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Abstract— A rateless code, or a rate-compatible family of
codes, has the property that the higher rate codes have codewords
that are prefixes of those of the lower rate ones. A perfect
family of such codes is one in which each of the codes in
the family is capacity-achieving. We show by construction that
perfect rateless codes with low-complexity decoding algorithms
exist for additive white Gaussian noise channels. As an illustration
of our framework, we design a practical three-rate code family.
We further demonstrate that a rich set of perfect or near-perfect
rateless codes may be found via numerical optimization.

I. INTRODUCTION

The design of effective “rateless” codes has received re-
newed strong interest in the coding community, motivated by
a number of emerging applications. Such codes have a long
history, and have gone by various names over time, among
them incremental redundancy codes, rate-compatible punc-
tured codes, hybrid ARQ type II codes, flexible rate codes,
and static broadcast codes [2], [5]–[7], [9], [11], [12]. This
paper focusses on the design of such codes for average power
limited additive white Gaussian noise (AWGN) channels.

From a purely information theoretic perspective the problem
of rateless transmission is well understood; see, e.g., Shul-
man [14] for a comprehensive treatment. Indeed, for channels
having one maximizing input distribution, a codebook drawn
independently and identically distributed (i.i.d.) at random
from this distribution will be good with high probability, when
truncated to (a finite number of) different lengths.

Constructing good codes that also have computationally
efficient encoders and decoders requires more effort. A re-
markable example of such codes for erasure channels are the
recent Raptor codes of Shokrollahi [13], which build on the
LT codes of Luby [1], [8].

Surprisingly little is known about what is possible beyond
the realm of erasure channels. Recent work [4], [10] applies
Raptor codes to binary-input AWGN channels (among others),
where it is shown that no degree distribution allows Raptor
codes to approach capacity simultaneously at different signal
to noise ratios (SNRs). Beyond this, binary codes themselves
may be “nearly” capacity achieving only at low SNR.

This work was supported in part by NSF under Grant No. CCF-0515122,
Draper Laboratory, Mitre Corporation, and by HP through the MIT/HP
Alliance.

Here, we show that the successful techniques employed to
construct low-complexity codes for the standard AWGN chan-
nel can be leveraged to construct rateless codes. Specifically,
a single codebook designed to operate at a single SNR can be
used in a straightforward manner to build a rateless codebook
that operates at many SNRs. If the original codebook is good
then the rateless codebook will also be good.

We use three tools to construct the rateless codebook:

• multiplicative dithering,
• layered (superposition) coding, layered via a carefully

selected linear transformation G, and
• successive decoding with minimum mean-squared error

(MMSE) combining.

Dithering scrambles a single base codebook into a set of
L quasi-independent codebooks. Layering is used to create
incremental redundancy blocks from the L codes, where each
block is formed using a different L-fold linear combination.
Successive decoding with MMSE combining is a computation-
ally attractive and information-lossless alternative to jointly
decoding the layers.

Our main result is that the linear transformation G can be
selected so that the resulting code is either exactly or very
nearly capacity-achieving over a practically useful range of
operating conditions, while maintaining a structure suitable
for successive decoding.

II. RATELESS CODES

The codes we construct are designed for a complex AWGN
channel

ym = αxm + zm, (1)

m = 1, 2, . . . , where α is a channel gain that varies from
receiver to receiver, xm is a vector of of N input symbols,
zm is a noise vector of N of i.i.d. complex Gaussians, each of
variance σ2, and ym is the vector of channel output symbols.
The channel input is average power limited to power P per
symbol. The channel gain α and noise variance σ2 are assumed
known at the receiver but not necessarily at the transmitter.

The block length N has no important role in the analysis
that follows. It is, however, the block length of the base code
used in the rateless construction. As the base code performance
controls the overall code performance, to approach channel
capacity N must be large.
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The encoder transmits a message w by generating a
sequence of code blocks (incremental redundancy blocks)
x1(w), x2(w), . . . . The receiver accumulates sufficiently many
received blocks y1, y2, . . . to recover w. The channel gain α
may be viewed as a variable parameter in the model; more
incremental redundancy is needed to recover w when α is
small than when α is large.

An important feature of this model is that the receiver
always starts receiving blocks from index m = 1. It does not
receive an arbitrary subsequence of blocks, as might be the
case if one were modeling a broadcast channel that permits
“tuning in” to an ongoing transmission.

III. MOTIVATING EXAMPLE

To illustrate the key features of the problem, we construct
an incremental redundancy code that employs two layers of
coding to support a total of two redundancy blocks. The code
is “perfect” in a sense that will be made clear presently.

The channel gain |α| may be divided into three intervals
based on the number of blocks of redundancy needed for
decoding. When |α| ≥ |α1| decoding requires only one block.
When |α1| > |α| ≥ |α2| decoding requires two blocks. When
|α2| > |α| decoding is not possible. The interesting cases
occur when the gain is as small as possible to permit decoding.
At these critical points, for one-block decoding the decoder
sees y1 = α1x1 + z1, while for two-block decoding the
decoder sees

y1 = α2x1 + z1, (2)

y2 = α2x2 + z2. (3)

Let SNRi = P |αi|2/σ2. The capacity of the one-block
channel is

I1 = log2(1 + SNR1), (4)

while for the two-block channel the capacity is

I2 = 2 log2(1 + SNR2) (5)

bits per channel use. A “channel use” in the second case
consists of a pair of transmitted symbols, one from each block.

Let the transmitted message be NR bits long, where R is
a design parameter. Since we deliver the same message to the
receiver for both the one- and two-block cases, the smallest
values of |α1| and |α2| we can hope to achieve occur when
I1 = I2 = R. We say that the code is perfect if it is decodable
at these limits.

We introduce layering by requiring the transmitted blocks
to be linear combinations of two codewords c1 ∈ C1 and
c2 ∈ C2:

x1 = g1,1c1 + g1,2c2, (6)

x2 = g2,1c1 + g2,2c2. (7)

Codebook C1 has rate R1 and codebook C2 has rate R2,
where R1 + R2 = R, so that total rate of the two codebooks
equals channel capacity. We assume that the codebooks are
(essentially) capacity-achieving for an additive white Gaussian
noise channel. For convenience, we scale the codebooks to

have unit power; the power constraint instead enters through
the constraints

|g1,1|2 + |g1,2|2 = P, (8)

|g2,1|2 + |g2,2|2 = P. (9)

The decoder first recovers c2 while treating c1 as additive
Gaussian noise, then recovers c1 using c2 as side information.
Our aim is to select {gi,j} to enable such decoding for both
the one- and two-block cases. The resulting layered rateless
code will then be perfect in the sense introduced above.

Finding the admissable {gi,j} is a now a matter of some
algebra. In the one-block case we need

R1 = Iα1
(C1; Y1|C2) (10)

R2 = Iα1
(C2; Y1) (11)

and in the two-block case we need

R1 = Iα2
(C1; Y1, Y2|C2) (12)

R2 = Iα2
(C2; Y1, Y2). (13)

The subscripts α1 and α2 are a reminder that these equations
depend on the channel gain, and the non-boldface symbols
denote single components from the input and output vectors.

The messiest part of the calculation occurs when decoding
c2 in the two-block case (i.e., in (13)) because c1 causes the
effective noise in the two blocks to be correlated. We can
avoid this calculation by observing that a capacity-achieving
code requires X1 and X2 to be i.i.d. Gaussian. As C1

and C2 are Gaussian, independent, and equal in power by
assumption, this occurs only if the rows of the matrix [gi,j ]
are orthogonal. Moreover, the power constraint P ensures that
these orthogonal rows have the same length, which implies
that [gi,j ] is a scaled unitary matrix.

The unitary constraint has an immediate important conse-
quence: the per-layer rates R1 and R2 must be equal to R/2.
This occurs because the two-block case decomposes into two
parallel orthogonal channels of equal SNR.

Using (5) and (10) with I2/2 = R1, we thus have

log2(1 + SNR2) = log2(1 + SNR1|g1,1|2/P ), (14)

so that
|g1,1|2 = P

SNR2

SNR1
. (15)

The unitary constraint and the power constraint, together with
some algebra, allow us to express the remaining coefficients
as [

g1,1 g1,2

g2,1 g2,2

]
=

√
P

2R/2 + 1

[
1 2R/4

2R/4 −1

]
(16)

where we have exploited the freedom to adjust complex phases
to make all quantities real. It is straightforward to verify that
(10)–(13) are satisfied with this selection.

Note that in this construction, the codebooks C1 and C2

cannot be identical. However, in practice suitable codebook
pairs can be readily generated from a single base codebook C.
For example, it would be sufficient to apply a pseudorandom
{+1,−1} dither to a single base codebook C1 to generate C2.
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This 2-layer 2-block construction is our first example of a
perfect rateless code formed by taking linear combinations of
codewords drawn from equal-rate codebooks. The code can
be decoded one layer at a time with no loss in performance,
provided the decoder is cognizant of the correlated noise
caused by undecoded layers.

IV. RATELESS CODES VIA LINEAR COMBINING

The general approach we adopt for building a rateless
code may be described as follows. First, select the maximum
number M of redundancy blocks, together with a base rate R
for the one-block version of the code. Next, select the number
of layers L and codebooks Cl, . . . ,CL each of rate R/L. As
we shall see presently, some performance loss is inevitable
when M exceeds L.

Given codewords cl ∈ Cl, l = 1, . . . , L, the redundancy
blocks x1, . . . ,xM have the form⎡

⎢⎣
x1

...
xM

⎤
⎥⎦ = G

⎡
⎢⎣

c1

...
cL

⎤
⎥⎦ (17)

where G is an M×L matrix of complex gains and where {xm}
and {cl} are row vectors of length N . The power constraint
enters by limiting the rows of G to have norm P and by
normalizing the codebooks to have power 1.

Our aim is to select G so that capacity is achieved for any
number m = 1, . . . , M of redundancy blocks and to allow
layered decoding.

Decoding for layered codes is done successively, first de-
coding cL while treating G[cT

1 . . . cT
L−1]

T as noise, then
decoding cL−1, treating G[cT

1 . . . cT
L−1]

T as noise, and so
on. Note that the undecoded layers act as colored noise. The
decoder must take this into account, for example by using a
minimum mean-squared error combiner on the received blocks
{Ym}.

What, then, are the constraints on G needed for successive
decoding? Successive decoding is possible only if the mutual
information at each layer l and block m is at least as large
as the rate of code Cl. We can write these constraints more
concretely as follows. Let Cl denote a single symbol of cl (say
the first), let CL

l+1 denote the set Cl+1, Cl+2, . . . , CL, and let
G[m,l] denote the m× l upper-left submatrix of G. Finally, let
the critical channel gains {αm} be defined as in Section III,
i.e., as the solution to

R/L = m log2(1 + P |αm|2/σ2). (18)

Then, to enable successive decoding we require

R/L ≤ I(Cl; Y1, . . . , Ym | CL
l+1) (19)

= I(Cl; αmG[m,l][C1 . . . Cl]
T + [Z1 . . . Zm]T ) (20)

= log
det(σ2Im + |αm|2G[m,l]G

H
[m,l])

det(σ2Im + |αm|2G[m,l−1]G
H
[m,l−1])

, (21)

for l = 1, . . . , L and m = 1, . . . , M , where Im is the
m×m identity matrix. The power constraint ensures that the

inequalities (21) must be met with equality, and that the overall
code meets channel capacity.

Thus, our ability to either exactly or approximately satisfy
(21) determines our ability to construct good rateless codes
via linear combining (17).

When L < m these constraints cannot be met exactly
because an L-fold linear combination cannot fill all degrees
of freedom afforded by the m-block channel. Specifically, the
capacity of the m-block channel is

Im = m log(1 + |α|2P/σ2) (22)

while the rate achievable using a linear combination of L codes
is bounded by

Rm =

{
m log(1 + |α|2P/σ2) for m ≤ L,

L log(1 + |α|2(m/L)(P/σ2)) for m > L.
(23)

To meet the upper bound for m ≤ L requires that the
linear combination of L codebooks create an i.i.d. Gaussian
sequence. To meet the upper bound for m > L requires that
the linear combination inject the L codebooks into orthogonal
subspaces, so that a fraction L/m of the available degrees
of freedom are occupied by i.i.d. Gaussians (the rest being
empty). Thus, a necesssary condition to reach the upper bound
is that the rows of G[m,L] be orthogonal for m = L and that
the columns of G[m,L] be orthogonal for m ≥ L.

If we fix a target rate R for the rateless code, we can use
(22) to find the smallest channel gain αm for which decoding
with m blocks is possible:

|αm|2 = (eR/m − 1)
σ2

P
. (24)

If we instead use the bound (23) that applies to rateless codes
constructed using linear combinations of L base codes, we
find

|α′

m|2 =

{
(eR/m − 1)σ2

P for m ≤ L,

(eR/L − 1)(L/m)σ2

P for m > L.
(25)

The performance loss 20 log10 |α′

m|/|αm| caused by the
linear structure is shown in Table I for R = 5 bits per complex
symbol. If an application requires M = 10 redundancy blocks,
for example, a three-layer code has a worst-case loss of less
than 2 dB, while a five-layer code has a worst-case loss of
less than 0.82 dB.

When M = L the bounds (23) present no barrier to reaching
channel capacity. Yet the conditions under which (21) may be
satisfied are not obvious. We have already seen one example
(16) with L = M = 2. Routine if lengthy algebra yield others.
A construction that meets (21) when L = M = 3 and R = 6
bits per complex symbol is as follows:

P = 63, α1 = 1, α2 =
√

1/9, α3 =
√

1/21

U =

⎡
⎣
√

3
√

12
√

48√
24

√
33ejθ1

√
6ejθ2√

36
√

18ejθ3

√
9ejθ4

⎤
⎦
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Redundancy blocks m
2 3 4 5 6 7 8 9 10

L = 1 5.22 6.77 7.50 7.92 8.20 8.40 8.54 8.65 8.74
L = 2 0.00 1.55 2.28 2.70 2.98 3.17 3.32 3.43 3.52
L = 3 0.00 0.00 0.73 1.16 1.43 1.63 1.77 1.88 1.97
L = 4 0.00 0.00 0.00 0.42 0.70 0.90 1.04 1.15 1.24
L = 5 0.00 0.00 0.00 0.00 0.28 0.47 0.62 0.73 0.82
L = 6 0.00 0.00 0.00 0.00 0.00 0.20 0.34 0.45 0.54
L = 7 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.26 0.35
L = 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.20
L = 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09

TABLE I

LOSSES |α′

m
|/|αm| IN DB CAUSED BY LINEAR STRUCTURE FOR A

RATELESS CODE OF BASE RATE R = 5 BITS/SYMBOL, AS A FUNCTION OF

THE NUMBER OF LAYERS L AND THE NUMBER OF REDUNDANCY BLOCKS.

where

θ1 = arccos
−5

2
√

22
, θ2 = 2π − arctan 3

√
7

θ3 = − arctan
√

7 , θ4 = π − arctan
√

7/3

The rate R = 6 was selected because the resulting expressions
are unusually compact; examples for other rates may be readily
found.

For M > 3 the algebra becomes daunting, though we
conjecture that exact solutions and hence perfect rateless codes
exist for all L = M . We instead tackle the problem using
numerical optimization, as developed in the next section.

V. NUMERICAL EXAMPLES

We have experimented with numerical optimization methods
to satisfy (21) for up to M = 10 redundancy blocks, using the
critical channel gains α′

m in place of αm as appropriate when
the number of blocks M exceeds the number of layers L.

In all cases M = 2, . . . , 10, we found constructions with
L = M and R/L = 2 bits per complex symbol that come
within one part in 1000 of satisfying (21) with equality, and
often the solutions come within one part in 10000. This
provides powerful evidence that perfect rateless codes exist
for a wide range of parameter choices.

For L < M perfect constructions cannot exist, as developed
in the previous section. Moreover, it is not even possible to
meet (23) with equality. That would entail the construction
of orthogonal m-dimensional vectors (with nonzero entries)
that remain orthogonal when trunctated to their first m − 1
dimensions, an obvious impossibility.

Despite this, in most cases of interest one can come
remarkably close to satisfying (21) (as modified using the
channel gains α′

m from (25)). Evidently mutual information
for Gaussian channels is quite insensitive to modest deviations
of the noise covariance away from a scaled identity matrix.

As an example, Table II shows the shortfall in meeting the
mutual information constraints (21) for a 3-layer code with

Redundancy blocks m
1 2 3 4 5 6 7 8 9 10

l = 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
l = 2 0.00 0.28 1.23 1.46 1.39 0.44 0.59 0.48 0.16 0.23
l = 3 0.00 0.29 1.23 1.48 1.40 0.43 0.54 0.51 0.15 0.23

TABLE II

PERCENT SHORTFALL IN RATE FOR A NUMERICALLY-OPTIMIZED

RATELESS CODE WITH M = 10 BLOCKS, L = 3 LAYERS, AND A BASE

RATE OF R = 5 BITS PER COMPLEX SYMBOL.

M = 10, and R = 5, whose complex gain matrix is

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.4747 2.6277 4.6819
3.5075 3.7794 ej2.0510 2.1009 e−j1.9486

4.0648 3.1298 e−j0.9531 2.1637 ej2.5732

3.2146 3.1322 ej3.0765 3.2949 ej0.9132

3.2146 3.3328 e−j1.6547 3.0918 e−j1.4248

3.2146 3.1049 ej0.9409 3.3206 ej2.8982

3.2146 3.3248 ej1.2506 3.1004 e−j0.2027

3.2146 3.0980 e−j1.4196 3.3270 ej1.9403

3.2146 3.2880 e−j2.9449 3.1394 e−j1.9243

3.2146 3.1795 ej0.7839 3.2492 ej0.3413

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The worst case loss is less than 1.5%. Note that this loss is
cumulative with the loss in Table I.

The example in Table II is typical in its efficiency. As a
practical matter, the performance loss caused by the linear
layered structure we have imposed on the rateless code arises
almost entirely from the code’s inability to occupy all available
degrees of freedom in the channel, and can therefore be
estimated quite closely using (22) and (23), as in Table I.

VI. INCREASING BREAKPOINT RESOLUTION

With an ideal rateless code, every prefix of the code is a
capacity-achieving code. This corresponds to a particularly
dense set of SNR breakpoints at which decoding can occur.
By contrast, the rateless codes we develop in the preceding
sections have the property that only prefixes whose lengths are
an integer multiple of the base block length are both capacity-
achieving and efficiently decodable. This sparseness of SNR
breakpoints can be undesirable in some applications, since
when the realized SNR is between breakpoints, capacity is
no longer achieved: the realized rate is that corresponding to
the next lower SNR breakpoint.

One approach for controlling this aspect of our rateless code
behavior is as follows. Suppose we are interested in a rateless
code whose base rate (i.e., the maximum rate at which the
code is capacity-achieving) is R. Then we use the rateless
construction of the preceding section to design a code of base
rate is κR, where 1 ≤ κ ≤ M , and have the decoder collect at
least κ blocks before attempting to decode. With this approach,
the associated rate breakpoints are R, Rκ/(κ + 1), Rκ/(κ +
2), . . . , Rκ/M , where we note that the largest rate increment
is the first, corresponding to the factor κ/(κ + 1). Hence, by
choose larger values of κ, one can increase the density of rate
(and thus SNR) breakpoints.
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It should be stressed, however, that there is a price to paid
with this approach. In particular, if we keep constant the
number of codeword symbols that must be accumulated before
decoding at rate R is possible, then the underlying block size
in our rateless construction must decrease inversely with κ.
Thus, for sufficiently large κ the basic block length becomes
short enough that code performance suffers, and so in practice
the selection of κ involves a compromise.

VII. EXISTENCE OF NEARLY-RATELESS CODES

The construction of perfect rateless codes becomes more
challenging with increasing M . In this section we show that,
by contrast, it is easy to construct rateless codes for any M that
are arbitrarily close to perfect in an appropriate sense, provided
enough layers are used. We term these nearly-rateless codes.

Our nearly-rateless codes [3] slightly generalize the code
construction in (17) to allow the combining matrix G to vary
from symbol to symbol. In particular, given codewords cl ∈
Cl, l = 1, . . . , L, the redundancy blocks x1, . . . ,xM now have
the form ⎡

⎢⎣
x1(n)

...
xM (n)

⎤
⎥⎦ = G(n)

⎡
⎢⎣

c1(n)
...

cL(n)

⎤
⎥⎦ , (26)

where n = 1, . . . , N . This time-variation simplifies the anal-
ysis by allowing simple averaging arguments to be exploited.
The power constraint enters as before by limiting the rows
of G(n) to have a squared norm P and by normalizing the
codebooks to have unit-energy codewords.

It sufficies to restrict G(n) to be of the form

G(n) = P � D(n),

where P is an M × L power allocation matrix with extries√
Pm,l that do not vary within a block, and where D(n) is a

phase-only “dither” matrix. with � denoting componentwise
multiplications.

By (21), the mutual information of the lth layer between the
channel input and output for a channel gain αm upon receiving
m blocks is

Il,m =
1

N

N∑
n=1

Il,m(n)

where

Il,m(n) = log
det(σ2Im + |αm|2G[m,l](n)G[m,l](n)H)

det(σ2Im + |αm|2G[m,l−1](n)G[m,l−1](n)H)
.

Then if the entries of D(n) are random phases drawn inde-
pendently for each n = 1, . . . , N , the law of large numbers
implies that one can achieve a per-layer rate of

lim
N→∞

Il,m = ED [Il,m(1)] = Īl,m. (27)

When the efficiency of such rateless code is defined as

η =
minl,m Īl,m

R/L

it can be verified [3] that the efficiency can be made arbitrarily
close to unity by taking sufficiently many layers L and

choosing the power matrix P according to the following
recursion:

Pm+1,l = (2∆m+1,l − 1)

· (Pm+1,1 + . . . + Pm+1,l−1 +
σ2

|αm+1|2 ), (28)

where

∆m+1,l =
R

L
−

M∑
m′=1

log(1 + SNRm′,l(αm+1)), (29)

with

SNRm,l(α) =
|α|2Pm,l

|α|2(Pm,1 + . . . + Pm,l−1) + σ2
. (30)

The recursion proceeds from m = 1 to m = M and for each
m goes over l = 1, . . . L.

With this construction, the per-layer channel is now a time-
varying one, which is unattractive from the perspective of base
code design and potentially decoding complexity. However,
both these issues are addressed by exploiting maximal-ratio
combining in conjunction with successive-cancellation decod-
ing at the receiver, which transforms the per-layer channel
back into a time-invariant one. Thus, this change allows any
of the many capacity-approaching codes with low complexity
decoding algorithms to be used as the base code in the design.
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