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Abstract

We consider a scenario in which a sender wishes to broadcast a common message to a
large number of receivers in a slowly fading wireless environment. We exploit cooperation
between the receivers but impose an average sum power constraint across the network. As
the number of receiversK → ∞, there is a critical rateC for the common message such
that the outage probability ofeveryreceiver approaches zero for all rates belowC and is
bounded away from zero above this rate. We compare our work with previous work on
cooperative diversity that focuses on the diversity-multiplexing tradeoff.

1 Introduction

Cooperative diversity has been proposed as a powerful scheme to combat slow fading
in wireless networks. Spatially distributed nodes provide an opportunity to create a dis-
tributed virtual antenna array, which can provide substantial gains in slowfading envi-
ronments [1]. Several cooperative diversity protocols have been suggested in [2, 3] and
evaluated under the framework of the diversity-multiplexing tradeoff proposed in [4]. Re-
cently, some new cooperative diversity based protocols have been proposed in [5, 6, 7], that
achieve better performance in the sense of diversity-multiplexing tradeoffthan previously
proposed protocols.

Common to all these works is

• There is only one destination receiver and a small number of nodes act asrelay
terminals.

• To make the performance of the protocols amenable to analysis, a high SNR assump-
tion is imposed. The analysis is done in the framework of the diversity-multiplexing
tradeoff.

The present work studies cooperative diversity protocols for multicasting in a slow fad-
ing environment but follows a different route, in both the setup and the analysis technique.
First, instead of focusing on the limit of high SNR in order to simplify the analysis,we fo-
cus on the limit of many users. Second, in addition to studying the single intendedreceiver
case as done in previous works, we also consider the case where all thereceivers want to
decode the same message from one sender. Such a system is clearly limited bythe worst
user in the network. Accordingly, we consider the system to be in “outage”if at least one
user cannot decode the message.

1



It is well known that in point-to-point links with slow fading the Shannon capacity is
zero (see, e.g., [8]). This follows since forany target rate, there is always a positive prob-
ability that the channel experiences a “deep fade” such that it cannot support this rate. In
the absence of a non-zero Shannon capacity, one often considers theoutage capacity (see,
e.g., [8]). When one considers broadcasting a common message to multiple receivers, any
event where not all users experience a channel allowing the successful decoding constitutes
an outage. In this paper we refer to this specific application where all receivers want the
same message as multicasting1. Clearly the outage definition is more severe in multicast-
ing. Hence, the outage capacity in such networks is smaller than that in the corresponding
unicast scenario. In fact, it is clear that for any target outage probability, as the number
of receivers grows, the outage capacity will go to zero. Thus the performance of such a
system is severely limited in absence of cooperative diversity.

We show that under the same setup, there is a positive Shannon capacity if we al-
low cooperative diversity, as the number of users goes to infinity. As noted, when the
Shannon capacity is zero, meaningful analysis of system performance can be done using
the diversity-multiplexing framework. On the other hand, as in the problem westudy,
the Shannon capacity is positive, it is of interest to develop protocols that are capacity
approaching. We refer to such a system with cooperative diversity as “cooperative multi-
casting”.

Cooperative multicasting has been recently considered by other authors.In [9], the
authors have suggested the use of opportunistic large arrays for flooding the network. The
basic idea is that each receiver node makes a decision based on the received signal strength.
If its decoding threshold exceeds a certain value it becomes active and starts transmitting,
otherwise it keeps listening to the signal from other nodes. In [10], the authors extend
their work to show that under a fixed relay power per unit area, as the number of users
approaches infinity, the network is fully connected if the decoding threshold is set below a
critical value and not connected if the threshold is above this value. However, their work
focusses on the performance of a specific scheme and does not address the fundamental
limits on cooperative multicasting. Furthermore their model considers path loss based on
network geometry and does not consider Rayleigh fading.

Our main result is that under a total power constraintP, the cooperative multicasting
systems in a network with independent slow Rayleigh fading between any two nodes, have
a positive capacity as the number of receivers approaches infinity. More precisely, there

is a rateC = log
(

1+ P
N0

)

> 0, such that for all ratesR < C, the probability of outage

(of the worst user) approaches zero as the number of users in the network approaches
infinity. Beyond this rate, the probability of outage is bounded away from zero even as the
number of receivers approaches infinity. Moreover a relatively simple protocol based on
cooperative diversity approaches this bound.

The rest of the paper is organized as follows. In Section 2, we develop achannel
model for the cooperative multicasting scenario. Section 3 presents a simple upper bound
for the achievable rate of transmission. In Section 4 we describe a transmission protocol
that approaches the upper bound. In Section 5, we discuss implications ofour results in
light of prior work and in Section 6 we present some open problems.

2 Channel Model

We consider a scenario in which one source node wants to broadcast a common message
to K receiver nodes. The receiver nodes are numbered{1,2, . . . ,K} and the source node

1Sometimes the term multicasting is used when only a subset ofreceivers want the same message. But in this
paper, we only consider the case when all the receivers want the same message
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is numbered 0. Each receiver node has the ability to transmit a signal undera half duplex
constraint. A node cannot transmit and receive in the same time-slot. The channel gain be-
tween nodei ∈ {0,1, . . . ,K} and nodej ∈ {1,2, . . . ,K} is denoted byhi j which is assumed
to beC N (0,1), independent of all other gains and constant throughout. We assume that
only the receiver nodej knows the channel gainhi j and it is learned when nodei begins
transmission. LetTi denote the set of transmitting nodes andLi denote the set of listening
nodes in time-sloti. Then the received signal by nodel ∈ Li is given by,

yl (i) = ∑
j∈Ti

h jl x j(i)+wl (i) (1)

Herewl is the additive Gaussian noise which is modeled asC N (0,N0). The transmit-
ted symbolsx j should be chosen to satisfy the sum power constraint. If the setTi does not
change during the course of the transmission (i.e.Ti is independent ofi), then clearly, the
sum power constraint is given byE[∑ j∈Ti

|Xj |
2]≤P. If the setTi is not constant throughout

the transmission of the message one has to ensure that the average power over all such sets
satisfies the power constraint. While designing the cooperative multicasting protocols, the
set of transmitting users could change on the fly. One has to explicitly ensurethat the sum
power constraint is satisfied when the set of transmitting users changes onthe fly. In gen-
eral such a requirement is non-trivial, but in the limit of large number of receivers we will
see that thesizeof the transmitting set becomes deterministic and this makes the power
normalization relatively straightforward.

Definition 1 A rate R is achievable for the cooperative multicasting system if for any
ε > 0, there is a number K such that a for a system with at least K users, the message
W distributed uniformly over{1,2, . . . ,2nR} can be decoded by all the receivers, with
probability at least1− ε, as the number of channel uses n→ ∞.

Note that in Definition 1, for anyK, we are taking the block lengthn to infinity. Ac-
cordingly, we can drive the detection error to a negligible fraction of the outage error
probability. The dominant cause of error inε, above is the probability of error due to out-
age. To claim that the rateR is achievable, we will have to show that the outage probability
approaches zero, asK → ∞.

3 Simple Upper Bound

In this section, we present a simple upper bound on the common rateR in Definition 1.
Suppose a genie conveys the messageW to receiver nodes 1,2, . . .K−1 and only receiver
nodeK remains to be served. This is clearly a MISO system withK transmit antennas,
with channel knowledge only at the receiver. Suppose we decide to usei.i.d. input distribu-
tion across the antennas (i.e. the input covariance matrix is a scaled identity).As K → ∞,

the effective channel gain at the receiver approaches unity
(

1
K ∑K−1

i=0 |hiK |
2 K→∞
−→ 1

)

. Ac-

cordingly,C = log
(

1+ P
N0

)

is achievable with the outage probability approaching zero as

K → ∞. In order to establish that the outage probability is bounded away from zero for
all ratesR> C, we need to invoke the following result for the MISO channel with i.i.d.
Rayleigh fading [11].

Fact 1 (MISO Channel) Consider a MISO channel with K transmit antennas and one
receive antenna and i.i.d. Rayleigh fading. The optimal coding strategy that minimizes the
outage probability for any fixed rate R is to choose input at each antenna to be independent
i.e. Λx = diag{P1,P2, . . . ,PK} and to allocate powers equally among a subset of antennas
i.e. P∗1 = P∗

2 = · · · = P∗
K0

= P/K0 and to allocate nothing to the remaining antennas.
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Using the above result, we now show that the outage probability is bounded away from
zero for everyR> C

Proposition 1 Suppose for someε > 0, R= log
(

1+ P(1+ε)
N0

)

. Then necessarily, the out-

age probability is bounded away from zero according toPr(outage) ≥ ε
1+ε .

Proof:
Let K0 be the optimum number of transmitting antennas as described in Fact 1. Also let

GK0 = 1
K0

∑K0−1
i=0 |hiK |

2. The corresponding rate isR= log
(

1+GK0
P
N0

)

. Note thatGK0 is a

scaled chi-squared random variable with unit mean. We have

Pr(outage) = 1−Pr(GK0 > 1+ ε)

≥ 1−
1

1+ ε
(Markov Ineqality)

=
ε

1+ ε

Note that the above result is independent of the number of antennas. Thus for R> C,
the outage probability is bounded away from zero even asK → ∞, and hence this rate is
not achievable according to Definition 1. This leads us to the following upperbound:

Lemma 1 In the limit K → ∞, an outer bound on the achievable rate for cooperative
multicasting is given by

Cupper= log

(

1+
P
N0

)

(2)

4 A Cooperative Diversity Based Scheme

In this section, we present a two step scheme which uses cooperative diversity for mul-
ticasting in large networks. The main idea in this scheme is to divide the users into two
groups. In the first step, the sender broadcasts the message at a high rate, which only a
fraction of users (sayα) can decode. These users then form a distributed virtual antenna
and use a distributed space time code to serve the remaining 1−α fraction of users. See
Figure 1. The main steps of this scheme are as follows:

(i) The source transmits the message at a rateRα = log(1+Gα
P
N0

) whereGα
∆
= F−1(1−

α) is selected so that on an average a fractionα of the best users can decode the
message. HereF(·) denotes the cumulative distribution function of the channel gain
|h0i |

2.

(ii) Let N be the number of users that were successful in decoding the message in step(i).
We declare an error if

∣

∣

N
αK −1

∣

∣ > ε for some fixedε > 0. The reason for this will
become clear in the following steps.

(iii) Each of theN users that successfully decodes the message in step(i), transmits with
a powerP̃ = P

αK(1+ε) . Since we declare an error ifN > αK(1+ ε), we do not exceed
the power limit during a successful transmission. The codebooks of eachof the K
users is generated independent of all other users according toC N (0, P̃) and rate

R̃ = log
(

1+ P(1−ε)
(1+ε) (1−δ)

)

for someδ > 0. Each successful user transmits the

codeword in its codebook corresponding to the received message.

(iv) Each of the remainingK−N receivers performs an exhaustive search over the code-
books of all other users to find a sequence that is jointly typical with the received
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Stage I

Src

Stage II

Src

Figure 1: Illustration of the two-stage space time coded cooperative diversity scheme. In the
first stage, the source node broadcasts at a high rate and onlya small number of receiver nodes
are able to decode. These nodes are shaded. In the second stage, these nodes cooperatively
broadcast the message to the remaining nodes using a suitable space-time code protocol.

sequence2. An error occurs if atleast one of the receivers cannot successfully de-
code the message. If all the decoders are successful then the overallrate achieved by
the system is given byReff = R̃

1+ R̃
Rα

.

4.1 Probability of Error Analysis

We now analyze the probability of error for the two events we described in step (ii) and
(iv). As we stated before in Section 2, we assume that the block lengths arelarge enough
so that the dominating cause of error event is outage rather than detection.Accordingly,
the number of of usersN that can successfully decode the message at rateRα is given by
N = ∑K

i=11[|h0i |
2 > Gα] (where1 is the indicator function). Since all the channel gains are

independent, it follows thatN is a binomial random variable, with meanαK and variance
α(1−α)K. Accordingly, we can use the Chernoff bound for binomial random variables
[12], to bound the probability of error in step (ii) as:

Pr

(∣

∣

∣

∣

N
αK

−1

∣

∣

∣

∣

> ε
)

= Pr(N > αK(1+ ε))+Pr(N < αK(1− ε))

≤ e−αK ε2
2 +e−αK ε2

4 (3)

We now calculate the probability of error in step (iv) given that there was no error in
step (ii). Again, we only need to focus on the outage error. SinceN ∈ (αK(1−ε),αK(1+
ε)), and each transmitting user has powerP̃ = P

αK(1+ε) , each of the remaining user can

decode successfully at a rate ofR̃i = log
(

1+Gi
P(1−ε)
(1+ε)N0

)

, whereGi = 1
N ∑ j |h ji |

2 is the

effective channel gain of userGi . If we defineGmin = mini Gi , then an outage occurs, if
Gmin < 1− δ. We show in the Appendix that the probability of this event is bounded by
the following lemma.

Lemma 2 For any 0 < α < 1, supposeαK users serve the remaining(1− α)K users
using the cooperative scheme described above. Let Gmin be the effective channel gain of

2We assume that theseK −N users do not use the received sequence from the source in thisstep. As we will
see, there is no loss in optimality by ignoring this information, in the scale we are interested in.
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the worst of the(1−α)K users as defined above. Then for any0 < δ < 1,

Pr(Gmin < 1−δ) ≤−(1−α)K log
(

1− γαK) (4)

Whereγ = ((1−δ)eδ). The probability of error decays exponentially in K.

Finally, the overall probability of error is given by

Pr(error) = Pr(error in (ii))+Pr(success in (ii))Pr(error in (iv)|success in (ii))

≤ Pr(error in (ii))+Pr(error in (iv)|success in (ii))

= Pr

(∣

∣

∣

∣

N
αK

−1

∣

∣

∣

∣

> ε
)

+Pr(Gmin < 1−δ)

≤ e−αK ε2
2 +e−αK ε2

4 − (1−α)K log
(

1− γαK) (from (3),(4))

Thus, for any choice ofε > 0, δ > 0 and for any 0< α < 1 such thatαK → ∞ asK → ∞,
the probability of error decreases exponentially inK. By choosing,ε andδ arbitrarily close
to 0, we can make the ratẽR close toCupper in (2). For the overall rateReff to approach
Cupper, we also require thatRα be arbitrarily large. One possible choice ofα that satisfies
αK → ∞ andRα → ∞ is α ∼ 1

O(K) . With this choice ofα, the effective rate of the system

Reff =
R̃

1+ R̃
Rα

can be made arbitrarily close ofCupperand the probability of outage decreases

exponentially inαK. This result can be stated in the following theorem:

Theorem 1 In the limit K→∞, the capacity of cooperative multicasting with a sum power

constraint of P and noise N0 is given bylimK→∞C(K) = log
(

1+ P
N0

)

.

5 Discussion and Comparison with Prior Work

In the following sections we describe some issues regarding our model andthe relation
with previous work.

5.1 Size of Group 1

The inner bound we described essentially divides the users into two groups. Users in group
1 get served directly from the source and group 2 users get served by the users in group
1. The outage probability in Section 4 decreases exponentially in the number of users in
group 1. So from this point of view, it is better to have more users in group 1. On the
other hand, if we have more users in group 1, a larger fraction of time is devoted in serving
group 1 (Rα is smaller) and hence we are further away from the capacity. The result of
Theorem 1 says that in the limit ofK → ∞, we can make the overhead arbitrarily small and
still have exponential decay in outage probability and approach the capacity. Note however
that this conclusion relies on the fact that the “goodness” of a channel isunbounded. Our
analysis assumes that there is a small fraction of users with very strong channel. This
is questionable in a realistic channel model. Nonetheless even if we impose someupper
bound on how large the channel gains may be, the basic result that the outage event goes
to zero as the number of users grows will still hold.

5.2 Channel Modeling Assumptions

Most prior work on cooperative diversity has assumed an i.i.d. Rayleigh fading model
between any two pair of nodes [3]-[7]. The implicit assumption is that the receivers are

6



spread out on a large area and do not have line of sight. On the other hand, the work on
scaling laws in dense wireless networks [13, 14] usually assumes a network geometry and
focuses on path loss instead of fading. Many nodes are assumed to be densely packed
in a relatively small area and so line of sight is dominant. In the present workwe are
considering the limit of large number of users and still considering i.i.d. Rayleigh fading
model. One must consider the validity of our assumption in this operating regime. One
possible justification is that the outage probability decreases exponentially in the number
of users. Hence, even though the result of Theorem 1 holds in the limit ofK → ∞, in
practice the outage probability will be negligible even with a relatively small number of
users. Secondly we note that the main point of this work is to show that in contrast to
a non cooperative system, cooperative diversity gains can be used to define the notion of
a non-zero capacity in multicasting. A Rayleigh fading model is sufficient to draw this
point. A more sophisticated model, such as a hybrid of path loss and fading model can
only improve the achievable rates through cooperative diversity in multicasting.

5.3 High SNR vs Large Number of Relays

A number of authors have considered the two step protocol similar to ours but in different
settings. Laneman et al. [3] consider a similar scheme in a setting consisting of asin-
gle source, a single destination and several relays. The following are themain points of
difference with the current scheme.

1. Each relay has an individual power constraint, rather than a total power constraint.
The number of relays is finite.

2. The first step, where the relays try to decode the message and the second step where
they cooperate to serve the destination take equal time. This is equivalent to setting
α = 0.5

3. The performance is based on diversity-multiplexing tradeoff and is validin the high
SNR regime.

The setup of [3], it is shown that the diversity gain is of the order of the number of relays
(not the number of relays that were successful in decoding the messagein step 1). Here,
diversity is explicitly quantified as it indicates the robustness one achieves for afixedmul-
tiplexing gain in the high SNR regime. In the present work, we focus on the limit of large
number of users and fixed average sum power. In this regime we show that cooperative
diversity works to our advantage in defining the notion of capacity. We observe that in
this regime, there is enough diversity to serveeveryuser in the system with probability
of outage approaching zero as long as the rate is below this capacity and conversely we
cannot have an arbitrarily low outage if we operate above the capacity.

5.4 Fixed sum power vs individual power constraint

We have imposed a sum power constraint across the network. Since the set of transmitting
relays is not decided apriori, it is could be challenging to design cooperative protocols with
a sum power constraint. In this work, we exploited the fact that as the number of users
becomes large, the size of the users in group 1 becomes deterministic and the sum power
constraint can be satisfied through a fixed power allocation. The main pointof imposing
a sum power constraint across the users is to separate the diversity gains from the gains
by increasing power with the number of users. On the other hand, if an individual power
constraint is imposed, then the total power increases linearly with the number of users.
This will result in even higher achievable rates.
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6 Conclusion and Future Work

While most of the previous work on cooperative diversity has focussedon the diversity-
multiplexing tradeoff at high SNR, our approach considers a different operating regime:
We fix the total power across the network and let the number of users go to infinity. In
this regime, we show that there is a notion of capacity in a sense that even in slow fading
environments the outage probability goes to zero as the number of users goes to infinity
for all rates below capacity. We derived the capacity for cooperative multicasting with
independent Rayleigh fading channels and proposed a simple scheme thatapproaches this
capacity.

Future Work

One direction for future work is to consider more sophisticated channel models that im-
prove upon the i.i.d. Rayleigh fading model considered in this work. In particular, if the
number of users becomes large, one must also take the network geometry intoaccount. As
discussed in Section 5, such a model will require a careful combination of the Rayleigh
fading and path loss models which have mostly been considered independently in prior
work. In particular the assumption of independent path gains between users may not hold.
It will be instructive to consider capacity theorems for such channel models. While such
models will improve upon the achievable rates due to cooperative diversity,the inner bound
presented in Section 4 may not be optimal under these conditions.

It may be useful to consider not only the asymptotic performance of different schemes
in the limit K → ∞, but also study the decay of outage probability. In particular, the quan-
tity C(R) = − logPr{outage}

K defines the tradeoff between the outage decay and the common
message rate in the limit of large number of users. Such a tradeoff providesa framework
for analyzing different schemes that are asymptotically optimal. Having our proposed in-
ner bound as a baseline scheme it would be useful to consider the performance of other
schemes in the framework of this tradeoff.

Another direction under investigation is the use of a feedback protocol in the system.
The main advantage of a feedback protocol is that we can drive the outage probability to
zero for a fixed number of users. It might be worth investigating the fundamental limits of
such “zero outage” capacity and propose practical feedback basedschemes that approach
this capacity.

Finally we note that the present work only considers an information theoretictreatment
of cooperative diversity. To realize the gains promised by such protocols, one has to design
practical space time codes that approach these limits. Other issues such as maintaining
perfect synchronization between the receivers and having perfectchannel knowledge at
the receiver are also particularly challenging from a practical viewpoint.

Appendix: Proof of Lemma 2

In this section, we prove the result of Lemma 2. We prove a slightly differentresult and
modify it to get the result of the lemma. Suppose 0< α < 1, such thatαK → ∞ asK → ∞.
Then for any 0< δ < 1

Pr

{

min
i∈{1,2,...,ᾱK}

Gi > 1−δ
}

> 1+ ᾱK log(1− γαK)
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whereγ = (1−δ)eδ andᾱ = 1−α.

Pr

{

min
i∈{1,2,...,ᾱK}

Gi > 1−δ
}

= (Pr{Gi > 1−δ})ᾱK (since all the channel gains are i.i.d.)

= (1−Pr{Gi ≤ 1−δ})ᾱK

=
(

1−Pr{e−sGi ≥ e−s(1−δ)}
)ᾱK

(for any s> 0)

≥
(

1−E[e−sGi ]es(1−δ)
)ᾱK

(Markov Inequality)

=
(

1− (E[e−sĝi j ])αKes(1−δ)
)ᾱK

(Where ˆgi j =
1

αK
gi j )

=

(

1−
es(1−δ)

(1+ s
αK )αK

)ᾱK

(If X is Exponential(1),E[e−sX] =
1

1+s
)

The above relation holds for anys> 0. We selects= αK
(

1
1−δ −1

)

. Accordingly,s(1−

δ) = αKδ and 1+ s
αK = 1

1−δ . Hence we have that

Pr

{

min
i∈{1,2,...,αK}

Gi > 1−δ
}

≥
(

1− ((1−δ)eδ)αK
)ᾱK

Defineγ ∆
= (1−δ)eδ. Forδ ∈ (0,1), we haveγ ∈ (0,1).

Pr

{

min
i∈{1,2,...,αK}

Gi > 1−δ
}

≥
(

1− γαK)ᾱK

= eᾱK log(1−γαK)

≥ 1+ ᾱK log(1− γαK) (Sincee−x > 1−x for x∈ (0,1))

It follows that,

Pr

{

min
i∈{1,2,...,αK}

Gi ≤ 1−δ
}

≤−ᾱK log(1− γαK)

Finally, note that since log(1− γαK) ≈−γαK for largeαK, we have that

lim
K→∞

−ᾱK log(1− γαK) = 0,

lim
K→∞

log(−ᾱK log(1− γαK))

K
= α logγ < 0

The probability of outage decays exponentially inK.
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