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Abstract

Rateless codes are good codes of infinite length that have the property that prefixes of
such codes are themselves good codes. This makes them attractive for applications in which
the channel quality is uncertain, where systems transmit as much of a codeword as necessary
for decoding to be possible. While low complexity rateless codes are known to exist for the
erasure channel, this paper shows they can also be constructed for any Gaussian channel.

We consider two classes of such codes. The first class employs a structure whereby the
transmission is block-structured, and is applicable when the time at which decoding will
begin is known to the transmitter. In the first block, the bits to be sent are divided into
several groups, each of which is binary encoded and the results are superimposed to form
a layered code. In subsequent blocks, the binary codewords from the first block are simply
repeated, but with a random dither. The associated decoder structure employs successive
cancellation together with maximal ratio combining. An efficient recursion is developed for
the power allocation in each block to ensure the rateless property. When the time at which
decoding will begin is not known, we develop a variant on this approach whereby the layering
is accomplished by faster-than-Nyquist signaling and where the successive cancellation is
implemented by a block-structured decision feedback equalizer that is used in conjunction
with an interleaver. This architecture leads to the necessary symmetric power allocation.

Both approaches require very low complexity, and can be used to come within any
desired fraction of capacity on an unknown Gaussian channel by choosing a good binary
“base” code of sufficiently low rate. We quantify the tradeoffs, which reveal, for example,
that to achieve 90% of capacity requires a code of rate roughly 1/7.

The design of effective “rateless” codes has received renewed strong interest in the coding
community, motivated by a number of emerging applications. Such codes have a long history, and
have gone by various names over time, among them incremental redundancy codes, rate-compatible
punctured codes, H-ARQ type II codes, flexible rate codes, and static broadcast codes. The focus
of this work is on the design of such codes for the additive white Gaussian noise (AWGN) channel.

From a purely information theoretic perspective, the problem of variable rate transmission
is by now well understood; see, e.g., [7] for a comprehensive treatment. Indeed, for classes of
channels having one maximizing input distribution, a codebook drawn independently and identically
distributed (iid) at random according to the capacity-achieving input distribution will be good
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with high probability, when truncated to (a finite number of) different lengths. From a coding
perspective however, we want codes that are capacity approaching! while still allowing for low-
complexity encoding and decoding. A remarkable example of such codes for erasure channels are
the recent Raptor codes [6], which build on the LT codes of Luby.

Surprisingly little is known about what is possible beyond the realm of erasure channels. Recent
work on the application of Raptor codes to binary-input symmetric-output channels are [5, 1]. In
these works, the performance of Raptor codes was studied when applied to a binary-input AWGN
channel (among other channels) where the degree distribution is optimized to this class of channels.
It is shown that no distribution allows Raptor codes to approach the capacity of this class of channels
simultaneously (at different SNRs). Beyond this, there is the problem that the use of binary codes in
itself precludes achieving the capacity of the original AWGN channel: from a practical standpoint,
binary signaling may be “nearly” capacity achieving only at low SNR.

As we will develop, good rateless codes for the AWGN are possible, and can exploit the fact that
at very low SNR, a trivial means to obtain a variable rate code is by means of repetition. While this
is true for a much broader class of channels [7], for the AWGN channel there is a very simple way
to combine the received repeated blocks: maximal ratio combining (MRC). Ultimately, we obtain
our rateless codes by combining this idea with dithering and a superposition coding strategy to
obtain many low SNR channels from one higher SNR one. The resulting scheme has flexible rate
but has however a specified time origin. We then develop a Faster-than-Nyquist (FTN) signaling
scheme that allows for a time-invariant structure.

1 Superposition coding

Consider a power constrained AWGN channel y = z + z where z ~ N(0,N) and E{z?} < P.
The capacity? of the channel is 3log(l + SNR), where SNR = P/N , and is achieved taking
z ~ N(0,P).

In superposition coding, the transmitted signal z is the sum of independent signals, x;, so that
T = Zlel x;. If we take x; to be Gaussian, we obtain a capacity achieving distribution for the
AWGN channel. That is, we allot powers P, with P = ZlL:1Pl- We may write the capacity as
C(P) = Y|, C, where

1 P,
C;r==1 1+ =—7"—— 1. 1
: 2Og( Zk<lPk+N> ()

Superposition coding with interference cancellation may be interpreted as a decomposition of
the channel into L ordered parallel channels where channel [ views the code for channels & < [ as
additive interference but suffers from no interference from channels “farther downstream” k > [.
One coding approach in this case is that of successive cancellation at the decoder. Thus, we may
use a (capacity achieving) codebook Cj, I = 1,...,L, for each channel, i.e., |Cj| = e"“i. The
encoder chooses a codeword x; € C; from each codebook. The decoder may start by decoding

!We use the term “capacity approaching” loosely to mean practical codes that allow to approach capacity “closely”.
%In this paper, all logarithms are natural and the unit of information is nats unless stated otherwise.



channel | = L. At this stage, the signals from all the other channels are treated as noise so
the SNR is Pr/ (Zﬁ;ll P, +N ) and we may achieve a rate of Cp on this channel. Next, we
subtract off the decoded word %X, from the received output y, leaving us with an effective SNR of
P4/ (Zf;f P+ N ) Comparing with (1), we see that message x;,_1 may now be successfully
decoded with high probability. We continue in this “onion peeling” approach down to layer one.

2 Thou shalt not repeat??

When a (Gaussian) codeword is repeated r times over an AWGN channel, the resulting mutual
information per symbol is

Iep(SNR) = % log(1 4+ r - SNR).

On the other hand, when transmitting r independent (Gaussian) codewords, the mutual information
is
1
Iing(SNR) = 5 log(1+ SNR).
As the SNR decreases we have
. Iep(SNR)
SNR -0 Tjpng(SNR)

Therefore, the loss due to repetition vanishes as the SNR goes to zero.

=1.

Say we want to transmit over an AWGN channel with unknown SNR but we have some upper
bound on the SNR, i.e., we know that SNR < SNR*. A natural approach thus for obtaining a
rateless code would be to use a large number of layers so that each subchannel is in the low SNR
regime. Let

C* = %log(l +SNR*). @)

Assigning equal rates to the subchannels, each subchannel has a capacity of C*/L. Denote the
number of collected blocks by r. Define SNR (r) by

1 C*

3 log(1 + SNR (r)) = o (3)
and let N(r) be the corresponding noise power, i.e., N(r) = P/(e2¢"/" —1). Note that SNR (1) =
SNR *.

Denote the power allocated to layer [ in block i by P;(i). Also let SNR;(r) denote the SNR of
this layer assuming the actual SNR is SNR (7), i.e.,

_ Py(7)
> k<t Pr(d) + N(r)

The corresponding capacity of the layer is Cj;(r) = %log (14 SNR;(r)). We next find the power
allocation Py () such that for SNR = SNR (r), if we collect the first 7 blocks, each layer will have

SNRl,Z‘(’I‘)

(4)



a capacity of C*/Lr per symbol. That is, for [ = 1,..., L, and for every r, we want to have
T
C*
;Cl,z'(r) =71 (5)

Note that since 25:1 P,(i) = P, for any r and %, we have

S () =< = o), (6)
=1

r

regardless of the power allocation. It follows that (5) may be solved by recursion on the block
number 7. Assume (5) is satisfied for 7 — 1. The additional rate layer [ needs is

* r—1
Ai(r) = = = > Cuilr). (7)
i=1

But it follows from (6) that )7 Ay(r) = C*/r = $(1+ SNR(r)). Thus, we need simply assign
powers Pj(r) corresponding to A;(r). Explicitly, the recursion is

| P(r) Can
5108 (1 T P S Belr)] — Br) +N<r>) = Aulr), ®)

where we begin with r = 1, proceed from layer L to layer one, and then go on to r = 2, and so
forth. Note that the only indeterminate in (8) is P(r).

As we can ensure that every layer is at sufficiently low SNR, a naive approach to obtain a rateless
code would be to repeat the same L codewords from block to block, scaling the codeword so as to
have power F)(i), and then use MRC at the receiver. This is obviously flawed, as (without power
scaling) it amounts to repetition of the block, which cannot be efficient in a mutual information
sense at high SNR. The snag, from the point of view of an individual layer, is that while the Gaussian
noise is independent from block to block, the interference is not and is combined coherently. In the
next section we show how to circumvent this problem.

2.1 Dithered repetition transmission

Let x; be taken from an iid unit variance Gaussian codebook of size ¢"C"/ and define x;(i) =
P(i) - x;. Let dy(r), I = 1,...,L, be vectors of +1s drawn iid Bernoulli 1/2, known to both
transmitter and receiver. The transmitter sends at block ¢

L
x(6) = x(6) © dy(i) (9)
=1

where ® denotes component-wise multiplication.



The received i-th block is y (i) = x(¢) + z(i). Let ay(i) = SNR;(r)/> %—; SNR i(r). For each
layer [ = L, ..., 1, the receiver forms the MRC estimate

yi= 3 onli) - ayti) © Y~ 2t VDR © D) (10

Py(3) ’

where the X, are the previously decoded codewords. Assuming X; = xj, we have

yi —Xl+zaz i) 2 x, + (11)

where

21(i) = W_ (2xk © dy(i) © dy () + <z)). (12)

k<l

Thus, z; is an iid random vector and the resulting SNR is SNR; = Y7 ; SNR;(r). The receiver
decodes x; from yj.

By the convexity of the logarithm function and since z; is not Gaussian, it follows that the
accumulated SNR in each layer, i.e., the SNR in channel (11) satisfies

—SNR, > % (13)

Therefore, the achievable rate per layer of the coding scheme is lower bounded by

1 2C*
> — .
R_2log<1-|— i3 ) (14)

Thus, by choosing L sufficiently large, we may approach capacity arbitrarily closely. The fraction
of capacity attained, which we refer to as the efficiency of the scheme, satisfies

L- 2
C*Rz LI (15)

e’k —1
See Figure 1. In practice, as we will choose a sufficient number of layers such that the SNR per
layer is low, we could use a binary code instead of a Gaussian codebook.

efficiency =

3 Faster-than-Nyquist coding scheme

We have obtained a variable-rate transmission scheme. However, due to the time-varying power
allocation, the scheme has an absolute time origin. In effect, while the number of received blocks
may vary, the receiver has to start listening to the first transmitted block. We next describe a
time-invariant layering scheme based on F'TN signaling.

For simplicity, we consider a baseband bandlimited AWGN channel model,

y(t) = z(t) + 2(2), (16)
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Figure 1: Efficiency of dithered repetition scheme.

where we assume an ideal channel of bandwidth W, and n(t) is AWGN noise with one-sided power
spectral density Ny. The input signal is subject to a power constraint E{z2(t)} < P. The capacity
of this channel is

P
C[nats/s] = Wlog (1 + N()W) . (17)

We assume PAM modulation so that

w(t) = Yy plt 1), (18)
l

where T is the symbol duration. The sampling rate is taken to be equal to the signaling rate. At
the output of the sampled matched filter (MF) we have a discrete-time channel,

Yy =z * hy + 2z, (19)

where h(t) = p(t) *p(—t), H(e/?>™') = F{h(t)} = %Zl |P (f + %)|2, hy = h(1-T), and S,,(e’>"f) =
%H (e727f). Denote the Nyquist signaling rate by T* = 1/2W and the “over-signaling” ratio by
v=T*/T. We assume a Nyquist pulse p(¢) so that

1 l
=2l r)

In the following, for sake of simplicity, we assume that h(t) is a sinc function so there is no capacity
loss due to excess bandwidth. The discrete-time channel response is thus h; = sin(nly)/nly. If
we signal at the Nyquist rate, i.e., if ¥ = 1, we have h; = §;. Taking v > 1 necessarily introduces
intersymbol interference (ISI) which in effect creates the “layering”.

1 (20)




3.1 MMSE-DFE equalizer induced channel

In Section 2 we used successive decoding and stripping of layers. The analogous receiver structure
for an ISI Gaussian noise channel is that of unbiased MMSE decision-feedback (DFE) decoding.

Consider an unbiased MMSE-DFE receiver with feedforward filter FFE(z) (see [4]). The re-
sulting channel after the FFE filtering is

vy =y * FFE; = 2, * g, + wy, (21)

where G(z) = H(z)FFE(z) is the resulting impulse response and W (z) = Z(z)FFE(z) is the filtered
noise. We denote by G(z)* the Z-transform of the causal part of g;. We note that gg = 1 since the
equalizer is unbiased. We define the precursor and postcursor interference suffered by z; as

—1
Z = Z 9kT1 -k (22)

k=—00

and

o
2 = ngivl—k (23)
k=1

Assuming error-free decisions (the ideal DFE assumption), the feedback filter eliminates the postcur-
sor ISI and thus as the input to the slicer we have

v = a1+ lere + wy (24)
=z +wy, (25)

where w; is the combined filtered Gaussian noise w; and the precursor interference.

The ideal DFE condition cannot hold on a symbol-wise basis but can be justified when decisions
are made on coded blocks; see [3, 2]. We briefly describe such a system as proposed by Guess and
Varanasi. We need to restrict attention to impulse responses G(z) having a finite support®. Thus
we assume that K is the smallest integer * such that g, = 0 for all |[k| > K. Let x; = 0 for
[ =0,1,...,K — 1, where the vectors are of length n, the components are denoted by :vf, where
i=0,...,n—1. Alsolet xg,Xg+1,---,XK+Mm—1 be codewords (possibly from the same codebook).
Thus, the total number of transmitted blocks is L = K + M. In order for postcursor cancellation
to be possible, an interleaver of depth L is used. The transmitter sends the interleaved sequence
I; where

Zi=al ot ™ for i=0,...,nL—1. (26)
Thus, the transmitted stream is
-1 ,n—1 n—1
0,...,0,2%, 2% 1, .. 2% 0, 1,0, ., 0,2k, ke e sy 0,0, 0,2 e _
) sV ’ —+1» ’ —+ » VY + + K K+1 K+M-1
K K K

3In practice this would mean that we would approximate the ideal FFE filter with one that guarantees that this
constraint is met or ignore the tail of the postcursor from that point, leaving some residual ISI as noise.
4 As we shall see in Section 4, this length is of great practical importance.
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Figure 2: Block DFE structure.

The effect of the interleaving is that the impulse response now effectively operates on blocks rather
than symbols, in the sense that we have

vi= Y gkXi_k + Wi (27)
k
We define the (block) precursor and postcursor interference suffered by x; as z]"™ = 212217 o0 IkXI—k
and szSt =Y 701 9kXi—k. We may now recover equations (25) in block form and obtain
vi = x4+ Zfre + wy (28)
= X+ Wy, (29)

where the postcursor is now canceled out after decoding of the corresponding codewords. The
resulting DFE coding structure is shown in Figure 2.

Assume that FFE(z) is an unbiased MMSE-DFE front end filter and that the input vectors
Xk, k # | are iid Gaussian. The channel (29) at time [ is an AWGN channel over the n-
dimensional [-th block, having the same capacity as the original channel (19); see, e.g., [3, 2].
Note that there is an overhead of K wasted codewords. Thus, we need to take M > K to
approach capacity. The capacity is independent of the signaling rate 1/7. We therefore have

7 10g (1 + SNRyivse pre-u) = W log (1 + WLNO) or

p N\T/T
N _ _v=11 —1 30
SNR MMSE—DFE-U ( +WN0) ; (30)

since W = 1/2T*. Thus, as the signaling rate 1/T grows, the SNR per sample decreases.
3.2 FTN dithered repetition scheme

We may use fast signaling to drive the discrete-time SNR to the low SNR regime. Denote a target
SNR per sample by SNR* similarly to Section 2.1. We may use a Gaussian codebook designed to



approach the AWGN capacity of %log(l + SNR *), and transmit M codeword blocks as described
above. We then repeat a dithered version of these same M codewords over and over again. The
receiver in turn “listens” and collects r copies, applies FFE filtering to each block, and then combines
(averages) them. The number of collected blocks is chosen such that such that the accumulated
SNR satisfies,

r - SNR MMsE_DFE—U > SNR*. (31)

It then applies the block MMSE-DFE decoding structure to obtain the codewords xg, ..., Xx 411
Note that as the front-end filter FFE(z) depends on the SNR and thus will vary with the number
of received blocks. Consequently, the impulse response G(z) also implicitly depends on the SNR.

We use dithering as in Section 2.1 to prevent the correlation of the precursors. Let d;(4)
[l =0,...,L —1 be binary +1 valued vectors, drawn iid with equal probability. We transmit at
“time” (repetition/copy) 7 the vectors

X0 ® do(i),X1 ® d1(’i), e, X—1© dL_l(’i).

At the receiver, assuming x; were successfully decoded for k£ < I, we combine the signals as

v = ;de‘) (i) (32)

= x+ % D) gdi(d) O dig (i) @ xpp + %Zwl(i) (33)
i=1

i=1 k=—o00

-1 T r
= xi+ Y g (% Y xkOdik(i)© dl(i)> + % > wili). (34)
i1 i=1

k=—00

Note that x;_; ©d;—x () ©d;(i), ¢ = 1,...,r, are uncorrelated. Thus, the variance of the precursor is
reduced by a factor of r, just like the Gaussian noise. The SNR. increases therefore by a factor of r as
desired so that (31) is satisfied. As in Section 2.1, the precursor noise is not quite Gaussian (which
is beneficial). Thus, we may successfully decode x; from v; with high probability. In practice, we
could replace the Gaussian codebook with a binary one.

4 Discussion and Remarks

We presented two rateless coding schemes. The first uses dithered repetition and time-varying
power allocation and results in a rateless code having a fixed time origin. We then proposed an
FTN coding scheme that allows reception to begin at an arbitrary point in time.

When considering the merits of the FTN coding scheme, there are a few practical issues to be
addressed. As we saw, the total number of coded blocks is M + K. In the K first blocks we send
no information and so these blocks are “wasted” in terms of transmission rate. Thus we need M
to be much larger than K. However, choosing M very large also has a drawback. For a given total
transmission length (M + K)n, the length of the individual codewords 7 is inversely proportional to
M. This is undesirable from a code design perspective as one needs a long blocklength to approach



error free transmission close to capacity. Thus, given K, choosing the interleaver depth is non
trivial.

Determining K, the length of the ISI that is taken into account, also requires consideration.
The discrete-time impulse response G(z) is dependent on the SNR and thus K should be large
enough so as to leave only a small tail of G(z) as residual ISI for all SNRs in which the system
should operate. Choosing K very large however will be disadvantageous as discussed above.

Finally, the signaling rate should be addressed. To approach capacity the SNR per layer must
be sufficiently low and hence fast signaling is beneficial. For instance, to achieve ninety percent
of capacity, we need an effective capacity-approaching code of rate 1/7, see Figure 1. While this
operating point is within the current state-of-the-art, coding at lower rates poses a challenging code
design problem.

It is interesting to compare the merits of FTN coding with that of conventional multilevel
signaling. In multilevel signaling, the cardinality of the signal set is matched to the SNR. A
mapping is then applied from bits to constellation points. A design problem oftentimes is the
rate allocation for the individual layers. In FTN coding, a binary code is used in a more direct
and symmetrical manner, while the “multilevel nature” of the signal is reflected in the induced
ISI. Thus, in FTN coding, it is sufficient to design a single low rate code which can be highly
optimized to a prescribed SNR. The actual transmission rate is then determined by fixing the
signaling rate accordingly. A downside of the symmetry of FTN coding, however, is that all bits
are coded, in contrast to standard multilevel approaches. The gap to capacity is determined, for
FTN signaling, by the effectiveness of the underlying binary code. Thus, if the binary code achieves
a certain fraction of capacity, so will the overall rate, while the gap-to-capacity grows with the SNR.
Capacity approaching FTN coding further suffers from the need for interleaving.
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