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Waterfilling Gains O(1/SNR) at High SNR
Emin Martinian

Abstract—We show that the gain for using a waterfilling power
allocation instead of a flat allocation over non-singular channel
components is negligible at high signal-to-noise ratios.

Consider the standard additive noise communication chan-
nel with a quadratic power constraint. Although waterfilling
provides the optimal input distribution for Gaussian noise
channels, sub-optimal distributions are often not too bad. For
example, [1] shows that transmitting at only 2 levels (either on
or off) in each sub-channel loses very little. Similarly, [2], [3]
show that the mutual information for an optimal waterfilling
power allocation on any additive noise channel is at most 0.5
bits per real channel use higher than the mutual information
for an independent, identically distributed, Gaussian input.
Here we use elementary arguments to show that the gain

in mutual information for the optimal waterfilling power
allocation versus a flat power allocation over non-singular
channel modes is at most O(SNR−1) where SNR denotes
the signal-to-noise ratio parameter. When power is allocated
across all n modes instead of only the k non-singular modes,
the mutual information penalty (in bits per complex channel
mode) is (k/n) log2(n/k) + O(SNR−1) (which is at most
e−1 log2 e +O(SNR−1) ≈ .53 +O(SNR−1)). In [3] this bound
is tightened to show that the mutual information loss for a flat
Gaussian input is at most e−1 log2 e ≈ .53 bits per complex
channel mode for any SNR.

A. Problem Model and Notation

We denote vectors and sequences in bold (e.g., x) with the
ith element denoted as xi. Matrices are capitalized bold letters.
Random variables are denoted using the sans serif font (e.g.,
x) while random vectors and sequences are denoted with bold
sans serif (e.g., x).
A variety of scenarios involve transmitting over a channel

with different gains or noise powers which can be ergodic,
non-ergodic, time-selective or frequency-selective. Since the
role of waterfilling is essentially the same in all these cases,
we focus on the following model and briefly mention how to
translate the main results to other scenarios.
The transmitter selects an n-vector, x, as input to the channel

which produces the output y according to

y = H · x + w (1)

where w are independent, complex, zero mean, Gaussian ran-
dom variables with an identity covariance matrix. We model
a power constraint by requiring E[||x||2] < SNR. Furthermore,
we consider the case where the receiver always has perfect
knowledge of the deterministic channel matrix H.
For example, (1) may represent a multi-antenna channel.

Alternatively, we can model a time or frequency selective

fading channel by considering a diagonal H where the coeffi-
cients correspond to separate time-slots or frequency bands. In
any case, maximizing the average mutual information between
the channel input sequence and channel output sequence is
often desirable for maximizing capacity or minimizing outage
probability. In the following we will consider the difference
between the mutual information for the optimal Gaussian
waterfilling input distribution and a Gaussian input distribution
with a flat power allocation either over the non-singular
channel modes or all channel modes.

B. Non-singular Channels
Theorem 1. Consider the setting in (1) with H non-singular.
If we let I∗(SNR) represent the mutual information for the
optimal waterfilling input distribution and let Iflat(SNR) rep-
resent the mutual information for an independent, complex,
circularly symmetric, zero mean, Gaussian input distribution
with flat power allocation, then

I∗(SNR)− Iflat(SNR) < O(SNR−1). (2)

Proof. Without loss of generality we assume that H is di-
agonal. If this is not the case, we can always take the
Singular Value Decomposition (SVD).1 Thus we consider the
equivalent channel

yi = si · xi + wi (3)

where the wi are zero mean, unit variance, complex, circularly
symmetric, Gaussian random variables and the si are the
singular values of H.
The resulting mutual information for a flat power allocation

is

Iflat(SNR) =
n∑

i=1

[h(yi) − h(yi|xi)] (4)

=
n∑

i=1

[h(si · xi + wi)− h(si · xi + wi|xi)] (5)

=
n∑

i=1

log
(
|si|2 · SNR/n + 1

)
(6)

=
n∑

i=1

log
[
SNR
n

(
|si|2 +

n

SNR

)]
(7)

= n log
SNR
n

+
n∑

i=1

log(|si|2 + n/SNR) (8)

1Using the SVD we can write H = UDV† where U, V are unitary
and D is diagonal. When both transmitter and receiver know H, they can
pre/post-multiply by U, V to make the channel diagonal. When only the
receiver knows H, it can deal with U, but the transmitter can no longer strip
off V. For a complex, circularly symmetric, zero mean, Gaussian random
vector with flat power allocation, however, V† · x has the same distribution
as x and we can ignore V in computing mutual information.
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When the transmitter knows si, the optimal input distribu-
tion is to make each xi an independent, zero mean, complex,
circularly symmetric, Gaussian random variable with variance
Pi = min[0, ν − |si|−2] for some ν such that the power
constraint is met. If we define Pmax = maxi Pi then we can
bound the waterfilling mutual information via

I∗(SNR) =
n∑

i=1

[h(yi)− h(yi|xi)] (9)

=
n∑

i=1

log(|si|2 · Pi + 1) (10)

≤
n∑

i=1

log(|si|2 · Pmax + 1) (11)

=
n∑

i=1

log
[
Pmax · (|si|2 + 1/Pmax)

]
(12)

= n log Pmax +
n∑

i=1

log(|si|2 + 1/Pmax) (13)

≤ n log Pmax +
n∑

i=1

log(|si|2 + n/SNR) (14)

Note that for SNR large enough all the modes are active so
we can bound the difference between Pmax and Pi via

Pmax − Pi = (ν − |smax|−2)− (ν − |si|−2) (15)
= |si|−2 − |smax|−2 (16)
≤ |smin|−2 − |smax|−2 (17)

where smin = mini |si| and smax = maxi |si|. In particular,
this implies that the maximum power is not much larger than
the average in the sense that

Pmax ≤
SNR
n

+ |smin|−2 − |smax|−2. (18)

Combining (8), (14), and (18) yields

I∗(SNR)− Iflat(SNR) ≤ n log
Pmax

SNR/n
(19)

≤ n log
SNR/n + |smin|−2 − |smax|−2

SNR/n
(20)

= n log
(

1 +
|smin|−2 − |smax|−2

SNR/n

)
(21)

≤ n ·
(

|smin|−2 − |smax|−2

SNR/n

)
(22)

= n2 · (|smin|−2 − |smax|−2) · SNR−1 (23)

1) A Time-Selective Fading Example: To gain some idea
of why n2 appears in (23), consider a time-selective fading
example. Specifically, let H be a diagonal matrix where each
entry is selected from some distribution ps(·). In this case, it
makes sense to consider the power constraint on a per sample
basis and replace SNR/n in (23) with SNR. Similarly, it makes
sense to measure mutual information on a per sample basis
and divide (23) by n. With these modifications the gain of a

waterfilling distribution in this scenario is simply (|smin|−2−
|smax|−2) · SNR−1. Thus we see that the factors of n2 in (23)
are simply normalization factors for the vector scenario and
disappear if we are interested in scalar settings.

C. Singular Channels
For channels whereH is singular, we obtain the same result

as the previous section provided the transmitter knows which
modes of the channel are usable and only spends power on
these.

Corollary 1. Consider the setting in (1). If we let I∗(SNR)
represent the mutual information for the optimal waterfilling
input distribution and let Iflat(SNR) represent the mutual infor-
mation for an independent, complex, circularly symmetric, zero
mean, Gaussian input distribution with flat power allocation
over non-singular modes of the channel, then

I∗(SNR)− Iflat(SNR) < O(SNR−1). (24)

Proof. In both cases, the transmitter only spends power on the
non-singular modes of H and thus the problem is reduced to
the one in Theorem 1.

If the transmitter does not know which singular values of
H are zero, it essentially wastes power on these modes and
suffers a loss.

Corollary 2. Consider the setting in (1) where only k out of n
singular values of H are positive. If we let I∗(SNR) represent
the mutual information for the optimal waterfilling input
distribution and let Iflat(SNR) represent the mutual information
for an independent, complex, circularly symmetric, zero mean,
Gaussian input distribution with flat power allocation, then

I∗(SNR)− Iflat(SNR) < k log
n

k
+ O(SNR−1). (25)

Proof. Without loss of generality assume that the first k singu-
lar values are non-zero (if this is not the case simply permute
H or its SVD representation). Using the same arguments as
(9)–(12) we obtain

I∗(SNR) ≤
k∑

i=1

log
[
Pmax · (|si|2 + 1/Pmax)

]
(26)

= k log Pmax +
k∑

i=1

log
(
|si|2 + 1/Pmax

)
(27)

≤ k log Pmax +
k∑

i=1

log
(
|si|2 + n/SNR

)
. (28)

When a flat power allocation is used, arguments analogous
to (4)–(8) yield

Iflat(SNR) = k log
SNR
n

+
k∑

i=1

log(|si|2 + n/SNR). (29)

As before we can derive a bound like (18) for Pmax (with
n replaced by k) which when combined with (28) and (29)
yields

I∗(SNR)− Iflat(SNR) ≤ k log Pmax − k log
SNR
n

(30)
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= k log
n · Pmax

SNR
(31)

≤ k log
[n

k
+

n

SNR
· (|smin|−2 − |smax|−2)

]
(32)

= k log
n

k

+ k log
[
1 +

k

SNR
· (|smin|−2 − |smax|−2)

]
(33)

≤ k log
n

k
+

k2

SNR
· (|smin|−2 − |smax|−2) (34)

Note that if we consider a time-selective or frequency
selective channel as in Section B.1, then when (34) is properly
normalized, the penalty in bits per channel use becomes
(k/n) log(n/k) + O(SNR−1). If we let x = k/n, then the
asymptotic penalty is −x log x which through some elemen-
tary calculus can be easily verified to be at most e−1 log e or
approximately 0.53 bits per complex channel mode.

D. Non-Gaussian Additive Noise

The previous results hold even when the additive noise, w,
is non-Gaussian provided each component is independent and
has a finite differential entropy. We show this by demonstrating
that, at high SNR, the maximum mutual information of each
component channel can be approximated by the capacity of a
Gaussian channel.

Theorem 2. Consider the additive noise channel

y = x + w (35)

with complex input x and complex, zero-mean, unit-variance,
additive noise w having finite differential entropy h(w). With
the input constraint E[|x |2] ≤ SNR, the difference between
the mutual information for the optimal input distribution and
the mutual information with a Gaussian input and w replaced
by a zero-mean, unit-variance, complex, circularly symmetric
Gaussian is at most SNR−1.

Proof. The capacity of a Gaussian noise channel is log(1 +
SNR). We can lower and upper bound the mutual information
of the actual channel by using a Gaussian input distribution
for x as follows:

I∗ = max
px(x):E[x2]≤SNR

h(x + w) − h(w) (36)

≥ max
px(x):E[x2]≤SNR

h(x) − h(w) (37)

≥ log SNR + log 2πe− h(w) (38)
= log SNR (39)

= log(1 + SNR)− log
(

1 + SNR
SNR

)
(40)

I∗ = max
px(x):E[x2]≤SNR

h(x + w) − h(w) (41)

≤ log(SNR + 1) + log 2πe− h(w) (42)
= log(1 + SNR) (43)

|I∗ − log(1 + SNR)| ≤ log
(

1 + SNR
SNR

)
(44)

= log
(
1 + SNR−1

)
(45)

≤ SNR−1. (46)

Using this result, we can show that Theorem 1 holds for
arbitrary additive noise with finite differential entropy.

Corollary 3. Theorem 1 holds even if the noise is not
Gaussian provided it has a finite differential entropy.

Proof. We can use the same arguments as in Theorem 1
provided we add an additional term of O(SNR−1) to account
for the non-Gaussianity of the noise.

E. Concluding Remarks
While these results show that waterfilling is essentially a

low SNR strategy, they do not imply that transmitter knowledge
of the channel is useless. First, as illustrated by Corollary 2,
not knowing which channel modes are singular can result in
wasted power and a non-zero penalty in mutual information.
Thus, it is at least important to know which channel modes are
non-singular. Second, for channels where the range between
singular values is large, “high SNR” may be too high to
be reached in practice. Third, knowing the channel is often
essential for choosing the proper transmission rate. Thus while
for non-singular channels the transmitter can achieve the same
mutual information regardless of its channel knowledge, it can
not necessarily achieve the same capacity unless it knows
how many bits the channel can support. Finally, practical
considerations such as error rates at finite block lengths or
complexity may be affected by channel knowledge.
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