

i=1
P �

i jhiK j
2

R
(7)

� 1�
log 1 + 1

N

K

i=1
E[jhiK j

2]P �

i

R
(8)

= 1�
log 1 + 1

N

K

i=1
P �

i

R
(9)

= 1�
log 1 + P

N

R
=

�

R
> 0:

In the above derivation, (7) follows from the Markov inequality,
(8) is a consequence of Jensen’s inequality, and (9) follows from
E[jhiK j

2] = 1, for all i from our fading model. Since the above result
holds for allK , (5) follows.

V. PROOF OF FORWARD PART

A simple two-phase cooperative protocol can achieve any rate below
the capacity (3), as we now develop.

A. A Two-Phase Cooperative Protocol

The protocol of interest is depicted in Fig. 1. Specifically, in phase 1,
the source node broadcasts the message over n1 channel uses at a rate
R1 and all nodes attempt to decode the message. Nodes that cannot
decode the message discard the source transmission. Then, in phase 2,
the nodes that are successful in decoding the message act as relays and
form a virtual antenna array, transmitting over the remaining n2 = n�
n1 channel uses at a rate R2. At this point, the intended destination(s)
attempt(s) to decode the message and an outage is declared if any of
the intended destinations fail.

Codebook Generation: Suppose that the source generatesM code-
words i.i.d. CN (0; P1) for some P1 > 0, each of length N1, and all
nodes each independently generateM codewords i.i.d. CN (0; P2) for
some P2 > 0, each of length n2. We describe the main steps of the
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protocol for the case of multicasting, but indicate the straightforward
modifications for the case of unicasting.

Phase 1: The source transmits the codeword corresponding to the
intended message from its codebook over n1 channel uses. We choose
the rate in this phase to be (strictly less than, but arbitrarily close to 2)

R1(�) = log 1 +G(�)
P1
N0

(10)

where

G(�) = F�1(1� �) (11)

and F (�) denotes the cumulative distribution function of an arbitrary
channel gain jhij j2, and where we have made the dependency of R1

on � explicit.
All nodes attempt to decode the transmission. A node is successful in

decoding the message if it finds a codeword in the source codebook that
is jointly typical with the received sequence. LetK1 be the number of
nodes that are successful in decoding the message from the source. We
label these nodes as 1; 2; . . . ; K1. These nodes participate in Phase 2.

Phase 2: Each of theK1 nodes successful in decoding the Phase 1
transmission next transmits the corresponding codeword from its code-
book over n2 channel uses. The rate in this phase is set to (strictly less
than, but arbitrarily close to)

R2(�) = log 1 +
P2
N0

(1� �) (12)

where 0 < � < 1 is design parameter, the dependence ofR2 on which
we have made explicit.

Each of the remaining K2 = K � K1 nodes attempts to decode
the message at the end of the second phase. Node k, upon receiving is
observations3 ynk finds a message ŵk and a subset of nodes

Sk = fk1; k2; . . . ; kjS jg � f1; 2; . . . ; Kg n fkg

such that the corresponding set of codewords

xnk (ŵk); x
n

k (ŵk); . . . ; x
n

k (ŵk)

is jointly typical with ynk . It declares the message ŵk to be the trans-
mitted message if a unique pair (ŵk;Sk) exists and declares a failure
otherwise.

In the case of unicasting, if the destination node is successful in de-
coding the message in Phase 1 then it does not participate in Phase 2.
Otherwise, it continues to listen to the transmissions and attempts to de-
code the Phase 2 transmission. An error occurs if the destination fails
to decode the Phase 2 transmission.

B. Protocol Analysis

First, we analyze code rate. To begin, it is straightforward to verify
that n1 and n2 are completely determined by the choice of rates. In
particular, let the overall rate of our protocol be R, so that there are
M = 2nR possiblemessages to send overn channel uses in the system.
Then it follows that

n1R1 = n2R2 = logM: (13)

2This technicality ensures that the probability of error when not in outage will
approach zero uniformly over all channel realizations. A similar technicality
applies to the rate in Phase 2.

3We use the superscript to denote the vector formed from the n variables
corresponding to time instants n + 1; n + 2; . . . ; n, i.e., Phase 2 of the pro-
tocol.

From (13), it is straightforward to calculate the overall effective rate
R of the system. In particular, since logM = nR with n1 + n2 = n,
(13) implies that R satisfies

1

R
=

1

R1(�)
+

1

R2(�)
: (14)

Second, we analyze the power constraint (2). In Phase 1, the trans-
mitted power is P1, so provided P1 � P , our power constraint is met
in this phase. To analyze the power used in Phase 2, we begin by noting
that on average a fraction � of the nodes are able to decode the mes-
sage after Phase 1. Specifically, the number of nodesK1 successful in
Phase 1 has mean

E[K1] = �K (15)

sinceK1 is a binomial random variable, viz. (cf. (10))

K1 =

K

i=1

1fjh j >G(�)g (16)

where 1f�g is an indicator function, which equals 1 if its subscript is
true and 0 otherwise, and where we have set P1 = P . Hence,

E

K

j=1

jXj j
2 = P2E[K1] = P2�K

from which we see that the power constraint is satisfied in Phase 2
provided P2 � P=�K .

Finally, we analyze the outage probility, i.e., the probability of
outage of a node that is unable to decode at the end of Phase 2 of
the protocol. For convenience, let us exploit symmetry and label this
node K , while the nodes that are successful in Phase 1 we label
1; 2; . . . ; K1. From straightforward MISO system analysis, node K
will fail to decode the message whenever K1 < K and

R2(�) > log 1 +GK(K1)
P

N0
(17)

where

Gk(k1)
1

�K

k

j=1

jhjkj
2 (18)

is the effective MISO channel gain of node k, and where we have set
P2 = P=(�K). But sinceR2 was chosen according to (12) in Phase 2,
(17) implies that outage will occur when GK(K1) � 1� �. Accord-
ingly, the outage events Euc�;�;K and Emc

�;�;K for unicasting and multi-
casting, respectively, take the form

Euc�;�;K =

K�1

k =0

Auc
k

Emc
�;�;K =

K�1

k =0

Amc
k

where, for k1 2 f1; 2; . . . ; Kg

Auc
k = fK1 = k1; GK(k1) � 1� �g

Amc
k = K1 = k1; min

k:k �k�K
Gk(k1) � 1� � :

The following lemma provides bound on the conditional outage
probability that will be useful in the sequel.

Lemma 2: Suppose k1 � �K(1 � �) nodes are successful at the
end of Phase 1. Then the conditional probability of outage is given by

Pr Euc�;�;K j K1 = k1 �
�K(1� �)e

k1

k

e��K(1��): (19)
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Proof: To obtain (19), it suffices to bound

PrfGK(K1) � 1� � j K1 = k1g

since

Pr Euc�;�;K j K1 = k1 = PrfGK(K1) � 1� � j K1 = k1g:

This can be accomplished by the Chernoff bound, since GK(k1) in
(18) can be written as

GK(k1) =

k

j=1

gj (20)

where the

gj =
1

�K
jhjK j

2 (21)

are i.i.d. random variables. Specifically, we obtain, for any s > 0

PrfGK(K1) � 1� � j K1 = k1g (22)

= Pr e�sG (K ) � e�s(1��) K1 = k1 (23)

� es(1��)E e�sG (K ) j K1 = k1 (24)

= es(1��) E[e�sg ]
k

(25)

=
es(1��)

(1 + s=(�K))k
(26)

where (24) follows from theMarkov inequality, (25) follows from (20),
and (26) follows from evaluating the characteristic function of the ex-
ponential random variables (21).

In turn, since (26) holds for all s > 0, we can choose the particular
value

s =
k1

1� �
� �K: (27)

Substituting (27) into (26) yields (19) as desired.

We now show that the probability of outage can be made arbitrarily
small by selecting �K appropriately.

Proposition 1: The probability of outage in unicasting decreases
exponentially with �K for every � > 0. Specifically, for every 0 <
� < �

Pr Euc�;�;K =E Pr Euc�;�;KjK1

� exp(��K�2=4) + exp f�K
(�; �)g
(28)

where


(�; �) � � �+ (1� �) ln
1� �

1� �
< 0: (29)

Proof: To obtain (28) we observe that, for some � 2 (0; �)

Pr Euc�;�;K

=
k :k <�K(1��)

Pr Euc�;�;K j K1 = k1 PrfK1 = k1g

+
k :k ��K(1��)

Pr Euc�;�;K j K1 = k1 PrfK1 = k1g (30)

� PrfK1 < �K(1� �)g+ max
k :k ��K(1��)

Pr Euc�;�;K j K1 = k1

= PrfK1 < �K(1� �)g+ Pr Euc�;�;K j K1 = �K(1� �) (31)

where (31) exploits that outage probability is a decreasing function of
k1. Finally, using the binomial Chernoff bound (see, e.g., [4])

PrfK1 < �K(1� �)g � e��K� =4

for the first term in (31), and applying Lemma 2 to the second term,
yields (28) as desired.

In turn, Proposition 1 can be used to bound the corresponding prob-
ability of outage in multicasting.

Proposition 2: The probability of outage in multicasting decays ex-
ponentially with �K . Specifically

Pr Emc
�;�;K = E Pr Emc

�;�;KjK1 � K Pr Euc�;�;K : (32)

Proof: First, we bound the conditional outage probability ac-
cording to

Pr Emc
�;�;KjK1 = k1 (33)

= Pr min
k:k �k�K

Gk(K1) < 1� �jK1 = k1

= Pr

K

i=K +1

fGi(K1) � 1� �g K1 = k1

� (K � k1)Pr Euc�;�;KjK1 = k1 (34)

� K Pr Euc�;�;KjK1 = k1 (35)

where (34) is a simple application of the union bound. Taking the ex-
pectation of both sides of (35) with respect to K1, we obtain (32). Fi-
nally, since Proposition 1 establishes that the unicasting outage prob-
ability decays exponentially, (35) implies that the multicasting outage
probability does as well.

Propositions 1 and 2 can be used to establish the forward part of the
coding theorem for both unicasting and multicasting.

Proof Theorem 1: To show that our two-phase protocol can ap-
proach the capacity (3)we show that the outage probability can bemade
arbitrarily small while operating arbitrarily close to the capacity. Sup-
pose that � > 0 and � > 0 are arbitrary. Since the outage probability
decreases exponentially inK , we can choose aK large enough tomake
the outage probability sufficiently small. Next, note that by choosing
� and � sufficiently small, we can make R1(�) sufficiently large and
R2(�) sufficiently close to C . As particular examples, it suffices to
take � � 1= logK and � � 1=K so that �; � ! 0 but �K ! 1.
Thus, we can have the effective rate (14) be arbitrarily close toC , while
keeping the outage probability sufficiently small.

An intuition behind the achievability result is that in the limit of a
large number of nodes, we can find sufficiently many nodes (albeit a
small fraction of the population) with very large channel gains and they
can be served over a small number of channel uses in the first phase
(i.e.,n1 is a negligible fraction ofn2). These nodes then simultaneously
cooperate to serve the remaining nodes. Since sufficiently many nodes
are transmitting in the second phase, we have enough diversity in the
system to drive the outage probability to zero.

C. Multiple Antenna Generalization

It is possible to generalize our results to the case where the at least
some of the nodes in the network have multiple antennas. In particular,
suppose that the node i has Ti antennas. In the case of unicasting, our
two-phase protocol can be straightforwardly extended to obtain the fol-
lowing:

Cuc
ma = TK log 1 +

P

N0
: (36)

In the bound (36) the key quantity of interest is TK , the number of an-
tennas at the destination node; the number of antennas at the source and
relay nodes does not impact capacity. Note that, in the first phase of the
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protocol, we can still communicate to a large number of relay nodes, re-
gardless of the number of antennas at each relay. These nodes then form
a virtual antenna to communicate to the destination in Phase 2. This re-
duces to the case of a multiple-input multiple-output (MIMO) system
when the number of transmit antennas is much larger than the number
of receive antennas. Using the channel hardening result for such sys-
tems—see, e.g., [7]—one can establish that rateCuc

ma is achievable. The
converse is analogous to the single-antenna case in Section IV.

An analogous argument for multicasting can also be developed:

Cmc

ma = minfT1; T2; . . . ; TKg � log 1 +
P

N0

: (37)

Evidently, (37) can be much smaller than (36)—the system rate is gov-
erned by the node with the fewest antennas in multicasting rather than
the destination node.

VI. OUTAGE SCALING BEHAVIOR

Our capacity result determines the rates for which outage probability
goes to zero with increasing network size for multicasting and unicas-
ting. Often, a finer grain analysis is required by system designers. In
this section, we develop the manner in which outage probability goes
to zero with increasing network size for the two-phase protocol of Sec-
tion V, which provides several additional insights. For example, while
we have shown that multicasting and unicasting share the same ca-
pacity, here we show how their respective outage probability curves
differ.

A. Outage Probability Approximations

While (28) and (32) bound the outage probabilities of interest, these
bounds are not tight. Nevertheless, good approximations to the actual
outage are readily obtained, as we now develop.

The outage probability of a unicasting system under the two-phase
protocol can be approximated by

Pr Euc�;�;K � 1p
K

exp f��K(1� �)g

� exp �KD(
k�) + 
K ln
�(1� �)e



(38)

where


 =

p
1 + 4�� 1

2�
(39)

with

� =
�2(1� �)

1� �
: (40)

In turn, the outage probability of the multicasting system can be ap-
proximated in terms of this unicasting approximation according to

Pr Emc

�;�;K = 1� 1� Pr Euc�;�;K K � K Pr Euc�;�;K : (41)

A derivation of the approximation (38) is provided in the Appendix.

B. Accuracy of Outage Probability Approximations

In this subsection, we compare our outage probability bounds (28)
and (32); and our approximations (38) and (41), to the actual probabil-
ities via Monte Carlo simulations. In particular, we choose a target rate
below capacity and evaluate the outage probability as a function of the
network size K . We evaluate the expectations over K1 in the bounds
(28) and (32) by numerical integration.

Fig. 2. Outage probability for unicasting and multicasting via our two-phase
protocol as a function of network size. The solid curves correspond to ourMonte
Carlo simulations, the dashed-dotted curves to our analytical approximations,
and the dashed curves to our bounds. The top set of curves is for multicasting;
the bottom set for unicasting. In the protocol we set � = 0:5 and R (�) = R,
so that the rate is R = (1=2) log(1 + P=(2N )) < C .

For our comparison, we set a rate of

R =
1

2
log 1 +

P

2N0

which is 1=2 of capacity in the high-SNR regime and 1=4 of capacity
in the low-SNR regime. This rate point is realized by the parameter
settings G(�) = 1=2 and � = 1=2 in our two-phase protocol, so
R1(�) = R2(�)) in (10) and (12), respectively.

Fig. 2 depicts the results. Several observations are worth empha-
sizing.

Remarks:

1) First, the outage curves for both unicasting and multicasting
approach zero with our cooperative protocol, which is a con-
sequence of the transmission rate being below capacity. Note
that, by contrast, for cooperation-free admissible protocols, the
outage curves will not decay with network size.

2) Multicasting incurs significant penalty over unicasting in terms
of outage probability for a fixed network size K . In particular,
Fig. 2 confirms that the multicasting outage probability is indeed
roughly a factorK larger than the unicasting outage probability.

3) The slopes of the outage log-probability curves are asymptoti-
cally constant, and the bounds are good predictors of the asymp-
totic slopes. This is perhaps not surprising since we used Cher-
noff techniques to derive the bounds. Indeed, in many commu-
nication problems the Chernoff exponent is close to the correct
exponent. However, the bounds are not particularly close to the
the correct outage curves.

4) The analytical outage probability approximations are asymptot-
ically quite close to the true curves, converging to within a factor
of roughly 3 in probability for large network sizes. In addition,
these approximations appear to be actual upper bounds at least
in case study depicted, though this is a conjecture.

5) The asymptotic slopes of the outage log-probability curves for
both unicasting and multicasting are identical. In Section VII,
we will develop this slope as the network scaling exponent of
the protocol, which we denote using E�ns. For a target outage
level, this slope can be used to quantify the asymptotic network
size gap between unicasting and multicasting. In particular, sup-
pose that for a fixed choice of � and � in the protocol, Kuc(�)
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nodes are required to achieve some target outage probability �
in unicasting. Then the number of nodes required to achieve the
same outage probability in multicasting is, asymptotically

K
mc(�) = K

uc(�) +
1

E�ns
logKuc(�): (42)

To verify (42), it suffices to recognize that the vertical distance
between the unicasting and multicasting outage probabilities is,
in accordance with (41), asymptotically, logKuc(�).

VII. NETWORK SCALING EXPONENT

In this section, we explore, in more detail, the asymptotic rate
of decay of the outage probability with network size, which we
have termed the network scaling exponent. This exponent captures
meaningful information for system designers. For example, at the
transmission rates to which Fig. 2 corresponds, outage probabilities
for our two-phase protocol decay reasonably quickly in a practical
sense—i.e., the network scaling exponent is reasonably large. How-
ever, as we will see, at rates close to capacity, it turns out that outage
probabilities decay very slowly as a function of network size, corre-
sponding to a small network scaling exponent. This implies that very
large network sizes may be needed to achieve practical target error
rates.

Before beginning our development, note that the network scaling ex-
ponent is the natural counterpart to the classical error exponent for tra-
ditional channel codes. In particular, the classical error exponent cap-
tures the exponential rate of decay of error probability with block length
as a function of the the targeted fraction of capacity; see, e.g., [6]. Anal-
ogously, the network error exponent captures the exponential rate of
decay of error probability in unicasting and multicasting with network
size as a function of the targeted fraction of capacity.

Formal definitions follow.

Definition 4: The network reliability function with respect to a se-
quence of admissible protocols �K in Definition 1 is given by

E
�

ns(f�Kg) = � lim
K!1

lnPrfE� g

K
(43)

where E� denotes the outage event for a system withK nodes under
the protocol �K .

Definition 5: The network scaling exponent is the supremum of the
network reliability functions of all sequences of admissible protocols
with a rate that is at least a fraction r of the capacity at a given SNR,
i.e.,

Ens(r; SNR) = sup
f� g2P(r;SNR)

E
�
ns(f�Kg) (44)

where P(r;SNR) is a set of sequences of admissible protocols with a
rate that is a fraction r of the capacity.

The following proposition establishes that, as with capacity, unicas-
ting and multicasting are not distinguished by their network scaling
exponents.

Proposition 3: The network scaling exponent is the same for both
unicasting and multicasting.

Proof: First, for any sequence of admissible protocols

Pr Emc
� � Pr Euc�

so that

E
mc
ns (r;SNR) � E

uc
ns (r;SNR): (45)

Fig. 3. The upper envelope of the plotted points indicates the network
reliability function for the two-phase cooperative protocol as a function of the
targetted fraction of capacity r. Each point corresponds to a particular value of
� and �. In this example, SNR = 0 dB.

Furthermore, if f��Kg achieves the supremum for the unicasting
system, then from a simple application of the union bound it follows
that, for each K

Pr Emc
� � K Pr Euc�

and hence,

E
mc
ns (r;SNR) � E

�;mc
ns (f��Kg) = E

uc
ns (r;SNR): (46)

Combining (45) and (46) we obtain Emc
ns (r;SNR) = Euc

ns (r;SNR) as
desired.

In the remainder of this section, we analyze a lower bound on the
network scaling exponent by optimizing over the class of the two-phase
protocols described in Section V. For a fixed choice of � and �, we can
express the fraction of the capacity achieved by the protocol as

r(�; �; SNR) =
R(�; �; SNR)

C(SNR)
(47)

where we have made the dependency of both R and C in (14) and (3),
on the parameters of interest explicit. We define the network reliability
function of the user cooperation protocol in Section V as

E
�
ns(r;SNR) = sup

�;�:r(�;�;SNR)�r

� lim
K!1

ln PrfE�;�;Kg

K
(48)

which constitutes a lower bound on Ens(r;SNR) in (44). Note that
in the above definition, we have constrained � and � to be constants
independent of K .

The upper envelope of the points in Fig. 3 indicates the network
reliability function of our two-phase protocol. Each point in the plot
corresponds to a particular choice of � and � in the protocol, for which
we have numerically evaluated E�ns in (48) for different values of r at
SNR = 0 dB.

Perhaps the most striking observation from Fig. 3 is that the error
exponent for the two-phase protocol is quite small when aiming for
rates that are more than about half of capacity. This implies that while
the protocol is capacity achieving, it may require a prohibitively large
number of nodes to achieve rates anywhere close to this capacity. It
remains to be determined whether there exist more sophisticated pro-
tocols with substantially higher exponents in this regime.
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As a final comment, it should also be noted that Fig. 3 effectively
characterizes the efficient operating frontier for the protocol. In partic-
ular, given a networkwithK nodes and an allowable outage probability
�, one can approximate the reliability function by� ln �=K and deter-
mine the corresponding value of r, which is an estimate of how close
one can expect to get to capacity in the system.

VIII. CONCLUDING REMARKS

Perhaps the main contribution of this correspondence is a frame-
work for analyzing user cooperation protocols in the limit of large net-
work size (number of nodes), which we have illustrated in the case of
a multipath-rich Rayleigh-fading environment. Within this framework,
we have introduced a meaningful notion of Shannon capacity for this
regime and presented a simple two-phase protocol that can achieve
rates arbitrarily close to capacity. A finer grain analysis of this two-
phase protocol in terms of its network scaling exponent, which charac-
terizes the rate of decay of error probabilty with network size, shows
that it may require prohibitively large number of nodes to achieve rates
close to the capacity with this protocol.

One important direction of future work is to studymore sophisticated
models beyond the Rayleigh-fading model within our framework. One
could, for example, incorporate the effects of network geometry and
shadowing into the model. More generally, it would be of interest to
study a class of channel models for which user cooperation plays a fun-
damental role in enabling reliable communication in multicasting. The
Rayleigh-fading model considered here clearly belongs to this class,
but we believe the class may be quite rich and may include many other
models of practical importance.

Another important direction is to investigate how system perfor-
mance changes when the sum power constraint is replaced with indi-
vidual power constraints.With individual power constraints, the system
capacity will increase with the number of nodes—in fact, the MISO
upper bound increases according to �(logK). It remains to be de-
termined whether there exist cooperative multicasting protocols that
approach this upper bound or whether one can develop tighter upper
bounds for this scenario.

Finally, as noted in Section VII, the two-phase protocol may require
prohibitively large number of nodes to achieve rates close to the ca-
pacity. It remains to investigate whether more sophisticated protocols
can improve the network scaling exponent substantially in this regime.

APPENDIX

DERIVATION OF OUTAGE APPROXIMATION (38)

First, we write Pr Euc�;�;K in the form

Pr Euc�;�;K
= E Pr Euc�;�;KjK1

=

K

k =1

PrfK1 = k1gPr Euc�;�;K j K1 = k1

�
K

k =�(1��)K

PrfK1 = k1gPr Euc�;�;K j K1 = k1 : (49)

Note that we have dropped the contribution of terms with k1 �
�(1� �)K in the summation, since we expect their aggregate sum to
be small as they deviate significantly from the mean E[K1] = �K .

We now approximate each of the two factors in (49). The right factor
we approximate by the upper bound (19). The left factor we replace

with via Stirling’s approximation for binomial distributions [5, p. 284],
yielding

PrfK1 = k1g = K

k1
�k (1� �)(K�k )

� 1p
K

exp �KD
k1
K

� (50)

whereD(�k�) denotes the binary relative entropy function, i.e., for any
0 < p; q < 1

D(pkq) p ln
p

q
+ (1� p) ln

1� p

1� q
(51)

and where � is the parameter of K1 (cf. (16)).
Thus, substituting (19) and (50) into (49) yields

Pr Euc�;�;K �
K

k =�(1��)K

1p
K

exp �KD
k1
K

�

� �K(1� �)e

k1

k

exp f��K(1� �)g: (52)

Finally, we approximate (52) by an approximation to the largest single
term in the summation, viz.,

Pr Euc�;�;K
� 1p

K
exp f��K(1� �)g

� max

2(�(1��);1)

exp �KD(
k�) + 
K ln
�(1� �)e



:

(53)

Since the term in the exponent being minimized in (53) is differ-
entiable and convex in 
, the optimizing 
 is the value at which the
associated derivative is zero, i.e.,


2

1� 

= � (54)

where � is as given in (40). Finally, it is straightforward to verify that
(54) has a solution in (�(1 � �); 1) and it may be solved explicitly,
yielding (39).
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On Outer Bounds to the Capacity Region of Wireless
Networks
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Abstract—In this correspondence, we study the capacity region of a gen-
eral wireless network by deriving fundamental upper bounds on a class of
linear functionals of the rate tuples at which joint reliable communication
can take place. The widely studied transport capacity is a specific linear
functional: the coefficient of the rate between a pair of nodes is equal to
the Euclidean distance between them. The upper bound on the linear func-
tionals of the capacity region is used to derive upper bounds to scaling laws
for generalized transport capacity: the coefficient of the rate between a pair
of nodes is equal to some arbitrary function of the Euclidean distance be-
tween them, for a class of minimum distance networks. This upper bound
to the scaling law meets that achievable by multihop communication over
these networks for a wide class of channel conditions; this shows the opti-
mality, in the scaling-law sense, of multihop communication when studying
generalized transport capacity of wireless networks.

Index Terms—Ad hoc wireless networks, capacity region, cut-set bounds,
isometric embedding, multihop, transport capacity.

I. INTRODUCTION

A characterization of the capacity region of wireless networks is one
of the long standing open problems in information theory. Progress in
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this direction has recently come by relaxing the questions asked: focus
has been on the transport capacity [3], a specific linear functional of
rate tuples at which jointly reliable communication is possible. The co-
efficient of the rate between a pair of nodes in this linear functional is
equal to the Euclidean distance between the two nodes. Further, much
emphasis is on the scaling law of the transport capacity as a function
of the number of nodes in the network. Recent results have shown that
multihop communication is scaling-law optimal for a class of minimum
distance networks provided the wireless channel decays fast enough
[4], [7], [8]. A study of the sum capacity of the wireless network ap-
pears in [5].

In an effort to understand the entire capacity region of the wireless
network, we shift the focus from transport or sum capacity to studying
arbitrary linear functionals of the rate tuples in the capacity region. The
capacity region is a compact convex set. Thus, understanding the ex-
tremum of linear functionals of the rate tuples in the capacity region
is an alternative but equivalent characterization (the convex dual in the
language of convex analysis; see [6]) of the capacity region. In this
correspondence, we derive simple and robust upper bounds to a class
of linear functionals: the upper bound simply depends on the distance
between the nodes, channel attenuation conditions and the coefficients
of the linear functional. The key technique is a combination of the re-
sults of isometric embeddability of an arbitrary metric space into the
l1 metric space and the familiar information-theoretic cut-set upper
bounds to the capacity region.

We use this simple upper bound to exactly characterize the scaling
law behavior over arbitrary linear and planar networks of generalized
transport capacity

Cf
def
= max

(R ) in the capacity region

n

i;j=1

Rijf(rij) (1)

where and Rij and rij denote, respectively, the rate of reliable com-
munication and the Euclidean distance between a pair of nodes (i; j).
When f(�) is the identity function, i.e., f(x) = x, we get back the
transport capacity. The scaling law of generalized transport capacity
depends crucially on the long range behavior of the function f(�); of
particular interest is the parameter

�f
def
= lim

x!1

log f(x)

log x
: (2)

To be able to state the scaling law precisely, we briefly describe our
wireless channel model adopted from [4]: the received signal at node
j at time m is

yj [m] =
i6=j

hsij [m]

(1 + rij)�
xi[m] + zj [m]: (3)

Here xi[m] is the signal transmitted by node i at time m and zj [m] is
i.i.d. white Gaussian noise. Each node j has an average transmit power
constraint (denoted by Pj ). The fading channel hsij [m]

m
is a sta-

tionary and ergodic zero-mean stochastic process that is independent
for each pair of nodes (i; j) and models the small scale fluctuations of
frequency flat fading. For simplicity, we assume that jhsij [m]j2 =
1 for all i, j, m. The large scale variations are modeled explicitly1

through the decay of signal level: a factor of 1
(1+r )

from node i to
node j. In free space � = 1, with a single reflected path along with the

1The far field signal decay is usually denoted by r . Here, we have written
(1 + r ) to ensure that our model makes sense when nodes get close; i.e.,
the average received power is not more than the average transmit power.
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