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Abstract- The performance of high-resolution time-interleaved analog-
to-digital converters is often significantly degraded by timing mismatch
errors. This paper examines low-complexity methods for performing Clock
blind calibration of such converters. In particular, we develop a least x(t)
squares formulation for estimating the unknown time-skew parameters ADCo
and for performing signal reconstruction from these estimates. The
complexity of the proposed algorithm scales linearly with the number
of converters, making it an attractive solution for calibration. Tradeoffs
between performance and complexity are also developed.

I. INTRODUCTION

The maximum sampling rate of single analog-to-digital converters
is commonly lower than the rate desired by the current technologies.
At these high speeds, time-interleaved analog-to-digital converters
(TIADCs) offer an efficient method of sampling by distributing the Ts
load across many converters.
TIADCs operate in a round-robin manner. In a system of Ml

converters, to realize a system sampling period of J' , each converter ADCm ,/
operates with sampling period MT, and a spacing of Ts between
consecutive converters. Thus, the sampling rate required by the ADCs Fig. 1. Ideal time-interleaved ADC system with M converters
in the system is reduced by a factor of A, allowing for a lower
amount of overall power consumption and a greater control over
sampling accuracy. the system sampling period. In this paper, we optimize for the small-

Although TIADCs may alleviate some of the problems encountered error regime to develop a method for blind calibration of TIADCs
when using a single high speed ADC, they also introduce a new set systems, which has low complexity even for systems with many
of problems. In particular, variations among the individual ADCs in a converters. We present a method that both estimates the converter
time-interleaved system lead to inaccurate sampling [1]. The primary skews and creates a reconstruction of the input sampled on a uniform
source of error in high-resolution TIADCs is timing skew. There grid, provided that the overall system sampling rate is above the
are also gain and amplitude offset variations among the converters Nyquist rate of the input.
[2]; however a variety of circuit based matching techniques exist for II. PROBLEM FORMULATION
the minimization of such errors. For this reason, we focus on signal
recovery when only timing skews are unknown in the system and We moel theconvinpxt s abandlimited signal with
assume that the gains and amplitudes are calibrated [3]. The general cutoff frequencyQo, i.e the continuous time Fourier transform
case is examined briefly in this paper and studied in more detail in X
e.g. [4]. the system is chosen to ensure that the sampling rate strictly exceeds

the Nyquist frequency, i.e., 'l' < 7r/Q, thus creating some amountThere are two general approaches to system calibration. The first t N f is
of excess bandwidth. The signal recovery problem is to estimateapproach is to incorporate a known signal in the input in order to

estimate the unknown parameters [5]. The various implementations x[rrl x(nT8), which is bandlimited to w = Q,T, < r, as

of such amethod may require extra hardware decrease the sampling accurately as possible from the ADC outputs.of such a methodmay require~ We model the output of the ith constituent ADC as
resolution, or cause system delays by pausing the normal input signal.
The second approach is to perform blind recovery using only the ADC yi [n = x(AMl' n + Ti) + wiH (1)
outputs. Such methods may use oversampling and take advantage of
the excess bandwidth in the system to enable calibration. Existing where the i model the unknowl skews. We also makethe assumption
blind methods focus on the cases of large amounts of oversampling that the timing skews are relatively smallw e.g., not more than 10%

of the overall sampling period. The wi[n represent the quantizationstationarity of the inputs or require a considerably large amount of noswhe gp2[Ipq
complexit[6]s[7]o[8] varianLce depends on the number of bits to which the

In cntrst o teaproche abve w noe tat n tpicl hgh- input is quantized. For ease of anLalysis we assume the inLput isrsluticontarchitecturtestprahetieswsaroe. genoertatlly sm pallrelativ to qatzdwt ihrslto ] 0hwvrteefcso

quantization noise are considered within the subsequent simulations.
This work was supported in part hy an MIT Lincoln Lahoratory Advanced Without loss of generality, we can choose anL arbitrary time reference,

Concepts Committee Grant and an NDSEG FellLowship. thus we let TO= 0.
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[II. SMALL ERROR RESAMPLING IV. LEAST SQUARES METHOD

We use the following notation to represent the signal obtained by In this section, we present a least squares formulation for esti-
multiplexing the ADC outputs mating the unknown converter timing skews. We first rewrite (6) in

n -i matrix form as
y[n] Yi n (mod M) = i. (2)

XI-1

This received signal is also referred to as the uncalibrated signal. 1 y - D H
There are multiple methods for signal reconstruction when the -1

timing skews are known. In this paper, we focus on the method with vectors representing the received ADC signal and the estimated
developed in [9] to motive our approach. The reconstruction for the signal
M-ADC system is given by

M-1 Al y [y[01 y[l1 ... y[Ni-lT (12)x(t (t) y[Ala + -cI]-a~ (3) [io [1 [ T-(3
Qt=-OC 2=o

where and N x N Toeplitz matrix H representing the h filter, where
1 IH(j, k) = h[j - k]. The Di are N x N matrices which select the

ai = , - (4) entries from the ith ADC channel,
si(7- )/TA)'

1Di'(j,k) I t =;k, j I (mod = i (14)
ty(t) f sin(7r(t- Tk)/TA) (5)

k=O For the sake of analysis, tail effects of filtering are ignored, although
with I' = I'I denoting the sampling period of a single converter their treatment is more carefully handled during simulation.
and = kl' + .Tk As shown previously, for our class of input signals, only the

Under the assumption that 7 <« I', this reconstruction equation true timing skews r will yield a signal a which is bandlimited.
(3) reduces at times t = nl' to Thus, for an accurate reconstruction, Lar, where L is a matrix

implementing a low-pass filter bandlimited to wg. In the absence of
[n] y[n] - T,

(h * y) [n] n (mnod M) = i (6) noise, the timing skews T can be computed by solving the linear set
of equations (L - I), = 0.

In practice, no solution exists due to modeling error in the
o n = 0 approximation (6) and quantization error; therefore, the optimization

h[n] - P 1)'^ otherwise (7) is formulated as a least squares problem which computes the timing
n skews r that minimize the out-of-band energy in a:

is a discrete-time derivative filter and To = 0 as specified previously.
This result is derived in the Appendix. The linearity of the Ti in arg min (L -I)acl (15)
(6) will be useful for our algorithm development. We let vector T - i--RT (16)
represent the unknown timing skews

_- [71 T2 ... T_A__] (8) where

and signal si[n; T] denote the reconstruction parameterized by T. F
In our formulation, we develop an algorithm that seeks to find R r2 ... ri = (L - I)DiHy (17)

parameter values that give a signal reconstruction with no out-of-band j
energy in the absence of quantization noise and modeling error. We
focus on the class of nontrivial input signals for which nonuniform and
sampling yields aliased content in the frequency band w, < w < r.
It is straightforward to establish that for these signals the out-of-band
energy is zero if and only if the parameter values so determined are

The solution to the overconstrained least squares estimation prob-the correct ones. To see this, we define the error signal e [n] for an
arbitrary estimate r as follows

RT
14in]J~[n; -r] [n; #(9) -(RTR) -i (19)
f ni (mod Ml) = 0
l- (h * y) n] n (mod Al) = (10) where the inversion of RTR is possible because for N >NII and

nontrivial y, R has full column rank. Thus, with O(MN) complexity,
The reconstruction C[7m;]i[iS bandlimited when e[n[ is bandlimited, the optimal solution r can be computed. Uniform samples of the
which is only true if " - r. The calibration methods presented also input signal can then be recovered fromr the timing skew estimates via
work for a larger class of signals, where the aliased content due to (6). I[n a geometric interpretation, the least squares method computes
nonuniform sampling appears in other bands of the spectrmm in this the signal in the convex set SA that is closest to the convex set S3,
case, the algorithms can be redefinled with small modificationls made where SA represenlts the set of signals z[in; I] spanlned by'T and S 3
to the filters. represents the set of signals bandlimited to wc.

33s91



A. Relinearization
For values of Till' which are not sufficiently close to zero, the Effective number of calibrated signal bits vs uncalibrated signal bits for a 16-ADC system

approximation given by (6) may only provide a coarse reconstruction 12

of the original signal because it relies on a Taylor series expansion
of (3) around r = 0. In this case, we present an iterative method for
improving the accuracy of the initial least squares estimate. Similar 10
to Newton's method, we perform successive approximations by first m
computing the least squares estimate r and then computing the first 9 -

order Taylor series approximation of x [n] around the point r
M-1~~~~~~~~~~~~~~~~~~~

From the updated reconstruction formula (20), it is possible to L,
formulate a new least squares problem whose solution is another
estimate of r. With increasingly accurate estimates , the local _E-- LS

-X- ReLinapproximation of x[n] can improve and allow for better estimation. No Calib

Its benefits are presented in Section V. PerfCalib
4 5 6 7 8 9 10 11 12

B. Gains Effective Number of Uncalibrated Bits

In the general calibration of time-interleaved analog-to-digital con- Fig. 2. Effective number of calibrated bits vs. uncalibrated bits for a 12-bit
verters, nonuniform gains also exist among the constituent converters. 16-ADC system with unknown timing skews. Performance is measured using
In this setup, the output of the ith ADC is modeled as the least squares (LS) estimate and the relinearization (ReLin) estimate for abandlimited Gaussian input oversampled by 33%.

yi [n] = gix(Ml n + Tj) + wi [n]H. (21)
where the gi are unknown gains. Although the gains vary among
the converters, we assume that each gain is within 5% of unity. For The uncalibrated signal SNR can be calculated in a similar fashion.
high resolution converters, one can conveniently compensate for the The effective SNR of a signal is then related to the number of
system gains without excessive noise enlhancelment by multiplying effective bits via B =(SNR - 176)76.02. In the tests below, the
each ADC output y [n eby 1gi. Without loss of generality we set converter quantizes the input at 12-bit resolution which generates theeach ADC output yi[n] by Ilgi. Without loss of generality, we set

noise wi [n] in (1L) the performance is measured through the increasego = 1.
By folding the gain recovery into the reconstruction equation (3) in effective bits between the uncalibrated and calibrated signals. We

we can compute the Taylor series approximation around the point now discuss the tradeoffs in performance between the amount of
0, g - 1 where g - [gi g2 ... gAIi] and 0, 1 are vectors excess bandwidth, block size, number of converters and input SNR.

of zeros and ones respectively. From the first order approximation, For our simulations we randomly select the AI-1 converter
we can setup a similar least squares problem which now includes timing skews independently using a uniform distribution. Increasing
gains in the vector of unknown parameters the range of this distribution yields a lower number of effective bits in

the uncalibrated signal y[n]. In Figure 2, we plot the performance of
e3 = arg min |'lty- Rf3 (22) the calibration methods by showing the effective bits of the calibrated

where signal vs. uncalibrated signal in a system with 16 ADCs. Performance
is shown for tests with a single least squares estimate and tests with

e - [71 (23) five iterations of the relinearization method. In this case, the gains
1l/gj are uniform among all converters. The tests are performed using

bandlimited Gaussian noise as input, with block sizes of 215 samples
R rri ... rm,i si ... Sm-i (24) and a factor of 33% oversampling. For additional precision, the final

estimate &[n] is produced using the time-skew estimates in the ideal
ri (L - I)DiHy (25) reconstruction formula (3) rather than the estimated reconstruction
si =-(L -I)Diy (26) formula, which provides 0.3 more effective bits. The upper bound

(solid curve) shows simulated recovery performance when the true
a= (L-IJDoy (27) timing skew values are used in the ideal reconstruction formula;

and for notational compactness 1/g is used to denote a vector out-of-band energy in the input, quantization noise, and numerical
containing the inverses of the gains. precision errors limit the performance below 12 effective bits. The

lower bound (dashed line) plots the performance when no recovery
V. RESULTS is performed, i.e. effective output bits equals effective input bits.

In this section, we numerically evaluate the performance charac- As the timing skew decreases (increasing uncalibrated bits), the
teristics of the blind calibration methods. We compare the effective recovery algorithm yields a higher number of effective output bits.
number of bits for the reconstruction without calibration y[n], to the The addition of the relinearization method significantly increases
reconstruction with calibration, i.e.,~ [ini. performance in the cases with high numnbers of ADCs anLd large

To measure effectiLve biLts we first compute thle siLgnLal-to-noitse ratio timing skews. For the 1 6-ADC system with 5 effective uncalibrated
(SNR) of the recovered signal iz[in] bits, the relinearization method achieves an output performance of

Z x[n1 9.7 bits (~' 0.03%c error inL time skew estimates), which is 0.9 bitsSNRz 10l log10 (ZQv] -z Jn])2 (28) better than the least squares method. Although the performance of
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the relinearization estimate generally increased with more iterations, tion of (3) at times t = nT around the point r = 0 is given by
some tests showed a decrease in performance, possibly due to a A[-1
nonlinear structure around the point of approximation. x x an +i (29)

For a fixed oversampling rate, tests with smaller numbers of T =ii =
converters showed better performance. With more converters, the - y[n] - T (h * y) [n] n (mod MI) ii (30)
number of timing skews increased causing additional sources of T
estimation error. In general, the decrease in performance for larger where
numbers of ADCs is more apparent at lower levels of uncalibrated -n = 0
bits. At a level of six effective uncalibrated bits, the relinearization h[n] - _____ otherwise (31)
method for a 2-ADC system achieved 0.6 bits better than a 16-ADC 1' i
system. In high resolution converters, the approximation (29) is valid due to

Tradeoffs in performance were also measured for varying input the fact that the nI/T, are small in magnitude.
block sizes and amounts of oversampling. After a baseline amount There is a nice interpretation of the preceding result. We now
of oversampling (15%) and block size (211 samples/ADC), varying present an alternate derivation which gives the intuition that in our
these parameters had marginal effects (Q- 0.4 bits) on the effective reconstruction formula, we correct each sample by treating all the
bits in the calibrated signal. However, the convergence speed of other samples around it as being sampled uniformly (although this is
the algorithm was highly dependent on the oversampling factor; not actually the case). To show this, we perform a coarse approxima-
with more oversampling, the least squares estimate provided higher tion from the interpolation equation x(t) = x[a]sinc(t- aT).
accuracy and relinearization only made small improvements. For n (mod Al) = i:

Additional tests were performed for signal calibration in time- y[n] x(nTa + T1) x[ao]sinc ((n- a)Ts + T1) (32)
interleaved systems that contain both unknown timing skews and
unknown gains. The l -1I gains are chosen independently using a
uniform distribution. Although the initial least squares estimate was (33)
often of poor quality, the relinearization technique achieved - 10 s i i

bit performance for Al < 32 converters, which is similar to the /
performance of tests when only timing skews were unknown. When 1 ( - j (
gains are present, the number of uncalibrated bits can be both a sinc(Ti) y 2-1 a)J (4
function of the range of the timing skew and the range of the gains,

a

i.e. a 4-bit signal can be produced by high timing skews or high y[n]-1 (h * y) [n] (35)
gains. Signal recovery performance is dependent on whether the gain where the second approximation is obtained by the first order Taylorrange or timing skew range is higher. When a larger gain range causes series expansion of the sine function
the decrease in uncalibrated bits, the calibration methods are slightly
more effective than when a larger skew range causes the decrease in fi1 n=O
bits. sinc(aTn T+) 1 n- otherwise (36)

VI. CONCLUSION Thus, in the correction of a single sample, the derived reconstruction
method (6) is equivalent to making the approximation that all the
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