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Abstract—We consider “bit stealing” scenarios where the rate
of a source code must be reduced without prior planning. We
first investigate the efficiency of source requantization to reduce
rate, which we term successive degradation. We focus on finite-al-
phabet sources with arbitrary distortion measures as well as the
Gaussian-quadratic and high-resolution scenarios. We show an
achievable rate–distortion tradeoff and prove that this is the best
guaranteeable tradeoff for any good source code. This tradeoff is in
general different from the rate-distortion tradeoff with successive
refinement, where there is prior planning. But, we show that with
quadratic distortion measures, for all sources with finite differen-
tial entropy and at least one finite moment, the gap is at most 1 2

bit or 3 dB in the high-resolution limit. In the Gaussian-quadratic
case, the gap is at most 1 2 bit for all resolutions. We further con-
sider bit stealing in the form of information embedding, whereby
an embedder acts on a quantized source and produces an output
at the same rate and in the original source codebook. We develop
achievable distortion–rate tradeoffs. Two cases are considered,
corresponding to whether or not the source decoder is informed
of the embedding rate. In the Gaussian-quadratic case, we show
the informed decoder need only augment the regular decoder
with simple post-reconstruction distortion compensation in the
form of linear scaling for the resulting system to be as efficient
as bit stealing via successive degradation. Finally, we show that
the penalty for uninformed versus informed decoders is at most
3 dB or 0 21-bit in the Gaussian-quadratic case and that their
performance also lies within the 1 2-bit gap to that of successive
refinement.

Index Terms—Coding with side information, data hiding, dig-
ital watermarking, information embedding, quantization, rate-
distortion theory, successive degradation, successive refinement,
transcoding.

I. INTRODUCTION

THERE are a variety of engineering scenarios where the rate
of a source code must be decreased. This paper considers

achievable, and guaranteeable, distortion rate tradeoffs when no
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provisions have been made for the rate reduction. Because it is
not planned for, we term this “bit stealing.”

To illustrate an application of bit stealing, consider trans-
porting a compressed source through a congested multihop net-
work. Suppose that the source code is of rate and achieves
distortion . We discuss two strategies for alleviating the con-
gestion that occurs when the source packet (which can be further
compressed) and a second digital data packet (which cannot be
compressed) both arrive at a common link that cannot support
their combined rate.

The first is to split the link rate into two independent data
streams. With this strategy, the source codeword is transcoded
into a lower rate codebook of rate , which increases the dis-
tortion to , and the remaining (stolen) rate is used to
transmit the second data packet. Transcoding is efficient if the
pairs and both lie on the rate-distortion curve.
If the source was originally encoded in a successively refin-
able manner (see, e.g., [1] and the references therein), efficient
transcoding is sometimes possible by discarding least signif-
icant descriptions. In [1], Equitz and Cover give a necessary
and sufficient Markov condition for such efficiency. We show,
however, that near-efficiency in “successive degradation” can be
possible even without such special codebook structure.

An alternative to splitting the rate into two data streams
is to inject the data bits into the source bits via information
embedding. This scenario differs from other investigations that
jointly consider quantization and information embedding (see,
e.g., [2]–[4]) because the source is quantized before embedding
occurs. Therefore, the host signal at the information embedder
is not a source vector, but rather a quantization index. If the em-
bedded (stolen) rate is , then the residual rate is .
As with successive degradation, the information embedding
approach is efficient if and both lie on the
rate-distortion curve.

Each strategy has its advantages. In rate-splitting, the data
packet is easily decoded as it is transmitted independently of
the reduced-rate source description. However, source decoding
is more involved because the decoder must be informed of what
lower rate codebook was used during transcoding. In embed-
ding, on the other hand, message decoding is more involved
because data bits are now intertwined with source bits. How-
ever, while the embedding operation changes which codeword
is transmitted, the codebook can be kept the same. In certain ap-
plications, this can be an advantage since source decoders do not
necessarily have to be informed that any bit stealing has taken
place, for example, when we are trying to communicate the em-
bedded information secretly.

From a broader perspective, one can view the original succes-
sive refinement problem as one of transcoding with informed en-
coders, i.e., encoders aware of the possibility that the source may

0018-9448/$20.00 © 2006 IEEE



2966 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006

Fig. 1. Bit stealing via successive degradation: the rate R of the code for source is reduced to R, incurring an increase in reconstruction distortion from d to
d. Source decoder I is the decoder for the original encoding, which produces reconstruction ^ at distortion d . Source decoder II is the decoder for the transcoded
source, which produces reconstruction ^ at distortion d.

subsequently be transcoded, and the rate of that transcoding. In
contrast, the bit stealing problem is one of transcoding with un-
informed encoders, i.e., encoders that either do not know that
transcoding may take place, or do but do not know the residual
rate. Within this taxonomy, there are two natural bit stealing sub-
problems, corresponding to whether a source decoder is also
informed or not about whether transcoding has taken place. We
ultimately explore both cases in our development of the succes-
sive degradation and information embedding approaches.

An outline of the paper is as follows. Section III poses the
successive degradation problem and characterizes its solution.
The proofs are developed in Section IV, and Section V charac-
terizes the results for the case of a binary source and Hamming
distortion measure for the purpose of illustration. Section VI
develops the corresponding results for a Gaussian source and
quadratic distortion measure, and Section VII discusses con-
tinuous sources more generally in the high-resolution limit. Fi-
nally, Section VIII develops aspects of the behavior of informa-
tion embedding strategies in the corresponding scenarios, for
both informed and uninformed decoders, and Section IX con-
tains some concluding comments. Many of the more technical
derivations are deferred to the Appendix.

II. NOTATION

We use and to denote mutual
information, entropy, differential entropy, and relative entropy
(divergence), respectively. The argument to and
can be either a random variable or its distribution; we use both
interchangeably. In addition, denotes the entropy of a
Bernoulli source with the specified parameter. We use
to denote generically the rate-distortion function for a source,
and the corresponding distortion rate function. We further
use to denote the type (i.e., empirical distribution of the
elements) of its vector subscript, and to denote the type
class of its argument, i.e., the set of vectors with empirical
distribution given by the argument. Joint types are defined
similarly. The superscript applied to an event denotes its
complement, and applied to a set denotes its cardinality.
Finally, is used to denote Markov chain relationships, and

denotes expectation.

III. SUCCESSIVE DEGRADATION

Fig. 1 depicts the successive degradation scenario. The in-
dependent and identically distributed (i.i.d.) source , to which
we restrict our attention to simplify the exposition, is encoded
at rate giving source reconstruction at distortion . The
transcoder either re-encodes the source codeword into a second
codebook of residual rate giving source reproduction

at distortion or does not do any transcoding and, therefore,

does not change the rate or the distortion. In our problem model,
all codebooks are known to their respective decoders.

Given the possibility of an informed source encoder, the
successive degradation problem is a special case of branching
communication systems investigated by Yamamoto in [5].
Yamamoto considered the joint encoding, but sequential de-
coding, of a pair of correlated sources. Setting the two sources
equal gives the same rate-distortion region as generalized
successive refinement [6]. Therefore, given control over the
design of the source encoder, an optimal successive degrada-
tion approach is to encode into two codewords, per successive
refinement. Decoder I receives both codewords, while Decoder
II receives only the most significant.

In this paper, by restricting our attention to uninformed en-
coders, we preclude the possibility of having control over the de-
sign of the original source code. Instead we only assume knowl-
edge of source statistics and that the source code achieves a point
on the rate-distortion curve. Under these assumptions, we deter-
mine guaranteeable transcoder performance that is independent
of detailed knowledge of source code design. From such anal-
ysis, we bound the gap between the best case performance that
can be achieved when we can pick the best design for the orig-
inal source quantizer (the informed encoder case), and the best
performance that we can guarantee when we are not allowed to
pick the detailed structure of the original source code (the un-
informed encoder case). The former situation is equivalent to
the successive refinement problem, while the latter is succes-
sive degradation.

Specifically, in Section IV, we bound the performance of
successive degradation through a converse and an achievability
result by introducing a dithered encoding rule. When used for
the original source quantization, the dithering rule is a worst
case choice, the most difficult to transcode, and leads to a
lower bound on achievable rate–distortion tradeoffs. When
used for the transcoding, the rule gives a robustly achievable
rate-distortion tradeoff—one that can be achieved regardless
of the detailed design of the original source code. The rate
achieved equals the lower bound.

The successive degradation scenario is of interest, e.g., when
the transcoder must be backward (or future) compatible and
function correctly with encoders not designed to anticipate
transcoding. Furthermore, since a refinable structure is an addi-
tional design requirement, we want to determine how important
such structure is. In some prominent cases, the performance
lost by not imposing such structure is not great—the natural
structure of any source code can be nearly refinable.

An informal sense of the difference between successive re-
finement and successive degradation is illustrated in Fig. 2. A
successive refinement code has a nested structure as indicated
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Fig. 2. Voronoi regions are designed to nest efficiently in a successive refinement code (Fig. 2(a)), but such a packing does not come naturally to all codes
(Fig. 2(b)). To degrade a code, a clustering of Voronoi regions that form a lower rate, higher distortion, description of the source must be found.

in Fig. 2(a). The base index specifies a rough quantization re-
gion (the bold circles in Fig. 2(a)), and refinement regions (the
small circles in Fig. 2(a)) are designed conditionally, given a
base index and the source vector. This design is most efficient
when fine regions nest in rough ones.1

On the other hand, not all high-rate codes have a nested struc-
ture. In general, to lower the description rate of a source, a clus-
tering of fine quantization regions must be chosen. The clusters
describe the source at lower fidelity and can be enumerated at
a lower rate. This is depicted in Fig. 2(b). Degradation perfor-
mance will therefore be dependent on the design of the orig-
inal source code. By determining guaranteeable rate–distortion
tradeoffs that are independent of source code design, we deter-
mine the degree to which a nested code structure is important.

A. Rate–Distortion Functions

We begin by defining an information rate–distortion function,
which we subsequently show to be operational in a rather natural
sense.

Definition 1: Let be the distribution of the i.i.d.
source and let be the corresponding per-letter distortion
measure. Let be a conditional distribution that
uniquely achieves2 a point on the rate–distortion function with

(1)

1The nesting character of successive refinement codes is developed formally
by Rimoldi [6].

2Achievability means that (1) implies I( ; ^ ) = R (d ) = R , where
R ( � ) is the rate–distortion function for regular source coding. Uniqueness
means that no other conditional distribution q (x̂ jx) can achieve the same
point on the rate–distortion function. We assume the sufficient conditions for
such uniqueness (see, e.g., [7, Lemma 7]) are met. The dependence of the suc-
cessive degradation rate–distortion function on p (x̂ j x), or d , is sup-
pressed for notational convenience, just as is the dependence of the standard
rate–distortion function on the source statistics.

Then, the information successive degradation rate–distortion
function is defined for distortions as

(2)

where the infimum is over all conditional distributions
such that the Markov constraint is

satisfied, , and .

The corresponding information successive degradation dis-
tortion–rate function is defined for rates as

(3)

Some initial insights into successive degradation rate–distor-
tion performance are obtained by relating it to three well known
rate–distortion functions.

We first compare it to the regular rate–distortion function and
then to the successive refinement rate–distortion function. In
general, it does not coincide with either. Following that we build
intuition by showing how it can be expressed in terms of the
indirect (or “noisy”) rate–distortion function [8], [9]. For ref-
erence, typical successive degradation, successive refinement,
indirect coding, and the regular rate–distortion functions are de-
picted in Fig. 3.

The successive degradation rate–distortion function generally
is different from the regular rate–distortion function . To
see this, note that because of the Markov constraint in its defi-
nition, we can rewrite the mutual information being minimized
in (2) as

(4)

Then since the first term on the right-hand side of (4) corre-
sponds to , the successive degradation rate–distortion
function equals when the second term is zero, i.e., when
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Fig. 3. Typical rate–distortion functions corresponding to an original operating
point (R ; d ). The successive degradation rate–distortion function is indicated
by the solid curve and is defined for distortions d � d . The indirect rate–dis-
tortion function for p = p is indicated by the dotted curve, is also
defined for distortions d � d , and overlaps the successive degradation curve
for d � d . The successive refinement rate–distortion function is indicated by
the dash-dotted curve and is defined for distortions d � d . Finally, the regular
rate–distortion function is indicated by the lower dashed curve.

the additional Markov constraint is satisfied.
Under fairly general conditions,3 this Markov constraint and that
in Definition 1 can only hold simultaneously if is indepen-
dent of and . From this we conclude that, in most cases,

unless or .
Similarly, also generally differs from the successive

refinement rate–distortion function . In particular, [6]
shows that a source description at distortion using rate

is refinable to a distortion if and only if
the total rate of the refined description is at least

(5)

where the infimum is taken over all conditional distributions
such that . Expanding the mu-

tual information in (5) as

(6)

we see, as established in [1], that differs from
unless a still different Markov constraint is
satisfied.

We gain additional insight into the structure of the successive
degradation rate–distortion function by expressing it in terms of
the noisy or “indirect coding” rate–distortion function [8], [9],
which we denote as . The indirect coding rate–distortion
function is the minimum rate needed to describe a memoryless
source , observed by the encoder through the discrete memory-
less channel . Depending on the channel law, certain
nonzero distortions are unachievable, regardless of encoding
rate. In particular, [8] and [9] show that a source description
at distortion can be achieved if and only if the total rate of the
description is at least

(7)

The infimum is taken over all conditional distributions
such that where . Note

3A sufficient condition is that p (x; x̂ ) > 0 for all x; x̂ . This condition
is satisfied, for example, in the binary-Hamming and Gaussian-quadratic cases
unless d = 0.

that this choice of conditional distribution means that the
Markov constraint is satisfied. The value of
is determined by the minimum distortion estimate of given
full knowledge . A basic result for a white Gaussian source
observed in additive white Gaussian noise is that minimum
mean-squared estimation followed by rate–distortion encoding
of the estimate yields the optimum mean-squared distortion
performance. In this case, equals the variance of the error in
the estimate .

To express in terms of , it suffices to compare
(2) with (7). In particular, if we let

(8)

then the successive degradation rate–distortion function (2) can
be re-expressed in terms of the indirect rate–distortion function
(7) as

if
if

(9)

where is the distortion such that .
To further interpret these relationships, we need to formally

define the successive degradation problem for which we will
subsequently show the information rate–distortion function (2)
to be an operational one.

B. The Successive Degradation Game

To determine the best guaranteeable rate–distortion tradeoff
for the successive degradation problem, consider the following
zero-sum game. The first player picks a transcoder antici-
pating the worst possible encoder. The second player picks
an encoder designed to be as difficult as possible to transcode
while meeting given rate and distortion constraints. In Sec-
tion III-D we show that the information successive degradation
rate–distortion function defined in Section III-A is the
operational rate–distortion function for this game.

Specifically, any of a broad class of rate- source codes for
that achieve average distortion with arbitrarily close

to can be degraded to distortion arbitrarily close to
if and only if the transcoder rate satisfies .

To develop this result, we first introduce the formal problem
setting.

An instance of the successive degradation game consists of
the tuple

(10)

The source (and reconstruction) alphabet is finite unless oth-
erwise indicated, and are as
given in Definition 1, and and are rate constraints on the
encoder and transcoder that are the inputs to the game. Note, too,
that by the uniqueness in Definition 1, specifies in
the game.

An encoder consists of a codebook
of cardinality and a potentially randomized

encoding rule . The latter denotes the probability
that the -length input vector is mapped to codebook index

. The reconstruction corresponding to this
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encoding is simply the codeword corresponding to the chosen
index, i.e., .

A transcoder is a codebook of
cardinality and a potentially randomized rule

. The latter denotes the probability that a given
index produced by the (known) original encoder is mapped
to index . The reconstruction corresponding
to this transcoding is simply the codeword corresponding to
the chosen index, i.e., . Finally, we also allow the
transcoder to output the original encoding followed by a special
flag indicating that no transcoding has been done.

Notationally, we use for the average distortion be-
tween length- sequences, i.e., for any and

where is the per-letter distortion measure, which is
bounded unless otherwise indicated. Hence, the distortion in
the reconstruction associated with encoding is , and
likewise for the reconstruction associated with transcoding it
is . We omit the subscript when there is no risk of
confusion.

We now describe the payoffs in the successive degradation
game for a fixed . The encoder and transcoder players choose
randomized strategies and for generating encoder/de-
coder and transcoder/decoder pairs, respectively. Given these
strategies and a reference distortion level , the payoff to the
transcoder is given by

(11)

The payoff to the encoder is simply . The prob-
ability in (11) is evaluated as follows. First, the source is
drawn according to . Then, an encoder
is chosen according to and used to generate from . Fi-
nally, a transcoder is chosen according to and used to gen-
erate from and . The random choices in these steps are
mutually independent, except for when the transcoder does no
transcoding, i.e., when it forwards the original source encoding
unchanged. In this particular case, the same codebook is used
by both.

We consider the asymptotic value of for se-
quences of strategies and where the sequence of
encoders must achieve the point in a sense to be de-
fined later and the sequence of transcoders must use rate .
We demonstrate a saddle point for this asymptotic game so that
the order of play does not effect the equilibrium payoffs. Note,
however, that by restricting our attention to the case in which
the random encoder and transcoder choices are made indepen-
dently, our results do not address scenarios in which the en-
coder codebook is a function of the transcoder codebook ,
nor vice versa. An exception is made for the single case when
transcoding is not performed, i.e., when the original encoding is
left unmodified.

Before proceeding to develop a coding theorem establishing
that the operational rate–distortion function for this game is
given by (2), we discuss some initial aspects of players’ behavior
that are revealed by the structure of this function.

C. Preliminary Interpretation of the Solution

To begin, the expression (9) for emphasizes that the
successive degradation rate–distortion function consists of two
distinct regions. As we will develop, each region corresponds to
a particular strategy. In one region, the transcoder does nothing,
it simply leaves the original encoding unperturbed. In the other,
the transcoder treats the original source reconstruction as a new
source and requantizes it using a independently generated code-
book. The boundary between the two regions is demarcated by
the distortion , as shown in Fig. 3.

The bi-modal character of the successive degradation
rate–distortion function is ultimately caused by the quantized
nature of the source space seen by the transcoder. In particular,
suppose the distortion were increased only slightly, to ,
where . Because the source reconstructions corre-
sponding to the codeword indices are spaced roughly apart,
in order to requantize to increase the distortion by this small ,
we would have to cover the original source code with a finer
code. Many quantization regions of the new code would fall
within a single old region. This would require a code of higher
rate than the original code. Indeed, the required rate is spec-
ified by indirect coding tradeoff. But, by the data processing
inequality, this new code contains no more information about
the source than did the original, lower rate, source code. Thus,
to achieve a in the range , it suffices to leave the
original encoding alone, and simply add an appropriate amount
of source-independent noise to the source reconstruction.

If, instead, the distortion were increased by a more substantial
amount—to —we could group codewords as in Fig. 2(b).
In particular, the analysis of our game will reveal that in this dis-
tortion region equals for a channel law
of the form (8). That there should be a discontinuity is also
apparent from the analysis of a rate perturbation. Specifically,
given any rate decrease to , the ratio of new codewords
to old is , which is vanishingly small in the block
length. Thus, we no longer have the option of leaving the orig-
inal encoding unperturbed. Hence, unless the code has a special
nested character, the nonnested packing (depicted in Fig. 2(b))
results in a finite jump in distortion.

Readers familiar with the many classical rate–distortion re-
sults may find the discontinuity disturbing nevertheless, since,
as Fig. 3 reveals, it results in a rate–distortion function that is
not convex. Indeed, one might be tempted to conclude that it is
the convex envelope of that is relevant. In fact, such in-
tuition would be incorrect, as we now discuss.

The key point is that convexification of corresponds
to the adoption of time-sharing techniques by at least one of
the players in the game. However, the fact that the coding the-
orem we develop in the Section III-D determines (9) to be the
operational rate–distortion function establishes that it is in nei-
ther player’s interest to use a time-sharing strategy. While this
will become clear in the proofs of both the direct and converse
parts of our coding theorem, it is worth emphasizing a couple of
points in advance.

First, remember that the encoder chooses an encoding that
is the most difficult to transcode, while meeting the specified
rate and distortion requirements, and that the transcoder chooses
a transcoding function guaranteed to work for any choice the
encoder makes. Were the encoder to use a time-sharing-com-
patible encoding, i.e., one consisting of a sequence of encoded



2970 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006

source blocks, the transcoder would then certainly choose to use
time sharing. It would requantize some of the codewords and
leave the rest unperturbed. The resulting distortion, averaged
across the codewords, would be decreased, lying somewhere on
the convex hull of . In terms of the game, this would in-
crease the payoff to the transcoder and decrease the payoff to
the encoder. However, such a transcoding strategy would not be
robust. Were the encoder to switch to some non-time-sharing-
compatible encoding, the transcoding scheme would break, re-
sulting in an increase in distortion—a lowered payoff to the
transcoder and an increased payoff to the encoder.

Fundamentally, the reason time sharing cannot be used to
improve the successive degradation tradeoff is that via our
game-theoretic formulation we are effectively restricting our
attention to encoders unaware that transcoding may occur.
Therefore, the encoder cannot be relied upon to produce a
time-sharing-friendly encoding consisting of a sequence of
encoded source blocks. If the encoder were aware of the
transcoding then, as discussed above, distortion could be even
further decreased by requiring the encoder to produce a succes-
sively refinable encoding.

Phrased differently, recall that the game-theoretic formula-
tion of the problem was motivated by the goal of examining
the impact of various design constraints that may be placed on
the encoder (beyond the requirement to produce an encoding
that meets the rate and distortion targets). For example, we
ultimately use our results to bound the loss that the robust
transcoder incurs relative to one tuned to an encoding with a
successively refinable structure. We show that in some impor-
tant cases the loss is not large. From this, one may infer that the
gain from using a refinable structure may not always reward the
extra design cost. From this perspective, our results establish
that a similar message holds for encodings employing structure
in the form of time sharing. In particular, it follows that the
loss of a robust transcoder relative to one tuned to an encoding
constrained to be time-sharing-compatible is bounded by the
loss relative to a successively refinable structure.

We now proceed to formally establish the optimal actions of
the two players, and the resulting rate–distortion tradeoff that is
achieved.

D. A Coding Theorem

Intuitively, we expect that just as the familiar source coding
rate–distortion function depends on the source distribution, the
successive degradation rate–distortion function should depend
on properties of the original source code. We focus on efficient
encoders with performance close to the rate–distortion bound.

To formalize this notion, we define a class of admissible en-
coders. In the sequel, we use standard definitions of (and no-
tation for) empirical distributions or types [10, Sec. 1.2], [11,
Ch. 12]. For example, if denotes the joint type of
then is the relative frequency of occurrences of the
sample-pair in the sequence-pair .

Definition 2: Let be the joint type of encoder output
and source . A sequence of encoders is said to be

admissible if in probability as ,
where denotes relative entropy and

An admissible sequence of rate- encoders achieves the
point on the rate–distortion function. This is because
the probability that and are asymptotically strongly typical
according to approaches one, whence

in probability. To verify the strong typicality claim, it suffices to
note that via [11, Lemma 12.6.1, p. 300] we have, for all

(12)

and, moreover, that for all with we have
(otherwise, would be infinite).

Note that the set of admissible encoders is reasonably broad.
For example, it includes the familiar strong typicality encoders.4

Furthermore, extensions to source coding (see [12] and partic-
ularly [13, Sec. 2.6]) of analogous results in channel coding
[14] tell us that the probability that source sequences are jointly
nontypical with their codewords decays exponentially in block
length. In this statement, joint typicality is with respect to the
joint distribution induced by the source probability mass
function and the (assumed unique) rate–distortion achieving
channel.

Our main theorem is as follows.

Theorem 1: For the successive degradation game

if
if

(13)

where the infima are taken over admissible sequences of rate-
encoders and the suprema are taken over sequences of rate-
transcoders.

Theorem 1 implies that the information rate–distortion func-
tion of (2) gives the best possible worst case successive degra-
dation tradeoff. If the transcoder’s rate is below (2), then there
exists at least one encoder that causes the transcoder to fail. If
a rate higher than (2) is used, then there exists a transcoder that
almost always wins.

4To see that strong typicality implies small divergence, consider a vector xxx
that is strongly typical with respect to the distribution p (x). That is, jT (x)�
p (x)j < � for all x and some �. Without loss of generality, p (x) � p for
all x. Thus,

D(T kp ) = T (x) log
T (x)

p (x)

� T (x)
T (x)� p (x)

p (x)

�
�

p

where the first inequality follows since logx � x � 1 for x > 0 and the
second inequality follows by strong typicality and the assumption p (x) �
p . Through the choice of �, the divergence can be made as small as desired.
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Fig. 4. The role of dithered quantization in the successive degradation rate–distortion coding theorem. Dithering is used at the encoder and transcoder in the
converse and achievability arguments, respectively. (a) Achievability. (b) Converse.

IV. PROOF OF SUCCESSIVE DEGRADATION

RATE–DISTORTION THEOREM

Intuitively, one can view the encoder output as a noisy
source observation. If the quantization noise were i.i.d. then
results on encoding noisy sources (see, e.g., [9] and the refer-
ences therein) would give the transcoding rate–distortion region.
However, the joint distribution of for good vector quan-
tizers is generally not i.i.d.

Accordingly, we prove Theorem 1 by using a special form
of dithered quantization. The joint input/output distribution of
quantizers in this class is essentially indistinguishable from an
i.i.d. relationship, and yet as we will see the performance of
quantizers in this class approaches the rate–distortion bound.
The forward part of the theorem is proved using this dithered
quantization at the transcoder. This induces an i.i.d.-like joint
distribution on the transcoder inputs and outputs, allowing us
to use the Markov lemma [15] to guarantee that as long as the
source and encoder output are strongly typical, then the
transcoder output and the source will be also. The converse
is shown in a complementary manner. In this case, our dithered
quantization is used at the source encoder. No transcoder can do
better in this situation than the rate–distortion results for quan-
tizing noisy sources. The position of dithered quantization in
the achievability and converse halves of the proof is indicated
in Fig. 4(a) and (b), respectively.

A. Dithered Quantization

The design of a dithered quantizer is governed by an input dis-
tribution , a quantization distribution , a quan-
tization rate , and a parameter that can be arbitrarily
small. The resulting quantizer consists of
a codebook of cardinality and a quantization
rule that avoids joint typicality encoding. We let and

denote the quantizer input and output, respectively.

Dithered Quantization Codebook Construction:

1) Generate sequences of length in an i.i.d. manner
according to

These are the codewords in the codebook.
2) Label these codewords .

Dithered Quantization Rule :

1) Generate a noisy observation from the input according
to the conditional distribution

(14)

Denote by the joint type of . Denote by the
joint probability distribution .

2) If the quantization fails, so choose a
codeword at random from the codebook.

3) Otherwise, list all sequences in the codebook such that
. If no such sequences exist, the quantization

fails, so choose a codeword at random from the codebook.
4) Otherwise, choose a codeword at random from this list. In

this case the quantization succeeds.

When they succeed, dithered quantizers have the property
that their outputs “look” like the output of a memoryless noisy
channel with a channel law given by the quantization distribu-
tion. This property is formalized by the following lemma, which
establishes that any theorem regarding an appropriately chosen
memoryless observation of a source vector (not necessarily a
memoryless source vector) also holds for the dither-quantized
representation of that source. Furthermore, the lemma continues
to hold even when there is encoder side information. A proof is
provided in Appendix A.

Lemma 1: Consider any binary-valued test , and
a random map with domain and a finite but arbitrary
range. Furthermore, let and be the input and output, respec-
tively, of a dithered quantizer, and let be generated from in
an i.i.d. manner according to the distribution (14). Then

provided that and that the map is indepen-
dent of , and , where denotes the event that the dithered
quantization fails.

B. Design and Properties of Dithered Encoders and
Transcoders

We now develop specific dithered encoders and dithered
transcoders, and some of their key properties that will be useful
in the sequel.

In the design of our dithered encoder, we choose the input dis-
tribution to be , that of the i.i.d. source. Furthermore, we
choose the quantization rate to be and the quantization distri-
bution to be the conditional distribution in Defini-
tion 1 that achieves the distortion rate function at the target rate,
i.e., for the distortion measure of interest.5

Propositions 1 and 2, whose proofs are provided in Appen-
dices B and C, respectively, establish that dithered encoders de-
signed in this way are good, i.e., they can perform within of
the rate–distortion function, and are admissible in the sense of
Definition 2.

5The distortion rate function is defined in terms of the rate–distortion function
in the usual way: d (R ) = inffd � 0 : R (d ) � R g.
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Proposition 1: The distortion for the dithered encoder
satisfies

(15)

where is the encoder parameter and

Proposition 2: There exists a such that for every
and exponentially as

when the input is an i.i.d. sequence . Furthermore,
depends only on and .

We turn next to our dithered transcoders. For their design, we
choose the input distribution to be

(16)

where is the original source distribution and
is again the conditional distribution associated with the orig-
inal source code in Definition 1 corresponding to the distortion
rate function operating point . Furthermore, we
choose the quantization rate to be , and the quantization distri-
bution to be the optimizing in (2). The following propo-
sition, whose proof is provided in Appendix D, establishes that
dithered transcoders designed in this way are successful.

Proposition 3: Let be the reconstruction corresponding to
an admissible rate- encoder. Then there exists a
such that for every and ,

as when the input is . Furthermore, only
depends on and .

C. Successive Degradation Converse

To prove a converse, in this subsection we show that if the ini-
tial source encoder is a dithered quantizer, then from (2)
gives a lower bound on the best rates that can be asymptotically
guaranteed. A dithered quantizer is a worst case quantizer in the
sense that the resultant encoding cannot be distinguished from
a noisy observation of the source. That is, from the transcoder’s
point of view, the posterior .6

Therefore, the best any sort of requantization can do equals the
corresponding indirect rate–distortion function.

To develop this result, it is convenient to express the payoff
(11) for the successive degradation game in the form

where

if
otherwise.

Then since a min-max upper bounds a max-min, to establish the
converse of Theorem 1, it suffices to show the following.

6Note that this means that the Voronoi regions of a dithered quantizer overlap,
while for a traditional nearest neighbor quantizer they are disjoint.

Proposition 4: For every and rate there
exists an admissible sequence of randomized encoders (in par-
ticular, a sequence of dithered encoders, ) with

(17)

The expectation is over the source, codebooks, and encoding
rules, and the maximization is over all sequences of rate-
transcoders.

Proof: First, consider the case when . In this case,
the transcoder has the option to output the index of the original
source encoding along with a special flag to indicate that no
transcoding has occurred. In this case, the rate and distortion
are unchanged and the converse holds by the data processing
inequality. This gives the converse to the expression for
in (9) for the range , which also corresponds to the
second argument of the in (2).

Next, consider the case when . In this case, the orig-
inal codebook cannot be used, so a new one must be generated.
The key to our proof is showing that the transcoder input can
be made by the dithered quantizer to “look” like a noisy ob-
servation of the source. Therefore, the converse results of noisy
source coding can be applied directly to analyze the transcoder.

First, let be an encoding of created by the dithered quan-
tizer . Then, we can express the original
(dithered) quantizer in the form where is
a random map. In particular, for consists of a
codebook with at a random entry and the remaining

entries generated in a i.i.d. manner independently of
, and a rule that is independent of . Hence,

is independent of and .
Next, let be a random vector generated from in an i.i.d.

manner according to the distribution , independently of
. Then, we can use Lemma 1 along with Proposition 2 (to

ensure that the original encoding succeeds) to infer that for all
sufficiently large

(18)

for any choice of transcoder .
The expectation on the right-hand side of (18) is the proba-

bility that the distortion in quantizing a noisy observation of
given the associated side information—i.e., the other codewords
in the original codebook—is smaller than . We note that such
encoder side information does not help in source coding prob-
lems (see, e.g., [16], [17]). Therefore, if this , the
noisy distortion rate function defined by the channel law ,
then the converse of noisy rate-distortion coding [8], [9] tells us
that no matter how is chosen

(19)

Substituting (19) into the right-hand side of (18) yields

from which we obtain (17) as desired. This gives the converse
to the first part of as expressed in (9) where ,
corresponding to the first argument of the in (2).
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The inherent nonconvexity of the successive degradation
rate–distortion function is reflected in the two separate cases of
the converse: the transcoder must either leave the entire index
unchanged or transcode the entire index.

D. Successive Degradation Direct Part

In this subsection, we establish that if the transcoding rate is
larger than from (2), then the output of any admissible
encoder can be transcoded successfully.

Since a max-min lower-bounds a min-max, to establish this
forward part of Theorem 1 it suffices to show the following.

Proposition 5: For every and rate there
exists a sequence of dithered transcoders with rates
such that

The expectation is over the source, codebooks, and encoding
and transcoding rules, and the infimum is taken over all admis-
sible sequences of encoders with rate .

Proof: In the range is easily
achieved by simply outputting the index of the original source
encoder along with a special flag to indicate that no transcoding
has occurred. This achieves . Distortions in the
range are easily achieved by adding some amount
of independent noise to .

In the range , let the transcoder be a dithered
transcoder as designed in Sections IV-A and IV-B. Fix ,
then according to Proposition 3, this dithered transcoder suc-
ceeds in transcoding to with probability at least .

Therefore, and are strongly typical by the definition of
admissible encoders and (12). Furthermore, the distribution of

is indistinguishable from an i.i.d. distribution according
to Lemma 1, so and are also strongly typical. Thus, ac-
cording to the Markov lemma [11, p. 436, Lemma 14.8.1],
and are strongly typical according to the distribution

Hence the distortion will be close to .

V. BINARY-HAMMING CASE

In this section, we derive the successive degradation rate–dis-
tortion function for the binary-Hamming case. As discussed in
Section III-A, and we now show by example, the successive
degradation rate–distortion function is generally different from
the regular rate–distortion function.

Consider a binary (i.e., Bernoulli- ) source and a Hamming
distortion measure

so the (average) distortion range of interest is the interval
. In this case, it is well known that the optimal reverse

test channel for the original quantization is a binary-symmetric
channel with crossover probability . As we outline later,
based upon results in [9], it is straightforward to verify that

to optimize the first term in (2), i.e., , the successive
degradation reverse test channel should also take
the form of a binary-symmetric channel, but with crossover
probability . For this choice, we quickly derive
the corresponding rate and overall distortion. The rate is

with denoting the binary entropy function and
. Since

we get

(20)

By evaluating the overall transcoding distortion , we now solve
for . The concatenation of the two symmetric reverse test chan-
nels gives a distortion

where the second line follows since the test channels are inde-
pendent. Solving for gives

(21)

Substituting the values of and into
gives the rate–distortion tradeoff achieved by this choice of test
channel

(22)

By comparison, the corresponding regular rate–distortion bound
for this source and distortion measure is

(23)

Since, without loss of generality we may assume
, and

since is strictly monotonic on , it follows that
whenever .

As already discussed, for some range of distortions above ,
requantization via the test channel giving rise to (22) does not
yield rate savings and transcoding is better avoided. In this case,
the second term of (2) is minimal and the general successive
degradation rate–distortion function is

(24)

where and with given by (23).
By equating the two terms in (24) and solving for , we ob-

tain the distortion threshold below which transcoding should
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be avoided. A simple lower bound on is found by lower-
bounding the first term of (24) with and setting the result
equal to . This gives

It remains only to confirm that there is no better choice
of successive degradation reverse test channel than the bi-
nary-symmetric channel that leads to (22). Since a dithered
encoder produces an output that is indistinguishable from
a noisy version of the source, all we need to verify is that
the proposed reverse test channel corresponds to the indirect
source coding test channel. In [9], the indirect rate–distortion
function was developed for a binary source observed through
a binary-symmetric channel. A symmetric reverse test channel
was shown to be optimal in that setting. If the source distri-
bution , then the symmetric reverse test
channel of the original quantization can be re-expressed as a
symmetric forward test channel (shown via Bayes’ rule, using
the prior and the crossover probabilities). Since this matches
the binary-symmetric observation channel of [9], that result
confirms that a symmetric reverse channel is the best choice for

. However, if , the symmetric reverse test
channel of the original quantization gives rise to an asymmetric
forward test channel . Asymmetric observations
are not considered in [9], so those results do not immediately
confirm that a symmetric is the correct choice.
However, the results of [9] can be generalized to asymmetric
observations in a straightforward manner. The only change in
the derivation is that the two types of bit-error events (cf. [9, eq.
(38)]) are now weighted by the (nonequal) prior probabilities
of the observation symbols to be encoded. In our setting, the
observation symbols correspond to the source symbols of the
original reconstruction. One can check that the error weighting
for the indirect coding of an asymmetric source corresponds
to the same uneven likelihoods of bit errors induced by a
symmetric successive degradation reverse test channel with
crossover probability . This means that even for ,
a symmetric successive degradation reverse test channel is
the best choice for this source and (24) is the rate–distortion
function.

The associated rate gap for this example takes the form
depicted in Fig. 5 for the symmetric case . The
successive degradation and regular rate–distortion functions
are depicted with the solid and dashed curves, respectively, and
intersect at distortion .

VI. GAUSSIAN-QUADRATIC CASE

In this section, we develop the rate–distortion expression
(2) for Gaussian sources under a quadratic distortion measure:

. We also extend the class of admissible
encoders for achievability results in the Gaussian quadratic case
to all encoders that achieve and not just those encoders that
satisfy the divergence condition of Definition 2. This shows
that Gaussian-quadratic transcoding is robust in the sense that
any good source code for the Gaussian-quadratic case can be
successfully transcoded.

Fig. 5. Common form of the rate–distortion function for the symmetric (p =
1=2) binary-Hamming and Gaussian-quadratic cases. The successive degra-
dation rate–distortion function is indicated by the solid curve, and d is the
threshold above which transcoding should be performed. The dashed curve indi-
cates the lower bound corresponding to the regular rate–distortion function. The
distortion at which both the dashed and solid curves intersect the axis (R = 0)
is 1=2 in the binary-Hamming case, and � in the Gaussian-quadratic case.

The proofs in Section IV assumed that the signals were
drawn from finite alphabets and that all distortion measures
were bounded. This simplified the development, but the results
can be generalized to continuous alphabets with unbounded dis-
tortion. Among other subtleties, care must be taken to preserve
the Markov relationship . Such techniques are
developed in, e.g., [18]. However, in the sequel, we establish
the achievable transcoding tradeoff for the Gaussian-quadratic
scenario more directly.

A. Rate–Distortion Function

For an i.i.d. zero-mean Gaussian source of variance ,
and an original source code with average mean-square recon-
struction distortion , the information successive degradation
rate–distortion function given by (2) is, for

(25)

where, according to the familiar Gaussian-quadratic rate-distor-
tion function

(26)

This successive degradation rate–distortion function also takes
the form shown in Fig. 5. Again, the successive degradation and
regular rate–distortion functions are depicted with the solid and
dashed curves, respectively, and intersect at distortion .

Equation (25) is obtained as follows. The usual conditional
distribution for achieving the rate–distortion bound for Gaussian
sources, which we assume to be unique, corresponds to

, where

(27)

and where is a zero-mean Gaussian random variable with
variance that is independent of . Since is Gaussian,
we know from [19, Lemma A.3] that the optimum and
must also be jointly Gaussian. Optimizing the specific moments
we conclude that the second conditional distribution is of the
form , where , and where is a
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zero-mean Gaussian random variable with variance that is
independent of . Combining the two conditional distributions
results in a rate

(28)

with overall mean-square distortion

(29)

Substituting for in (28) using (29), and we obtain the first
term in (25). As in the binary-Hamming case, reference to [9]
confirms that this is the best choice of test channel.

The minimization in (25) suggests that there is a range of dis-
tortions above for which requantization will not save any rate,
i.e., it is better to leave the original source code as is. For ex-
ample, if we set , we get at the cost of infinite
rate. A better strategy is to leave the original description unmod-
ified. Again, this is inherently a result of the quantized nature of
the input to the transcoder. To identify the distortion threshold

at which successive degradation becomes effective, we sub-
stitute (26) into (25), equate the two resulting terms, and solve
for , yielding

(30)

In the Gaussian-quadratic scenario, the successive degrada-
tion rate loss is at most bit, which we see as follows. To
begin, note that , with as .
Thus, in the high-resolution limit, each time the source is re-
quantized with an independently generated source code of the
same rate, the overall distortion increases by roughly . Since
the rate loss in successive degradation is largest in this high-res-
olution limit, an upper bound on the loss occurs at

(31)

where the last inequality follows from the fact that . Re-
call that, by comparison, there is no rate loss with successive re-
finement in this Gaussian-quadratic scenario [1]. This is because
the full original source signal—not just a quantized version of
it—is available when selecting the second codeword. Finally,
from Fig. 5 and (30), we see that the corresponding distortion
gap is at most 3 dB

B. Converse

Since the dithered encoding rule of Section IV-A only
applied to discrete alphabets, we turn to a different type of
dithering to prove the converse for the Gaussian case. We use
entropy coded dithered quantization (ECDQ) [20] for the orig-
inal source encoder. For the Gaussian-quadratic case, this is the
natural counterpart of the finite-alphabet dithered quantization
strategy introduced in Section IV-A. With this source encoder,
the quantized source becomes asymptotically indistinguishable

in an appropriate sense [20] from an observation of the original
source seen through the channel that corresponds to the for-
ward test channel of Gaussian quantization, i.e., an attenuating
channel with additive white Gaussian noise. Therefore, the
best achievable requantization rate–distortion tradeoff is the
indirect rate–distortion function for this source and channel.
This function was show in [9] to be given by the first term in
(25). The overall expression (25) is, therefore, the successive
degradation rate–distortion function.

C. Achievability

We now generalize our achievability results in the Gaussian
case by showing that for any good source coder that operates
close to its optimal distortion level, (25) is an upper bound on the
operational successive degradation rate–distortion function. We
extend our achievability beyond the admissible set of encoders
introduced in Definition 2 by making use of a fundamental result
of [21]. In this sense, our results in this case are inherently more
robust.

Specifically, we show that for any rate- original encoder
operating close to its optimal distortion level

a rate- transcoder where can be designed so that it
operates close to the information successive degradation distor-
tion–rate function

(32)

obtained from (3) with (25).
We quantify this argument in the following theorem, which

makes use of a basic result from [21].

Theorem 2: Let be a length- i.i.d. sequence of Gaussian
random variables with variance . For any and any
rate- original source code with

(33)

there exists a rate- transcoder for with

(34)

where as .
Proof: To obtain this result, we first bound the variance

of a processed version of the output of the original coder. We
then use a result from [21] on quantizing sources given only
second-order statistics.

Let be the minimum mean-square error (MMSE) estimate
of given . Since is a reconstruction of based on
bits and since estimates (in the mean-square sense) at least
as well as , we know that

(35)

Furthermore, the error in the MMSE estimate is uncorrelated
with the reconstruction itself, i.e.,

(36)
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whence, by Pythagoras’ theorem

(37)

(38)

where (37) follows from (36), and (38) follows from the left-
hand inequality in (35) and the fact that is an i.i.d. variance-
Gaussian sequence.

Consider a random transcoder which encodes by mapping
it to the element of a rate- random Gaussian codebook that
is closest in Euclidean distance. Regardless of the distribution
of , via [21, Theorem 3] we know there exists a deterministic
transcoder with output such that

(39)

where as . The underlying result [21, The-
orem 3] basically says that any source of a given second mo-
ment can be encoded into a codebook designed for
a Gaussian source with the same second moment, and the dis-
tortion achieved will equal that achieved if the source were
Gaussian. Note that since a Gaussian source is the hardest to en-
code, we would do better if we took into account more detailed
information about the source statistics.

Due to the structure of the two encodings we have the Markov
chain and hence, as well.
With this latter Markov chain we conclude from the optimality
properties of MMSE estimates that (36) yields

(40)

To complete the proof, it suffices to observe that

(41)

(42)

where to obtain (41) we have used the orthogonality implied by
(36) and (40), and where to obtain (42) we have used the right-
hand inequality in (35) with (33), and (38) with (39). Combining
(42) with (32) give (34).

VII. CONTINUOUS SOURCES IN THE HIGH-RESOLUTION LIMIT

In this section, we show that the -bit gap bound (31) in the
high-resolution limit with a quadratic distortion measure holds
not just for Gaussian sources as developed in Section VI, but in
fact for all sources with finite differential entropy and at least
one finite moment. In fact, we believe that the high-resolution
limit is the worst case and that the gap is at most -bit for all
distortions.

First, from [22], we know that the successive refinement
rate–distortion function is within -bit of the regular rate–dis-
tortion function for this scenario. Thus, it remains only to show
that the successive degradation rate–distortion function also

lies within -bit of the regular rate–distortion function as
well, which we develop in the sequel.

Our proof considers two separate regimes. For ,
we stay within the -bit bound by avoiding transcoding al-
together, whereby . To see this, note that the rate
loss in this case is largest as , given by

(43)

where to obtain the limit in (43) we have used the asymptotic
tightness of the Shannon lower bound [23]

(44)

with denoting differential entropy.
For the regime , we use the following argument. First,

we let where is a zero-mean Gaussian random
variable with variance that is independent of and ,
so the distortion is, as required

(45)

(46)

where to obtain (45) and (46) we have used the definition and
properties, respectively, of . Then from (2) we see the associ-
ated rate is

(47)

where to obtain (47) we have used that and are independent.
In turn, we can bound the rate loss as via

(48)

(49)

(50)

where to obtain (48) we have used (47), and where to obtain
the first and third terms in (49) we have used, respectively, the
continuity of in [23, Theorem 1], and the high-resolution
rate–distortion function [23], and where to obtain (50) we have
used that the differential entropy of a Gaussian random variable

of variance is .
To obtain that the second term in (49) is zero, it suffices to let

where is a zero-mean Gaussian random variable
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with variance that is independent of , and again exploit the
continuity of [23, Theorem 1] to conclude

as

Thus, it remains only to check that the conditional distribution
associated with this definition of asymptotically achieves the
rate–distortion function . To see this, as , whence

since , we have

(51)

(52)

(53)

(54)

(55)

where to obtain (51), (52), and (53) we have used the definition
and properties of , where to obtain (54) we have used the
continuity of differential entropy, and where to obtain (55) we
have used (44).

VIII. EMBEDDING IN A QUANTIZED SOURCE

Up to this point, we have considered bit stealing approaches
that take the form of rate splitting and successive degradation.
In this paradigm, the transcoder is given the freedom to design
an entirely new codebook. This requires that the ultimate desti-
nation(s) for the quantized source be informed that transcoding
has taken place so that the destination(s) learn to decode using
the new codebook.

However, in a number of scenarios it may be either imprac-
tical or inconvenient to inform the decoder when bit stealing
has taken place. Such is the case, for example, when there is an
installed base of legacy source decoders in a network, or, as an-
other example, when the bit stealing is to be covert, in which
case no cooperation between transcoders and source decoders
is possible. In these and other such cases, there is a need for
bit stealing techniques in which the transcoder output lies in the
same codebook as its input.

One natural approach to bit stealing with this constraint is
based on the use of information embedding ideas. In this sec-
tion, we give an achievability result that shows that bit stealing
systems of this type can, in fact, be as efficient as those imple-
mented through rate splitting and successive degradation. From
this we can conclude that the transcoder codebook constraint
need not incur a loss in performance. To develop this result, it
suffices to restrict our attention to the case where our original
source has been encoded using a random codebook via a joint
typicality encoding rule. While this restriction is for the sim-
plicity and self-containment of the presentation, the results can
be applied directly to the class of admissible encoders, Defi-
nition 2, which include dithered encoders. This is because the

Fig. 6. Bit stealing via information embedding: a message of rate r is em-
bedded into a source quantized to rate R . Source decoder I is the decoder used
in the absence of transcoding, or equivalently, the uninformed decoder when
transcoding has taken place, in which case it produces reconstruction ^ at dis-
tortion d . Source decoder II is the decoder that is informed of the rate of any
embedding that has taken place and produces reconstruction ^ at distortion d.
The message decoder produces a reliable estimate ^ of the embedded message
with high probability.

admissibility definition implies joint strong typicality between
source and reconstruction according to the joint distribution in-
duced by the source and the (assumed unique) test channel. Such
typicality is what we require in the ensuing construction.

As depicted in Fig. 6, bit stealing via embedding is imple-
mented as follows. The transcoder embeds a message of rate

into the index corresponding to source reconstruction code-
word , which is the “host.” A source decoder generates the
reconstruction from the received bits. Recall that informed
source decoders are aware of any transcoding that has taken
place—specifically, they know what rate has been
stolen. Informed decoders can exploit this information in recon-
structing the source, while uninformed decoders operate as if no
embedding had taken place. In the sequel, we consider both in-
formed and uninformed source decoders. A message decoder
recovers the embedded message bits from the received bits.

A naive embedding approach would treat the source recon-
struction as the host, i.e., as the “dirty paper” of [24], and
use the associated random binning code or one of its construc-
tive counterparts such as quantization index modulation (QIM)
[25]–[27] to embed the message. Such approaches fail to exploit
that is a codeword of a finite-rate codebook. And further, they
assume the use of a new quantization codebook, rather than em-
bedding in the original codebook. However, for embedding ap-
proaches that do take such problem characteristics into account,
the following rate–distortion tradeoff can be achieved.

In constructing our result, we continue to focus for simplicity
on an i.i.d. source—as with successive degradation—so an in-
stance of the problem continues to consist of the tuple (10),
where as before implicitly defines , but where,
now, . And as before denotes the con-
ditional distribution characterizing the rate–distortion function
at distortion where .

Theorem 3: For a source quantized at rate (via typicality
encoding) to a codeword in a codebook generated randomly
according to , a distortion arbitrarily close to

is achievable if where [cf. (2)]

(56)

where the infimum is taken over all conditional distributions
and functions such that the Markov

constraint is satisfied, , and
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, where and is an auxiliary random
variable with alphabet .

This theorem applies when the decoder is informed of the em-
bedding, and can be viewed as a distortion compensation
function. Achievable rates for the case in which the decoder is
uninformed are obtained by constraining to be the identity
function. Just as with the successive degradation development,
in the case of information embedding there is a range of distor-
tions for which no positive rate embedding is possible.

Before proving Theorem 3, we introduce some additional no-
tation. Specifically, is the distortion rate function corre-
sponding to (56), i.e.,

(57)

Furthermore, we let and denote the corre-
sponding rate–distortion and distortion–rate functions for un-
informed decoders.

We establish Theorem 3 by construction. In particular, the
original source is quantized using a randomly generated code-
book. The source codebook consists of sequences of
length- generated according to . These sequence
are labeled . To encode, we find the
index such that If there is more than one
such index, choose any one of them. Transmit that . If there is
no such index, declare an encoding failure.

Information embedding is implemented as follows. First, a
message code is constructed whereby, for any , we ran-
domly bin into subcodes where .
Specifically, for each , we pick an index uniformly dis-
tributed over and assign to subcode . On
average, there are sequences in each . We relabel
the sequences in as where and

. This partitioning and labeling is then
shared with the message decoder.

Message encoding is accomplished as follows. Given a source
codeword , and a message , find the index such
that . This can be done, e.g., using the
dithered transcoder. If there is more than one such index pick
any one. Transmit the index such that . If
there is no such index, declare an embedding failure.

With this encoding and embedding, decoding is straightfor-
ward: the source reconstruction is with , and
the message estimate is such that .
It remains only to ensure the error probability vanishes and the
distortion constraint is met, which we verify in the sequel.

That the probability of a source encoding failure goes to zero
follows from joint strong typicality, since . The
probability of an embedding failure also goes to zero with large

. To see this, first note that the probability that the original
source-quantization vector falls into the selected bin
is , which goes to zero for large. Moreover, conditioned
on the event that is not in bin , the codewords in bin

look like i.i.d. sequences generated independently of
according to . Indeed, , the entries of

are generated independently according to , and
. The probability that at least one such sequence

is jointly strongly typical with approaches one
because there are codewords in bin and, via (56),

. The probability that is zero because
the decoder has direct access to the embedder output.

To see that the distortion constraint is met, we first note that
by the Markov lemma [11, p. 436, Lemma 14.8.1].

Indeed, , and we have both and
. Hence, by choosing small enough and

large enough, and by exploiting that is bounded, we can obtain,
for any

which establishes the theorem.

Because of the transcoder output codebook constraint, we
have, in general

(58)

We now develop cases in which (58) holds with a strict in-
equality, and when it holds with equality.

A. Binary-Hamming Case

As we now show by example, constraining the transcoder
output codebook to coincide with the input codebook according
to Theorem 3 generally incurs a loss in performance.

To see this, consider again the case of a Bernoulli- source. In
this case, because of the codebook constraint ,
the information embedding reverse test channel can no longer
be a binary-symmetric channel as it was for successive degra-
dation, but rather must be an asymmetric channel

Moreover, for this binary case we can, without loss of gen-
erality, skip the distortion compensation in Theorem 3 (i.e.,
let be the identity function so that ). Thus, in
a manner analogous to the way we obtained the successive
degradation rate–distortion function for the binary-Hamming
case in Section V, we obtain, via (56), that

(59)

where

(60)

and the derivation of (60) is identical to that of (20) in Section V.
The marginal distribution constraint gives

a relationship between and
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Fig. 7. Rate–distortion loss for bit stealing via information embedding in the case of a Bernoulli-2=5 source and Hamming distortion measure, with R = 1=4.
The progressively lower solid, dashed, and dotted curves correspond to R �R (d); R (d), and R (d), respectively, i.e., bit stealing by embedding with an
informed decoder, bit stealing by successive degradation (which does not have the transcoder output codebook constraint), and successive refinement (informed
encoding).

Finally, for this choice of test channel, we also derive the
overall trancoder distortion achieved

The simplification in the last line follows from using
. From this result we derive the following value

for :

Substituting the values for , and into (59), and the result
into (56), we obtain

(61)

To evaluate the relative efficiencies of rate splitting and em-
bedding, compare in (24) with in (61).

The latter is the residual source coding rate in information
embedding. By the convexity of entropy and applying Jensen’s
inequality, we can upper-bound the latter two terms in (61)
by . This means that in general the
embedding strategy is less efficient than rate splitting because

. It therefore takes a higher residual rate
to describe the source to a target distortion level: the transcoder
output codebook constraint exacts a price in performance.
The gap for the case and (for which

) is depicted in Fig. 7 over the relevant distortion
range: . Note the step discontinuity at : when
stealing all the rate, so that , it suffices for
the decoder to ignore all the received data and reconstruct the
all-zero sequence.

Note that in the special case (whence ),
no loss of performance is realized, i.e., the transcoder codebook
constraint is not limiting: . We now con-
sider another important situation in which this property holds.

B. Gaussian-Quadratic Case

In this subsection, we show not only that constraining the
transcoder codebook to be the same as its input need not incur
a loss in performance vis-à-vis rate splitting in the Gaussian-
quadratic case, but also that the only additional decoder pro-
cessing required to ensure there is no loss is simple distortion
compensation in the form of (embedding-rate-dependent) atten-
uation of the source reconstruction. We further show that even
an uninformed decoder suffers no more than a 3-dB distortion
penalty—or equivalently a -bit rate penalty—relative to the
informed decoder with distortion compensation.

As in Section VI, we let be a length- i.i.d. sequence of
Gaussian random variables with variance and consider the
quadratic distortion measure . In this case,
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we obtain that the distortion rate function (57) for informed de-
coders when the embedding rate is positive, , takes the
form

(62)

and is achieved using distortion compensation of the form

(63)

where

(64)

In contrast, the corresponding distortion rate function for unin-
formed decoders takes the form

(65)

Eqations (62) and (65) are obtained from (56) and (57) as
follows. First, as in Section VI-A we generate the usual con-
ditional distribution for achieving the rate–distortion bound for
Gaussian sources according to , where is given
by (27), i.e., , and where is a zero-mean
Gaussian random variable with variance that is indepen-
dent of . Using [19, Lemma A.3], we know that the optimizing
distribution in (56) is Gaussian. When we further constrain the
distribution so that , we obtain that it must be
of the form (cf. [24]) , where is a parameter
and is a zero-mean Gaussian random variable with variance

that is independent of .
Next, it is straightforward to confirm that the optimum distor-

tion compensation must be the MMSE estimator for from
. In turn, since we have concluded these are jointly Gaussian

random variables, this estimator is linear, whence (63).
It remains only to optimize over the remaining parameters

and . In terms of our parameterized distribution, we have

whence

(66)

Thus, the distortion takes the form

(67)

where via (26) we have , and where to obtain
(67) we have substituted for and according to (27) and (66),
respectively.

Fig. 8. Comparing the rate-distortion function for bit stealing via information
embedding. The informed and uninformed decoder performances are depicted
by the solid and dashed curves, respectively. Below the distortion thresholds d
and d for the informed and uninformed decoders, respectively, no embedding
should be used.

For uninformed decoders, it suffices to substitute into
(67) to obtain (65). For informed decoders, simple optimization
of the quadratic (67) with respect to yields (62) with given
by (64).

The corresponding rate–distortion functions are readily ob-
tained from (62) and (65), and take the forms, respectively

(68)

and

(69)

Comparing (25) and (68), we see that (58) holds with equality in
the informed Gaussian case: the transcoder codebook constraint
does not exact a price in performance provided the decoder is
informed.

The embedding rate–distortion functions (68) and (69) take
the form depicted in Fig. 8. As with bit stealing by succes-
sive degradation, there is a distortion threshold below which no
embedding can be performed and still meet the distortion con-
straint. One can view this threshold as the minimum amount of
distortion that must be incurred if any embedding is used.7 For
informed decoders, this is given by (30) since successive degra-
dation and embedding have identical performance characteris-
tics in this case. For uninformed decoders, the threshold is found
by setting in (65), revealing that the point of discontinuity
between positive and zero-rate embedding is

(70)

We quantify the loss in performance suffered by an unin-
formed decoder relative to an informed one in terms of both
distortion and rate. We look first at the large regime, where

7This threshold is strictly positive because in order to embed the transcoder
must replace codewords it receives with another codewords in the codebook and
these codewords have some average minimum distance—in fact, 2d in the high
rate limit—from one another.
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Fig. 9. Distortion–rate tradeoffs for bit stealing in the Gaussian-quadratic case, with R = 1. The progressively lower dash-dotted, solid, and dashed curves cor-
respond to d (R �R); d (R) = d (R �R); and d (R), respectively, i.e., using information embedding without an informed decoder, using information
embedding with an informed decoder or using successive degradation, and using successive refinement (informed encoding).

comparing (62) and (65), and consistent with Fig. 8 we see that
the loss is largest. Accordingly, we obtain

which corresponds to a 3-dB gap in the large limit.8 The
corresponding rate loss comes from comparing (68) and (69),
where we see the loss is again largest when is largest. Thus,

bit (71)

which we note is independent of .
Turning next to the performance losses in the small regime,

it is straightforward to verify the distortion gap
is small as . Indeed, it is at most 0.2834 dB, which occurs
for . At the two extremes in this small stolen rate
regime, and , the distortion gap is zero.

To compute the associated rate gap we
begin by noting that there exists a rate threshold for below
which . In this region . In particular, it
is straightforward to verify from (70) that whenever

, where [cf. (71)]

(72)

Thus, the gap in the small stolen rate regime below this threshold
is , which de-

8This gap arises because with r = R , the source is completely overwritten
by the embedded message. An informed decoder will ignore the received source
codeword, reproduce ^ = E[ ] and experience distortion � . However, an un-
informed decoder does not know to ignore what it receives, so it experiences an
additional distortion of � � d , the variance of the received codeword.

creases monotonically to zero as decreases from to .
Above , the rate gap is largest and equals

which decreases monotonically to zero with increasing .
Hence, regardless of , the rate gap is, again, at most or

bit.
The different rate–distortion tradeoffs for bit stealing in the

Gaussian-quadratic case are summarized in Fig. 9, where nor-
malized distortion is plotted versus residual source coding rate

, for . The common distortion for successive
degradation and embedding with an informed decoder, i.e.,

, appears as the solid middle curve.
The distortion for embedding with an uninformed decoder, i.e.,

, appears as the dash-dotted upper curve. Finally,
the distortion for successive refinement, which corresponds to
an informed encoder, is the regular Gaussian-quadratic dis-
tortion rate function and appears as the dashed lower
curve.

IX. CONCLUSION

In this paper, we show a variety of results on transcoding.
In particular, we show that transcoding with uninformed en-
coders and/or decoders need not incur significant losses rela-
tive to their informed counterpart for some meaningful models,
at least if not applied repeatedly. In some sense, this means
that for some sources, almost all good source codes have an
almost nested structure even when not designed to have one.
Thus, it may make sense for system designers to avoid imposing
the nested constraint in code design and use the associated de-
grees of freedom in other ways. Of course, while we have ar-
gued that transcoder performance need not significantly suffer,
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the complexity of transcoding may be increased. More gener-
ally, this raises interesting questions for future work regarding
which transcoding complexity–performance tradeoffs are most
attractive in different scenarios.

We further show that information embedding approaches
to bit stealing that allow for both informed and uninformed
source decoders can also be quite efficient. In particular, for
reasonable models, they do as well as bit stealing approaches
that are not so constrained. When a large fraction of the bits
are being stolen, uninformed decoders can incur a substantial
performance loss relative to informed decoders. However, in
the important Gaussian-quadratic case, informed decoders
differ only by incorporating distortion compensation in the
form of simple post-reconstruction scaling. Thus, for many
audiovisual-oriented sources of practical interest, and the asso-
ciated gain-invariant distortion measures arising out of human
perceptual characteristics, the uninformed and informed source
decoder outputs are equivalently good. In this case, the price for
enabling uninformed source decoders is increased complexity
for extracting the stolen bits, at least relative to successive
degradation.

APPENDIX I

A. Proof of Lemma 1

Before proceeding, we need the following lemma.

Lemma 2: For any event with

(73)

Proof: We begin by upper-bounding via

(74)

where (74) follows since if .
Next, we lower-bound via

Combining these upper and lower bounds establishes (73)

Returning to our proof of Lemma 1, let

and for some

where is the th codeword in the quantization codebook,
for . Then

(75)

(76)

(77)

where (75) follows from the fact that , where (76)
follows from two applications of the triangle inequality, and
where the first and second terms in (77) come from applica-
tions of Lemma 2. Note that to obtain the second term we have
used that, in accordance with the dithered quantization rule,

.To see that the third term in (77)
is zero, note that

(78)

where to obtain (78) we have used the map independence prop-
erty, which yields the Markov relationships and

. Finally, that the term in brackets in (78) is
zero follows immediately from the way that is generated from
a noisy observation in the dithered quantization rule when the
quantization is successful.

B. Proof of Proposition 1

If is the output of the dithering (14) when is the input, and
is the codeword to which is mapped, then when encoding

succeeds we have

(79)

(80)

(81)

where (79) follows since , (80) follows, like
(12), from [11, p. 300, Lemma 12.6.1], and (81) is a conse-
quence of dithered quantization step 2. The remaining steps
follow from simple algebraic manipulations and the definition
of types.
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Finally, we obtain

where to obtain the zero in the last line we have used (81),
yielding (15) as desired.

C. Proof of Proposition 2

First, we need the following lemma, which establishes that
for any pair of sequences satisfying encoding step 2, the
empirical type is about as close to as is to .

Lemma 3: For any empirical joint type where sat-
isfies the condition in dithered quantization step 2

(82)

where the superscript denotes the smallest nonzero value of
the distribution that is its argument, i.e., for an arbitrary distri-
bution

Proof: Equation (82) is obtained via

(83)

(84)

(85)

(86)

(87)

where (83) follows from fact that , (84) follows
from the inequality

and (85) follows from successful quantization in encoding step 2
and the following argument. If for some the marginal
product satisfies then

This is because must have at least the same zeros as
. In this case, since

cannot be infinite because we know the dithered encoder
succeeded in step 2. Hence, the largest term in the sum in
(84) is , and (85) follows. The remaining
two inequalities (86) and (87) follow from analogous argu-
ments in the proof of Proposition 1, together with the fact that

.

Next we need a lemma lower-bounding the probability that
the encoder could encode to the th codeword.

Lemma 4: For any empirical joint type (and in partic-
ular the ones where satisfies the condition in the dithered
encoding step 2)

(88)

Proof: The desired result follows from the chain of in-
equalities

(89)

(90)

(91)

(92)

(93)

Equation (89) follows from the fact that and are inde-
pendent since the codewords are generated independently
of the source, and (90) follows from the definition of con-
ditional probability. Equation (91) follows from [11,p. 281,
Theorem 12.1.2], and the observation that
implies . Equation (92) follows from the fact that
relative entropy is nonnegative. Finally, (93) is a consequence
of [11, p. 285, Theorem 12.1.4].
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Now we are ready to prove Proposition 2. First, we express
the dithered quantization failure event as

(94)

where denotes the event that the relative entropy
is too large in step 2 and denotes the event

that no sequences exist in the codebook such that
in step 3.

From (94), we obtain

(95)

whose components we now bound in turn.
Via [11, p. 287, Theorem 12.2.1], we obtain

Hence there exists an and such that for all

(96)

For example, it suffices to choose and
.

The second term in (95) is bounded by the following chain of
inequalities:

(97)

(98)

(99)

(100)

where (97) follows from symmetry, (98) follows from Lemma
4, (99) follows from the inequality [11, p. 353, Lemma 13.5.3],

, and (100) follows from Lemma 3.
Let be the largest value of such that

Note that since we have . Hence, for
every , there exists an such that for all

(101)

for some .
Finally, combining the exponential bounds (96) and (101)

with (95) we conclude there exists an such that for all

D. Proof of Proposition 3

For our proof, we require the following lemma.

Lemma 5: If is the output of an admissible encoder and
is its distribution, then for all

(102)

where is a function satisfying .
Proof: For admissible encoders we know

converges to zero in probability (Definition 2) and therefore so
does , i.e., for every there exists an such
that for all

Without loss of generality, we can assume that the function is
a mapping of the form and monotonically
increasing as decreases. As such, it possesses an inverse that
is the desired in our lemma.

For our main result, we use proof by contradiction. Suppose
that the probability that the dithered transcoder fails does not
converge to with , but stays above some fixed . This
implies, when combined with Lemma 5, that there is a set of
sequences that cannot be transcoded successfully and such
that for all

(103)

Since by their construction dithered transcoders treat all
inputs in a given type identically, the set must contain
some number of whole type classes. Denote these type classes

. Let denote the worst of these type classes,
i.e.,

(104)

where denotes the event that the dithered transcoding fails.
Then satisfies the following:

(105)
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where to obtain the last inequality we have used (104) and that
there are at most type classes [11, p. 280, Theorem
12.1.1]. From (105), we obtain

(106)

Now let us further suppose that the transcoder input is gener-
ated in an i.i.d. manner according to the distribution , which
is a valid output of an admissible source encoder. Then [11,
p. 285, Theorem 12.1.4]

(107)

where to obtain the second inequality we have used (103).
From (106) and (107), we see that the probability of dithered

transcoder failure does not decay exponentially in , since

where as .
But this contradicts Proposition 2 which states that the proba-

bility of a dithered quantization failure must decrease exponen-
tially in when the quantizer input is i.i.d. Thus, we conclude
that the probability of dithered transcoder failure must approach
zero as .
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