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Abstract

We consider the multiple-input multiple-output (MIMO) broadcast channel in which
there are m transmit antennas and n uncoordinated users with a single receive antenna.
We examine the maximum throughput in such a system in the scenario when the num-
ber of users is much greater than the number of transmit antennas. We derive a lower
bound the probability that there exists a set of users such that each user receives a
specified rate. We show that through the use of a simple norm-threshold feedback
protocol the maximal scaling of the sum rate is achievable and requires channel state
information (CSI) about only O(1) users.

1 Introduction

The wireless downlink has been a source of interesting problems in recent years. The question
of how to most efficiently schedule independent data streams that are intended for multiple
receivers is of substantial interest due to its practical relevance'. As noted in [1-3], the
problem is especially rich when there are multiple antennas at the transmitter, that is, in a
multiuser MIMO broadcast channel. Making full use of the capacity region of this channel
model requires multiplering. When there are more users than the channel dimension, the
sum-rate maximizing set of users will be a subset of the user pool, and this subset needs to
be selected depending on the channel state. Hence, the scheduling and multiplexing need to
be done jointly. Of course, searching the complete set of users at every scheduling instant is
not scalable. The motivation for the work in this paper is finding a scalable search algorithm,
both in terms of computational complexity, and in terms of channel state information at the
transmitter, that guarantees a performance close to optimal.

With perfect channel state information (CSI) at the transmitter, a throughput maxi-
mizing scheduling/multiplexing scheme is to employ Dirty-Paper coding on the set of users
which at that time can achieve the highest sum rate [3]. Insights on throughput optimization
under complexity-reducing restrictions have appeared in [1,3-7]. It has been recognized that
using sets for which there are guarantees on the channel norms and the magnitudes of inner
products such that users’ channels are near-orthogonal can provide close to optimal perfor-
mance [1,3,5-7]. Such approaches have recently led to bounding throughput and developing
low complexity section algorithms using graph based approaches [3,5,8-10].

IThis setup could describe a network of sensors which receive data from a centralized location, for example,
or a group of subscribers that download data from a fixed wireless transmitter.
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Figure 1: The MIMO downlink system overview

In [3], we showed that the search complexity may be reduced by limiting attention to
a small subset of users. More explicitly we found a lower bound to the probability that
a set with a given SINR can be found by a search among a random choice of users, and
showed that the probability exhibits a phase transition at a small multiple of the transmit
dimension after which it is close to 1. We showed that consequently, even with a sub-optimal
multiplexing scheme such as zero-forcing beamforming, the asymptotic scaling of throughput
with the number of users n is on the order of loglogn, which is known to be the optimal
scaling rate. However, loglogn increases so slowly that in practice not only the scaling law
but constant factors in the rate expression will matter. Hence, the asymptotic scaling is not
the primary issue of interest.

In this paper, we argue that the central question of interest is how many users need to
be considered before a certain sum rate is guaranteed. This is also intimately tied to the
question of how much CSI is needed at the transmitter to guarantee a certain sum rate since
if only a small subsets need to be examined limiting the CSI at the transmitter to a small
number of channels is sufficient.

To analyze the behavior of the maximal sum rate with CSI, we consider the probability
distribution function of the maximal sum rate, and bound it under varying degrees of CSI.
Specifically, the outline of the paper is as follows. In Section 3, we provide a tight bound
on the probability distribution function of sum rate with zero-forcing beamforming, with
complete CSI at the transmitter. In Section 4, we limit the number of users whose channel
states are to be known by the transmitter. We analyze what that number should be to
guarantee exceeding a certain rate with zero-forcing multiplexing. We conclude by suggesting
an algorithm for multiuser scheduling/multiplexing.

2 Preliminaries

The problem addressed in this paper is obtaining the probability distribution of sum rate as
a function the amount of information at the scheduler about the users’ channels. In order to
state the problem more formally, let us first make some definitions about the system model,
scheduling method and multiplexing.



2.1 Channel model

We consider a broadcast channel in which n independent data streams arrive at a transmit
base equipped with m-antennas, and are intended for n uncoordinated users each equipped
with a single receive antenna (see Figure 1). The data streams for different users are sepa-
rately queued at the transmitter, to be delivered to respective receivers. We will assume the
queues are under infinite backlog?. Further, we will assume that the transmitter has a peak
power constraint P.

Let h; be the vector such that the jth coordinate of h; contains the fading coefficient
between the jth transmit antenna and the ¢th receive antenna. We assume that the h;’s are
independent, and complex zero mean Gaussian with variance 1/2m. We make the block-
fading assumption where the fading coefficients are constant over blocks of length 7" and
independent from block to block. Hence, every T' time units, the channel vector for each
user is drawn i.7.d with h; ~ N¢ (O, ﬁI) We assume that T' is sufficiently long that error
probabilities for any user can be made arbitrarily small. Each receiver has perfect knowledge
of their channel state. In this paper we will consider the effects of varying degrees of CSI at
the transmitter on the distribution function of the rate.

2.2 Scheduling and Multiplexing

We now discuss those aspects of the user selection and multiplexing that will be needed for
the rest of the paper. A more detailed discussion of the multiplexing scheme used is provided
in the Appendix.

As channel state is constant during blocks of length 7', we can restrict attention without
loss of generality to scheduling policies that select a group of users to precode every T time
units. Henceforth, T" will be the duration of a scheduling interval. The scheduler is located
at the transmitter. At the beginning of each interval, the scheduler will choose a subset of
users to precode among users for which it has channel state information. The case of perfect
transmitter CSI is the special case where this subset is the whole user pool, which we will
denote by U. In the perfect CSI case we have the scheduler choose the set A such that

A= argmax|A] f4(A) where f(A) = log (1+ )

W)

In (1), the function f is the sum rate, > ica Ri achievable by zero-forcing beamforming®
under constant power allocation. We derive this function in the Appendix and argue that
the flat power allocation is not only a convenient choice but one that does not result in
significant loss when there is selection from multiple users, as in our case.

We will consider efficient, achievable methods for selecting a set of users that is close
to the maximum rate. We thus, in the next section, begin by finding a lower bound on
the throughput using zero forcing multiplexing and constant power allocation, under perfect
CSI. After that, we use this bound to develop a protocol for limiting the amount of CSI at
the transmitter.

2This simplifying assumption allows us to focus on user selection and multiplexing. Incorporating the
queuing processes is not difficult, while being essentially independent of the issues we address in this paper.
The reader can refer to [3] for a treatment.

3Please see the Appendix



3 Sum rate under perfect transmitter CSI

In this section we obtain an upper bound on the distribution function of the sum rate under
zero-forcing multiplexing with flat power allocation and perfect CSI at the transmitter. The
behavior of this bound yields important insights into the question of how much information is
necessary at the transmitter to approximate the maximal obtainable sum rate for multiuser
MIMO scheduling. In particular, we show that there is a sharp phase transition in the
distribution of bound on the maximal rate whose location is O(loglogn).

We begin by considering the case of selecting sets of a fixed size [ where 0 < [ < m. Let
Rl _(n) be the random variable that takes the value of the maximal achievable rate at a

sum
given scheduling interval in a system with n users by selecting a set of size [. That is,

Rl(n) £ 2
sum(n) ACIZEII:?\%:Z ’A’ f f(A)
Note that when only considering a single set of users we can, by lower bounding 1/Tr (W;ll)
by the minimal eigenvalue, bound the pdf of R () as

sum

p(r) £ Pr(Rl, (1) >7) = Pr <m > % (exp (%) — 1))

> Pr ()\min(WAl) > % (exp (%) — 1)) (2)

We consider the case in which the scheduler chooses a set of size [ = m, i.e. a set with
size equal to the number of transmit antennas. These results can be easily extended to the
general case of 0 < [ < m. In the case that |A| = m the smallest eigenvalue of W' is
exponentially distributed* with parameter m/2 [12]. Thus, using the pdf on the smallest
eigenvalue of a complex Wishart matrix we have in the case that |A| = m,

2

Pm(r) > exp (_27; <eXp (%) - 1)) (3)

The main result of this section is the following bound on the distribution of the maximum
rate under zero forcing multiplexing with subset selection.

Theorem 3.1. For a scheduler with perfect knowledge of all n users’ channel vectors, under
zero-forcing with flat power allocation, the probability that sum rate is greater than r is lower
bounded as:

Pr(R™ >7r)>1— exp (— {%J max {mp_m—]%, log (1 + %) }) (4)

To interpret the behavior of this bound as a function of both the target rate » and the
number of users n we substitute (3) in to the right hand side of (4) and treat the inequality
in the resulting bound as

Pr(R™ >7r)~1—exp <_7”) . (5)

exp exp -

4Recall that the smallest eigenvalue of a complex Wishart matrix is in general a hypergeometric function
of matrix argument (see [11] for the distribution function and efficient ways to compute this distribution).



Figure 2: (a) The lower bound on the complementary distribution function of the expected
sum rate and (b) the resulting bound on the expected rate

Examining (5) note that for a fixed rate this bound decays exponentially n. Thus, if
we wish to schedule users to achieve some constant rate the probability of finding a set
approaches one exponentially in the number of users known at the transmitter. On the
other hand, if we are in a system in which n is fixed, the probability of finding a set with
sum rate r varies extremely rapidly in r. Due to this triple exponential the complementary
distribution function transitions rapidly from 0 to 1 over a very narrow rate interval. For
this reason we may think of this triple exponential essentially as the step function at some
rate Ry, i.e. 1 —u(r — Ry). Considering the location of the transition Ry we can, using the
approximation (5), see that Ry is of order loglogn. This behavior can be seen in Figure 2
(a).

Before proceeding to the proof of Theorem 3.1, we make the following remarks.
Remarks:

1. Note that if r increases slower than loglogn in (5) the right hand side is bounded away
from zero. Thus, for each scheduling interval we can, with non-zero probability, find a
set whose sum rate is of order loglogn and thus the value of the expected sum rate is
of order loglogn.

2. Note that the expected sum rate is essentially Ry due to the fact that the expected
value is simply the integral over the complementary distribution function (for the
distribution 1 — u(r — Ry) the expected value is Ry). The expected sum rate can be
seen in Figure 2 (b). Notice the slow increase of loglogn.

3. By assuming all users are orthogonal, we have that the sum rate under any multiplex-
ing scheme is O(loglogn). Further, using low-complexity schemes that search among
a small subset of users one can achieve a expected sum rate of order loglogn as ob-
served in [8]. Thus, it appears that this scaling behavior will be achieved with many
multiplexing schemes.

4. Since every user in the selected set is allocated equal rate, the complementary distri-
bution function of rate, Pr(R.,,, > r), may be interpreted as the probability that there

sum

exists a set such that every user gets a rate at least r/l. Incidentally, Pr(R., < r)

can be interpreted as the outage probability. That is, the probability that there exists
no set such that each user can be allocated a rate at least r/I.



We now turn to our proof of Theorem 3.1.
Proof of Theorem 3.1. Define the indicator random variable 14(r) to be if 1 if fe(A) > r
for the set A and zero otherwise. Further, let X (r) count the number of sets of size [ that
obtain a rate above r. More explicitly, let

1 if 7f .A T
2 Tg(r) = { FlA) > and Xl(r,n) = Z La(r)

0 otherwise Actt,
|Al=l

14 =

Thus, Pr(RL,, < r) is equal to the probability there does not exist a set that can achieve
a rate less than r. That is, the probability of the event X! (r) = 0. Standard approaches
at bounding the above sum will not be useful since the indicator random variables in the
summation are dependent. We will use the following Lemma that may be obtained by

specializing the bounds of [13, Thrm. 2.1].

Lemma 3.2. Let P(U) be the collection of all unordered sets of size | on n items and let
X= > 14 (6)

where {14} is a family of Bernoulli random variables with Pr (14 = 1) = p, which are inde-
pendent if ANB = 0. Then,

Pr(X=0) < exp <— H max {ﬁ,log (1 + %) }) (7)

In order to use this bound we need good estimates on the probability that 14 = 1. We
have by (2) the probability that 14 =1 as,

~

Pr(14 = 1) = Pr(f(A) > r) > Pr (Amm(w;l) > % (exp (@) - 1)) (8)

Thus, combining (8) with Lemma 3.2 and specializing to the case that [ = m, we have the
desired result.

O

4 Sum rate under limited CSI

In this section, we discuss the implications of Theorem 3.1 on the amount of CSI needed at
the transmitter to achieve a close to optimal scaling in the expected rate. We have shown
that for the MIMO broadcast channel with multiuser scheduling the distribution of the rate
has a rapid transition from 1 to 0 at a rate Ry that is of order loglogn. Thus, we incur a
small penalty in expected rate if the transmitter is only informed of a small subset of users.
In this section we will examine which users should report back their channel vectors to the
transmitter in order for the system to approach the maximal sum rate under full CSI.
First, consider the effects of randomly selecting a subset of constant size, say Ncgp, at
each scheduling interval. It should be clear that using this approach we will need N¢ggr to
be a fixed fraction of the total user population to obtain a rate close to maximal. More



precisely, we will need the size of the randomly selected set to scale on the order of n to
achieve a loglogn scaling in rate. In order to obtain the same rate, with a smaller Nog; we
may only consider the set of Ncgr users with the largest norm. To do this in a distributed
fashion we may have users report their channels if the norm is greater that some threshold,
say p. This will typically yield a smaller, randomly sized, set of users. Further, using a
threshold that is O(logn) allows us to achieve the loglogn scaling in expected rate while
reducing the expected number of users known at the transmitter to a number independent
of the total number of users n, i.e. O(1).

To see that selection of users for feedback based on a norm threshold has these properties
consider the scheduler at the transmitter that only selects a subset of users that meet the
norm constraint if the inner product between every pair of users is less than some constant
€ [8]. Then, we can with non-zero probability find a set of users that meets this inner product
constraint if €¢/p > 0. Further, using a simple bound on the minimum eigenvalue we may
bound the zero forcing rate expression as

Fa(A) > log | 1+ 22 (1-m5) -
m (1 +(m— Ui)

(9)

Thus, for p(n) = log(n) we achieve a loglogn scaling while having the expected number of
users that feedback their channels independent of n. The choice of p only effects the average
number of users and the constant in front of loglogn.

Note, from the above discussion and (9) it is natural to consider the effects of having
users only feedback their channels if they meet both the norm constraint and the inner
product constraint e. Although this cannot be implemented in a decentralized manner, we
may assume that a genie selects such a set or collection of sets. However, since this is no
better in terms of the scaling law or in the number of users reporting their channel (outside
of a constant scaling independent of n) we do not need such a genie.

A specific form of the proposed protocol for achieving the optimal scaling in rate while
having the expected number of users that report back independent of n is as follows. The
transmitter and receivers agree on p based on channel statistics and the total number of
users n. We also assume the availability of a control channel over which the transmitter can
send simple protocol directives to the receivers.

Protocol:
If n is small, set p = 0.

Otherwise, the transmitter picks p and sends it over the control channel to the receivers

if ||h;|| > p, receiver i sends its channel vector to the transmitter

- W=

the transmitter selects a set of users, A, among those that reported, and transmits
data to those users

Note that, with the above protocol, when p > 0, the number of users that report has a
binomial distribution, which will exhibit a threshold in the number of users n for any given
p. Also note that in step 3 of the protocol, the receivers can in practice quantize the vectors
h;. Analyzing the tradeoff of sum rate with the number of quantization bits is the subject
of our ongoing work.



5 Appendix

We will focus on linear multiplexing. That is where the instantaneous signal x, can be
represented as the linear combination

X = E w;w; = Wu
€A

where u; is the message symbol for users ¢ and w; is the beamforming vector. This vector
in general may be optimized for each transmission but may also come from some finite code
book, say C = {w1,Ws,..., Wa}. If the receiver employs an MMSE receiver to maximize
the receive SINR the resulting SINR for the ith user is [14]

I Pj|hiW3T'|2

SINR;(A) = (10)

where P; is the power allocated to user .
It can be shown that in the case of maximizing q - r, finding (s, = (p(A) that satisfies,

for a fixed choice of A,
1
QiCsp - ) =P (11)
ZZ,E y < SINR,(A4) ],

where (z); = max{0,z} yields the optimal power allocation. We will let Cs,(H, P) be the
set of all rate vectors achievable by beamforming under a power constraint P and let Sy, be
the collection of user sets such that every user receives strictly positive power. That is,

A 1
S 2 {4 | s < e "

The collection S, is sufficiently large so that we can still find a set that achieves the
maximal sum rate. Additionally, if A € S, then the positivity constraint in the water
filling equation (11) is always satisfied. This yields the following characterization of the
weighted sum rate.

Proposition 5.1 ([9], Thrm. 2.2.1). Under a total power constraint P, the mazimum
weighted beamforming sum rate is

Acl AESey
I'ECsp (qu)

max q-r = max (Z %) fsp(Ha, q(A))
icA

where

foo(HLt, q(A)) = log (1 ; %H({SIN&-(A)})) £ D(g(A) | SINR(A))  (13)

where H is the harmonic mean, D(-||-) is the Kullback Leibler distance and SINR(A) and
q(A) are the empirical distributions of the SINR;(A) and q; restricted to the set A.

We now examine a special case of beamforming, zero-forcing multiplexing, in which we
take the beamforming matrix to be the inverse of the channel matrix. That is, it simply



inverts the channel at the transmitter by choosing a transmit vector x = Hjju, where H,
is the pseudo-inverse of the channel matrix for the active user set A and u is the vector
of message symbols. We assume throughout that H 4 is non-singular since this occurs with
probability 1. In this special case we have SINR;(A) = b;(A) where

o
(W4')

bi(A) = and W, =H,H, (14)

Note that the sub-optimality of zero-forcing appears in the power price paid in inverting
the channel. It can be shown that the power constraint becomes, Y . P;/b; < P. The b;’s
have an important geometric interpretation as noted in [15] as the squared norm of user i’s
channel when projected away from every other users channel in the activation set A. This
suggests that we pay a large price in power if we have users who are nearly collinear. In this
special case we have the following characterization of the sum rate.

Proposition 5.2 ([9], Thrm. 2.2.2). Under a total power constraint P, the maximum
weighted zero-forcing sum rate is

. p— y H
max  q-r = max (GZA%> Jat(Hoa, q(A))

I'Eczf (qu)

where

P
FalFLa al) = log (14 A (AN ) + Dlal A (15)
where H is the harmonic mean, D(-||-) is the Kullback Leibler distance and by and q(A) are
the empirical distributions of the b; and q; restricted to the set A.

Intuitively we know that difference between water filling and flat power allocation is small
at high SNR. Since as we examine more and more users we expect the channel norms of
the users to increase, and hence the SNR, it is reasonable to think that a constant power
allocation will perform well in the multi-antenna downlink. Further, it is more analytically
convenient if we lower bound D(q(A)|lba) by zero. Close examination shows that this is
equivalent to allocating each user of A a power of P; = P/Tr (W;‘l). Since this allocation
satisfies the power constraint, we instead consider scheduling users that maximize the zero
forcing rate under this constant power allocation. That is, a scheduler that chooses the set
A such that

A= oxmmas 4] ) where )= og (1 + i
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