A Capacity Theorem for Cooperative Multicasting in
Large Wireless Networks

Ashish Khisti, Uri Erez, Gregory Wornell
Dept. of Electrical Engineering and Computer Science
Massachusetts Institute Of Technology
Cambridge, MA 02139
{khisti,uri,gww} @allegro.mit.edu

Abstract

We consider a scenario in which a sender wishes to broadcast a commeagmés a
large number of receivers in a slowly fading wireless environment. Wieixppoperation
between the receivers but impose an average sum power constrasg #e network. As
the number of receiverk — o, there is a critical rat€ for the common message such
that the outage probability afveryreceiver approaches zero for all rates be©wnd is
bounded away from zero above this rate. We compare our work withguiework on
cooperative diversity that focuses on the diversity-multiplexing tréddeof

1 Introduction

Cooperative diversity has been proposed as a powerful schemanipatslow fading
in wireless networks. Spatially distributed nodes provide an opportunityetmter dis-
tributed virtual antenna array, which can provide substantial gains in felding envi-

ronments [1]. Several cooperative diversity protocols have beggested in [2, 3] and
evaluated under the framework of the diversity-multiplexing tradeoff pse in [4]. Re-
cently, some new cooperative diversity based protocols have begogaain [5, 6, 7], that
achieve better performance in the sense of diversity-multiplexing trattenffpreviously
proposed protocols.

Common to all these works is

e There is only one destination receiver and a small number of nodes aetags
terminals.

e To make the performance of the protocols amenable to analysis, a high SiRm®&s
tion is imposed. The analysis is done in the framework of the diversity-multiglexin
tradeoff.

The present work studies cooperative diversity protocols for multigastia slow fad-
ing environment but follows a different route, in both the setup and thigsiaaechnique.
First, instead of focusing on the limit of high SNR in order to simplify the analygisfo-
cus on the limit of many users. Second, in addition to studying the single inteadeiger
case as done in previous works, we also consider the case whereracéers want to
decode the same message from one sender. Such a system is clearly lintitedMoyst
user in the network. Accordingly, we consider the system to be in “outiigéleast one
user cannot decode the message.



It is well known that in point-to-point links with slow fading the Shannon adiyas
zero (see, e.g., [8]). This follows since fanytarget rate, there is always a positive prob-
ability that the channel experiences a “deep fade” such that it canppbst this rate. In
the absence of a non-zero Shannon capacity, one often considergdige capacity (see,
e.g., [8]). When one considers broadcasting a common message to multglerscany
event where not all users experience a channel allowing the s@dassoding constitutes
an outage. In this paper we refer to this specific application where alvezsavant the
same message as multicastinglearly the outage definition is more severe in multicast-
ing. Hence, the outage capacity in such networks is smaller than that in tlesponding
unicast scenario. In fact, it is clear that for any target outage pilitgabs the number
of receivers grows, the outage capacity will go to zero. Thus the pedioce of such a
system is severely limited in absence of cooperative diversity.

We show that under the same setup, there is a positive Shannon capacityalf w
low cooperative diversity, as the number of users goes to infinity. Asdnetben the
Shannon capacity is zero, meaningful analysis of system performandeecdone using
the diversity-multiplexing framework. On the other hand, as in the problenstuey,
the Shannon capacity is positive, it is of interest to develop protocols thatapacity
approaching. We refer to such a system with cooperative diversitgaperative multi-
casting”.

Cooperative multicasting has been recently considered by other autinof8], the
authors have suggested the use of opportunistic large arrays foinfictheé network. The
basic idea is that each receiver node makes a decision based on thede@mal strength.
If its decoding threshold exceeds a certain value it becomes active atsdtstasmitting,
otherwise it keeps listening to the signal from other nodes. In [10], thieoesiextend
their work to show that under a fixed relay power per unit area, as thauof users
approaches infinity, the network is fully connected if the decoding thidsfiget below a
critical value and not connected if the threshold is above this value. Howeaeir work
focusses on the performance of a specific scheme and does natsatdrdundamental
limits on cooperative multicasting. Furthermore their model considers pathdsssl lon
network geometry and does not consider Rayleigh fading.

Our main result is that under a total power constr&nthe cooperative multicasting
systems in a network with independent slow Rayleigh fading between anyodesnphave
a positive capacity as the number of receivers approaches infinitye ptecisely, there
is a rateC = log (l+ N%) > 0, such that for all rateR < C, the probability of outage
(of the worst user) approaches zero as the number of users in therkeapproaches
infinity. Beyond this rate, the probability of outage is bounded away fram eeen as the
number of receivers approaches infinity. Moreover a relatively simmlpol based on
cooperative diversity approaches this bound.

The rest of the paper is organized as follows. In Section 2, we devetdra@nel
model for the cooperative multicasting scenario. Section 3 presents a sipggehlhound
for the achievable rate of transmission. In Section 4 we describe a trarempsstocol
that approaches the upper bound. In Section 5, we discuss implications ofsults in
light of prior work and in Section 6 we present some open problems.

2 Channel Model

We consider a scenario in which one source node wants to broadaasinaon message
to K receiver nodes. The receiver nodes are numbétedl ..., K} and the source node

1Sometimes the term multicasting is used when only a subsetefvers want the same message. But in this
paper, we only consider the case when all the receivers Warsame message



is numbered 0. Each receiver node has the ability to transmit a signal amadrduplex
constraint. A node cannot transmit and receive in the same time-slot. Thedallgain be-
tween nodeé € {0,1,...,K} and nodg € {1,2,...,K} is denoted byy; which is assumed

to beca( (0,1), independent of all other gains and constant throughout. We assutme tha
only the receiver nod¢ knows the channel gain; and it is learned when nodebegins
transmission. LeT; denote the set of transmitting nodes andenote the set of listening
nodes in time-slot. Then the received signal by noble L; is given by,

yii)="$ hpx;(i)+wi(i) 1)

Jeli

Herew is the additive Gaussian noise which is modeled a5(0,Np). The transmit-
ted symbols; should be chosen to satisfy the sum power constraint. If th§ skeles not
change during the course of the transmission {ii.és independent af), then clearly, the
sum power constraint is given B[y ;. |X;|?] < P. If the sefT; is not constant throughout
the transmission of the message one has to ensure that the averageyevedirsnich sets
satisfies the power constraint. While designing the cooperative multicasttarpls, the
set of transmitting users could change on the fly. One has to explicitly etiairéne sum
power constraint is satisfied when the set of transmitting users changles fiy In gen-
eral such a requirement is non-trivial, but in the limit of large number dfivecs we will
see that thesizeof the transmitting set becomes deterministic and this makes the power
normalization relatively straightforward.

Definition 1 A rate R is achievable for the cooperative multicasting system if for any
€ > 0, there is a number K such that a for a system with at least K users, theageess
W distributed uniformly ovef1,2,...,2"R} can be decoded by all the receivers, with
probability at leastl — €, as the number of channel uses-eo.

Note that in Definition 1, for anK, we are taking the block lengtito infinity. Ac-
cordingly, we can drive the detection error to a negligible fraction of thmgmierror
probability. The dominant cause of errordnabove is the probability of error due to out-
age. To claim that the rafeis achievable, we will have to show that the outage probability
approaches zero, #— co.

3 Simple Upper Bound

In this section, we present a simple upper bound on the commoRrat®efinition 1.
Suppose a genie conveys the messéige receiver nodes,2,...K —1 and only receiver
nodeK remains to be served. This is clearly a MISO system Wittransmit antennas,
with channel knowledge only at the receiver. Suppose we decide ta.dsiput distribu-
tion across the antennas (i.e. the input covariance matrix is a scaled ideA§it)— oo,

the effective channel gain at the receiver approaches L(r%tz-K*OHhiK\z K=g ) Ac-

cordingly,C =log (1+ Nﬂo) is achievable with the outage probability approaching zero as
K — . In order to establish that the outage probability is bounded away fromfaer

all ratesR > C, we need to invoke the following result for the MISO channel with i.i.d.
Rayleigh fading [11].

Fact 1 (MISO Channel) Consider a MISO channel with K transmit antennas and one
receive antenna and i.i.d. Rayleigh fading. The optimal coding strategy thahirnes the
outage probability for any fixed rate R is to choose input at each antenraitalependent

i.e. \x = diag{P1,P,,...,P} and to allocate powers equally among a subset of antennas
i.e. f =P; =--- =P, = P/Kgand to allocate nothing to the remaining antennas.
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Using the above result, we now show that the outage probability is boumdgdficom
zero forevenR>C

Proposition 1 Suppose for some> 0, R=log (1+ P%—?) Then necessarily, the out-
age probability is bounded away from zero accordingPt(outage > 1%5

Proof:

Let Ko be the optimum number of transmitting antennas as described in Fact 1. Also let
Gk = 1 Ko, hi |2. The corresponding rate &= log (1+ GKONﬂo). Note thaiGy, is a
scaled chi-squared random variable with unit mean. We have

Prioutage = 1—Pr(Gk,>1+¢)

1
> 1-— Markov | lit
> Tre (Markov Ineqality)

€
l+e

[ |

Note that the above result is independent of the number of antennas fartRi> C,
the outage probability is bounded away from zero eveK as o, and hence this rate is
not achievable according to Definition 1. This leads us to the following uipmend:

Lemma 1 In the limit K — co, an outer bound on the achievable rate for cooperative
multicasting is given by

cupper__ log <1+ NE> 2)
0

4 A Cooperative Diversity Based Scheme

In this section, we present a two step scheme which uses cooperagvsitgifor mul-
ticasting in large networks. The main idea in this scheme is to divide the users mto tw
groups. In the first step, the sender broadcasts the message at atbightrich only a
fraction of users (sayt) can decode. These users then form a distributed virtual antenna
and use a distributed space time code to serve the remainirg ftaction of users. See
Figure 1. The main steps of this scheme are as follows:

(i) The source transmits the message at aRate log(1+ Gq Nﬁo) whereGq 2 F1(1-
o) is selected so that on an average a fractioof the best users can decode the
message. Heré(-) denotes the cumulative distribution function of the channel gain
|hoi| .

(i) Let N be the number of users that were successful in decoding the messtaggin s
We declare an error ifJ — 1| > € for some fixece > 0. The reason for this will
become clear in the following steps.

(iii)y Each of theN users that successfully decodes the message in step(i), transmits with

a powerP = . Since we declare an errorf > aK(1+¢), we do not exceed

the power limit during a successful transmission. The codebooks ofadable K
users is generated independent of all other users accordiog(t®,P) and rate

R = log <1+ Fz(llj))(l—é)) for somed > 0. Each successful user transmits the

codeword in its codebook corresponding to the received message.

(iv) Each of the remainingl — N receivers performs an exhaustive search over the code-
books of all other users to find a sequence that is jointly typical with theveste
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Figure 1: lllustration of the two-stage space time codedbeoative diversity scheme. In the
first stage, the source node broadcasts at a high rate and enigll number of receiver nodes
are able to decode. These nodes are shaded. In the secoaedtsesg nodes cooperatively
broadcast the message to the remaining nodes using a sigfzie-time code protocol.

sequencé. An error occurs if atleast one of the receivers cannot sucdssefr
code the message. If all the decoders are successful then the cateralthieved by

the system is given biRest = 1+RR .
Ra

4.1 Probability of Error Analysis

We now analyze the probability of error for the two events we describetem(§) and
(iv). As we stated before in Section 2, we assume that the block lengtlergeeenough
so that the dominating cause of error event is outage rather than detekticordingly,

the number of of usem that can successfully decode the message aRats given by

N = K, 1[|hai|? > G| (Wherel is the indicator function). Since all the channel gains are
independent, it follows thall is a binomial random variable, with mear and variance
a(1—a)K. Accordingly, we can use the Chernoff bound for binomial randornatsées
[12], to bound the probability of error in step (ii) as:

Pr(‘% - 1' > s) = Pr(N>aK(1+¢))+Pr(N<aK(l—¢g))

< o oKS _I_e—aK% 3)
We now calculate the probability of error in step (iv) given that there veasrror in

step (ii). Again, we only need to focus on the outage error. ShegaK(1l—e¢),aK(1+

€)), and each transmitting user has power Wﬁ’%), each of the remaining user can

decode successfully at a rate Rf= log <1+ Gi%), whereG; = %Zj |hii |2 is the
effective channel gain of us&;. If we defineG,,j; = min; G;, then an outage occurs, if
Gmin < 1—90. We show in the Appendix that the probability of this event is bounded by

the following lemma.

Lemma 2 For any 0 < a < 1, supposeaK users serve the remainind — o)K users
using the cooperative scheme described above. kgt li2 the effective channel gain of

2We assume that thee— N users do not use the received sequence from the source BtepisAs we will
see, there is no loss in optimality by ignoring this inforioat in the scale we are interested in.



the worst of thé1 — a)K users as defined above. Then for &ny 6 < 1,

Pr(Gmin < 1-8) < —(1—0a)Klog (1—y*™) (4)
Wherey = ((1—8)€®). The probability of error decays exponentially in K.
Finally, the overall probability of error is given by

Pr(error) = Pr(error in (ii)) + Pr(success in (ij)Pr(error in (iv)|success in (ii)

IN

Pr(error in (ii)) + Pr(error in (iv)|success in (ii)
—— 1’ > s) +Pr(Gmin<1-19)

N
Pr
(Jak

e K7 4 &% _(1—a)Klog(1—y"%)  (from (3),(4)

IN

Thus, for any choice of > 0,4 > 0 and for any 0< a < 1 such thattK — o asK — oo,
the probability of error decreases exponentialliKinBy choosingg andd arbitrarily close
to 0, we can make the raf close toCUPP¢'in (2). For the overall rat®Re to approach
CUPPET we also require thaR, be arbitrarily large. One possible choicemfthat satisfies
oK — o andRy — wisa ~ ﬁ. With this choice ofa, the effective rate of the system

Reft= 1%

Ra
exponentially inaK. This result can be stated in the following theorem:

can be made arbitrarily close 6fPP¢'and the probability of outage decreases

Theorem 1 Inthe limit K— oo, the capacity of cooperative multicasting with a sum power
constraint of P and noiseNs given bylimk_.. C(K) = log <1+ Nﬁo)

5 Discussion and Comparison with Prior Work

In the following sections we describe some issues regarding our modd¢handlation
with previous work.

5.1 Size of Group 1

The inner bound we described essentially divides the users into twogyrogprs in group

1 get served directly from the source and group 2 users get seyvéiek lusers in group
1. The outage probability in Section 4 decreases exponentially in the nurhbgsers in
group 1. So from this point of view, it is better to have more users in grouPr the
other hand, if we have more users in group 1, a larger fraction of time &tefin serving
group 1 Ry is smaller) and hence we are further away from the capacity. The rdsult o
Theorem 1 says that in the limit 8f — o, we can make the overhead arbitrarily small and
still have exponential decay in outage probability and approach theitapéate however
that this conclusion relies on the fact that the “goodness” of a chanoabisunded. Our
analysis assumes that there is a small fraction of users with very strongeatharhis

is questionable in a realistic channel model. Nonetheless even if we imposeuppere
bound on how large the channel gains may be, the basic result that thye @vent goes
to zero as the number of users grows will still hold.

5.2 Channel Modeling Assumptions

Most prior work on cooperative diversity has assumed an i.i.d. Rayleigimdg model
between any two pair of nodes [3]-[7]. The implicit assumption is that theivers are



spread out on a large area and do not have line of sight. On the othartharwork on
scaling laws in dense wireless networks [13, 14] usually assumes a kejeametry and
focuses on path loss instead of fading. Many nodes are assumed todmlydpacked
in a relatively small area and so line of sight is dominant. In the present werkre
considering the limit of large number of users and still considering i.i.d. Raykaiding
model. One must consider the validity of our assumption in this operating regime. O
possible justification is that the outage probability decreases exponentially iuthber
of users. Hence, even though the result of Theorem 1 holds in the linkit-ef co, in
practice the outage probability will be negligible even with a relatively small nurabe
users. Secondly we note that the main point of this work is to show that inasbritr
a non cooperative system, cooperative diversity gains can be usefite the notion of
a non-zero capacity in multicasting. A Rayleigh fading model is sufficient awdhis
point. A more sophisticated model, such as a hybrid of path loss and fading| iwena
only improve the achievable rates through cooperative diversity in multigastin

5.3 High SNR vs Large Number of Relays

A number of authors have considered the two step protocol similar to ot Gifferent
settings. Laneman et al. [3] consider a similar scheme in a setting consistinginf a
gle source, a single destination and several relays. The following araahrepoints of
difference with the current scheme.

1. Each relay has an individual power constraint, rather than a totsdpoownstraint.
The number of relays is finite.

2. The first step, where the relays try to decode the message and thd sezpwhere
they cooperate to serve the destination take equal time. This is equivaletting s
a=0.5

3. The performance is based on diversity-multiplexing tradeoff and is wattie high
SNR regime.

The setup of [3], it is shown that the diversity gain is of the order of thalmer of relays
(not the number of relays that were successful in decoding the meisssigp 1). Here,
diversity is explicitly quantified as it indicates the robustness one achiewvagikedmul-
tiplexing gain in the high SNR regime. In the present work, we focus on the linarge
number of users and fixed average sum power. In this regime we showoiberative
diversity works to our advantage in defining the notion of capacity. Wervbsthat in
this regime, there is enough diversity to seexeryuser in the system with probability
of outage approaching zero as long as the rate is below this capacity aversey we
cannot have an arbitrarily low outage if we operate above the capacity.

5.4 Fixed sum power vs individual power constraint

We have imposed a sum power constraint across the network. Since tti¢raasmitting
relays is not decided apriori, it is could be challenging to design coopeatbtocols with
a sum power constraint. In this work, we exploited the fact that as the nuofilusers
becomes large, the size of the users in group 1 becomes deterministic anctpewser
constraint can be satisfied through a fixed power allocation. The main gidimposing
a sum power constraint across the users is to separate the diversiyfrgamnthe gains
by increasing power with the number of users. On the other hand, if avidodi power
constraint is imposed, then the total power increases linearly with the nurhbsers.
This will result in even higher achievable rates.



6 Conclusion and Future Work

While most of the previous work on cooperative diversity has focussetthe diversity-
multiplexing tradeoff at high SNR, our approach considers a differpataiing regime:
We fix the total power across the network and let the number of users gfirtityinin
this regime, we show that there is a notion of capacity in a sense that evewifadiog
environments the outage probability goes to zero as the number of usersogaénity
for all rates below capacity. We derived the capacity for cooperativitiaasting with
independent Rayleigh fading channels and proposed a simple scherapphzdches this
capacity.

Future Work

One direction for future work is to consider more sophisticated channeéisdiaat im-
prove upon the i.i.d. Rayleigh fading model considered in this work. In pdaticif the
number of users becomes large, one must also take the network geomeaigcotmt. As
discussed in Section 5, such a model will require a careful combinatioredR@élyleigh
fading and path loss models which have mostly been considered indeggridggrior
work. In particular the assumption of independent path gains betweenmag not hold.
It will be instructive to consider capacity theorems for such channel lmodl¢hile such
models will improve upon the achievable rates due to cooperative divehgtyner bound
presented in Section 4 may not be optimal under these conditions.

It may be useful to consider not only the asymptotic performance of difteschemes
in the limit K — oo, but also study the decay of outage probability. In particular, the quan-
tity C(R) = —w defines the tradeoff between the outage decay and the common
message rate in the limit of large number of users. Such a tradeoff pravidasework
for analyzing different schemes that are asymptotically optimal. Having mpoged in-
ner bound as a baseline scheme it would be useful to consider therpaenfoe of other
schemes in the framework of this tradeoff.

Another direction under investigation is the use of a feedback protocokisytstem.
The main advantage of a feedback protocol is that we can drive theeoptagability to
zero for a fixed number of users. It might be worth investigating the fonaafeal limits of
such “zero outage” capacity and propose practical feedback lsakethes that approach
this capacity.

Finally we note that the present work only considers an information thedregitnent
of cooperative diversity. To realize the gains promised by such pristamee has to design
practical space time codes that approach these limits. Other issues such&sning
perfect synchronization between the receivers and having peffecinel knowledge at
the receiver are also particularly challenging from a practical viewpoint.

Appendix: Proof of Lemma 2

In this section, we prove the result of Lemma 2. We prove a slightly differsilt and
modify it to get the result of the lemma. Suppose @ < 1, such thattK — o asK — co.
Thenforany < 6 < 1

P i G >1-58}>1+aKlog(l—yK
r{ie{lyrg.llrjo_m} P > }> +aKlog(1—y")



wherey = (1—8)e® anda = 1—a.

Pr{ min_ Gi>1—6}
ie{1,2,...,.aK}

Pr{G; > 1—3})% (since all the channel gains are i.i.d.)

(
(1-Pr{G; < 1-3})%

aK
= <1 Pr{e G > g1~ 5>}) (for any s> 0)
> <1 E[eSG]ed- 5) (Markov Inequality)
— (1 E[e%9i])aKes1- 5) (Wheregi} = aiKgij)
K
-9 \° . . o1
= (1_ W) (If X is Exponential(1)E[e "] = m)

The above relation holds for asy> 0. We selecs = aK (rla - l). Accordingly,s(1—
8) = aKdand 1+ > = 115. Hence we have that

Pr{_ minuK}Gi > 1—6} > (1— ((1—6)e5)°‘K)6K

ie{12,...,
Definey 2 (1—&)ed. Ford € (0,1), we havey € (0,1).

Pr{ min Gi>1—6}
ie{12,...,aK}
eoTKIog(l—y"‘K)

1+ aKlog(1—y*™) (Sincee™ > 1 —xfor x € (0,1))

v

V

It follows that,

P [ G <1-8'< _aKlog(1l— K
of _min 6= 1-8 < ~aKlog(L- )

Finally, note that since lgqgd — y*X) ~ —y?K for largeaK, we have that
lim —akKlog(1—y*X) =

| log(~aK log(L— y*)
K—oo K

The probability of outage decays exponentiallyKin

=alogy<O0
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