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Side Information Aware Coding Strategies
for Sensor Networks
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Abstract—We develop coding strategies for estimation under
communication constraints in tree-structured sensor networks.
The strategies have a modular and decentralized architecture.
This promotes the flexibility, robustness, and scalability that
wireless sensor networks need to operate in uncertain, changing,
and resource-constrained environments. The strategies are based
on a generalization of Wyner–Ziv source coding with decoder side
information. We develop solutions for general trees, and illus-
trate our results in serial (pipeline) and parallel (hub-and-spoke)
networks. Additionally, the strategies can be applied to other
network information theory problems. They have a successive
coding structure that gives an inherently less complex way to
attain a number of prior results, as well as some novel results, for
the Chief Executive Officer problem, multiterminal source coding,
and certain classes of relay channels.

Index Terms—Chief Executive Officer (CEO) problems, data fu-
sion, distributed detection, distributed estimation, multiterminal
source coding, rate distortion theory, relay channels, sensor net-
works, side information, Wyner–Ziv coding.

I. INTRODUCTION

STARTING from a set of architectural principles appropriate
for wireless sensor networks, we develop and analyze ef-

ficient coding techniques for estimation under communication
constraints. We base our approach on information-theoretic
ideas of source coding with decoder side information.

The central characteristic differentiating estimation in sensor
networks from more traditional contexts is that data is not colo-
cated. Limits on communication between sensor nodes typically
prevent us from conveying all data losslessly to a central lo-
cation for processing. Hence, many standard estimation tech-
niques cannot be directly applied. Instead, we must determine
what is the most important information for nodes to share, and
design quantizers to encode that information. This leads to a re-
quired coupling of the estimation and communication subtasks
for efficient implementation.
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Fig. 1. A sensor network is shown consisting of nine sensor nodes and
tree-structured data routing. Sensor node l observes (shown explicitly for
nodes 1, 2, 3, 6), receives messages from neighboring nodes higher up the tree,
and sends a rate-constrained message to the next node down the tree.

While one might think that coupling estimation and com-
munication would require global coordination, we show how
to effect such coupling in a distributed manner. We present
a modular and decentralized strategy that jointly addresses
the quantization, communication, and estimation aspects of
the problem. Our design significantly outperforms strategies
where data communication and signal estimation are decoupled.

As the simplest model from which we can obtain useful in-
sight, we consider the source to be estimated to be
a length- vector of independent identically distributed (i.i.d.)
random variables, where is sufficiently large. Many of the
insights derived carry over naturally to more elaborate source
models. The sensor network consists of sensor nodes where
node measures . The source and observations are jointly dis-
tributed, but memoryless.

We illustrate our ideas in the context of tree-structured net-
works. In a “sensor tree,” the tree implies a data routing from
“leaf” nodes to a “root” node. Fig. 1 depicts such a network.
Each node receives messages from neighboring nodes above it
in the tree, and sends a message to the next node down the tree.
In Fig. 1, node 3 measures , receives messages from nodes
1 and 2, and sends message to node 6. Depending on the
application, our objective may be to estimate at all nodes, or
perhaps only at the root node.
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We focus on a digital model for internode communications,
consisting of fixed-rate links. Thus, in Fig. 1, if message

is limited to rate bits per observation sample, then
. This model decouples the applica-

tion-layer estimation problem from the physical-layer commu-
nication problem, and allows us to focus directly on the effect of
communication constraints on estimate quality. The algorithms
we develop can be implemented on top of any physical layer.
Naturally, more advanced physical layer implementations will
lead to higher data rates and better estimation performance.

In this paper, we concentrate on scenarios where the sensor
tree is given. Routing and rate allocations would have to be man-
aged by a network layer protocol. While we do not focus on net-
work layer issues, we do make some brief observations about
them in the context of our estimation strategies.

A. Architectural Issues

To ensure system flexibility, robustness, and scalability, we
design modular systems that have decentralized knowledge
requirements. Modular systems consist of functionally inter-
changeable sensor nodes. The common functionality of the
nodes means that the network can be more easily reconfigured
for unanticipated or changing tasks, e.g., when individual
nodes are unreliable, or when the location of phenomena under
observation changes.

We design our algorithms to have decentralized knowledge
requirements so that the network can operate successfully even
when each node’s knowledge is restricted to local network
conditions. In contrast, if each node were required to have
knowledge of global network conditions, then the cost of
collecting and disseminating this information in an up-to-date
manner could be prohibitive. At a minimum, neighboring
nodes must coordinate their communication rates and must
have some statistical knowledge of the relationship between
their data sets (perhaps, e.g., in the form of signal-to-noise or
distortion-to-noise ratios). Without the former they could not
agree on a communication protocol, and without the latter they
would have no basis on which to combine data to estimate the
source. We focus on algorithms that rely on this bare minimum
of knowledge.

B. Related Work

The coding strategies of this paper build, in part, upon Wyner
and Ziv’s [38] approach to coding with decoder side informa-
tion. In this context, this paper ties in with a growing body of
work focusing on side-information coding fundamentals, con-
structions, and dualities (see, e.g., [1], [8], [25], [26], and [42]).
A related set of work considers the Chief Executive Officer
(CEO) problem [4]. In the CEO problem a number of sensor
nodes make noisy observations of an underlying source signal.
Each then sends a message to a central hub node (the “Chief Ex-
ecutive/Estimation Officer”) that estimates the source. The CEO
problem is studied further in [21], [34], and [41]. The perspec-
tive taken in this paper can be thought of as viewing the CEO
problem as a generalization of Wyner–Ziv to multiple indirect
(noisy) observations, and as extending the hub-and-spoke CEO
model to sensor trees. In Section V-A, we show that the coding

strategy we introduce gives a novel and inherently less complex
way to achieve the rate-distortion optimal CEO results of [21].
We also note that in certain situations where sources, channels,
and distortion measures are well matched, very efficient joint
source-channel coding approaches [13] present an attractive al-
ternative to rate-constrained schemes.

Multiterminal source coding is another research area related
to the problems and approaches considered herein. In this case,
the goal is to jointly estimate all observations ,
rather than some underlying source signal. This vein of research
was initiated by Slepian and Wolf [31] for the lossless encoding
of a distributed pair of correlated source signals. Their elegant
solution motivated many extensions, both lossless [2], [15],
[16], [36], and lossy [3], [20], [33], [41]. The full solution to
the latter remains unsolved. In comparison with multiterminal
source coding, in our context, we have no specific interest in
the observations , other than in how they can be
used to estimate . In Section V-B, however, we show how to
attain the rate-distortion region of [3] and [33] using the coding
strategies developed in this paper.

Finally, a related thread of work focuses on problems of de-
tection with distributed sensors (e.g., [32] and [35]). In this case,
the objective is to make a decision about the source, rather than
an estimate of it. We briefly connect to distributed detection
problems in Section V-C, where we apply our results to certain
classes of relay channels [9].

C. Paper Insights and Contributions

The insights and contributions of this paper are both archi-
tectural and technical. First, we show that techniques of coding
with decoder side information (and the “binning” ideas that un-
derlie them) have an important role to play in the design of
statistical inference algorithms for communication-constrained
sensor networks. While a similar point is made, e.g., in the con-
text of the CEO problem, this paper shows how to apply these
ideas to the more general topologies of sensor trees. We employ
well-understood random coding techniques but, as discussed in
Section II-B, the extension to trees relies on a less well-known
generalization of Berger’s Markov Lemma [3].

Our second point is that modularity and decentralization are
important principles underlying the design of flexible, robust,
and scalable sensor networks. While in some cases (though, as
we show, not all) performance may be lowered in comparison
with nonmodular and centralized designs, gains in these other
system criteria will often outweigh such losses.

Third, the estimation strategies we present are examples of
“soft” coupling across traditional network layers. The strategies
require an “awareness” both of what is going on at the physical
layer of the network, in terms of communication rate, and at the
application layer of the network, in terms of side information
quality. We show that such coupling can lead to significant per-
formance gains, but can be implemented without violating the
traditional layering paradigm of networks.

Finally, as mentioned in Section I-B, we show that the coding
strategies introduced can be profitably applied to a number of
related problems. The resulting solutions have novel structures
that displays attractive complexity and scalability properties.
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Fig. 2. Mean-squared estimation error versus node number in a data-pipeline
example with constant fixed-rate links.

D. Illustrative Results

To give a sense of the performance improvement that can be
effected by making a sensor network side information “aware,”
we now give illustrative results for both side-information-aware
and “unaware” strategies. We consider a data-pipeline or “se-
rial” network, a class of networks discussed in some depth later
in the paper and illustrated by node grouping (4, 5, 6) in Fig. 1
(and shown schematically later in Fig. 3). The source to be
estimated is an i.i.d. Gaussian sequence of variance ,
observed at each node in independent equal-variance additive
white Gaussian noise of variance . The internode com-
munication rates are set equal to bits per observation
sample for all node pairs.

“Estimate-and-quantize” is a strategy that uses decoder side
information at the application layer during estimation, but not
during communication. Communication occurs in a multistep
fashion, where each node forms a source estimate based on its
observation and the message it received from the node just up-
stream. It quantizes that estimate at a rate equal to its commu-
nication rate and sends the corresponding quantization index to
the next node downstream. In Fig. 2, we plot the mean-squared
estimation error of estimate-and-quantize for the data-pipeline
example with the dash-dotted curve.

The side-information-aware strategies we present in this
paper are more efficient than estimate-and-quantize because
the whole process—quantization, communication, and esti-
mation—is designed to make use of the encoder’s statistical
knowledge of the decoder’s data as decoder side information in
the sense of Wyner and Ziv. In Fig. 2, the performance achieved
by the side-information-aware strategy is plotted with the solid
curve. For a target distortion, the number of nodes required
by estimate-and-quantize can far exceed the number required
by the side-information-aware strategy. In the example, the
estimation performance of both strategies saturates because
the pipeline is set to have equal-rate links. As a final point
of comparison, the dashed line plots the infinite-rate bound

, which is only achievable by relaxing all communi-
cation constraints.

E. Paper Outline and Notation

The paper is organized as follows. Section II describes the
main results needed to develop the side-information-aware
strategies. In Section III, we apply these results to sensor
trees and develop simple cut-set bounds. Section IV discusses
Gaussian sources with quadratic (mean-squared) distortion
measures, and presents illustrative examples. Section V
discusses connections to other network information theory
problems: the CEO problem, multiterminal source coding, and
relay channels.

We use to denote mutual information, and to denote
the set of all -strongly-typical sequences of length- with re-
spect to (using standard definitions as presented, e.g., in
[10]). The superscript applied to an event denotes its comple-
ment, applied to a set denotes its cardinality, denotes the
null set, is used to denote Markov chain relationships, and

denotes expectation.

II. SIDE-INFORMATION-AWARE CODING

In this section, we present the results that underlie our
coding strategies developed in Section III. In Section II-A, we
present an achievable distortion-rate tradeoff for our canonical
one-step coupled communication and estimation problem. In
Section II-B, we describe how this result relies on a generaliza-
tion of the Markov Lemma, which we term the “Serial” Markov
Lemma to distinguish between the two. Finally, in Section II-C,
we discuss how these results relate to earlier work.

A. One-Step Problem

The simplest communication-constrained sensor network
consists of a single encoder and a single decoder. The source ,
to be estimated is observed as at the encoder, and as at
the decoder. Based on its observation the encoder transmits
a message over a fixed-rate bit pipe to the decoder. The
decoder produces source estimate as a function of and its
observation or “side information” . In order to more easily
apply the results we develop to larger networks, we include a
third source observation , not available at either encoder or
decoder. Eventually, will correspond to source observations
elsewhere in the network. For this setup, we have the following
result.

Theorem 1: Let a set of random source and observation vec-
tors , and a distortion measure , be given
such that:

a) for some ;
b) .

A sequence of length- block encoder-decoder pairs can be de-
signed such that if is encoded at rate then, with arbitrarily
high probability as grows to infinity, can be recovered to
within any average distortion satisfying

(1)
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The minimization is over all functions , and the
set consists of all random variables such that:

i) ;
ii) .

Theorem 1 is an achievability result. Subsequently, we show
examples of certain networks where Theorem 1 leads to rate-
distortion optimal performance.

We now describe how to achieve (1) to highlight the par-
ticular role played by a variant of the Markov Lemma. The
argument is a relatively straightforward generalization of earlier
Wyner–Ziv type source coding with decoding side information
approaches to accommodate the lack of direct source obser-
vations. First, construct a code consisting of
codewords , each selected
uniformly from the set . The codewords are randomly and
uniformly partitioned into cosets or “bins.” There are
approximately codewords per coset. The ob-
servation is block encoded (according to ) to a jointly
typical , an element of some coset. This encoding is
successful since . The index of the coset
containing is sent to the decoder. At the decoder, the
codeword in coset that is jointly typical with the side infor-
mation is selected as the transmitted . As we discuss
next in Section II-B, because the Serial
Markov Lemma ensures that are jointly
typical, whence and the transmitted are jointly typical.
Because all other codewords in bin are chosen independently
of , by choosing we ensure that
none of these nontransmitted codewords is jointly typical with

. Because , the empirical joint distri-
bution is close to the chosen distribution . Therefore,
a source estimate formed element-wise as
has an expected distortion close to .

B. Serial Markov Lemma

The Serial Markov Lemma is required for the proof of
Theorem 1 because the set of vectors is as-
sumed to be jointly strongly typical, but not memoryless. If the
vectors were memoryless, i.e., if

, then Berger’s Markov
Lemma [3] suffices to assert the joint typicality of .
Instead, we need the following natural extension of the Markov
Lemma developed by Chang and by Kaspi [5], [17], [18].

Lemma 1: Let
define a Markov chain over finite alphabets .

Let be a set of sequences chosen equally likely from with
replacement. Then, the deterministic mapping ,
where is the first (assume some arbitrary ordering)
that is -jointly-strongly-typical with satisfies

and

as grows to infinity. The probability is taken over the source
distribution and the random selection of .

Lemma 1 is used in Theorem 1 by setting ,
, and . In [7], a dither-encoding rule is introduced that

avoids randomization over the selection of by randomizing
the mapping over codewords jointly typical with .

C. Relation to Earlier Results

The one-step problem discussed in Section II-A can be
thought of as an “indirect” (i.e., noisy encoder observations)
Wyner–Ziv problem. A memoryless version is posed by re-
placing the strong typicality condition of Theorem 1 with
the memoryless condition discussed in Section II-B, and by
setting . This memoryless version is discussed by
Yamamoto and Itoh in [40]. They present the single-letter
rate-distortion frontier, and discuss the binary-Hamming and
quadratic-Gaussian cases. Because of the lack of availability
of [39], which [40] cites for the development of its results, we
give our full derivation of the rate-distortion frontier for this
memoryless case in [11]. Flynn and Gray [12] also consider
this system, focusing on achievability results.

III. STRATEGIES FOR SENSOR TREES

In this section, we describe how to apply Theorem 1 in an
iterative manner to develop strategies for sensor trees. Then, in
Section II-B, we develop a cut-set bound on estimation error.

A. Achievability

We describe a strategy for sensor trees based on the obser-
vation that tree networks can be factored into a succession of
canonical one-step estimation and communication problems of
the form described by Theorem 1. As discussed in Section I,
we assume that the source and observations are jointly dis-
tributed and memoryless so that

. This ensures that with high
probability .

We first sketch three steps of the successive coding process
for the network depicted in Fig. 1. Say that in Step A, node
1 transmits and node 3 receives. In the notation of Theorem
1, set ,
and . The two conditions of the theorem define a re-
stricted set of random variables that satisfy the Markov
condition and the rate constraint

. Any distortion satisfying
is achievable. Further-

more, the Serial Markov Lemma guarantees that at the end of
the step are strongly jointly typical which
sets up Step B.

Say that in Step B, node 2 transmits and node 3 again
receives. Then, we apply Theorem 1 a second time, but with
different variables playing the role of encoder and decoder
observations. This time

, and . The random variable is
restricted to the set of random variables that satisfy the
Markov condition , and

. Any distortion satisfying
is achievable.

Finally, in Step C, let node 3 transmit and node 6 re-
ceive. This time set

and . The set consists of
random variables that satisfy the Markov condition

, and the rate con-
straint . Any distortion
satisfying is achievable.
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Fig. 3. Example of a serial network. At stage l, the rate R message
and the observation , form the encoder’s indirect source knowledge, while

is the decoder side information.

Generally then, when a sensor node encodes a message, it
considers two things. First, its encoding is based both on its ob-
servations and all the messages it has received. Second, it takes
into account its statistical knowledge of the decoder’s observa-
tions, and the messages that the decoder has already received, as
decoder side information. The strategy is modular because each
stage takes the form of an application of Theorem 1, and de-
centralized because each stage requires knowledge sharing only
between encoder and decoder.

It is straightforward to extend this process to any sensor tree.
Communication is delayed until the observations are made,
and then begins at leaf nodes. Each nonleaf nonroot node in
the tree waits until it has received messages from all incoming
branches. It then sends a message toward the root. Once the root
node has received all incoming messages, it makes its final es-
timate. Whenever multiple branches feed into a single common
node there is a degree of freedom in message ordering (e.g., in
the example, the ordering of node 1 and 2’s messages could have
been reversed).

To further illustrate this strategy, we present the results of
using it in serial and parallel networks.

1) Serial Networks: A serial network has a data-pipeline, or
chain structure, as is illustrated in Fig. 3. Encoding starts with
the first node in the chain. Generally, at the th step node is the
encoder and node is the decoder. The strategy leads to the
following result.

Proposition 1: Let a set of source and observation
vectors , and a distortion measure
be given such that (a)

, and (b)
. For a serial network consisting of

nodes, a sequence of length- block encoder-de-
coder pairs can be designed such that if at node the pair

is encoded at rate then, with arbitrarily
high probability as grows to infinity, can be recovered at
node to within any average distortion that satisfies

The minimization is over all functions ,
and the set consists of all random variables such that:

i) ;
ii) .

Fig. 4. Example of a parallel network. At stage l; is the encoder
observation, while messages previously decoded by the hub node serve as
decoder side information.

2) Parallel Networks: A parallel network has a hub-and-
spoke structure, as is illustrated in Fig. 4. Encoding and de-
coding are done successively. In general, by step the hub
has decoded messages from nodes 1 through , getting

. In each step the decoded message is used to
improve the source estimate.

Proposition 2: Let a set of source and observation
vectors , and a distortion measure

be given such that (a)
, and (b)

. For a parallel network consisting
of sensor and one hub node, a sequence of length- block
encoder-decoder pairs can be designed such that if is encoded
at rate , and messages are decoded in order , then
with arbitrarily high probability as grows to infinity, after the
first messages have been decoded by the hub node, can be
recovered to within any average distortion that satisfies

The minimization is over all functions ,
and for all , where the set consists of all random
variables such that:

i) ;
ii) .

B. Cut-Set Bound

In this section, we use the fact discussed in Section II-C,
that Theorem 1 is tight for the memoryless scenario to derive a
cut-set bound on estimation performance at the root of a sensor
tree. Partition the nodes into two groups: and its complement

, where contains the root node. Each group is allowed to
convene and share observations losslessly. Group then trans-
mits a message to group at a rate equal to the sum of the rates
of all links that connect a node in to one in . The observa-
tions of the convened nodes in form a vector of encoder
source observations, while the observations of the convened
nodes in form a vector of decoder side information. Since a
number of internode rate constraints must be relaxed to allow
the convening of nodes in any partition, each partition provides
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a lower bound on the achievable distortion. Any achievable dis-
tortion must satisfy all possible partitions. This gives the fol-
lowing theorem, which follows directly from Theorem 1, and
so is stated without proof.

Theorem 2: Let a set of nodes make up a tree-struc-
tured sensor network. Let be the link rate from
node to node . Furthermore, let and

be given such that (a)
, and (b)

. Then, if a sequence of length-
block encoding and decoding rules can be designed to recover

to within average distortion at the root node, with arbitrarily
high probability as grows to infinity, must satisfy the
following inequality:

(2)

The maximization is over all partitions of the nodes into the two
sets and , such that forms a subtree of the network that
contains the root node.1 The minimization is over all functions

, and the set consists of all random variables
such that:

i) ;
ii) .

While fairly loose in general, this bound can, in certain set-
tings, identify when a scheme is good. The bound is tightest
when there is a particular cut-set that serves as a choke point.
For example, consider a serial network with constant-rate links,
and let the first node in the network observe the source directly,

. A distortion-minimizing solution is to apply regular
Wyner–Ziv coding to this problem, where intermediate nodes
simply forward the first node’s message to the last node. The
cut-set bound confirms this by grouping together all nodes ex-
cept the last. However, note that this performance is attained at
the cost of violating our architectural principles since all inter-
mediate nodes must coordinate to forward the initial message
unchanged.

IV. QUADRATIC-GAUSSIAN CASES

In this section, we discuss quadratic-Gaussian problems,
which give useful insight into practical scenarios. In Sec-
tion IV-A, we specify an achievable rate-distortion tradeoff
for the one-step problem of Theorem 1. In Sections IV-B and
IV-C, we discuss the multistep serial and parallel networks,
respectively.

A. One-Step Problem

The rate-distortion tradeoff for the one-step problem has a
particularly simple form when the source and observations are
jointly Gaussian and the distortion measure is quadratic (mean-
squared error). In Appendix A, we specify a test channel for this
problem that results in the following rate-distortion tradeoff:

(3)

1The subtree condition ensures there is no communication cycle between
node groups—a more complex topology than Wyner–Ziv coding allows for.

where . The conditional variance is
the minimum mean-squared estimation error given the decoder
observation , while is similarly defined given both
observations. The distortion-rate form is

(4)

When the source and observations are memoryless, (3) spec-
ifies the rate-distortion frontier. Full derivations of this result, as
well as for the binary-Hamming case, can be found in [11] and
[40].

B. Serial Networks

The distortion-rate performance of the successive coding
strategy in serial networks has a simple iterative form in the
quadratic-Gaussian case. In this example, the memoryless
Gaussian source is observed at each node in independent
additive white Gaussian noise. Specifically, node observes

where and are
independent. It sends a message at rate to node . In
Appendix B, we show that the following distortion-rate tradeoff
can be achieved by our approach:

(5)

where . As all link rates become arbitrarily large, the
second term of (5) converges to zero, and the first term generates
the infinite-rate bound . Generally, the finiteness of

slows the decrease of with .
While in this paper we concentrate on developing estimation

strategies for situations where the network is prescribed, if one
had the flexibility to design the structure of the network, and al-
locate link rates, then we can use the results of this section to
make observations on what are better and worse choices. For
example, we can ask how the link rates must grow if one is to
obtain the full benefit of the observations, and avoid the type
of saturation effects illustrated in Fig. 2. In particular, we deter-
mine the rate allocation needed to stay within a constant mul-
tiple of the lower bound in the case
of constant for all . The rate allocation can be
found by setting , and using (5) to solve
for the rate such that

This reveals that rate must increase logarithmically.
To help quantify the rate savings of side-information-aware-

ness, we calculate the extra rate required by estimate-and-quan-
tize to achieve the same target distortion levels. If is
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the rate required by estimate-and-quantize2 to achieve
, then the rate-savings is

This difference decreases with increasing , since a larger
means that the target distortion is more easily met. As in-
creases, however, the difference converges to a constant

This limit equals the rate needed by a standard quantizer to
achieve the quality of the decoder side information when
that side information is ignored.

C. Parallel Networks

The performance of the successive coding strategy when
applied to parallel networks also has a particularly tractable
form in the quadratic-Gaussian case. Let the source and
observations be defined as in Section IV-B. Denote by
the distortion in the hub node’s estimate after it has received
the first messages, where . If the hub node has its own
observation, account for it through an additional observation
node without a rate constraint. Then, in Appendix C, we show
that the following tradeoff is attained:

(6)

Just as in serial networks, we can determine the rate allocation
needed to stay within the constant multiple of .
In contrast to the serial network, the needed now decreases
with . This is because as the hub node accumulates messages,
its side information improves, and later nodes can communicate
more efficiently.

One way to choose a message ordering is to use (6) to sort the
nodes via a sequence of pairwise decisions. Express (6) com-
pactly as . Then, given two nodes with
noise levels and , and communication rates and ,
the estimation error each ordering achieves starting from distor-
tion are

If, e.g., , then it is best for node to encode its mes-
sage assuming no side information, and for node b to encode
its message treating ’s message as decoder side information.
A sequence of pairwise orderings extends this sorting to more
than two nodes.

To further illustrate successive coding performance, we show
that this strategy achieves the previously unknown rate-dis-
tortion frontier for a two node, sum-rate constrained problem.
Let the two nodes have equal-variance independent additive
white Gaussian noise observations, and assume that the hub

2Due to lack of space, we do not include derivation of estimate-and-quantize
performance. The derivation which, on the whole, is similar to the derivation of
Appendix B can be found in [11].

does not have a source observation. Applying (6) twice, with
and , where gives

as a function of , and . Minimizing
with respect to gives

(7)

where . Note that ,
and that as gets either very small or very large.
Using the fractional rate allocation (7) gives

(8)

We can show that (8) is the distortion-rate frontier for the
two node problem by using a bound that Oohama develops for
the CEO problem in [21]. As discussed further in Section V-A,
the CEO problem is a parallel network where the number of
nodes increases to infinity. However, Oohama’s bound is also
applicable to systems with finite numbers of nodes. Using it with
two nodes gives the distortion achieved in (8).

The optimization of this section can be generalized to nodes
with differing signal-to-noise ratios (SNRs). The resulting ex-
pressions are more complex and one node may receive the full
sum-rate and the other zero rate. We conjecture that, given an
appropriate rate allocation, our coding strategy can achieve the
rate-distortion frontier for larger networks. In correspondence
with Oohama [24], we have learned that he is also further in-
vestigating estimation problems for parallel networks with a fi-
nite number of nodes and different SNRs. He claims to have
found the rate-distortion frontier by using an inherently different
(joint) decoding structure [22], [23]. Our results confirm one an-
other for the two node case.

V. APPLICATIONS TO OTHER NETWORK

INFORMATION THEORY PROBLEMS

In this section, we show that the successive coding strate-
gies of Section III lead to novel solutions for a number of pre-
viously explored problems. In Section V-A, we show how to
achieve the rate-distortion frontier for the quadratic-Gaussian
CEO problem. In Section V-B, we show how to achieve the
best rate-distortion region for multiterminal source coding. Fi-
nally, in Section V-C, we show how to apply the strategies to
relay channel communications. While Sections V-A and V-B
do not produce new results, they demonstrate alternate, simpler
and, therefore, potentially more useful approaches to the same
results.

A. CEO Problem

In this section, we specify a rate-allocation for the successive
coding strategy that achieves the rate-distortion bound of the
quadratic-Gaussian CEO problem [21], [34]. The CEO problem
has the same hub-and-spoke topology as the parallel network
where the CEO acts as the hub node. There is a sum-rate con-
straint on all links, and the objective is to find the rate-dis-
tortion frontier as , the number of nodes, grows to infinity.
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Hence, the average per-node rate goes to zero. As noted
in Section IV-C, in the two-node problem, as gets very
small, an equal per-node rate allocation is optimal. We show
that using our coding strategy with an equal per-node rate al-
location achieves the rate-distortion frontier for
the quadratic-Gaussian CEO problem with equal-SNR observa-
tions, a frontier first achieved by Oohama in [21].

Using , defining the distortion-to-noise ratio
at node as and working in nats for convenience,
we can rewrite (6) as

. For large,
, which we use to get

. For large , this can be approxi-
mated to arbitrary precision [11] by the differential equation

, where is the per-node
rate increase and is the per-node decrease
in distortion-to-noise ratio. Solving this differential equation
gives

(9)

Equation (9) is the rate-distortion frontier for the problem [21].
The successive coding framework suggested here may

well better fit the architectural constraints of sensor networks
than approaches based on joint decoding [21]. First, in joint
decoding, decoding cannot begin before all messages are
received. The successive coding technique we propose allows
incremental increases in estimate quality as each message is
decoded. Second, joint decoding requires multiple messages
be decoded simultaneously, which is an exponentially more
complex task than a sequence of single-message decoding
problems. Finally, while joint decoding requires coordination
between all encoders to ensure that the hub can decode, suc-
cessive coding require coordination only between each encoder
and the hub at each step.

B. Multiterminal Source Coding

We now show how to use successive coding to reproduce the
best known achievable rate region for the multiterminal source
coding problem [3], [20], [33]. In multiterminal source coding,

sources are observed at separate encoders,
where .
Encoder sends a message at rate bits per source sample to a
central decoding hub. The hub decodes all messages and makes
estimates of all sources . This is a parallel network,
but the problem objective has changed—we now estimate the
observations, rather than a single underlying signal.

Theorem 3: Let a -tuple of source vectors ,
and a set of distortion measures
be given such that: 1)

, and 2)
. Then, a sequence of length-

block encoder-decoder pairs can be designed such that if
is encoded at rate , and the messages are decoded in order

, then with arbitrarily high probability as grows to
infinity, can be recovered to within any average distortion

that satisfies

(10)

The minimization is over all functions ,
and for all , where the set consists of all random
variables such that:

i) ;
ii) .

The achieved rate region is found by taking the convex hull
over all rate points resulting from different choices of the

satisfying i) and ii), and transmission orderings.3

The proof of this theorem is basically identical to that of
Proposition 2 and so is omitted. The sum-rate used by encoders

has a particularly simple form, .
To see this, note that it is true for by Theorem 3. We show
the result for by induction as follows:

(11)

where the first line follows from Markov chain, the second from
the induction assumption, and the third because conditioned on

is independent of all other variables, and because
.

Consider the two-terminal case, , first investigated by
Berger and Tung [3], [33]. There are two possible orderings:
(a) the message from terminal 1 is designed to be decoded first
and (b) the message from terminal 2 is designed to be decoded
first. Ordering (a) and Theorem 3 gives

(12)

(13)

Ordering (b) gives the same rates as (12)–(13) with the
subscripts interchanged. From (11), we know the rate pair

lies on the sum-rate
bound given by (13). Allowing time sharing between or-
dering (a) and (b), and each choice of valid joint distribution

achieves a rate-distortion region identical to
that given in [3] and [33].

C. “Estimate-and-Detect” for Relay Channels

Finally, in a rather different direction from the rest of the
paper, in this section, we consider distributed detection prob-
lems. We design a two part “estimate-and-detect” strategy for
the relay channel, whereby we first estimate the codeword using
the distributed estimation techniques developed herein, and then
detect the message based on the estimate. In the case of a single

3In the theorem, we define the d to be measured after all messages are re-
ceived. This makes it easier to compare our results with earlier results. However,
it is also possible to make estimates after each decoding step giving, e.g., d ,
the distortion in the estimate of made after the first k codewords have been
decoded.
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Fig. 5. Communication rate throughput achieved by estimate-and-detect
with two additive white Gaussian noise observations at the relays, both with
SNR = 10.

relay and additional direct path, as discussed in [6], the scheme
reduces to one presented in [9].

We focus on a parallel Gaussian two-relay network [29]. The
transmitted codeword is constrained to power , measured by
each relay in additive white Gaussian noise of variance . The
relays send rate-constrained messages to a central decoder under
a sum-rate constraint . A baseline approach is to use broad-
cast codes to communicate losslessly to the two relays. Since
the noise powers are identical, the maximal reliable sum trans-
mission rate to the relays is , where

. The communication throughput of this strategy
is . On the other hand, estimate-and-detect
builds on the results of Section IV-C. Codewords are generated
in an i.i.d. Gaussian manner. Based on their observations, the
relays send bit streams to the decoder which makes an estimate
of the codeword using the techniques of this paper. Since the re-
sulting estimate and codeword are jointly typical, we can detect
the message using standard typicality decoding. The resulting
throughput is

where and are the auxiliary random variables of the two

relays, , and is the dis-
tortion achieved in (8) with .

Fig. 5 plots the communication throughput of the two
schemes versus . Broadcast coding does better for
small since estimate-and-detect introduces extra quan-
tization noise. On the other hand, for large enough
estimate-and-detect outperforms broadcast coding since it is
able to exploit the diversity of the relay observations. For
comparison, we plot the minimal cut-set bound: the minimum
of the information flow to the relays, and .

In [30], Schein discusses strategies for this situation, where
the relays communicate to the decoder over rate-constrained
channels. He derives qualitative results similar to those of Fig. 5,
but the explicit rate evaluation presented herein is new. Other re-
cent work in this area includes, e.g., [14], [19], and [27].

VI. FUTURE DIRECTIONS

Many aspects of communication-constrained estimation al-
gorithms remain to be explored. First, we would like to derive
tighter converses, e.g., for the serial problem. The multistep
structure of the problem differentiates it from other problems
where tight converses are known. Second, we would like to
develop practical encoders and decoders. Recent progress on
building side information coding systems (see, e.g., [26] and
[42]) should prove useful. Finally, there is a host of interesting
network-layer issues in deciding how to choose the sensor
tree, allocate rates, and how to manage the network to be
robust to the failure of individual nodes. Some recent work
in these directions has appeared, e.g., in [28].

APPENDIX

A. One-Step Problem

We do not formally extend the finite-alphabet results of
Theorem 1 to continuous alphabets. This extension can be
made using tools developed, e.g., in [20] and [37]. Given this
extension, we specify a test channel that gives the rate-distor-
tion tradeoff of (1).

We consider the case where , and are jointly
Gaussian random variables. Define the auxiliary random
variable , where is indepen-
dent of , and . For this choice of

. The minimum
mean-squared estimation error for given and is

(14)

Setting (14) equal to the target distortion , and solving for
gives . Substituting
this into the expression for gives (3). In [11],
we specify the data-fusion function and, for the case of a
memoryless source and observations, give a converse that shows
(3) is the rate-distortion frontier.

B. Serial Networks

Assuming that encoding and decoding are accomplished
without error up to node , then and are jointly
typical. We use an innovations form to rewrite the rela-
tionship between and as , where

and . For the purpose
of encoding, define node ’s source observation to be

.
The encoding node’s observation can be treated as

the source in additive white Gaussian noise, ,
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of variance . The decoding node’s
observation serves as decoder side information. We
can, therefore, use the distortion-rate tradeoff (4) with

, and . This
results in an achieved distortion

. Finally, using the relation

, we get (5).

C. Parallel Networks

As in Appendix B, we start by defining in the same way.
In the parallel network, however, this side information is known
at the hub node, the decoder. Node is the encoder and measures

, where . Again, we use the distortion-rate
form (4), but with , and .
Simplification results in (6).
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