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Abstract— Rateless codes are good codes of infinite length that
have the property that prefixes of such codes are themselves good
codes. This makes them attractive for applications in which the
channel quality is uncertain, where systems transmit as much
of a codeword as necessary for decoding to be possible. In
particular, rateless codes are potentially attractive for wireless
communication.

In a recent work, a rateless coding scheme was proposed for
the AWGN channel, based on layering, repetition and random
dithering.

We extend this scheme to multiple-input single-output (MISO)
Gaussian channels. We show that the rate loss associated with
orthogonal design space-time codes may be alleviated by layering
and dithering, very similar to the rateless approach for the
AWGN channel. We then combine the two schemes and arrive at
a close-to-capacity rateless code for MISO channels. The required
complexity depends on the fraction of capacity that is targeted, is
linear in the capacity of the channel and does not depend on the
number of transmit antennas. Furthermore, the coding scheme
uses only one base AWGN code.

The design of effective “rateless” codes has received re-
newed strong interest in the coding community, motivated
by a number of emerging applications. Such codes have a
long history, and have gone by various names over time,
among them incremental redundancy codes, rate-compatible
punctured codes, H-ARQ type II codes, flexible rate codes,
and static broadcast codes. The focus of this work is on the
design of such codes for MISO Gaussian channels.

From a purely information theoretic perspective, the prob-
lem of variable rate transmission is by now well understood;
see, e.g., [5] for a comprehensive treatment. Indeed, for classes
of channels having one maximizing input distribution, a code-
book drawn independently and identically distributed (i.i.d. ) at
random according to the capacity-achieving input distribution
will be good with high probability, when truncated to (a
finite number of) different lengths. From a coding perspective
however, we want codes that are capacity approaching1 while
still allowing for low-complexity encoding and decoding. A
remarkable example of such codes for erasure channels are
the recent Raptor codes [4], which build on the LT codes of
Luby.

Surprisingly little is known about what is possible beyond
the realm of erasure channels. Recent work on the application
of Raptor codes to binary-input symmetric-output channels are
[3], [2]. In these works, the performance of Raptor codes was
studied when applied to a binary-input AWGN channel (among
other channels) where the degree distribution is optimized to

1We use the term “capacity approaching” loosely to mean practical codes
that allow to approach capacity “closely”.

this class of channels. It is shown that no distribution allows
Raptor codes to approach the capacity of this class of channels
simultaneously (at different SNRs). Beyond this, there is
the problem that the use of binary codes in itself precludes
achieving the capacity of the original AWGN channel: from a
practical standpoint, binary signaling may be “nearly” capacity
achieving only at low SNR.

In a recent work [1], it was shown that good rateless codes
for the AWGN are possible, and can exploit the fact that at
very low SNR, a trivial means to obtain a variable rate code is
by means of repetition. While this is true for a much broader
class of channels [5], for the AWGN channel there is a very
simple way to combine the received repeated blocks: maximal
ratio combining (MRC). Ultimately, the rateless codes are ob-
tained combining this idea with dithering and a superposition
coding strategy to obtain many low SNR channels from one
higher SNR one.

In recent years there has been great progress in finding
effective coding schemes for transmission over MISO chan-
nels, often referred to as space-time coding. An attractive
approach is transmission using orthogonal design space-time
block codes (OSTBC) [6].

Orthogonal Design Space-Time codes, using only linear
pre/post-processing, convert the MISO channel into an AWGN
channel. However (except for the 2×1 case), this comes at the
cost of a reduced symbol rate (bandwidth loss). It turns out
that dithered layering offers a way around this loss. In fact, the
same approach may be used to allow for improved space-time
coding and for rateless transmission. Moreover, the two goals
may be achieved simultaneously.

I. RATELESS TRANSMISSION OVER AWGN CHANNELS

When a (Gaussian) codeword x (of length n) is repeated r
times over an AWGN channel, the resulting mutual informa-
tion per symbol is

Irep(SNR ) =
1

r · nI(x;x + z1,x + z2, . . . ,x + zr)(1)

=
1

2r
log(1 + r · SNR ). (2)

On the other hand, when transmitting r independent (Gaus-
sian) codewords, x1,x2, . . . ,xr, the mutual information is

Iind(SNR ) =
1

n
I(x1;x1 + z1) (3)

=
1

2
log(1 + SNR ). (4)



As the SNR decreases, we have

lim
SNR→0

Irep(SNR )

Iind(SNR )
= 1.

Therefore, the loss due to repetition vanishes as the SNR goes
to zero.

Say we want to transmit over an AWGN channel with
unknown SNR but we have some upper bound on the SNR,
i.e., it is known that SNR < SNR ∗. A natural approach thus
for obtaining a rateless code would be to use a large number
of layers so that each subchannel is in the low SNR regime.
Let

C∗ =
1

2
log(1 + SNR ∗). (5)

Assigning equal rates to the subchannels, each subchannel has
a capacity of C∗/L. Denote the number of collected blocks
by r. Define SNR (r) by

1

2
log(1 + SNR (r)) =

C∗

r
, (6)

and let N(r) be the corresponding noise power, i.e., N(r) =
P/(e2C∗/r−1). Note that SNR (1) = SNR ∗. Thus, if SNR =
SNR (r), then in order to send a message, transmission needs
to be r times longer than when SNR = SNR ∗.

Denote the power allocated to layer l in block i by Pl(i).
Also let SNR l,i(r) denote the SNR of this layer assuming the
actual SNR is SNR (r), i.e.,

SNR l,i(r) =
Pl(i)∑

k<l Pk(i) + N(r)
. (7)

The corresponding capacity of the layer is

Cl,i(r) =
1

2
log (1 + SNR l,i(r)) . (8)

A. Time-varying power allocation

We next show that there is a power allocation Pl(i) such
that for SNR = SNR (r), if we collect the first r blocks,
each layer will have a capacity of C∗/Lr per symbol. This is
formalized in the following

Lemma 1: There exists a power allocation Pl(i), l =
1, . . . , L, i = 1, . . . ,∞, such that for every r,

r∑
i=1

Cl,i(r) =
C∗

L
. (9)

Specifically, the power allocation may be solved by the fol-
lowing recursion on r. For r = 1, . . . ,∞ do:

1) Update noise level:

N(r) = P/(e2C∗/r − 1). (10)

2) Necessary incremental rate:
For l = 1, . . . , L, compute

∆l(r) =
C∗

L
−

r−1∑
i=1

Cl,i(r). (11)

3) Power allocation:
For l = L, . . . , 1, assign the power

Pl(i) =

(
N(r) +

L∑
k=l+1

Pk(i)

)
·
(
e2∆l(r) − 1

)
. (12)

Proof: The proof is by induction on r. We have for any
l = 1, . . . , L,

r−1∑
i=1

Cl,i(r − 1) =
C∗

L
. (13)

From the definition of Cl,i(r) it follows that cl,i(r) is mono-
tonically decreasing in r. It follows that ∆l(r) is positive for
any l. Note that since

∑L
i=1 Pl(i) = P , for any r and i, we

have
L∑

l=1

Cl,i(r) =
C∗

r
= C(r), (14)

regardless of the power allocation. It follows that

L∑
l=1

∆l(r) = C∗ −
r−1∑
i=1

L∑
l=1

Cl,i(r) (15)

= C(r). (16)

Note that for a Gaussian multiple access channel with L users
(layers) with sum power P , any rate vector (R1, . . . , RL) such
that Ri ≥ 0 for all i and

∑L
i=1 Ri = C(P ) is achievable.

Thus, it follows form (14) and (16) that (12) will indeed yield
a solution with nonnegative powers Pl(r).

As we can ensure that every layer is at sufficiently low
SNR, a naive approach to obtain a rateless code would be to
repeat the same L codewords from block to block, scaling the
codeword so as to have power Pl(i), and then use MRC at the
receiver. This is obviously flawed, as (without power scaling)
it amounts to repetition of the block, which cannot be efficient
in a mutual information sense at high SNR. The snag, from the
point of view of an individual layer, is that while the Gaussian
noise is independent from block to block, the interference is
not and is combined coherently. In the next section we show
how to circumvent this problem.

B. Dithered repetition transmission

Let xl be taken from an i.i.d. unit variance Gaussian
codebook of size enC∗/L and define xl(i) =

√
Pl(i) · xl. Let

dl(r), l = 1, . . . , L, be vectors of ±1s drawn i.i.d. Bernoulli
1/2, known to both transmitter and receiver. The transmitter
sends at block i

x(i) =

L∑
l=1

xl(i) � dl(i) (17)

where � denotes component-wise multiplication.
The received i-th block is y(i) = x(i) + z(i). Let αl(i) =

SNR l,i(r)/
∑r

k=1 SNR l,k(r). For each layer l = L, . . . , 1, the
receiver forms the MRC estimate

yl =

r∑
i=1

αl(i) · dl(i) �
y(i) −∑k>l

√
Pk(i)x̂k � dk(i)√

Pl(i)
, (18)



where the x̂k are the previously decoded codewords. Assuming
x̂k = xk, we have

yl = xl +
r∑

i=1

αl(i) · zl(i)
∆
= xl + zl, (19)

where

zl(i) =
1√
Pl(i)

·
(∑

k<l

xk(i) � dl(i) � dk(i) + z(i)

)
. (20)

Thus, zl is an i.i.d. random vector and the resulting SNR is
SNR l =

∑r
i=1 SNR l,i(r). The receiver decodes x̂l from yl.

Figure 1 depicts the encoding scheme.

Fig. 1. Example: Dithered repetition scheme with time-varying power
allocation, where P = 7 and C∗ = 1.5bits.

By (8), (9) and since x ≥ log(1 + x),

r∑
i=1

1

2
SNR l,i(r) ≥

r∑
i=1

1

2
log(1 + SNR l,i(r)) =

C∗

L
. (21)

It follows that the accumulated SNR in each layer, i.e., the
SNR in channel (19) satisfies

SNR l ≥ 2C∗

L
. (22)

Therefore, the achievable rate per layer of the coding scheme
is lower bounded by

R ≥ 1

2
log

(
1 +

2C∗

L

)
. (23)

Thus, by choosing L sufficiently large, we may approach
capacity arbitrarily closely. The fraction of capacity attained,
which we refer to as the efficiency of the scheme, satisfies

efficiency =
L · R
C∗

≥ 2R

e2R − 1
≥ 1 − R. (24)

This implies for instance that to obtain 90% of capacity
requires a code of rate roughly 1/7. We note that this efficiency
bound holds uniformly, regardless of the number of incremen-
tal redundancy blocks or the number of layers. It requires only
that the block length of the base code be long enough that
mutual information is a reasonable indicator of performance.
In practice, when the number of layers is sufficiently large
such that the SNR per layer is low, a binary code may be
used instead of a Gaussian codebook.

II. CAPACITY APPROACHING CODES FOR MISO
CHANNELS

We have seen a method to obtain rateless codes for an
AWGN channel. A potential application of such codes could
be for transmission over a wireless channel with a single
antenna at the transmitter as well as at the receiver. A natural
question that arises is whether one can derive similar coding
techniques also for multiple antenna systems. In the sequel we
show that this may indeed be achieved for MISO channels.2

In particular, in this section we begin by showing how to
approach an arbitrarily high fraction of the capacity of a
MISO channel using a good low-SNR AWGN code. Then in
Section III we show how to combine these results with the
rateless coding results of Section I to obtain rateless codes for
the MISO channel.

A power-constrained Gaussian MISO system with M trans-
mit antennas is described by,

y =

M∑
i=1

hixi + z, (25)

where hi ∈ C and z ∼ CN (0, N), and the input satisfies
the power constraint E‖x‖2 ≤ P . We consider a coherent
static channel where the channel gains hi are constant and are
known to the receiver but not to the transmitter. The white-
input capacity of the channel is

C =
1

2
log

(
1 +

‖h‖2

M
SNR

)
, (26)

where SNR = P/N , and where capacity is measured in nats
per real dimension.

We would like to first reduce the MISO channel into a
scalar channel by pre/post-processing, allowing then to use the
rateless coding techniques developed in the previous section
for the scalar AWGN channel.

We first address the first goal. Specifically, we wish to obtain
a (simple/efficient) method to convert the channel (25) into an
AWGN channel of the form,

y =
‖h‖√

M
x + z, (27)

where h, x and z are as above.
The simplest way to convert the MISO channel into an

AWGN channel that depends only on ‖h‖ is by using repeti-
tion. That is one may use M symbol durations to send a single
symbol, at each time instant sending it over a different antenna.
At the receiver we form the average of the matched-filtered
output of the received M symbols. The resulting channel is,

y =
1

‖h‖
M∑
i=1

h∗
i (hix + zi) (28)

= ‖h‖x +
1

‖h‖
M∑
i=1

h∗
i zi (29)

= ‖h‖x + z, (30)

2We note that rateless transmission over SIMO channels is straightforward.



where z ∼ CN (0, N). Thus, repetition boosts the SNR by a
factor of M , at the cost of an M -fold reduction in bandwidth.
The corresponding capacity (normalized per real transmitted
dimension) is,

Crep =
1

2M
log(1 + ‖h‖2SNR ). (31)

Comparing (31) and (26), it is clear that repetition performs
very poorly (trading bandwidth for SNR) at high SNR.
Nonetheless, at low SNR, the loss vanishes. This is very simi-
lar to the behavior of repetition coding over an AWGN channel
as observed in Section I. Repetition is very inefficient unless
the SNR is extremely low. We choose to employ Orthogonal
Design Space-Time block codes to overcome this. OSTB
coding, much like repetition coding, suffers from a reduction
in rate. Nevertheless, with an OSTBC, this “bandwidth loss” is
bounded above by a factor of two, for any number of transmit
antennas. This loss is then alleviated by using layering.

We illustrate the scheme for the case of a 4 × 1 MISO
channel, noting that it may be generalized. A rate 1/2 OSTBC
is used in the example as rate 1/2 OSTBCs exist for any
number of transmit antennas. Transmission is done in groups
of eight channel symbols over which four information symbols
x1, x2, x3, x4 are sent. The transmitter sends the followings,

X =




x1 −x2 −x3 −x4 x∗
1 −x∗

2 −x∗
3 −x∗

4

x2 x1 x4 −x3 x∗
2 x∗

1 x∗
4 −x∗

3

x3 −x4 x1 x2 x∗
3 −x∗

4 x∗
1 x∗

2

x4 x3 −x2 x1 x∗
4 x∗

3 −x∗
2 x∗

1




T

(32)

The receiver gets,

y = hT X + z (33)

Equation (32) may be rewritten as,




y1

y2

y3

y4

y∗
5

y∗
6

y∗
7

y∗
8




=




h1 h2 h3 h4

h2 −h1 h4 −h3

h3 −h4 −h1 h2

h4 h3 −h2 −h1

h∗
1 h∗

2 h∗
3 h∗

4

h∗
2 −h∗

1 h∗
4 −h∗

3

h∗
3 −h∗

4 −h∗
1 h∗

2

h∗
4 h∗

3 −h∗
2 −h∗

1







x1

x2

x3

x4


+




z1

z2

z3

z4

z∗5
z∗6
z∗7
z∗8




. (34)

Redefining y to be the vector on the left hand side of (34),
H the matrix and z the noise vector (with the last four entries
conjugated), we have

y = Hx + z, (35)

where x = (x1, x2, x3, x4)
T . Note that the columns of H are

orthogonal and we have

H∗H =




2‖h‖2 0 0 0
0 2‖h‖2 0 0
0 0 2‖h‖2 0
0 0 0 2‖h‖2


 . (36)

The receiver uses a matched filter to obtain (again redefining
y)

y =
1√

2‖h‖H∗ (Hx + z) . (37)

Therefore, the OSTBC scheme converts the MISO channel
into four parallel AWGN channels

yi =
√

2‖h‖xi + zi, i = 1, 2, 3, 4, (38)

using eight symbol durations, and where with abuse of notation
zi denotes the resulting noise (which is a linear combination
of the zj in (34)). Note that zi ∼ CN (0, N) and is i.i.d. . This
is analogous to repetition with a factor of two.

We next introduce dithering. Let Dcol and Drow be two 8×4
dither matrices,

Drow =




d1 d2 d3 d4 d1∗ d2∗ d3∗ d4∗

d2 d1 d4 d3 d2∗ d1∗ d4∗ d3∗

d3 d4 d1 d2 d3∗ d4∗ d1∗ d2∗

d4 d3 d2 d1 d4∗ d3∗ d2∗ d1∗




T

(39)

Dcol =




d1 d2 d3 d4 d∗5 d∗6 d∗7 d∗8
d1 d2 d3 d4 d∗5 d∗6 d∗7 d∗8
d1 d2 d3 d4 d∗5 d∗6 d∗7 d∗8
d1 d2 d3 d4 d∗5 d∗6 d∗7 d∗8




T

(40)

where the di and dj are all random and independent phases.
Let D = Drow�Dcol. We send, X�D over the channel. The
receiver signal is,

y = Hdx + z, (41)

where

Hd =




h1 · d1 · d1 h2 · d1 · d2 h3 · d1 · d3 h4 · d1 · d4

h2 · d2 · d1 −h1 · d2 · d2 h4 · d2 · d3 −h3 · d2 · d4

h3 · d3 · d1 −h4 · d3 · d2 −h1 · d3 · d3 h2 · d3 · d4

h4 · d4 · d1 h3 · d4 · d2 −h2 · d4 · d3 −h1 · d4 · d4

h∗
1 · d5 · d1 h∗

2 · d5 · d2 h∗
3 · d5 · d3 h∗

4 · d5 · d4

h∗
2 · d6 · d1 −h∗

1 · d6 · d2 h∗
4 · d6 · d3 −h∗

3 · d6 · d4

h∗
3 · d7 · d1 −h∗

4 · d7 · d2 −h∗
1 · d7 · d3 h∗

2 · d7 · d4

h∗
4 · d8 · d1 h∗

3 · d8 · d2 −h∗
2 · d8 · d3 −h∗

1 · d8 · d4




Note that we still have Hd∗Hd = 2‖h‖2 · I .
Consider now a dithered layered transmission, where we

send

X = X1 � D1 + · · · + XL � DL, (42)

and where the matrices Xl are generated from the information
vectors xl = (xl,1, xl,2, xl,3, xl,4) according to (32) and
where the matrices Dl are generated according to (39) and
(40) independently. We allocate power Pl to layer l so that
E‖xl‖2 ≤ Pl where

∑L
l=1 Pl = P . As we distribute the power

evenly among the antennas, every symbol in layer l will have
an average power Pl/4. The received signal (after a front end
conjugation of the last four symbols) is

y = Hd
1 · x1 + · · · + Hd

L · xL + z. (43)



Note that while the four symbols are being transmitted through
orthogonal effective channels, this is not the case between
different layers.

We first decode layer L. The receiver uses a matched filter
to obtain,

x̂L =
1√

2‖h‖(Hd
L)∗y (44)

=
√

2‖h‖xL (45)

+
1√

2‖h‖
L−1∑
l=1

(Hd
L)∗Hd

l · xl (46)

+
1√

2‖h‖(Hd
L)∗z (47)

=
√

2‖h‖xL + zint + zG. (48)

It is not hard to see that for i = 1, . . . 4,

E
[|zint

i |2] =
1

2‖h‖2

L∑
l=1

Pl/4 · 2
∑
i,j

|hi|2|hj|2 (49)

= ‖h‖2
L−1∑
l=1

Pl/4 (50)

This is due to the fact that the magnitudes of the entries of
the matrix Hd form a matrix such that both rows and columns
are permutations of each other, and that due to the dithering
all the interference components add non-coherently. Equation
(50) is key as without dithering the power of the interference
would be twice as large. We also have for i = 1, . . . 4,

E
[|zG

i |2] = N. (51)

Thus, the capacity of the L-th layer satisfies

RL ≥ 1

2
· 1

2
log

(
1 + 2 · ‖h‖2PL/4

‖h‖2
∑L−1

j=1 Pj/4 + N

)
, (52)

where the first factor of half is due to the bandwidth reduction.
The inequality is actually strict since the noise is not Gaussian
due to the interference component.

We then “strip” xL from the received vector and proceed
to decode layer L− 1 and so on. Thus, the capacity for layer
l satisfies,

Rl ≥ 1

4
log

(
1 + 2 ·

‖h‖2

4 Pl

‖h‖2

4

∑l−1
j=1 Pj + N

)
. (53)

With the same power allocation the capacity of the original
MISO channel is

C =

L∑
l=1

Cl (54)

=

L∑
l=1

1

2
log

(
1 +

‖h‖2

4 Pl

‖h‖2

4

∑l−1
j=1 Pj + N

)
(55)

=
1

2
log

(
1 +

‖h‖2

4

P

N

)
(56)

We may allocate the power so that every layer (subject to the
decoder order) has the same SNR and correspondingly the
same lower bound on the achievable rate, i.e., so that Rl = R.
Define the efficiency of the scheme by

efficiency =
RL

C
. (57)

Equations (53) and (55) may be solved for Cl as a function
of Rl, yielding

efficiency ≥ R

1
2 log

(
e4R+1

2

) . (58)

This implies for example that to obtain 86% of capacity
requires a code of rate roughly 1/6. The number of layers
needed is a function of the capacity of the channel and the
targeted efficiency but not of the number of antennas.

III. RATELESS SPACE-TIME CODES

The layered OSTBC scheme may be combined with rateless
coding (as described in Section I). As the MISO channel has
been reduced into a scalar one, we may simply concatenate the
two schemes. That is, given a rateless code, we group together
four consecutive symbols of each layer and send them via
dithered OSTBC as described in (42). The resulting efficiency
may be lower bounded by combining (24) and (58). In effect,
we substitute Cl = 1

2 log
(

e4R+1
2

)
for R in (24) and obtain,

efficiency ≥
2 log

(
e4R+1

2

)
e4R − 1

. (59)
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